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Abstract—ACL2 is a re-implemented extended version
of Boyer and Moore’s Nqthm and Kaufmann’s Pc-Nqthm,
intended for large scale verification projects. This paper
deals primarily with how we scaled up Nqthm’s logic to an
“industrial strength” programming language — namely, a
large applicative subset of Common Lisp — while preserv-
ing the use of total functions within the logic. This makes
it possible to run formal models efficiently while keeping
the logic simple. We enumerate many other important fea-
tures of ACL2 and we briefly summarize two industrial
applications: a model of the Motorola CAP digital signal
processing chip and the proof of the correctness of the kernel
of the floating point division algorithm on the AMD5K86
microprocessor by Advanced Micro Devices, Inc.
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particular style of formal verification that has shown consid-
erable promise in recent years is the use of general-purpose
automated reasoning systems to model systems and prove
properties of them. Every such reasoning system requires
considerable assistance from the user, which makes it im-
portant that the system provide convenient ways for the user
to interact with it.

One state-of-the-art general-purpose automated reason-
ing system is ACL2: “A Computational Logic for Applica-
tive Common Lisp.” A number of automated reasoning
systems now exist, as we discuss below (Subsection 1.1). In
this paper we describe ACL2’s offerings to the user for con-
venient “industrial-strength” use. We begin in Section 2 with
a history of the ACL2 project. Next, Section 3 describes the
logic supported by ACL2, which has been designed for con-
venient specification and verification. Section 4 discusses
guards, which connect ACL2 to efficient execution in Com-
mon Lisp and provide a powerful specification capability.
We illustration the role of guards in Section 5. In Section 6
we discuss other important features of ACL2. In Section 7
we present two industrial applications. We conclude with
Section 8.

1.1. Brief Comparison with Other Theorem Provers

As we mentioned above, there are many other automated
reasoning systems besides ACL2 and its ancestors. Al-
though it is beyond the scope of this paper to survey the
field or provide descriptions of other systems, we say a few
words here in order to provide some context for our work.

Active research continues in automated reasoning in a
number of areas. Here is an incomplete list. In each case we
give one or two representative systems. Certainly the areas
below contain considerable overlap.� Provers providing strong support for specification of

computing systems (see below)� CTL model checkers [29, 11]� Geometry provers [13]� First-order provers [28]� Classical Mathematics [21], [41]



� Constructive Mathematics [15, 16]� Provers with symbolic computation engines [14]� Meta-theoretic systems [34]

Provers in the first category are distinguished by the con-
venience they offer for specifying computing systems. Cases
could be made that each prover in the first category has ca-
pabilities in most of the other categories; conversely, some
provers in the other categories could be placed in this one.

The first category may be subdivided as follows.� Higher-order tactic-based provers, e.g., HOL [20]� Higher-order heavily-automated provers, e.g., PVS
[18]� First-order heavily-automated provers, e.g., ACL2
and Nqthm� Provers integrated into program verification systems,
e.g., Never/EVES [17]

Again, space does not permit detailed comparisons here.
Bill Young’s paper [42] in this Special Issue compares PVS
and ACL2 on a particular example. ACL2’s ancestral sys-
tem, Nqthm, is compared to NuPRL in [3]. It is extremely
difficult to compare two general-purpose theorem provers at
least in part because experienced users can dramatically af-
fect system behavior by proper formulation of the problems.

That said, other systems cited above support logics more
powerful than that of ACL2. On the other hand, ACL2’s
theorem prover encourages more reliance by the user on the
system’s automatic aspects. For users happy with an essen-
tially quantifier-free, first-order logic, we believe that ACL2
offers more overall convenience for the type of reasoning
required to model and prove properties of digital computing
systems. In addition to the sophisticated inference engine
it provides, ACL2 provides extremely efficient evaluation,
allowing formal models often to serve as simulators for the
systems described. This, in turn, provides some immedi-
ate proof-independent payoff, e.g., requirements testing and
code development. Additional reasons for ACL2’s conve-
nience can be broadly lumped into the “proof engineering”
considerations discussed in Section 6.

See the URL http://www-formal.stanford.edu/clt/ARS/-
ars-db.html for a data base of automated reasoning systems,
including brief descriptions and links to the home pages of
the systems mentioned and many more.

2. History

ACL2 is a direct descendant of the Boyer-Moore sys-
tem, Nqthm [8, 9], and its interactive enhancement, Pc-
Nqthm [23]. See [7] for an introduction to the two ancestral

systems, including a reasonably large set of references for
accomplishments using the systems. A few particular suc-
cesses are described in [4, 5, 10, 22, 32, 26, 36, 38]. A
tutorial introduction to the systems may be found in [24].

Like Nqthm, ACL2 supports a Lisp-like, first-order,
quantifier-free mathematical logic based on recursively de-
fined total functions. Experience with the earlier systems
supports the claim that such a logic is sufficiently expressive
to permit one to address deep mathematical problems and re-
alistic verification projects. The fact that the Nqthm logic is
executable is also an important asset when using it to model
hardware and software systems: the models can be exe-
cuted as a means of corroborating their accuracy. Consider
for example [2] where an Nqthm model of the MC68020
is corroborated against a fabricated chip by running 30,000
test vectors through the Nqthm model.

