
Single-Threaded Objects in ACL2Robert S. Boyer�J Strother MooreyApril 13, 1999AbstractACL2 is a �rst-order applicative programming language based on Com-mon Lisp. It is also a mathematical logic for which a mechanical theorem-prover has been implemented in the style of the Boyer-Moore theoremprover. The ACL2 system is used primarily in the modeling and veri�ca-tion of computer hardware and software, where the executability of thelanguage allows models to be used as prototype designs or \simulators."To support e�cient execution of certain kinds of models, especially modelsof microprocessors, ACL2 provides \single-threaded objects," structureswith the usual \copy on write" applicative semantics but for which writesare implemented destructively. Syntactic restrictions insure consistencybetween the formal semantics and the implementation. The design ofsingle-threaded objects has been in
uenced both by the need to makeexecution e�cient and the need to make proofs about them simple. Wediscuss the issues.1 Background\ACL2" stands for \A Computational Logic for Applicative Common Lisp." Weuse the name both for a mathematical logic based on applicative Common Lisp[24] and for a mechanized theorem proving system for that logic developed byMatt Kaufmann and author Moore. ACL2 is closely related to the Boyer-Moorelogic and system and its interactive enhancement [2, 3, 4]. ACL2's primary useis in modeling microprocessors and proving theorems about those models. Thekey reason we abandoned the Nqthm logic and adopted applicative CommonLisp is that the latter can produce extremely e�cient runtime code. Execu-tion e�ciency is important because our microprocessor models are often run assimulators.�Department of Computer Sciences, University of Texas, Austin, TX 78712,boyer@cs.utexas.edu.yDepartment of Computer Sciences, University of Texas, Austin, TX 78712,moore@cs.utexas.edu. 1



In ACL2, a single-threaded object is a structure whose use is syntacticallyrestricted so as to guarantee that there is exactly one reference to the struc-ture. A perfect example of a single-threaded object is the \current state" ina microprocessor model. The fact that only one reference to the object existsallows updates to the structure to be performed destructively even though theaxiomatized semantics of update is \copy on write."This work is thus addressing the classic problem of how to implement updatese�ciently in an applicative setting. In that sense, our work is akin to that of[23, 13, 26, 27]. Indeed, Schmidt introduced the term \single threaded" in[23]. [27] contains a good survey of the most popular alternative in applicativelanguages, Haskell's \monads". But ACL2 is unusual among purely applicativeprogramming languages in that it is focused as much on using the language asa speci�cation language and on mechanically produced proofs as on executione�ciency. We �nd that these other concerns in
uenced our treatment of single-threaded objects. We do not regard the addition of single-threaded as objectsas having changed the logic but rather just restricted its executable subset fore�ciency reasons. The unrestricted logic is available for speci�cation and proof.The ACL2 theorem prover is used primarily in hardware and software veri-�cation. For example, the correctness of 
oating point division and square rooton the AMD K5 microprocessor was proved using the theorem prover [18, 20].ACL2 has been used to prove the correctness of hardware designs for 
oatingpoint addition, subtraction, multiplication, division, and square root on theAMD K7 [21]. It has been used to model the Motorola CAP digital signal pro-cessor, to prove that the CAP pipeline architecture correctly implements theinstruction set architecture, and to prove properties of CAP microcode pro-grams [6, 7]. ACL2 has been used to study the problem of specifying advancedmicroprocessor architectures, in particular the interaction of such features asmulti-issue, speculative execution and exceptions and has been used to provethat one such design correctly implements a sequential architecture [22]. ACL2was used to model the Rockwell-Collins JEM1, the world's �rst silicon Java Vir-tual Machine [9, 10, 11, 12]. The use of ACL2 to prove theorems about simpleJava-like byte code programs is reported in [17].One of the main reasons ACL2 has found industrial application is that it isboth a logic and an e�cient applicative programming language. Once a formalmodel is created it is possible to test it on concrete examples and to proveproperties of it. Why might one want to run a formal model? Testing the modelis a relatively inexpensive way to �nd the \easy" bugs. In addition, such a modelcan be used as a prototype for the intended component, allowing engineers toassess its appropriateness given the informal requirements. Another motivationfor such testing is to corroborate the formal model against some other model,e.g., a circuit-level simulation or even an existing physical artifact like a chip orgate-array implementation. At AMD, ACL2 formal models have been executedon many millions of \test vectors" to corroborate them against other models.The most common industrial applications of ACL2 involve models of mi-2



croprocessors. Our motivation for adding \single-threaded objects" to ACL2comes largely from the desire to speed up the execution of such models. Beforefurther describing our work, it is helpful to look closely at how microprocessormodels are written in ACL2. We assume a modicum of familiarity with Lisp.Typically, the state of a microprocessor is modeled as an n-tuple containing�elds representing memories of various kinds. Here we will imagine a state, MS,to be a triple containing a \next instruction counter" and two memories, oneused for read/write and the other used to hold \execute-only" programs. The\state-transition" function, here called step, is a Lisp function that creates thenext state from a given state, usually as a function of the \next instruction"indicated by the program counter and memory. The machine's fetch-executecycle is then modeled by the simple recursive function(defun run (MS n)(if (zp n)MS(run (step MS) (- n 1))))This Lisp command de�nes the function run so that, when applied to MS andn, it successively steps MS n times and returns the �nal result. In Lisp, theapplication of run to MS and n is written (run MS n) instead of run(MS,n).We might de�ne step so that it fetches the next instruction from MS andthen \does" that instruction to MS,(defun step (MS)(do-inst (next-inst MS) MS))where the function next-inst fetches the instruction indicated by the nextinstruction counter and do-inst is de�ned as a \big switch" that invokes theappropriate transition function depending on the opcode of the next instruction.(defun do-inst (inst MS)(case (op-code inst)(LOAD (execute-LOAD inst MS))(STORE (execute-STORE inst MS))(ADD (execute-ADD inst MS))(GOTO (execute-GOTO inst MS))...(otherwise MS)))Each instruction modeled, e.g., ADD, has a logical counterpart that speci�es thetransition, e.g., execute-ADD. Here is one such de�nition:(defun execute-ADD (inst MS)(let ((a1 (arg1 inst))(a2 (arg2 inst)))(update-nic (+ 1 (nic MS))(update-memi a1 3



