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Abstract

Inifiniband is becoming an important intercon-
nect technology in high performance comput-
ing. Recent efforts in large scale Infiniband de-
ployments are raising scalability questions in the
HPC community. Open MPI, a new production
grade implementation of the MPI standard, pro-
vides several mechanisms to enhance Infiniband
scalability. Initial comparisons with MVAPICH,
the most widely used Infiniband MPI imple-
mentation, show similar performance but with
much better scalability characterics. Specifi-
cally, small message latency is improved by up
to 10% in medium/large jobs and memory usage
per host is reduced by as much as 300%. In ad-
dition, Open MPI provides predicatable latency
that is close to optimal without sacrificing band-
width performance.

1 Introduction

High performance computing (HPC) systems
are continuing a trend toward distributed mem-
ory clusters consisting of commodity compo-
nents. Many of these systems make use of
commodity or ‘near’ commodity interconnects

including Myrinet [17], Quadrics [3], Gigabit
Ethernet and, recently, Infiniband [1]. Infini-
band (IB) is increasingly deployed in small to
medium sized commodity clusters. It is IB’s low
price/performance qualities that has made it at-
tractive to the HPC market.

Of the available distributed memory program-
ming models, the Message Passing Interface
(MPI) standard [16] is currently the most widely
used. Several MPI implementations support In-
finiband including Open MPI [10], MVAPICH
[15], LA-MPI [11] and NCSA MPI [18]. How-
ever, there are concerns about the scalability of
Infiniband for MPI applications, partially arising
from the fact that Infiniband was initially devel-
oped as a general I/O fabric technology and not
specifically targeted to HPC [4].

In this paper, we describe Open MPI’s scal-
able support for Infiniband. In particular, Open
MPI makes use of Inifiniband feature not cur-
rently used by other MPI/IB implementations,
allowing Open MPI to scale more effectively
than current implementations. We illustrate
the scalability of Open MPI’s Infiniband sup-
port through comparisions with the widely-
used MVAPICH implementation, and show that
Open MPI uses less memory and provides better
latency than MVAPICH on medium/large-scale

1



clusters.
The remainder of this paper is organized as

follows. Section 2 presents a brief overview of
the Open MPI general point-to-point message
design. Next, section 3 discusses the Infini-
band architecture including current limitations
of the architecture. MVAPICH is discussed in
section 4 including potential scalability issues
relating to this implementation. Section 5 pro-
vides a detailed description of Infiniband sup-
port in Open MPI. Scalability and performance
results are discussed in section 6, followed by
conclusions and future work in section 7.

2 Open MPI

The Open MPI Project is a collaborative effort
by Los Alamos National Lab, the Open Systems
Laboratory at Indiana University, the Innova-
tive Computing Laboratory at the University of
Tennessee and the High Performance Comput-
ing Center at the University of Stuttgart (HLRS).
The goal of this project is to develop a next gen-
eration implementation of the Message Passing
Interface. Open MPI draws upon the unique ex-
pertise of each of these groups which includes
prior work on LA-MPI, LAM/MPI [20], FT-
MPI [9] and PAX-MPI [13]. Open MPI is how-
ever, a completely new MPI, designed from the
ground up to address the demands of current and
next generation architectures and interconnects.

Open MPI is based on a Modular Compo-
nent Architecture [19]. This architecture sup-
ports the runtime selection of components that
are optimized for a specific operating environ-
ment. Multiple network interconnects are sup-
ported through this MCA. Currently there are
two Infiniband components in Open MPI. One
supporting the OpenIB Verbs-API and another
supporting the Mellanox Verbs-API. In addition
to being highly optimized for scalability these
components provide a number of performance

and scalability parameters which allow for easy
tuning.