Some of the largest formal verification projects done so
far have been carried out with Nqthm. We cite explicitly the
CLI short stack [4], the design and fabrication of the FM9001
microprocessor [22], and the verification of the Berkeley C
string library on top of the MC68020 microprocessor [10].
The formal models in these projects are collectively several
hundred pages long and involve many functions. Despite
such successes, Nqthm was not designed for these kinds of
large-scale projects and it has several inadequacies. The
most important inadequacy of Nqthm is its lack of theorem
proving power: if it would quickly settle every question
put to it, one could proceed more efficiently. While we are
always looking for better proof techniques (e.g., [33]), we
do not know how to build a significantly more powerful and
automatic theorem prover for Nqthm’s logic.2 Therefore, to
“scale up” Nqthm we focused on engineering issues.

We decided that a good first step would be to adopt as a
logic the applicative subset of a commonly used program-
ming language, thereby gaining access to many efficient
execution platforms for models written in the logic and
many program development (i.e., modeling) environments.
We chose Common Lisp because of its expressiveness, effi-
ciency and familiarity. Properly formulated Common Lisp
can execute at speeds comparable to C.

Three guiding tenets of the ACL2 project have been (1)
to conform to all compliant Common Lisp implementations,
(2) to add nothing to the logic that violates the understanding
that the user’s input can be submitted directly to a Common
Lisp compiler and then executed (in an environment where
suitable ACL2-specific macros and functions — the ACL2
kernel — are defined), and (3) to use ACL2 as the imple-
mentation language for the ACL2 system.

The third tenet is akin to recoding Nqthm in the Nqthm
logic, a task that we believe would produce unacceptably
slow performance. Programming the ACL2 system in ACL22We emphasize the word “significantly” here because ACL2’s theorem
prover is in fact more powerful than Nqthm in many ways. See Section 6.



repeatedly forced us to extend the subset so that we could
write acceptably efficient code. Several iterations of the
system were built. The current system consists of over 5
megabytes of applicative source code, including documen-
tation.

The first version of the system was written in the summer
and fall of 1989, by Boyer and Moore. As time went by,
Boyer’s involvement decreased and Kaufmann’s increased.
Eventually Boyer decided he should no longer be considered
a coauthor. ACL2 has been used in modeling and verifica-
tion projects within Computational Logic, Inc. (CLI), for
several years. We released the first public version of ACL2
in September, 1995. See the URL http://www.cli.com.

3. The ACL2 Logic

The definition of Common Lisp used in our work has
been [39, 40]. We have also closely studied [35].

The ACL2 logic is a first-order, quantifier-free logic of
total recursive functions providing mathematical induction
on the ordinals up to �0 and two extension principles: one
for recursive definition and one for “encapsulation.” We
sketch the logic here.

3.1. Syntax

The syntax of ACL2 is that of Common Lisp. Formally,
an ACL2 term is either a variable symbol, a quoted constant,
or the application of an n-ary function symbol or lambda
expression, f , to n terms, written (f t1::tn). We illustrate
the syntax for the primitive constants below. This formal
syntax is extended by a facility for defining constant symbols
and macros.

3.2. Rules of Inference

The rules of inference are those of Nqthm, namely propo-
sitional calculus with equality together with instantiation
and mathematical induction up to �0. Two extension prin-
ciples, recursive definition and encapsulation, are also pro-
vided; these are discussed in Subsection 3.6.

3.3. Axioms for Primitive Data Types

The following primitive data types are axiomatized.� ACL2 Numbers. The numbers consist of the ratio-
nals and complex numbers with rational components.
Examples of numeric constants are -5, 22/7, and
#c(3 5) (i.e., complex number 3 + 5i).� Character Objects. ACL2 supports 256 distinct
characters, including Common Lisp’s “standard char-
acters” such as the character constants #\A, #\a,
#\,, #\Newline, and #\Space.

� Strings. ACL2 supports strings of characters, e.g.,
the string constant "Arithmetic Overflow".� Symbols. Common Lisp provides a sophisticated
class of objects called “symbol constants.” Logi-
cally speaking, a symbol constant is an object con-
taining two strings: a package and a name. The
symbol constant with package "MC68020" and
name"EXEC" is writtenMC68020::EXEC. By con-
vention, one package is always selected as “cur-
rent” and its name need not be written. Thus, if
"MC68020" is the current package, the symbol
above may be more simply written as EXEC. Pack-
ages may “import” symbols from other packages (al-
though in ACL2 all importation must be done at the
time a package is defined). If MC68020::EXEC
is imported into the "STRING-LIB" package then
STRING-LIB::EXEC is in fact the same symbol as
MC68020::EXEC.� Lists. ACL2 supports arbitrary ordered pairs of ACL2
objects, e.g., the list constant (X MC68020::X
("Hello." (1 . 22/7))).

3.4. Axioms Defining Other Primitive Function
Symbols

Essentially all of the Common Lisp functions on the
above data types are axiomatized or defined as functions
or macros in ACL2. By “Common Lisp functions” here
we mean the programs specified in [39] or [40] that are (i)
applicative, (ii) not dependent on state, implicit parameters,
or data types other than those in ACL2, and (iii) completely
specified, unambiguously, in a host-independent manner.
Approximately 170 such functions are axiomatized.

Common Lisp functions are partial; they are not de-
fined for all possible inputs. But ACL2 functions are total.
Roughly speaking, the logical function of a given name in
ACL2 is a completion of the Common Lisp function of the
same name obtained by adding some arbitrary but “natural”
values on arguments outside the “intended domain” of the
Common Lisp function. ACL2 requires that every ACL2
function symbol have a guard, which may be thought of as
a predicate on the formals of the function describing the in-
tended domain. But guards are entirely extra-logical: they
are not involved in the axioms defining functions. We dis-
cuss the role of guards when we explain the relation between
ACL2 and Common Lisp.

3.5. Axioms for Additions to Common Lisp

To applicative Common Lisp we add four important new
features by introducing some new function symbols and
appropriate axioms.