(+ (memi a1 MS)(memi a2 MS))MS))))Here we are imagining that an ADD instruction has a \2-address" format. Inthe de�nition above we bind the variables a1 and a2 to the two addresses fromwhich the instruction is to get its operands. We then construct a new state fromMS by two \sequential" (i.e., nested) updates. The �rst (innermost) replacesthe contents of memory location a1 by the sum of contents of memory locationsa1 and a2. The second update increments the next instruction counter, nic, byone. The program component of the state MS is unchanged.1Suppose states are represented as triples and the memory component of astate MS is (nth 1 MS), i.e., the 1st element of the triple. Suppose that thememory is itself represented as a linear list. Then memi and update-memi arede�ned as shown below.(defun memi (i MS)(nth i (nth 1 MS)))(defun update-memi (i v MS)(update-nth 1(update-nth i v (nth 1 MS))MS))where (nth n x) is the nth element (0-based) of the list x and (update-nth nv x) copies the list x, replacing the nth element with v. The de�nition of thelatter is(defun update-nth (n v x)(cond ((zp n) (cons v (cdr x)))(t (cons (car x)(update-nth (1- n) v (cdr x))))))Thus, for example, (update-nth 3 'G '(A B C D E)) is equal to (A B C GE). In principle, given a concrete microprocessor state and a particular numberof steps to take we can compute the �nal state. This just requires executing runand the above subroutines on the concrete data. But if we actually implementmemi and update-memi as shown above, the time taken to execute memoryreads and writes in our model is linear in the address. This is because nthand update-nth \chase links" in the linked list representation of memories.In addition, because the formal semantics of update-nth is \copy on write,"storage (in an amount proportional to the address) is allocated on memorywrites.1Machines of commercial interest often have more complicated instruction semantics,e.g., the +-expression might be replaced by (mod (+ (memi a1 MS) (memi a2 MS)) (expt2 32)), but this example is suggestive of the essential character of such models.4



But inspection of the nest of functions starting with run and proceedingthrough step to the individual semantic functions like execute-ADD, revealsthat we could in principle do this computation by destructively re-using therepresentation of the initial state, provided we never needed the top-level stateagain. If update-memi were implemented destructively, modifying the existingrepresentation of the current state to obtain the next one, no harm would comebecause in the functions above no function references the \old" state after anyupdate to any part of it. This is a syntactic property of the de�nitions anddepends, in part, on order of evaluation.This observation has led us to incorporate into ACL2 the notion of a user-de�ned single-threaded object. Such an object is a structure, possibly containinglinear lists accessed positionally and usually quite large. Accessor functions,such as nic and memi, are provided, as are update functions, such as update-nicand update-memi. The axiomatic descriptions of the functions are as indicatedby the de�nitions of memi and update-memi above. This permits us to stateand prove properties of functions using the single-threaded object. However,syntactic restrictions are enforced that insure that it is su�cient to allocateonly one \live" copy of the object. Updates are performed destructively on thelive object. The syntactic restrictions | which actually require that we makeminor changes to some of the de�nitions above | insure that no well-formedcode executed on the live object can detect the di�erence between the axiomaticand implemented semantics of updates.The history of single-threaded objects in ACL2 is rather long. The initialdesign of the kernel of ACL2 was done in 1989 by Boyer and Moore. The systemis coded almost entirely in its own applicative language. That forced us toprovide ourselves an explicit notion of \state" into which we would accumulatethe e�ects of a session with the user. The state of the ACL2 theorem prover,for example, includes a list of the de�nitions added by the user, the rewriterules proved, etc. This notion of state also provides streams and �les so thatthe input/output functions, proof descriptions, error handling, and the read-eval-print loop could be coded applicatively in the language. To make thisapplicative state e�cient, we implemented it destructively, and we enforcedcertain draconian syntactic rules on the use of the name state so that theapplicative semantics was not violated by the destructive implementation. Weadded axioms which characterized the semantics of the accessors and updatersof our state and proved theorems about state in order to bootstrap the system.This \single-threaded" notion of state has been present and available to the userin all versions of the system. Matt Kaufmann joined the ACL2 project soonafter the treatment of state had stabilized; since 1993 most ACL2 developmenthas been the joint work of Kaufmann and Moore.However, while the ACL2 user could write functions that used our state,provided the syntactic rules were followed, and the user could prove theoremsabout those functions with ACL2, the user could not introduce his or her ownsingle-threaded object. 5



Researchers at Rockwell-Collins, namely David Hardin, David Greve, andMatt Wilding, demonstrated the need for user-de�ned single-threaded objectsby \cheating:" they implemented destructive state manipulation functions andthen used them as though they were applicative { being careful to obey the syn-tactic restrictions. Their results are reported in [12]. When John Cowles, of theUniversity of Wyoming, spent a sabbatical at Rockwell-Collins, he implementedmacros that enforced their restrictions.When they told us what they were doing, we recognized their approach asa straightforward generalization of what we were already doing for our stateand added single-threaded objects as described here to ACL2 Version 2.4.2 Introduction to ACL2ACL2 is both the name of an applicative programming language and a theoremproving system for it. ACL2 is largely the work of Matt Kaufmann and Moore,building on work by Boyer and Moore. This section therefore describes jointwork in which Kaufmann was a major contributor.2.1 The LogicThe kernel of the ACL2 logic consists of a syntax, some rules of inference, andsome axioms. The kernel logic is given precisely in [16]. The logic supported bythe mechanized ACL2 system is an extension of the kernel logic.The kernel syntax describes terms composed of variables, constants, andfunction symbols applied to �xed numbers of argument terms. Thus, (* x(fact n)) is a term that might be written as x�n! in more traditional syntacticsystems. After introducing Lisp-like terms, the kernel logic introduces the notionof \formulas" composed of equalities between terms and the usual propositionalconnectives. The kernel language is �rst order and quanti�er free.The ACL2 axioms describe the properties of certain Common Lisp primi-tives. For example,Axioms.x = y ! (equal x y) = tx 6= y ! (equal x y) = nilx = nil ! (if x y z) = zx 6= nil ! (if x y z) = yThe expression (cond (p0 x0) ::: (pn xn) (t xn+1)) is just an abbreviationfor (if p1 x1 ::: (if pn xn xn+1):::). Using the function symbols equal and6