The Open MPI point-to-point (p2p) design
and implementation is based on multiple MCA
frameworks. These frameworks provide func-
tional isolation with clearly defined interfaces.
Figure 1 illustrates the p2p framework architec-
ture.
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Figure 1: Open MPI p2p framework

As shown in Figure 1 the architecture con-
sists of four layers. Working from the bottom up
these layers are the Byte Transfer Layer (BTL),
BTL Management Layer (BML), Point-to-Point
Messaging Layer (PML) and the MPI layer.
Each of these layers is implemented as an MCA
framework. Other MCA frameworks shown are
the Memory Pool (MPool) and the Registration
Cache (Rcache). While these are illustrated
and defined as layers, critical send/receive paths
bypass the BML, as it is used primarily during
initialization/BTL selection.

MPool The memory pool provides mem-
ory allocation/deallocation and registra-
tion/deregistration services. Infiniband re-
quires memory to be registered (phys-
ical pages present and pinned) before
send/receive or RDMA operations can use
the memory as a source or target. Sep-
arating this functionality from other com-
ponents allows the MPool to be shared
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among various layers. For example,
MPI ALLOC MEM uses these MPools to
register memory with available intercon-
nects.

Rcache The registration cache allows memory
pools to cache registered memory for later
operations. When initialized, MPI message
buffers are registered with the Mpool and
cached via the Rcache. For example, dur-
ing an MPI SEND the source buffer is reg-
istered with the memory pool and this reg-
istration may be then be cached, depending
on the protocol in use. During subsequent
MPI SEND operations the source buffer is
checked against the Rcache, and if the reg-
istration exists the PML may RDMA the
entire buffer in a single operation without
incurring the high cost of registration.

BTL The BTL modules expose the underlying
semantics of the network interconnect in a
consistent form. BTLs expose a set of com-
munication primitives appropriate for both
send/receive and RDMA interfaces. The
BTL is not aware of any MPI semantics; it
simply moves a sequence of bytes (poten-
tially non-contiguous) across the underly-
ing transport. This simplicity will enable
early adoption of novel network devices
and encourages vendor support. There are
several BTL modules currently available;
including TCP, GM, Portals, Shared Mem-
ory (SM), Mellanox VAPI and OpenIB
VAPI. In the later section we discusses the
Mellanox VAPI and OpenIB VAPI BTLs.

BML The BML acts as a thin multi-plexing
layer, allowing the BTLs to be shared
among multiple upper layers. Discovery of
peer resources is coordinated by the BML
and cached for multiple consumers of the
BTLs. After resource discovery, the BML

layer may be safely bypassed by upper lay-
ers for performance. The current BML
component is named R2.

PML The PML implements all logic for
p2p MPI semantics including standard,
buffered, ready, and synchronous commu-
nication modes. MPI message transfers are
scheduled by the PML based on a specific
policy. This policy incorporates BTL spe-
cific attributes to schedule MPI messages.
Short and long message protocols are im-
plemented within the PML. All control
messages (ACK/NACK/MATCH) are also
managed at the PML. The benefit of this
structure is a seperation of transport proto-
col from the underlying interconnects. This
significantly reduces both code complex-
ity and code redundancy enhancing main-
tainability. There are currently three PMLs
available in the Open MPI code base. This
paper discusses OB1 the latest generation
PML in the later section.

During startup, a PML component is selected
and initialized. The PML component selected
defaults to OB1 but may be overridden by a run-
time parameter/environment setting. Next the
BML component R2 is selected. R2 then opens
and initializes all available BTL modules. Dur-
ing BTL module initialization, R2 directs peer
resource discovery on a per-BTL basis. This al-
lows the peers to negotiate which set of inter-
faces they will use to communicate with each
other. This infrastructure allows for heteroge-
nous networking interconnects within a cluster.

3 Infiniband

The Infiniband specification is published by the
Infiniband Trade Association (ITA) originally
created by Compaq, Dell, Hewlett-Packard,
IBM, Intel, Microsoft, and Sun Microsystems.
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IB was originally proposed as a general I/O
technology, allowing for a single I/O fabric to
replace mutliple existing fabrics. The goal of a
single I/O fabric has faded and currently Infini-
band is targeted as an Inter Process Communi-
cation (IPC) and Storage Area Network (SAN)
interconnect technology.