� We add new multiple-valued function call and re-
turn primitives that are syntactically more restric-
tive but similar to the Common Lisp primitives
multiple-value-bind and values. Our
primitives require a functionalways to return the same
number of values and to be called from contexts “ex-
pecting” the appropriate number of values. These
restrictions allow our multiple-valued functions to be
implemented more efficiently than Common Lisp’s
(at least in the case of Gnu Common Lisp). Logically
speaking, a vector of multiple values returned by a
function is just a list of the values; but the implemen-
tation is more efficient because the list is not actually
constructed.� We add an explicit notion of “state” to allow the ACL2
programmer to accept input and cause output. The in-
put/output functions of Common Lisp are not in ACL2
because they are not applicative: they are dependent
on an implicit notion of the current state. An ACL2
state is an n-tuple containing, among other things, the
file system and open input/output “channels” to files.
Primitive input/output functions are axiomatized to
take a state as an explicit parameter and to return a
new state as an explicit result (usually one of several
results). Syntactic checks in the language ensure that
the state is single-threaded, i.e., if a function takes
state as an argument and calls a function that returns
a new state, the new state (or more precisely, the fi-
nal descendant of it) must be returned. This gives
rise to a well-defined notion of the “current state”
which is supplied to top-level calls of state-dependent
ACL2 functions. The state returned by such calls
becomes, by definition, the next current state. Be-
cause of these restrictions, the execution of a state-
dependent function need not (and does not) actually
construct new state n-tuples but literally modifies the
underlying Common Lisp state.� We add fast applicative arrays. These are imple-
mented, behind the scenes, with Common Lisp arrays
in a manner that always returns values in accordance
with our axioms and operates efficiently provided cer-
tain programming disciplines are followed (namely,
they are used in a single-threaded way so that only
the most recently updated version of an array is used).
There is no syntactic enforcement of the discipline;
failure to follow it simply leads to inefficient (but cor-
rect) execution and warning messages.� We add fast applicative property lists in a manner
similar to that for arrays.

3.6. Extension Principles

Finally, ACL2 has two extension principles: definition
and encapsulation. Both preserve the consistency of the ex-
tended logic [25]. Indeed, the standard model of numbers
and lists can always be extended to include the newly intro-
duced function symbols. (Inconsistency can thus be caused
only if the user adds a new axiom directly rather than via an
extension principle.)

The encapsulation principle allows the user to introduce
new function symbols that are constrained by axioms to have
certain properties. Consistency is ensured by requiring the
user to exhibit witness functions satisfying the constraints.
After a set of function symbols has been constrained, the
witnesses used to establish consistency are irrelevant. The
only axioms about the new functions are those stating the
constraints. Theorems can then be proved about the con-
strained functions and these theorems can be instantiated in
a higher-order way to derive analogous results about any
functions satisfying the constraints. This is made possible
by a derived rule of inference called functional instantiation
[6].

The name “encapsulation” stems from the way the prin-
ciple is implemented. An encapsulation command is essen-
tially a “wrapper” around an admissible sequence of defini-
tions and theorems. The wrapper allows one to mark certain
of the definitions and theorems as “local.” Local definitions
and theorems are not “exported” from the wrapper; non-local
ones are exported. Within the local context established by
an encapsulation, the constrained functions are (locally) de-
fined to be their witnesses and the constraints are (non-local)
theorems about those functions. Outside the encapsulation,
the function symbols are undefined and the theorems appear
as (consistent) axioms. This implementation makes encap-
sulation very useful even when no new function symbols are
introduced because it allows large proofs to be structured.
See Section 6.

The definitional principle ensures consistency by requir-
ing a proof that each defined function terminates. This is
done, as in Nqthm, by the identification of some ordinal
measure of the formals that decreases in recursion. In [8]
we show (for Nqthm) that this ensures that one and only
one set-theoretic function satisfies the recursive definition,
and that proof carries over to the ACL2 case, with appro-
priate treatment of the non-uniqueness of any constrained
functions used in the definition.

The form of an ACL2 function definition is as in Common
Lisp,

(defun f (x1:::xn) (declare :::) body)
ACL2 extends Common Lisp’sdeclare so as to permit the
specification of a guard expression, (g x1:::xn), as well as
to permit the optional specification of an ordinal measure



and other hints. Some additional syntactic restrictions are
put on body. These ensure that the Common Lisp version off will execute efficiently and in accordance with claims we
make below. Roughly speaking, it is here that we enforce
the syntactic notion that the current state is single threaded
(by restricting the use of the variable named state) and
ensure that multiple values are used appropriately.

If the syntactic restrictions are met and the required ter-
mination theorems can be proved, then

Axiom.
(f x1 ::: xn) = body
is added as a new axiom. Observe that the axiom added is
independent of the guard.

4. The Relation Between ACL2 and Common
Lisp

Guards have no role in the logic. However, they are
crucial to the relation of the logic to Common Lisp.

The implicit guards of Common Lisp allow great effi-
ciency. There are implementations of Common Lisp, for
example, Gnu Common Lisp, in which the performance of
the compiled code generated for arithmetic and list process-
ing functions can be comparable to hand-coded C arithmetic
and pointer manipulation. Exceptional execution efficiency
on a wide variety of platforms, combined with clear applica-
tive semantics when used properly, was one of the great
attractions of basing the ACL2 logic on Common Lisp.

Consider for example the primitive function car. Page
411 of [40] says that the argument to car “must be” a
cons or nil. On page 6 we learn “In places where it is
stated that so-and-so ‘must’ or ‘must not’ or ‘may not’ be
the case, then it ‘is an error’ if the stated requirement is not
met.” On page 5 we learn that ‘it is an error’ means that
“No valid Common Lisp program should cause this situation
to occur” but that “If this situation occurs, the effects and
results are completely undefined” and “No Common Lisp
implementation is required to detect such an error.”