if we \embed" propositional calculus and equality into the term language ofthe logic and generally write terms instead of formulas.The kernel logic includes axioms that characterize the primitive functionsfor constructing and manipulating certain Common Lisp numbers, characters,strings, symbols, and ordered pairs.Of special importance here, besides equal and if, are cons, car, and cdr,which, respectively, construct a new ordered pair and return the left and rightcomponents of such a pair. The predicate consp \recognizes" cons-pairs byreturning one of the symbols t or nil according to whether its argument is acons pair.The rules of inference are those for propositional calculus with equality,instantiation, an induction principle and extension principles allowing for thede�nition of new total recursive functions, new constant symbols, new \sym-bol packages," and the declaration of the \current package" (used to supportpossibly overlapping name spaces). Our extension principles specify conditionsunder which the proposed extensions are admissible. For example, recursivede�nitions must be proved to terminate. The admissibility requirements insurethe consistency of the resulting extensions.For example, here is the de�nition of the previously mentioned function nth.(defun nth (n x)(cond ((zp n) (car x))(t (nth (- n 1) (cdr x)))))The predicate zp is true if its argument is either 0 or not a natural number. Thusnth e�ectively \coerces" n to be a natural, by using zp as the \test against 0."All values of n other than natural numbers are treated as though they were 0.Termination of the recursion above is easy: when the recursive branch is taken,n is a non-0 natural number and the function decreases it in the recursion.The logic supported by the ACL2 theorem prover is somewhat richer thanthe kernel logic sketched above. The full logic is obtained from the kernel by(a) a syntactic extension and some syntactic restrictions (b) the inclusion of anextension principle called \encapsulation" and a derived rule of inference called\functional instantiation," and (c) the inclusion of an extension principle called\defchoose" which provides the power of �rst-order quanti�cation in ACL2.The syntactic extension is provided via the incorporation of Common Lisp's no-tion of macros, whereby new syntactic forms are implemented by functions thattranslate those forms into terms in the kernel syntax. The syntactic restrictionshave to do with syntactic limitations on the use of certain primitives so as toallow e�cient execution, as discussed in this paper. Encapsulation and relatedissues are discussed in [14], where admissibility requirements are extended tothe full logic and insure not just consistency but conservativity.7



2.2 The Relation to Common LispLogically speaking, all ACL2 functions are total, but not all Common Lispfunctions are total. For example, in Common Lisp, cdr is de�ned to be theright component of a cons pair and to be nil on the symbol nil. But ACL2has the axiom(consp x) = nil ! (cdr x) = nilThus, in both ACL2 and Common Lisp, (cdr nil) is nil. But according to theaxiom above, in ACL2 (cdr 23) is nil while in Common Lisp it is unde�nedand might signal an error or behave in some erratic or arbitrary way.Our \completion" of Common Lisp makes the task of writing a theoremprover for it simpler, because the language is untyped and the axioms are strongenough to let us reduce to a constant any variable-free expression involvingrecursively de�ned functions in the primitives.But only certain ACL2 expressions have their axiomatically described valuesunder Common Lisp. The expressions in question are ones in which each func-tion, f , is applied only to arguments within the domain prescribed for f by theCommon Lisp speci�cation [24]. The formalization of this notion of \prescribeddomain" of a function is ACL2's notion of guard, a formula that describes theintended inputs to the function.The guard for nth, above, requires that n be a natural number and x be alinear list or \true list". A linear list is a binary tree whose rightmost tip is nil.ACL2 uses an extension of Common Lisp's declare statement to allow the userto annotate de�nitions with their guards. Here is the de�nition of nth with itsguard:(defun nth (n x)(declare (xargs :guard (and (integerp n)(<= 0 n)(true-listp x))))(cond ((zp n) (car x))(t (nth (- n 1) (cdr x)))))A guard may be any ACL2 formula in the formal parameters of the function.Often guards are type-like and the system supports the use of Common Lisp'stype declaration in conjunction with guards declared as above.We say a function is Common Lisp compliant if, when its guard is satis�ed bythe function's inputs, the guards of all subroutines are satis�ed by their inputs.The process of verifying that a function is Common Lisp compliant is calledguard veri�cation. Since ACL2 has a mechanical theorem prover associatedwith it, guard veri�cation is elegantly implemented. Formulas expressing theconditions above are generated and handed over to the theorem prover for proof.Roughly speaking, in the de�nition of a function f there is a guard conjecturefor each occurrence of a call of a subroutine g. The guard conjecture says \if8