Infiniband, similar to Myrinet and Quadrics,
provides both Remote Direct Memory Access
(RDMA) and Operating System (OS) bypass fa-
cilities. RDMA enables data transfer from the
address space of an application processs to a
peer process across the network fabric without
requiring involvement of the host CPU. Infini-
band RDMA operations support both two-sided
send/receive and one-sided put/get semantics.
Each of these operations may be queued from
the user level directly to the host channel adapter
(HCA) for execution, bypassing the OS to mini-
mize latency and processing requirements on the
host CPU.

3.1 Infiniband OS Bypass

To enable OS bypass, Infiniband defines the
concept of a Queue Pair (QP). The Queue Pair
mechanism provides user level processes direct
access to the IB HCA. Unlike traditional stack
based protocols, there is no need to packetize
the source buffer or process other protocol spe-
cific messages in the OS or at user level. Packe-
tization and transport logic is located almost en-
tirely in the HCA.

Each queue pair consists of both a send and
receive work queue, and is additionally asso-
ciated with a Completion Queue (CQ). Work
Queue Entries (WQEs) are posted from the user
level for processing by the HCA. Upon comple-
tion of a WQE, the HCA posts an entry to the
completion queue, allowing the user level pro-
cess to poll and/or wait on the completion queue
for events related to the queue pair.

Two-sided send/receive operations are initi-
ated by enqueueing a send WQE on a QP’s send
queue. The WQE specifies only the senders lo-
cal buffer. The remote process must pre-post
a receive WQE on the corresponding receive
queue which specifies a local buffer address to
be used as the destination of the receive. Send
completion indicates the send WQE is com-
pleted locally and results in a sender side CQ
entry. When the transfer actually completes a
CQ entry will be posted to the receivers CQ.

One-sided RDMA operations are likewise ini-
tiated by enqueueing a RDMA WQE on the
Send Queue. However, this WQE specifies both
the source and target virtual addresses along
with a protection key for the remote buffer. Both
the protection key and remote buffer address
must be obtained by the initiator of the RDMA
read/write prior to submitting the WQE. Com-
pletion of the RDMA operation is local and re-
sults in a CQ entry at the initiator. The operation
is one sided in the sense that the remote applica-
tion is not involved in the request and does not
receive notification of its completion.

3.2 Infiniband Resource Allocation

Infiniband does place some additional con-
straints on these operations. As data is moved
directly between the host channel adapter
(HCA) and user level source/destination buffers,
these buffers must be registered with the HCA in
advance of their use. Registration is a relatively
expensive operation which locks the memory
pages associated with the request, thereby pre-
serving the virtual to physical mappings. Addi-
tionally, when supporting send/receive seman-
tics, pre-posted receive buffers are consumed in
order as data arrives on the host channel adapter
(HCA). Since no attempt is made to match avail-
able buffers to the incoming message size, the
maximum size of a message is constrained to the
minimum size of the posted receive buffers.
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Infiniband additionally defines the concept of
a Shared Receive Queue (SRQ). A single SRQ
may be associated with multiple QPs during
their creation. Receive WQEs that are posted to
the SRQ are then shared resources to all associ-
ated QPs. This capability plays a significant role
in improving the scalability of the connection-
oriented transport protocols described below.

3.3 Infiniband Transport Modes

The Infiniband specification details five modes
of transport

1. Reliable Connection (RC)

2. Reliable Datagram (RD)

3. Unreliable Connection (UC)

4. Unreliable Datagram (UD)

5. Raw Datagram

Reliable Connection provides a connection
oriented transport between two queue pairs.
During initialization of each QP, peers exchange
addressing information used to bind the QP’s
and bring them to a connected state. Work re-
quests posted on each QP’s Send Queue are
implicitly addressed to the remote peer. As
with any connection oriented protocol, scalabil-
ity may be a concern as the number of connected
peers grows large, and resources are allocated to
each QP. Both Open MPI and MVAPICH cur-
rently use RC transport modes.