Thus, an implementation of the function car may as-
sume its actual is a cons or nil. By a suitable represen-
tation of data, the implementation of car can simply fetch
the contents of the memory location at which the actual is
stored. No type checks are necessary. Of course, if car
is applied to 7 the results are unpredictable, possibly dam-
aging to the runtime image, and usually implementation
dependent. These aspects of Lisp make it difficult to debug
compiled Lisp code.

This also raises problems with the direct embedding of
applicative Common Lisp into a logic. The situation is far
worse than merely not knowing the value of (car 7).
We do not know that the value is an object in the logic:
(car 7) might be �, for example. Worse still, we do not

know that car is a function: the form (equal (car 7)
(car 7)), which is an instance of the axiom (equal
x x), might sometimes evaluate to nil in some Common
Lisps because the first (car 7) might return 0 and the
second might return 1.

ACL2 solves this problem by axiomatizing (car x) to
be a total function that returnsnil outside the “intended do-
main” described by the guard(or (consp x) (equal
x nil)). We claim our axioms describe Common Lisp’s
carwhen the argument tocar satisfies our guard. Further-
more, ACL2 provides a general means of verifying that such
a situation obtains in the evaluation of a given expression
containing car.

While reading the rest of this section, the reader may wish
to consider the possibility that our approach could be carried
out for other programming languages.3 Although programs
are commercially available for mainstream languages such
as C that check for certain kinds of errors, we believe that no
utilities match the capability for making arbitrary semantic
checks, statically, as we describe below for ACL2. Perhaps
an analogous approach for C would present an opportunity
for integration of formal verification into mainstream soft-
ware development practice, lessening the need for dynamic
error-checking.

4.1. Gold Function Symbols and Terms

To make precise the relation between ACL2 and Common
Lisp, we define two inter-related notions: that of a function
symbol being “gold”; and that of a term being “gold” under
some hypothesis. (When no hypothesis is given, it is implic-
itly t, the true hypothesis.) Roughly speaking, a function
symbol is gold if, when its guard is true, the guards of all
subroutines encountered during evaluation are true of their
arguments.� All ACL2 logic primitive function symbols are gold.� A defined function f with guard g and body b is gold

if every function symbol mentioned in g is gold, the
term g is gold, every function symbol besides f that
is mentioned in b is gold, and the term b is gold underg.� Variables and quoted constants are gold terms.� The term (IF a b c) is gold under h if a is gold
under h, b is gold under (AND h a) and c is gold
under (AND h (NOT a)).� The term (f a1 ::: an), where f is not IF and has
guard (g v1 ::: vn) (where the vi are the formals
of f) is gold under h provided each ai is gold under3We thank one of the referees for posing this question.



h and (IMPLIES h (g a1 ::: an)) is a theorem.
The formula that must be proved is called the guard
conjecture for the subterm in question.

We sometimes say a function or term is Common Lisp com-
pliant as a synonym for saying it is gold. We call the process
of checking whether a function symbol or term is gold guard
checking or guard verification.

4.2. The Story Relating the Logic to Common Lisp

We claim that if a function symbol of ACL2 is gold
and a gold theorem has been proved about it, then every
execution of that function in any compliant Common Lisp
produces answers consistent with the theorem, provided the
arguments to the function satisfy the guard and no resource
errors (e.g., stack overflow) occur. Less precisely, gold
ACL2 theorems describe the behavior of Common Lisp.

This claim can be made more precise as follows. We
present the claim in a restrictive setting here for simplicity.
Suppose f is a function symbol of one argument defined in
some certified book (e.g., a file of admissible ACL2 defini-
tions and theorems), that the guard of f is t, that f is gold,
and that (equal (f x) t) is a (necessarily gold) theo-
rem of ACL2 proved in that book. Consider any Common
Lisp compliant to [40] into which the ACL2 kernel has been
loaded. Load the book into that Lisp. Let x be a Com-
mon Lisp object that is also an object of ACL2. Then the
application in that Lisp of f to x returns t or else causes a
resource error (e.g., stack overflow or memory exhaustion).

The essence of the proof of this claim is to observe that
(f x) evaluates to t in the logic (because of the soundness
of the logic), and the computation will at no step exercise a
function symbol outside of its guarded domain (because f
is gold). Since the logic and Common Lisp agree inside the
guarded domain, the Common Lisp computation of (f x)
returns t also.

A less restrictive alternative formulation is that if thm
is a gold theorem in some certified book then any ACL2
instance of thm evaluates to non-nil in any compliant
Common Lisp into which the ACL2 kernel and the book
have been loaded.

4.3. Guards and Efficiency

One obvious implication of the “Story” is that if one
has a formal model that has been proved Common Lisp
compliant and one wishes to evaluate gold applications of the
model, one can ignore the ACL2 theorem prover altogether,
load the model into a compliant Common Lisp (containing
the ACL2 kernel), and directly execute the model to obtain
results consistent with the axioms. For example, one might
build a gold simulator of a microprocessor or high-level

language and provide it to users via a stand-alone Common
Lisp engine. The ACL2 theorem prover need not be present.