the formal parameters of f satisfy the guard for f and the tests governing thiscall of g are true, then the actuals of the call of g satisfy the guard of g."If an ACL2 function is Common Lisp compliant then any execution of it oninputs satisfying its guard is correctly calculated by executing the function inCommon Lisp.When the user submits an admissible function de�nition to ACL2, two func-tions are actually de�ned in the underlying Common Lisp. The �rst de�nition iscalled the raw de�nition and corresponds to what the user actually typed. Thesecond is the completed de�nition. This de�nition is obtained from the given oneby replacing all function names by the names of their completed counterpartsas per the ACL2 axioms. For example, the primitive Common Lisp functionnamed cdr, which is unde�ned on 23, is replaced by another symbol { actuallythe symbol cdr in another package { de�ned as our cdr is axiomatized. Bothde�nitions can be compiled. Generally, the raw de�nitions are faster than thecompleted ones, because the latter do runtime type checks and the former donot.When the user submits a form to be evaluated, the system runs the guardson the form and if they are satis�ed, the form is evaluated in Common Lisp,i.e., the faster, raw de�nitions are run. Otherwise, the slower, completed formis evaluated. Note that the guard is irrelevant to the logical meaning of afunction; it only a�ects the e�ciency with which ACL2 can compute the valueof the function. If a large system of de�nitions has been proved to be CommonLisp compliant and some function in that system is called, e.g., to simulate atest run of a microprocessor, then the guard of that top-level function call istested once and all subsequent execution is of fast, raw code.Because of guards, calls of compliant ACL2 functions can be replaced by rawLisp that is more e�cient than their logical de�nitions suggest. Consider theexpression (zp n). Logically this tests whether n is a non-0 natural number.One might think that the execution of (zp n) therefore required a runtimetype check on n and the test 0 � n. But the guard for zp is that n is a naturalnumber. Hence, the compiled code for (zp n) can test just whether n = 0.Nth, as shown above, is Common Lisp compliant. On inputs satisfying itsguard, the compiled code repeatedly decrements n and cdrs x until n = 0 andthen returns the car of x. We will use nth often in this paper.2.3 About the Theorem ProverThe ACL2 theorem prover is an improved and extended descendent of the Boyer-Moore theorem prover, NQTHM, [2, 3, 4]. ACL2 presents itself to the user as aread-eval-print loop. In addition to the typical commands of de�ning functionsand evaluating forms, ACL2 permits the user to pose theorems to be proved.The theorem prover is fully automatic but its behavior is determined, in part,by its state, which is in turn a�ected by the theorems it has already proved. Weregard the theorem prover as interactive: it is led to the proofs of complicated9



theorems by the user, who formulates appropriate intermediate results to prove�rst. These results are designed by the user to lead the system to the proof ofthe main result.Here is some sample input to the theorem prover:(defthm nth-update-nth(equal (nth i (update-nth j v x))(if (equal (nfix i) (nfix j))v(nth i x))))This form directs the system to prove the above formula and then build it in asa rewrite rule with the name nth-update-nth.Consider the theorem above. It is an equality and the left-hand side is theterm denoting the ith element in the result of updating x so that its jth elementis v. The right-hand side tells us what that element is. The expression (nfixi) \coerces" i to a natural: if i is a natural number, (nfix i) is identically i;otherwise, it is 0. If i and j are the same (when coerced to natural numbers),the answer is v; otherwise, the answer is the ith element of x.If we think of the update as a destructive operation on x, then this theoremrelates the ith element after the update to the ith element before the update.But update is not destructive; x does not change. We are dealing with a logichere, not a programming language.Logically speaking, there is no \before" or \after.". There is no such \event"as the \updating of x." Instead, the logical expressions x and (update-nth jv x) both denote objects and the theorem relates the ith element of the objectdenoted by the �rst to the ith element of the object denoted by the second.The ACL2 theorem prover proves nth-update-nth automatically, by in-duction on i and the structure of the list x. After setting up a suitable basecase and induction step, the theorem prover proves both cases by simpli�cation,applying such axioms as the de�nitions of nth and update-nth and the factthat (car (cons x y)) = x.Once proved, the theorem is built into ACL2's simpli�er as a rewrite rule.Suppose that the system later tries to prove a formula � involving the term(nth i (update-nth j v x)). We will denote such a formula as �[(nth i(update-nth j v x))]. The rewrite rule nth-update-nth will split this goalinto two goals. In the �rst, the goal becomes �[v] and has an additional hypoth-esis equating (as above) i and j; in the second, the goal becomes �[(nth i x)]and has an additional hypothesis asserting that i and j are di�erent. Of course,� or the particular instantiations of i and j may make a case impossible (e.g.,as when i and j are di�erent constants or identical expressions).By proving lemmas such as the one above, the user can con�gure ACL2 todo case splits and simpli�cations designed to prove certain classes of theoremsof interest. The user can augment or control ACL2's proof search in a varietyof other ways as well. 10



ACL2 is available without fee from the ACL2 home page, http://www.-cs.utexas.edu/users/moore/acl2. Five megabytes of hypertext documentationcan be browsed there. The documentation can be downloaded with the ACL2sources.3 Single-Threaded ObjectsIn ACL2, a \single-threaded object" is a data structure whose use is so syn-tactically restricted that only one instance of the object need ever exist and its�elds can be updated by destructive assignments.From the logical perspective, a single-threaded object is an ordinary ACL2object, e.g., composed of integers, symbols and conses. Logically speaking,ordinary ACL2 functions are de�ned to allow the user to \access" and \update"its �elds. Logically speaking, when �elds in the object, obj, are \updated" withnew values, a new object, obj0, is constructed.But by syntactic means we insure that after an updated version of the objectis created there are no more references to the \old" object, obj. Then we cancreate obj0 by destructively modifying the memory locations involved in therepresentation of obj. The syntactic means is pretty simple but draconian: theonly reference to obj is in the variable named OBJ, where that is a \name" forthe object introduced when the original instance was created.The consequences of this simple rule are far-reaching and require some get-ting used to. For example, if OBJ has been declared as a single-threaded objectname, then:� OBJ is a top-level global variable that contains the current object, obj.� If a function uses the formal parameter OBJ, the only \actual expression"that can be passed into that slot is OBJ; thus, such functions can onlyoperate on the current object. Note that since the formal parameters of afunction must be distinct, this rule prevents a single-threaded object beingpassed into a function in two or more argument positions, eliminating thepossibility of aliasing.� The accessors and updaters have a formal parameter named OBJ, thus,those functions can only be applied to the current object.� The ACL2 primitives, such as cons, car and cdr, may not be appliedto the variable OBJ. Thus, for example, OBJ may not be consed into alist (which would create another pointer to it) or accessed or copied via\unapproved" means.� The updaters return a \new OBJ object", i.e., obj0; thus, when an updateris called, the only variable which can hold its result is OBJ.11