Reliable Datagram allows a single QP to be
used to send and receive messages to/from other
RD QPs. Whereas in RC reliability state is asso-
ciated with the QP, RD associates this state with
an end-to-end (EE) context. The intent of the In-
finiband specification is that the EE’s will scale
much more effectively with the number of active
peers. Both Reliable Connection and Reliable

Datagram provide acknowledgment and retrans-
mission. In practice, this portion of the specifi-
cation has yet to be implemented.

Unreliable Connection and Unreliable Data-
gram are similar to their reliable counterparts in
terms of QP resources. These transports differ
in that they are unacknowledged services and do
not provide for retransmission of dropped pack-
ets. The high cost of user reliability relative
to the hardware reliability of RC and RD make
these modes of transport inefficient for MPI.

3.4 Infiniband Summary

Infiniband shares many of the architectural fea-
tures of VIA. Scalability limitations of VIA are
well known [5] to the HPC community. These
limitations arise from a connection oriented pro-
tocol, RDMA semantics and the lack of direct
support for asynchronous progress. While the
Infiniband specification does address scalability
of connection oriented protocols through the RD
transport mode, the industry leader Mellanox
has yet to implement this portion of the specifi-
cation. Additionally, while the SRQ mechanism
addresses scalability issues associated with the
reliable connection oriented transport, issues re-
lated to flow control and resource management
must be considered. MPI implementations must
therefore compensate for these limitations in or-
der to effectively scale to large clusters.

4 MVAPICH

MVAPICH is currently the most widely used
MPI implementation on Infiniband platforms. A
descendent of MPICH [12], one of the earliest
MPI implementation, as well as MVICH [14],
MVAPICH provides several novel features for
Infiniband support. These features include small
message RDMA, caching of registered memory
regions and multi-rail IB support.
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4.1 Small Message Transfer

The MVAPICH design incorporates a novel ap-
proach to small message transfer. Each peer
is pre-allocated and registered a separate mem-
ory region for small message RDMA operations
called a persistent buffer association. Each of
these memory regions is structured as a circular
buffer allowing the remote peer to RDMA di-
rectly into the currently available descriptor. Re-
mote completion is detected by the peer polling
the current descriptor in the persistent buffer as-
sociation. A single bit can indicate comple-
tion of the RDMA as current Mellanox hardware
guarantees the last byte of an RDMA operation
will be the last byte delivered to the application.
This design takes advantage of the extremely
low latencies of Infiniband RDMA operations.

Unfortunately, this is not a scalable solution
for small message transfer. As each peer re-
quires a separate persistent buffer, memory us-
age grows linearly with the number of peers.
Polling each persistent buffer for completion
also presents scalability problems. As the num-
ber of peers increases the additional overhead
required to poll these buffers quickly erodes the
benefits of small message RDMA.

A similar design was attempted earlier on
ASCI Blue Mountain with what later evolved
into LA-MPI to support HIPPI-800. The ap-
proach was later abandoned due to poor scalabil-
ity and a hybrid approach evolved, taking advan-
tage of HIPPI-800 firmware for multiplexing.
Other alternative approaches to polling persis-
tent buffers for completion have also been dis-
cussed and may prove to be more scalable [6].

To address the issues of small message
RDMA, MVAPICH provides a medium and
large configuration option. These options limit
the resources used for small message RDMA
and revert instead to standard send/receive. As
demonstrated in our results section this config-
uration option improves the scalability of small

message latencies but still results in sub-optimal
performance as the number of peers increases.

4.2 Connection Management

MVAPICH uses static connection management,
establishing a fully connected job at startup. In
addition to eagerly establishing QP connections,
MVAPICH also allocates a persistent buffer as-
sociation for each peer. If send/receive is used
instead of small message RDMA, MVAPICH al-
locates receive descriptors on a per QP basis in-
stead of using the shared receive queue across
QP’s. This further increases resource allocation
per peer.