A less obvious use of our claim is made inside the ACL2
theorem prover. In the course of theorem proving it is not
uncommon for ground subexpressions to arise, as by cer-
tain instantiations of lemmas, case splits on enumerated do-
mains, the base cases of inductions, etc. Like Nqthm, ACL2
has an interpreter for evaluating such ground expressions.
The ACL2 completions of the Common Lisp primitives are
built in. Runtime type checks are done by this interpreter,
e.g., to determine the value under the axioms of car ap-
plied to a constant, a, the interpreter determines whether a
is a consp and then either uses Lisp’s car or returns the
default value nil. In this interpreter, calls of user-defined
functions require recursive evaluation (and type-checking)
of the body, repeatedly. But when ACL2 evaluates a call
of a gold function symbol, it can use direct Common Lisp
computation if the guard evaluates to t.

In both Nqthm and ACL2, the “interpreter” is imple-
mented by defining and compiling auxiliary Common Lisp
functions that do runtime type checking. Gold ACL2 func-
tions are generally compiled by ACL2 and do no type-
checking. Thus, both the interpreter approach and the gold
short-circuit enjoy the benefits of compilation; the efficiency
difference is ACL2’s avoidance of runtime type checking for
certain subexpressions. This can make a substantial differ-
ence in industrial-sized models.

In summary, one important incremental effect of proving
that an ACL2 function symbol is gold is that subsequent
applications of the function are more efficiently computed.

4.4. Guards as a Specification Device

Guards may also be used as type specifications. Gold
functions are “well-typed.” However, guards are much more
expressive than conventional types, because they can be ar-
bitrary terms in the logic. Of course, ACL2 “type checking”
is not decidable for this same reason. For some related work,
see [1].

If one attaches restrictive guards to one’s functions and
then proves the functions are gold, one obtains assurance
that the functions are being exercised only on their intended
domains. More precisely, one gains the knowledge that the
computed value is provably equal to the function application
in a weakened logical system in which the equality of each
function application to its body is conditional on its guard
being true. Nqthm provides no such assurance mechanism.

5. An Example

In this section we illustrate some of the points just made
about guards.



5.1. Admitting a Definition

Consider the problem of concatenating two lists. We
define the function app to do this, as follows.

(defun app (x y)
(declare (xargs :measure (m x)

:guard (true-listp x)))
(if (equal x nil)

y
(cons (car x) (app (cdr x) y))))

Ignore the declaration for the moment. Observe that the
function terminates when x is nil and otherwisecdrs x in
recursion. The intention is that x should always be a “true
list,” i.e., acons tree whose right-most branch terminates in
nil. If this function were applied to 7 and 8, in Common
Lisp, the result would be unpredictable: 76=nil, so we
recur on (cdr 7) and 8, but (cdr 7) is undefined in
Common Lisp. Replacing the (equal x nil) test with
(atom x) is “more sensible” because then we know x is
a cons when we cdr it. But Lisp programmers tend to use
the test above because it is more efficient than a type check4
and is equivalent provided x is a true list. The declaration
of :guard (true-listp x) makes clear the intended
domain.

Logically speaking, we must admit this function before
we can reason about it. Logically speaking, the guard is
irrelevant. We must show that a measure of the arguments
decreases in the recursion, no matter what x or y is used.
A suitable measure, (m x), is supplied by the user in the
declaration; (m x) is defined (elsewhere) to be 0 if x is
nil and otherwise to be one greater than the length of the
right-most branch of x. It is easy to show that the measure
decreases in the recursion, i.e., that (m (cdr x)) < (m
x), when x6=nil. Intuitively, the recursion terminates
because in ACL2 cdr has been completed to return nil
on non-conses, so when the recursion hits the atom at the
bottom of the right-most branch it stops if that atom is nil
and otherwise it goes one more step, cdring the atom to
produce a terminating nil.

After the function is admitted, the axiom

Axiom.
(app x y)
=

(if (equal x nil)
y
(cons (car x) (app (cdr x) y)))

is added. Note that the axiom does not mention the guard.4An equality test against a symbol can be done with a single address
comparison and does not require a memory reference, as most type checks
do.

5.2. Some Theorems

We can prove the surprising theorem

Theorem. surprising-app-call
(equal (app 7 8) (cons nil 8))

We will return to this surprising example later.
We can also prove the very useful and powerful uncon-

ditional equality stating that app is associative.

Theorem. associativity-of-app
(equal (app (app a b) c) (app a (app b c)))

The proof takes advantage of the fact that car and cdr
return nil on non–cons arguments such as numbers.

If the guard for app infected the definition of app by
limiting its applicability to true lists, then app would not
be unconditionallyassociative. Identifying sufficient condi-
tions can be difficult. Since a appears as the first argument
of a call of app in the conjecture, a must be a true list in
order to use the definition of app in that call. Similarly, b
must be a true list. But (app a b) is also the first argu-
ment of a call of app; so to use the definition of app on
that call the system must be able to establish — either from
a third hypothesis or by proof from the other hypotheses —
that (app a b) is a true list.

In short, if the guard for a function infects the definitional
axiom, theorems inherit that complexity compositionally
and are weakened by encumbering hypotheses. Such weak-
ened theorems raise problems in three ways:� they are harder for the user to state accurately;� they are often harder to prove by induction because

the induction hypothesis is weakened;� they are harder to use subsequently because one must
relieve their hypotheses.

Some of these same points are made in [27].
The decision that guards will not affect the definitional

axioms thus has a far reaching effect. In fact, guards
did play a logical role in earlier versions of ACL2, and
we were driven to return to the Nqthm paradigm of total
functions because of the complexity that guards introduced
in some “industrial-strength” proof efforts, particularly the
CAP project described later.