� If a function calls an OBJ updater, it must return OBJ.� When a top-level expression involving OBJ returns an OBJ object, thatobject becomes the new current value of OBJ.To avoid dependence on the left-to-right order of evaluation in CommonLisp, we impose another rule� When a non-top-level expression returns an OBJ object, the result mustbe bound to the local variable namedOBJ (rather than passed as an actualto a function with a formal parameter named OBJ).Consider the term (f (smash OBJ) (g OBJ)), where smash is a functionthat takes obj as input and returns a modi�ed version of it, obj'. Observe thatf has two arguments and that both actuals mention OBJ. Logically speaking,the two occurrences of the variable OBJ refer to the same object, obj, which is,of course, the value of OBJ \before" the modi�cation. But with Lisp's left-to-right order of evaluation and our surreptitious destructive modi�cation of objto produce obj', the Lisp evaluation of this expression would apply g to obj'.Hence, the rule above disallows this term and requires us to write(let ((OBJ (smash OBJ)))(f OBJ (g OBJ))).If we mean to apply g to obj instead of obj' we must write(let* ((v (g OBJ))(OBJ (smash OBJ)))(f OBJ v)).Note that f must return OBJ for these expressions to be legal under our rules.In ACL2, (let ((v1 x1) ::: (vn xn)) body), where the vi are distinct vari-able symbols and the xi and body are terms, is logically equivalent to the termobtained by simultaneously and uniformly replacing the vi by the correspondingxi, i.e., body [v1 x1;:::;vn xn]. The raw implementation of let binds the variablesto the values of the terms and then evaluates the body in the extended bind-ing environment. Because ACL2 is applicative, these two \meanings" of theexpression are equivalent. Lisp's let* construct is similar but does sequentialassignments (nested substitutions).The above restrictions on the use of single-threaded objects are enforced bythe ACL2 syntax checker. When a form is submitted to the read-eval-print loop,the terms in it are checked for well-formedness. This includes, for example, theexpansion of macros, the check that functions are de�ned and the check thatfunction calls are given the correct number of arguments.To enforce the syntactic rules on single-threaded objects, we must know the\signature" of every function symbol. For example, memi is known to take an\ordinary" argument and a single-threaded object of type MS as input and to12



yield an ordinary object as the single result. This is written ((memi * MS) )*). The signature of update-memi is ((update-memi * * MS) ) MS). Thesignature of cons is ((cons * *) ) *). Thus, the syntax checker is able toinsure such things as that MS is passed into the second argument of memi, thatMS is passed into the third argument of update-memi, and thatMS is not passedinto the second argument of update-memi or into either argument of cons. Thelast restriction prevents single-threaded objects from being referenced by otherobjects. The syntax checker also uses signatures to insure that the result ofupdate-memi is immediately let-bound or else returned as the �nal answer.ACL2 supports \multi-valued" functions, i.e., functions that return a vectorof results. The rules above are generalized to handle such functions. For exam-ple, the function funcmight take an ordinary �rst argument, the single-threadedobject MS as its second argument, and the single-threaded object STATE as itsthird argument and it might return an ordinary object and a modi�ed STATE.Such a signature is written ((func * MS STATE) ) (mv * STATE)). Thesyntax checker insures that when func is called its last two arguments are theproper single-threaded objects and that its vector of two results is either re-turned immediately or is mv-let-bound to a vector of two variables, the secondof which is STATE.The hardest part of the syntax checking is inducing the signature of a newlyde�ned function. The input signature is obvious from the formal parameters2The output signature can be determined by examining some output branch,where the function returns an explicit formal parameter (or vector of values) orcalls a subroutine whose output signature is known. The support for recursiveand mutually-recursive de�nitions, however, complicates this process, as it maybe necessary to enforce the restrictions on recursive calls before the type of theoutput has been determined.The ACL2 read-eval-print loop does not allow the use of any global variableexcept single-threaded objects. For example, while (car '(a b c)) is allowed,(car x) is not, because in our applicative setting there is no binding environ-ment assigning a value to x. We make an exception for single-threaded objectnames. If MS, for example, is a single-threaded object, and fn is a functionwhich expects MS as its only argument, then (fn MS) is a legal top-level form.If the signature of fn indicates that (fn MS) returns an updated copy of MS,then that value becomes the new \current" MS after the evaluation. Accordingto our rules above, fn must return an updated MS if fn (or any of its subfunc-tions) updates MS. We illustrate these restrictions in the next section.What makes ACL2 di�erent from other functional languages supporting suchoperations (e.g., Haskell's \monads" [26] and Clean's \uniqueness type system"[1]) is that ACL2 also implements an explicit axiomatic semantics so that theo-rems can be proved about them. In particular, the syntactic restrictions noted2Actually, for reasons explained later, we require the user to declare explicitly that a givenformal is being used as a single-threaded object rather than as an ordinary object.13