4.3 Caching Registered Buffers

As discussed earlier Infiniband requires all
memory to be registered (pinned) with the HCA.
Memory registration is an expensive operation
so MVAPICH caches memory registrations for
later use. This allows subsequent message trans-
fers to queue a single RDMA operation with-
out paying any registration costs. This approach
to registration assumes that the application will
reuse buffers often in order to amortize the high
cost of a single up front memory registration.
For some applications this is a reasonable as-
sumption.

A potential issue when caching memory reg-
istrations is that the application may free a
cached memory region and then return the asso-
ciated pages to the OS 1. The application could
later allocate another memory region and obtain
the same virtual address as the previously freed
buffer. Subsequent RDMA operations may use
the cached registration but this registration may
now contain incorrect virtual to physical map-
pings. RDMA operation may therefore use an

1Memory is returned via the sbrk function in UNIX
and Linux.
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unintentional memory region. In order to avoid
this scenario MVAPICH forces the application
to never release pages to the OS 2 and thereby
preserving virtual to physical mappings. This
approach may cause resource exhaustion as the
OS can never reclaim physical pages.

5 Design of Open MPI

In this section we discuss Open MPI’s support
for Infiniband, including techniques to enhance
scalability.

5.1 The OB1 PML Component

OB1 is the latest point-to-point management
layer for Open MPI. OB1 replaces the previous
generation PML - TEG [21]. The motivation
for a new PML was driven by code complex-
ity at the lower layers. Previously much of the
MPI p2p semantics such as the short and long
protocols were duplicated for each interconnect.
This logic as well as RDMA specific protocol
logic was moved up to the PML layer. Initially
there was concern that moving this functional-
ity into an upper layer would cause performance
degradation. Preliminary performance bench-
marks have shown this not to be the case. This
restructuring has substantially decreased code
complexity while maintaining performance on
par with both previous Open MPI architectures
as well as other MPI implementations. Through
the use of device appropriate abstractions we
have exposed the underlying architecture to the
PML level. As such the overhead of the p2p
architecture in Open MPI is lower than that of
other MPI implementations.

OB1 provides numerous features to support
both send/receive and RDMA read/write op-
erations. The send/receive protocol uses pre-

2The mallopt function in UNIX and Linux prevents
pages from being given back the OS.

allocated/registered buffers to copy in for send
and copy out for receive. This protocol provides
good performance for small messages transfer
and is used both for the eager protocol as well
as control messages.

To support RDMA operations, OB1 makes
uses of the Mpool and Rcache components in
order to cache memory regions for later RDMA
operations. Both source and target buffers must
be registered prior to an RDMA read or write
of the buffer. Subsequent RDMA operation
can make use of pre-registered memory in the
Mpool/Rcache. While MVAPICH prevents
physical pages from being released to the OS,
Open MPI instead uses memory hooks to inter-
cept deallocation of memory. When memory
is deallocated it is checked against the Rcache
and all matching registrations are de-registered.
This prevents future use of an invalid memory
registration while allowing memory to be re-
turned to the host operating system.

In addition to supporting both send/receive
and RDMA read/write, Open MPI provides a
hybrid RDMA pipeline protocol. This pro-
tocol avoids caching of memory registrations
and virtually eliminates memory copies. The
protocol begins by eagerly sending data using
send/receive up to a configurable eager limit.
Upon receipt and match the receiver responds
with an ack to the source and begins registering
blocks of the target buffer across the available
HCAs. The number of blocks registered at any
given time is bound by a configurable pipeline
depth. As each registration in the pipeline com-
pletes an RDMA control message is sent to the
source to initiate an RDMA write on the block.

To cover the cost of initializing the pipeline,
on receipt of the initial ack at the source,
send/receive semantics are used to deliver data
from the eager limit up to the initial RDMA
write offset. As RDMA control messages are
received at the source, the corresponding block
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of the source buffer is registered and an RDMA
write operation initiated on the current block.
On local completion at the source, an RDMA
FIN message is sent to the peer. Registered
blocks are de-registered upon local completion
or receipt of the RDMA FIN message. If re-
quired, the receipt of an RDMA FIN messages
may also further advance the RDMA pipeline.