5.3. Compliance

Returning now to the app example, we next ask what
is its relationship to Common Lisp? We can prove that
app is gold, i.e., Common Lisp compliant: Every function
used in its definition (except app itself) is gold (they are
all primitive) and when its body is evaluated, every guard



encountered is true if the guard for app is true initially. The
latter condition can be expanded as follows. There are three
subroutines in the body of app that have non-trivial guards:
car, cdr, and the recursive call of app. For the definition
to be gold, a theorem must be proved for each call of such
a subroutine in the body of app. In particular, for each call
we must prove that the guard of app, together with the tests
leading to the call, imply the guard of the call. To prove app
gold it therefore suffices to observe that if x is a non-nil
true list, then x must be a cons and the cdr is itself a true
list.

The extra-logical nature of guards is brought home by
the observation that we could define another function, say
xapp, that is analogous to app but contains no guard (i.e.,
has a guard of t). The two functions are provably equiva-
lent. But app is Common Lisp compliant and xapp is not
because its guard conjectures cannot be proved.

Because we know app is Common Lisp compliant, the
“Story” tells us any call of app that satisfies the guard exe-
cutes in accordance with the axioms of ACL2. Put another
way, if we wish to determine the value under our axioms of
(app a b), where a and b are constants, we can simply
execute the expression in Common Lisp, provided a is a true
list. Thus, the user wishing to execute a formal model on
concrete data satisfying the guard can run the model in Com-
mon Lisp, provided the model has been proved compliant.
Furthermore, because guards are gold terms, the suitability
of the data can be determined by Common Lisp evaluation
also.

5.4. Gold Theorems

What about our theorems about the gold function app?
We have the surprising result that (equal (app 7 8)
(cons nil 8)). Do we know that every compliant
Common Lisp will evaluate this to true? No! The theorem
is not gold. The guard for app is violated by 7. Nothing
can be inferred about Common Lisp via our claim. Some
Common Lisps may cause severe trouble if commanded to
evaluate (app 7 8).

How about the associativity result for app? Can we
expect app to be unconditionally associative in Common
Lisp? Again, the answer is no because the theorem is not
gold.

However, the following theorem is gold5
Theorem. gold-associativity-of-app
(implies (and (true-listp a)

(true-listp b))
(equal (app (app a b) c)

(app a (app b c))))5Here implies should be thought of as “lazy,” i.e., (implies pq) should be read as (if p q t), to be given proper treatment by our
definition of “gold.”

Of course, we must prove this theorem, but its proof is trivial
given the unconditional associativity result!

We must also verify that it is gold, i.e., that the guard of
every call is satisfied by the arguments of the call, in the con-
text of the call. The twotrue-listp hypotheses have true
guards. The three calls of app in which the first argument
is a variable symbol have guards requiring that the variable
in question, a or b appropriately, is a true-listp. These
guard conditions are trivial given the hypotheses. Finally,
the guard condition for (app (app a b) c) generates
the interesting guard condition that (app a b) is a true
list when a and b are.

5.5. Separation of Concerns

Note how ACL2’s treatment of guards separates con-
cerns. For theorem proving simplicity in the Nqthm tra-
dition ACL2 makes all functions total by completing the
primitives with arbitrary but “natural” default values. Func-
tions can be introduced into the logic without addressing the
question of whether they are compliant with Common Lisp.
Their properties can be proved without concerning oneself
with questions of whether guards are satisfied. Often this
allows the properties themselves to be more simply stated.
This allows the data base of rules to be less restrictive, more
powerful, and more easily applied. Nevertheless, non-gold
functions are evaluated under the axioms with Nqthm effi-
ciency.

Once a system of ACL2 functions has been defined and
its logical properties proved, one can move on to the ques-
tion of Common Lisp compliance, either to gain execution
efficiency in an ACL2 setting or in a stand-alone Common
Lisp, or to gain type assurance. Efficiency can be gained
incrementally by doing guard verification on the core sub-
routines but not on the outlying checkers, preprocessors and
postprocessors typically involved in a big system. Further-
more, having proved certain functions gold one can stop and
settle for the corresponding efficiency or type assurance or
one can prove that the key properties proved are also gold.

Recall for example that one can carry out the following
sequence of steps:� admit app as a function,� prove it unconditionally associative,� prove it gold, i.e., Common Lisp compliant or well-

typed,� trivially prove a restricted version of its associativity,
and then� prove that restricted version of associativity to be gold
or Common Lisp compliant.



In versions of ACL2 predating Version 1.8, where guards
were part of the definitional equations, these issues were
often intertwined so that it was impossible to address them
separately. While this makes little difference in a setting as
simple as app and its associativity it makes a great deal of
difference in models involving thousands of functions and
properties.

6. Proof Engineering

We have argued that ACL2 is of “industrial strength.” Up
to now our main argument has been its improved efficiency
over Nqthm by virtue of being executable as Common Lisp,
with special consideration for efficient execution of opera-
tions involvingarrays, property lists, and state. We have also
indicated that a very expressive kind of type-correctness can
be gained by “guard” verification, and yet this capability is
separated from the logic proper so that proofs are not need-
lessly hindered. Below we consider some strengths of ACL2
besides efficiency as a programming language: robustness,
general features, maintainability, and proof support.

6.1. Robustness

A notion of “industrial strength” is the robustness of the
tool. We have put considerable effort into making the pro-
gram bullet-proof, handling user errors graciously and with
appropriate messages. The interface is consistent, providing
the ability to submit definitions and theorems as well as the
ability to execute applicative Lisp code efficiently.