above are enforced only when single-threaded objects are used in function def-initions (which might be executed outside of the ACL2 read-eval-print loop inCommon Lisp). The accessor and update functions for single-threaded objectsmay be used without restriction in formulas to be proved. Since function eval-uation is sometimes necessary during proofs, ACL2 must be able to evaluatethese functions on logical constants representing the object, even when the con-stant is not \the current object." Thus, ACL2 supports both the e�cient vonNeumann semantics and the clean applicative semantics, and uses the �rst incontexts where execution speed is paramount and the second during proofs.4 An ExampleWe describe our implementation of single-threaded objects largely by exam-ple. For simplicity, we do not model a microprocessor state here, but rather amuch simpler structure containing a \pointer" and a small memory. The follow-ing command to the ACL2 read-eval-print loop de�nes a new single-threadedobject named MS. The name \defstobj" comes from the phrase \define single-threaded object."(defstobj MS(ptr :type (integer 0 *) :initially 0)(mem :type (array t (5)) :initially nil))This constructs a single-threaded object named MS with two �elds. The �rst,named ptr, contains a positive integer and is initially 0. The second, namedmem, is a list of �ve arbitrary (i.e., of Common Lisp type t) objects, indexedsequentially from 0 through 4. Initially mem contains �ve occurrences of nil.Logically speaking, the top-level global value of the variable symbol MS isnow (0 (nil nil nil nil nil)).3The defstobj command above introduces several function de�nitions. Thesede�nitions extend the logic to include the corresponding axioms and they ex-tend the underlying Common Lisp to include the completed versions of theseaxiomatic de�nitions. The completed de�nitions, recall, are used by ACL2 whenit must apply a logically de�ned function outside of its guarded domain. Aftermaking these extensions, defstobj introduces raw de�nitions for the functions.These de�nitions are destructive and will be discussed after we have clearlydescribed the intended semantics.The axiomatic de�nition of the \recognizer" for MS objects is(defun msp (MS)(declare (xargs :guard t))3If the ACL2 user were to print the value of the variable MS, the result is displayed as<ms>. Single-threaded objects are generally so large that it is counterproductive to displaytheir values and yet by the nature of our syntactic conventions it is necessary that functionsreturn such values. 14



(and (true-listp MS)(= (length MS) 2)(ptrp (nth 0 MS))(memp (nth 1 MS))))The sub-functions ptrp and memp are de�ned as informally sketched above, tocheck that their arguments are, respectively, a positive integer and a list of �veobjects.The accessor and updater for the ptr �eld are(defun ptr (MS)(declare (xargs :guard (msp MS)))(nth 0 MS))(defun update-ptr (v MS)(declare (xargs :guard(and (and (integerp v) (<= 0 v))(msp MS))))(update-nth 0 v MS))Note that the guard ensures that we do not run the raw code (shown later)unless MS satis�es msp and, in the case of the updater, v is a positive integer.We do not provide the user with an accessor or updater for the mem �eld.Instead, we provide an accessor and updater for the elements of that �eld. Thisallows us to implement the contents of the �eld itself as a (non-applicative)Common Lisp array without exposing that implementation decision. The twofunctions provided are(defun memi (i MS)(declare (xargs :guard(and (integerp i)(<= 0 i)(< i 5)(msp MS))))(nth i (nth 1 MS)))(defun update-memi (i v MS)(declare (xargs :guard(and (integerp i)(<= 0 i)(< i 5)(msp MS))))(update-nth 1(update-nth i v (nth 1 MS))MS))Note that these names have an \i" su�x to remind the reader that they accessand update elements of the mem component of MS, not the component itself.15



So much for the axiomatic semantics of the new functions.The initial value of the MS object is not (0 (nil nil nil nil nil)) buta Common Lisp object outside the applicative domain of the ACL2 logic byvirtue of the use of destructively modi�ed arrays. The initial value is (#(0)#(NIL NIL NIL NIL NIL)). The hash marks are Common Lisp's notation forarrays. The two arrays serve two purposes. They will be destructively modi�edto update the currentMS object and they sometimes allow us to avoid \boxing,"the allocation of additional storage to represent runtime type tags. A pointer tothis initial value is stored in the Lisp constant symbol named *the-live-ms*,which is not directly accessible to the ACL2 user. However, when the userevaluates a top-level ACL2 form containing the global variableMS, that variableis given the value of *the-live-ms*.Defstobj introduces e�cient raw de�nitions for these functions. We showbelow the raw de�nitions for memi and update-memi.4 This is legal CommonLisp, but not within the applicative ACL2 subset.(defun memi (i MS)(cond((eq MS *the-live-ms*)(aref (car (cdr MS)) i))(t (nth i (nth 1 MS)))))(defun update-memi (i v MS)(cond((eq MS *the-live-ms*)(cond(*wormholep* (wormhole-er 'update-memi (list i v MS)))(t (setf (aref (car (cdr MS)) i)v)MS)))(t (update-nth 1 (update-nth i v (nth 1 MS)) MS))))Observe that when memi is applied to the \live" instance of MS it does an arrayaccess, aref, to get the appropriate element. When update-memi is used toupdate the mem �eld of the live instance of MS, it does so destructively. Theclause dealing with \wormholes" has to do with an interactive environment inwhich ACL2 does not allow single-threaded objects to be altered and is notgermane here. When the functions are applied to values that are not the \live"one, they behave as per the axiomatic de�nitions.54The de�nitions introduced actually contain heavy use of Common Lisp declare and theforms so the compiler will produce more e�cient code.5These functions may be applied to \non-live" values by the theorem prover itself. Inthe course of proving a theorem about (update-memi i v MS) it is possible that the threevariables get instantiated to constants and ACL2 will run the de�nition of update-memi toreduce the expression to a constant. If the particular values satisfy the guard on update-memi,the raw de�nition is run, even though the particular value of MS may not be the live one.16



Finally, defstobj gives these functions signatures that indicate that theytra�c in single-threaded objects. For example, the signature of memi is ((memi* MS) ) *) and that of update-memi is ((update-memi * * MS) ) MS).Thus, both functions must be passed the current MS (in the appropriate argu-ment position) when they are called. Furthermore, the output of update-memimust be either returned or bound to the let variable named MS.Suppose that the defstobj above has just been admitted (i.e., evaluatedsuccessfully). Here is a sequence of interactions with the read-eval-print loop.The \ACL2 !>" is the ACL2 prompt.ACL2 !>MS<ms>ACL2 !>(ptr MS)0ACL2 !>(update-ptr 3 MS)<ms>ACL2 !>(ptr MS)3ACL2 !>(memi 2 MS)NILACL2 !>(update-memi 2 'abc MS)<ms>ACL2 !>(memi 2 MS)ABCThe live version of MS is printed simply as <ms>. Case and font are irrelevanthere.The following theorem is proved immediately (provided nth-update-nthhas been proved).(defthm memi-update-memi(equal (memi i (update-memi j v x))(if (equal (nfix i) (nfix j)) v (memi i x))))There are several noteworthy points about this theorem. First, it uses thevariable x where the single-threaded object MS might have been expected. Oursyntactic restrictions apply only to functions to be executed in Common Lisp,not to logical formulas to be proved as theorems. It is often necessary to breakthe single-threaded rules simply to state the desired properties of functions thatmanipulate these objects. For example, one might wish to pose a conjecturethat relates components of the state before and after a change. Secondly, thetheorem has no hypotheses restricting its use to (msp x) or legal i, j, and v.Those restrictions are re
ected in the guards to the functions, not their logicalmeanings. The upshot of this is that powerful general theorems can often beproved | theorems without hypotheses which may encumber their subsequentuse by the automatic theorem prover. However, to use the single-threaded17



objects in the most e�cient way { i.e., to gain access to the raw code producedfor them { they must be applied to their intended domains. When functions arede�ned in terms of memi, update-memi, and the other single-threaded primitiveshere, those functions should be proved to be Common Lisp compliant to gainmaximal e�ciency.5 Using Single-Threaded ObjectsTo illustrate the use of single-threaded objects, we use the MS object to imple-ment a ring bu�er. We wish to de�ne (insert x MS) so that it writes x to themem location indicated by ptr and increments the pointer. Logically speakingwe mean(defun insert (x MS)(update-ptr (inc (ptr MS))(update-memi (ptr MS) x MS)))where inc increments its argument modulo 5. However, this violates our syn-tactic rules because the output of update-memi is not immediately let-boundto the variable MS. In addition, we have found it desirable to require the userto declare explicitly the intention to use single-threaded objects. (Otherwise,the raw de�nition produced by an acceptable defun would be dependent onwhether its formals had been de�ned to be single-threaded objects. This wouldopen the user to the possibility that the inclusion of another user's library intoa session would change e�ect of legal de�nitions.) The following de�nition ofinsert is legal in our system, provided MS has been introduced as above.(defun insert (x MS)(declare (xargs :stobjs (MS)))(let ((MS (update-memi (ptr MS) x MS)))(update-ptr (inc (ptr MS)) MS)))Logically, this de�nition is provably equivalent to the earlier one, but, we think,makes the sequencing more explicit. Finally, the user may de�ne de�ne a macroto produce a nest of let-bindings of the variable MS. We call that macro\sequentially" below. With such a macro we could write the defun aboveas(defun insert (x MS)(declare (xargs :stobjs (MS)))(sequentially(update-memi (ptr MS) x MS)(update-ptr (inc (ptr MS)) MS)))Suppose then that we have the initial MS (with ptr 0 and mem consisting of�ve nils). If we execute the following 18



(sequentially(insert 'A MS)(insert 'B MS)(insert 'C MS)(insert 'D MS))then the logical value of MS is (4 (A B C D NIL)). If we then do (insert 'EMS) the logical value is (0 (A B C D E)). Finally, if we do (insert 'F MS),the logical value (1 (F B C D E)). However, if we ask ACL2 to print the valueof MS the result is always the same <ms>.It is convenient to de�ne a function to display that part of the object inwhich we are interested. In the case of MS, we de�ne (show MS) so that itreturns the �ve elements in the ring bu�er, starting with the oldest. Thus, forthe state of MS shown above, (show MS) is (B C D E F). So far we have onlyexecuted insert. What theorems can we prove about it?We have proved(defthm show-insert(implies (< (ptr MS) 5)(equal (show (insert x MS))(cdr (append (show MS) (list x))))))Again, note the relatively weak hypothesis, which makes this lemma easier toapply in the future. We do not need to know thatMS is a well-formed ring bu�er,only that its pointer is less than �ve. 6 This lemma is proved by reasoning aboutnth and update-nth.Now suppose we wish to scan a binary tree and keep track of the last �vetips seen. We can write this as follows:(defun scan (x MS)(declare (xargs :stobjs (MS)))(if (consp x)(sequentially(scan (car x) MS)(scan (cdr x) MS))(insert x MS)))Let � be '(((A . B) . C) . (D . ((E . (F . G)) . (H . I)))), i.e., a bi-nary tree whose fringe consists of the nine symbols A, B, C, ..., I. Then (show(scan � MS)) is (E F G H I). No new storage is allocated to compute (scan� MS).We can prove the following theorem,6The equality by itself is not a theorem. If (ptr MS) exceeds four, then the insert onthe left-hand side inserts x beyond the end of memory and then show on the left-hand sidecollects the �rst �ve elements of the bu�er, ignoring the x altogether. Meanwhile, the (showMS) on the right-hand side collects the nil beyond the end of memory and then the �rst fourelements of the bu�er. The nil is cdr'd o� and the �nal list of length �ve contains the �rstfour elements of the bu�er, followed by x. 19



(defthm show-scan(implies (< (ptr MS) 5)(equal (show (scan x MS))(lastn 5 (append (show MS) (fringe x))))))where (lastn i x) returns the last n elements of list x and(defun fringe (x)(if (consp x)(append (fringe (car x))(fringe (cdr x)))(list x)))Note that this theorem \abuses" our syntactic restrictions on the use of MS in acompletely unavoidable way. It relates the result of \showing" the object aftera scan with the result of showing it before the scan. Such constructions mustbe legal if we are to use the language to specify our intentions. The theoremabove is proved by reasoning inductively about the tree structure of x. Theproof requires knowledge of the properties of lastn, append, etc., but no newknowledge about the primitives for our single-threaded object MS.Obviously, if the fringe of x contains �ve or more elements, the initial con-tents of MS is irrelevant. That is, an easy corollary of the above, derived via alemma about lastn and append, is(defthm show-scan-corollary(implies (and (< (ptr MS) 5)(<= 5 (len (fringe x))))(equal (show (scan x MS))(lastn 5 (fringe x)))))While these theorems are not fundamentally deep, we o�er them to illuminatethe claim that we can reason about \destructive" functions such as scan with-out much trouble thanks to the observation that their syntactic nature allowsapplicative semantics but von Neumann implementations.6 ConclusionOf course, single-threaded objects have not added anything to the expressivepower of ACL2; since they are axiomatized entirely in terms of the prede�nedfunctions nth and update-nth, we cannot use them to model computing sys-tems previously beyond our grasp. But the new models execute much faster.For example, researchers at Rockwell-Collins, Inc., have used ACL2 to modela microprocessor, both with and without using single-threaded objects. Themodels are logically identical. We can compare the speeds of these two modelswhen executing test programs for the modeled microprocessor. It is convenientto measure speeds in simulated microprocessor instructions per second. The20