6.2. Usability

Yet another notion of the “industrial strength” of a tool is
its support for features that are crucial to get the job done.
Here is a partial list of such features offered by ACL2.� Extensible on-line documentation that may be read at

the terminal, as well as through text and by way of
hypertext (Emacs Info, HTML)� Support for undoing back through a given command
as well as “undoing an undo”� A notion of “books” that allows independent devel-
opment and inclusion of libraries of definitions and
theorems:

– books share the same underlying implementa-
tion as encapsulation in that forms within them
can be marked “local” by the author of the book;

– the reader of a book only sees the non-local
definitions and theorems;

– the possibly complex environment necessary
to certify a book need not be exported to the
reader’s environment;

– books are hierarchical and may include other
books, locally or otherwise;

– the reader may include many independently de-
veloped books to create his or her environment;

– authors of books can install “theory invariants”
to help the readers manage the environments
created by multiple books;

– authors of books can document the definitions
and theorems in a book so that the book’s inclu-
sion updates the online documentation within
ACL2;

– consistency checks are done when books are
included;

– books carry certificates to help the community
do version-control� A “program” mode that allows definition and exe-

cution of functions without any proof burden being
imposed, and without any risk of unsoundness being
introduced (as the prover does not know about “pro-
gram” mode functions)� A “realistic” collection of data types that includes
strings and (complex) rational numbers, with support
for reasoning about such data (e.g., a fully integrated
linear arithmetic decision procedure for the rationals)� Extensive capabilities for controlling the prover (see
below)� Common Lisp macros for ease of programming and
specification without cluttering up the collection of
functions about which one needs to reason� Many useful programming primitives, including effi-
cient use of multiple values, arrays, property lists and
file I/O� Common Lisp packages that support distinct name
spaces� Mutually recursive definitions are supported

6.3. Maintainability

We also have found that the applicative style of program-
ming is amenable to maintenance, both for fixing bugs and
for implementing enhancements. Moreover, the subset of
Common Lisp that ACL2 supports has been sufficient to
code all but the very lowest levels of the system (which are
needed to implement some of the primitives). We believe



that a Common Lisp program that is applicative and per-
haps even performs I/O is in fact an ACL2 program, or very
nearly so.

6.4. Proof Support

As with Nqthm and Pc-Nqthm, proofs of significant the-
orems in ACL2 tend to require a serious effort on the part of
the user to prove appropriate supporting lemmas, primarily
stored and used as (conditional) rewrite rules. However,
ACL2 offers many other ways by which the user can control
the proof engine:� As with Nqthm, a proof commentary in English that

assists users in debugging failed proofs� As with Pc-Nqthm, an interactive loop for proof dis-
covery that is extensible through “macros” and has
access to the full power of the theorem prover� The capability to apply hints to individual subgoals� “Proof tree” displays to show the evolving structure
of the proof in real time, and which also make it
convenient to inspect failed proofs� Efficient handling of propositional logic, normally
through a clause generator that is much more efficient
than Nqthm’s, but also through a facility that inte-
grates ordered binary decision diagrams with rewrit-
ing� A “functional instantiation” facility that gives ACL2
(like Nqthm) some of the convenience of a higher-
order logic without sacrificing the simplicity of a first
order logic� A “break-rewrite” facility, more sophisticated than
that in Nqthm (or any other prover as far as we know),
that allows proof-time debugging of the rewrite stack� A “theory” mechanism that makes it easy to manipu-
late sets of rules, especially turning them on and off
but also checking desired invariants on sets of rules� A “forcing” mechanism that gives the prover permis-
sion to defer checking of hypotheses of specified rules
until the end of the “main” proof� Support for a variety of types of rules (17), including
types supported by Nqthm. These include:

– Conditional rewrite rules, which may be used
not only to replace equals by equals but may also
work with respect to user-defined equivalence
(congruence) relations

– Linear arithmetic rules, together with a mech-
anism to create rules for certain simple orders
other than the standard “less-than” order on the
rationals

– “Compound recognizer,” “forward chaining,”
“type prescription,” “equivalence,” “congru-
ence,” and “built-in clause” rules for efficient
automatic use of certain facts

– An improved “meta lemma” facility that allows
such lemmas to be conditional (i.e., have hy-
potheses)

– Rules for use outside the simplifier/rewriter:
elimination and generalization

Thus, we claim that ACL2 is industrial strength in its
efficiency, its consistent and robust interface, its array of
general features, its ease of maintenance, and the flexibility
of its theorem prover.

7. Industrial Applications

Of course, ultimately the test for whether a tool is “indus-
trial strength” must be whether it can be used to do jobs of
interest to industry. The first two important applications of
ACL2 support our claims that it is up to the task. These ap-
plications, summarized below, are discussed in more detail
in [12] and [31], where we also detail the time and manpower
resources spent on the component tasks.

7.1. Motorola CAP Digital Signal Processor

Bishop Brock of CLI, working in collaboration with Mo-
torola, Inc., produced an executable formal ACL2 specifi-
cation of the Motorola CAP [19], a digital signal proces-
sor designed by Motorola to execute a 1024 point complex
FFT in 131 microseconds. Every well-defined behavior of
the CAP is modeled, including the pipeline, I/O, interrupts,
breakpoints and traps (but excluding the hard and soft reset
sequences). The CAP is much more complex than other
processors recently subjected to formal modeling, namely
the FM90001 [22], MC68020 [10], and AAMP5 [30]. In
principle, a CAP single instructioncan simultaneously mod-
ify well over 100 registers. Brock’s ACL2 model of the
CAP is bit-accurate and cycle-accurate but runs faster than
Motorola’s SPW model. Furthermore, ACL2 can be used
to reason about the CAP model. ACL2 can compute the
symbolic effects of a complicated instruction in just a few
seconds. With ACL2, Brock has proved that under suitable
conditions his model of the CAP is equivalent to a simpler
pipeline-free model.

Perhaps the most important aspect of the CAP work is
that with ACL2 it is possible to prove the correctness of



CAP microcode programs. Because of the complexity of
the instruction set, mechanical analysis of CAP microcode
programs is perhaps the only way to assure that the programs
have certain properties. Brock used ACL2 to verify the
microcode produced by Motorola’s assembler for several
CAP application programs, including a FIR filter and a peak
finding algorithm that uses the adder array as a chain of
comparators. This work is discussed further in [12].

Following the same approach used with Nqthm for the
MC68020 in [10], Brock configured ACL2 so as to make it
easy to symbolically execute a CAP microcode program on
symbolic data. He then specified and mechanically proved
the total correctness of the microcode programs he consid-
ered. It is possible (and often less labor intensive) to use the
CAP model and ACL2 to prove weaker properties of mi-
crocode, such as that no errors occur. We believe that once
a microcode engine such as the CAP is specified in ACL2
and a few application programs are mechanically verified
for it, subsequent microcode applications can be done “rou-
tinely.” By “routinely” here we mean that the technical
details of symbolic execution for that particular microcode
can be managed by ACL2 and the effort of the verification
task is dominated by consideration of the specification and
behavior of the given program.

Another important aspect of the ACL2 CAP model is
that it executes CAP programs faster than Motorola’s SPW
model. This makes it a convenient debugging tool. There
are two reasons for its speed. One is that it is coded at a
somewhat higher level than the SPW model, i.e., arithmetic
in the model is arithmetic in Common Lisp, not (simulated)
combinational logic. The other is that Brock used strict
guards that ensure that the model is type correct: registers
contain data of appropriate size, addresses are legal, ob-
jects used as CAP machine states have the appropriate form,
etc. All the functions in the CAP model are proved gold.
Thus, the ACL2 CAP model can be compiled and faithfully
executed directly in Common Lisp.

7.2. AMD5K86 Floating-Point Division

In another test of the industrial applicabilityof ACL2, we
collaborated with Tom Lynch of Advanced Micro Devices,
Inc., to formalize and mechanically prove the correctness of
the microcode for the kernel of the floating point divisionop-
eration used on the AMD5K86 microprocessor, AMD’s first
Pentium-class processor. In particular, in [31] we prove that
when p and d are double extended precision floating-point
numbers (d 6= 0) and mode is a rounding mode specify-
ing a rounding style and target format of precision n � 64,
then the result of the algorithm is p=d rounded according tomode.

As explained in detail in [31], the algorithm uses a ta-
ble to obtain an 8-bit approximation to the reciprocal of

d. Then two iterations of an efficiently computed variation
of the Newton-Raphson iteration are used to refine this ap-
proximation so that the relative error is less than 2�28. That
approximation is then used to compute four floating-point
numbers whose sum is sufficiently close to p=d that when
it is rounded according to mode the result is the same as
rounding p=d instead.

This algorithm is implemented in microcode; all of its
arithmetic computations use floating point operations with
directed rounding. To prove that the algorithm works as
specified we developed in ACL2 much floating-point “folk-
lore.” We also formalized the algorithm in ACL2 and then
used ACL2 to check a fairly deep mathematical proof. A
necessary step in our proof is to show that every intermedi-
ate result fits in the (floating-point) resources allocated to it
by AMD.

How are the “industrial strength” aspects of ACL2 used
in this proof? The fact that ACL2 is executable is impor-
tant. Our proof that two applications of Newton-Raphson
iteration produce a sufficiently accurate answer generalizes
away from the particular table used by AMD. We define a
predicate that recognizes when a table contains sufficiently
accurate 8-bit approximations to d and prove that if the
Newton-Raphson steps start from such a table, a correct
answer is produced. The predicate is executable: given a
concrete table, Common Lisp can determine by evaluation
whether it satisfies the predicate. Thus, to apply the result to
the actual AMD table, ACL2 merely executes the predicate
on the AMD table.

Other aspects of ACL2 that were crucial to this proof were
encapsulation, macros and books. By using encapsulation
and macros we were able conveniently to configure ACL2
temporarily to derive the key steps in the proof, without
having to impose the same proof strategy on each key step.
By using books we were able to partition responsibility for
various parts of the proof among the collaborators and then
assemble the final results.

Subsequent to our proof of the floating-point division
microcode, David Russinoff used ACL2 to prove the cor-
rectness of the AMD5K86 ’s floating-point square root mi-
crocode [37].

8. Conclusion

ACL2 is a re-implemented extended version of Boyer
and Moore’s Nqthm and Kaufmann’s Pc-Nqthm, intended
for large scale verification projects. The ACL2 logic is an
extension of a large applicative subset of Common Lisp,sup-
porting a practical collection of data types, single threaded
states, I/O, multiple-valued functions, arrays and property
lists. By careful design of the notion of guards, ACL2 al-
lows the elegant expression and proof of theorems in this
logic without many of the encumbrances of “type-like” hy-



potheses, while at the same time allowing functions in the
logic to be related to Common Lisp in a way that allows
extremely efficient computation. Furthermore, the design
allows for a clear separation of the problems of admission
of logical definitions, proofs of simply stated properties,
type-correctness, Common Lisp compliance and efficient
execution. The design allows for incremental achievement
of these goals via proof, allowing the user to focus effort on
the important aspects of the project.

ACL2 provides a wide variety of features supportiveof its
industrial strength goals, including a rugged and extensively
documented implementation, many convenient features for
constructing models and developing and structuring proofs,
and good maintainability. Finally, we have demonstrated
that ACL2 can be used to tackle problems of importance to
industry.
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