model that does not use single-threaded objects executes about 278 instruc-tions/second. The model with single-threaded objects executes at about 2,326instructions/second. These tests are extremely sensitive to the program beingrun since the execution time of the �rst model is heavily dependent upon thememory addresses at which writes are being done. Furthermore, if the testis arranged so that all the integers created are Common Lisp �xnums, the �rstmodel still executes at about 278 instructions/second while the second improvesto over 75,000 instructions/second because no \boxes" are created for the data.These tests were performed on a Sun Ultra 2 (160 MHz) running the beta releaseof ACL2 Version 2.4 under Gnu Common Lisp.It should be noted that the use of single-threaded objects explicitly sequen-tializes (some of the updates in) any function using them. This reduces theopportunities to introduce parallelism, which is one of the potential payo�s ofan applicative language. For this reason, we have sometimes used the name \vonNeumann bottlenecks" instead of \single-threaded objects." However, until werealize the potential parallelism in ACL2, we feel that single-threaded objectsare very useful.Our single-threaded objects are similar in spirit to Haskell's \monads." Amonad is a type constructor together with two operations that correspond,roughly, to the notions of \update" and \sequentially." Like our single-threadedobjects, monads are state-holding objects that are understood applicatively butcan be implemented destructively because of syntactic (type) checks analogousto those we implement. It is possible in Haskell for a function to temporarilycreate a monad for the purpose of some computation. The state-holding object\evaporates" when it is no longer referenced. ACL2 does not support such ause of single-threaded objects. Indeed, every single-threaded object must appearas an explicitly named actual to any expression using it. The storage for theobject is allocated once and is never deallocated. Another limitation of oursingle-threaded objects is that they cannot be nested: it is against our syntacticrules for such an object to be a component of any object, including anothersingle-threaded one. It is perhaps possible to �nd syntactic restrictions underwhich such hierarchies of objects may be safely used.The paper [27] relates monads to other popular alternative approaches, in-cluding synchronized streams [25], continuations [19], linear logic [8], and side-e�ects. Our approach shares a lot with linear logic, but we do not regard theprovision of single-threaded objects as having produced a new logic. Indeed,the situation is exactly the opposite: if one regards this paper having \added"single-threaded objects to our existing logic, we must stress that we did not alterthe logic in any way. Our conventions are merely syntactic restrictions on theexecutable subset of a conventional �rst-order, quanti�er free logic of recursivefunctions. We exploit the fact that the syntax of the logic is unchanged so thatwe can state theorems about the e�ects of updates.In general, it is our opinion that our single-threaded objects are less ex-pressive than monads and the alternative mechanisms but have the winning21



attributes of being very simple, very e�cient, and su�cient for our purposes.As supporting evidence we cite the ACL2 system itself. ACL2 is largelycoded in the ACL2 applicative programming language. The system constructedby Kaufmann and Moore consists of 5.5 megabytes of compiled code. Roughly400,000 bytes is compiled non-applicative Common Lisp code implementing thesingle-threaded applicative state containing property lists, clocks, streams and�les. Thus, we think of 7% of the code as being the non-applicative implemen-tation of the primitives and the remaining 93%, or 5 megabytes, being pureapplicative code. The applicative code includes all of the theorem prover, in-cluding its rule-based simpli�er, various decision procedures including a bddpackage and a linear arithmetic procedure, the induction mechanism and all theother heuristics and proof techniques. Many parts of the theorem prover accessand update the applicatively formalized property list \world" containing tens ofthousands of properties when the system is in its initial state and before it hasloaded user-supplied \books" of previously proved theorems, which may addtens of thousands of additional properties. The applicative code also includesthe error checkers and error handlers, all input/output including the generationof natural language proof descriptions, the syntax checking and macro expan-sion, and the read-eval-print loop. The theorem prover is not a toy; it is usedto do industrial-scale veri�cation projects. This is powerful evidence that oursingle-threaded state provides adequate expressiveness, convenience and e�-ciency for practical application.The main contribution of this work is that we have connected an e�cientimplementation of state holding objects with an applicative programming lan-guage while preserving our ability to reason formally and mechanically about thefunctions. The \limitation" that single-threaded objects are explicitly namedin expressions using them is useful in this setting because it allows us to statehypotheses about their current con�guration, e.g., that (ptr MS) is less than�ve. These hypotheses may in fact be invariants that could be proved of theobject; but more often in our work they are true restrictions on the space ofpossible states of the object { restrictions which allow one to address the situ-ations of interest. For example, in our microprocessor work, a theorem mighthave a hypothesis that restricts the theorem to those states in which a givenmicrocode program occupies a certain region of memory; the theorem mightconclude with a relation between the initial state and �nal state of a run. Thatis, the theorem characterizes the correctness (or some other property) of the mi-crocode program in question. Other memory con�gurations are possible underthe model and are indeed studied with theorems about other programs. Thesetheorems can then be combined to prove facts about systems of programs. See[5, 17] for some simple examples of how this is done and citations of applica-tions of industrial interest. In [27] the question is raised, in regard to linearlogic, whether \mentioning state explicitly" is a \pain" or a \boon;" [27] saysadditional experience is necessary to determine the answer. Our experience isthat it is a boon when one wishes to state theorems about one's functions and22
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