This protocol effectively overlaps the cost of
registration/deregistration with RDMA writes.
Resources are released immediately and the
high overhead of a single large memory regis-
tration is avoided. Additionally, this protocol re-
sults in improved performance for applications
that seldom reuse buffers for MPI operations.

5.2 The OpenIB and Mvapi BTLs

This section focuses on two BTL components,
both of which support the Infiniband intercon-
nect. These two components are called Mvapi,
based on the Mellanox verbs API, and OpenIB,
based on the OpenIB verbs API. Other than this
difference the Mvapi and OpenIB BTL com-
ponents are nearly identical. Two major goals
drove the design and implementation of these
BTL components, performance and scalability.
The following details the scalability issues ad-
dressed in these components.

5.2.1 Connection Managment

As detailed earlier, connection oriented proto-
cols pose scaling challenges for larger clusters.
In contrast to the static connection management
strategy adopted by MVAPICH, Open MPI uses
dynamic connection management. When one
peer first initiates communication with another
peer, the request is queued at the BTL layer. The
BTL then establishes the connection through an
out of band (OOB) channel. After connection
establishment, queued sends are progressed to
the peer. This results in a shorter startup time

and a longer first message latency time for In-
finiband communication. Resource usage re-
flects the actual communication patterns of the
application and not the number of peers in the
MPI job. As such, MPI codes with scalable
communication patterns will require fewer re-
sources.

5.2.2 Small Message Transfer

MVAPICH uses a pure RDMA protocol for
small message transfer requiring a separate
buffer per peer. Open MPI currently avoids
this scalability problem by using Infiniband’s
send/receive interface for small messages. In
an MPI job with 64 nodes, instead of polling 64
preallocated memory regions for remote RDMA
completion, Open MPI polls a single comple-
tion queue. Instead of preallocating 64 sep-
arate memory regions for RDMA operations,
Open MPI will optionally post receive descrip-
tors to the SRQ. Unfortunately, Infiniband does
not support flow control when the SRQ is used.
As such Open MPI provides a simple user level
flow control mechanism. As demonstrated in
our results, this mechanism is probabilistic and
may result in retransmission under certain com-
munication patterns and may require further
analysis.

Open MPI’s resource allocation scheme is de-
tailed in the Figure 2. Per peer resources include
2 Reliable Connection QP’s, one for High Prior-
ity transfers and one for Low Priority transfers.
High priority QP’s share a single Shared Re-
ceive Queue and Completion Queue as do low
priority QP’s. Receive descriptors are posted to
the SRQ on demand. The number of receive de-
scriptors posted to the SRQ is calculated using
the following method:

x = log2(n) ∗ k + b
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x Number of Receive Descriptors to post
n Number of peers in cluster
k per peer scaling factor for number

of Receive Descriptors to post
b base number of

Receive Descriptors to post
The high priority QP is for small control mes-

sages and any data sent eagerly to the peer. The
low priority QP is for larger MPI level messages
as well as all RDMA operations. Using two
QP’s allows Open MPI to maintain two sizes of
receive descriptors, an eager size for the high
priority QP and a maximum send size for the
low priority QP. While requiring an additional
QP per peer, we gain a finer grained control over
receive descriptor memory usage. In addition,
using two QPs allows us to exploit parallelism
available in the HCA hardware [8].

Peer
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RC
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Priority

CQ SRQ

RD
RD

RD
RD
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CQ SRQ

RD
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RD
RD
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Peer

RC
QP
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QP

High
Priority

Low
Priority

Established Dynamically (as needed)

Shared Resources

Figure 2: Open MPI Resource Allocation

5.3 Asynchronous progress

A further problem in RDMA devices is lack of
direct support for asynchronous progress. Asyn-
chronous progress in MPI is the ability for the
MPI library to make progress on both sending
and receiving of messages when the application
has left the MPI library. This allows for effective
overlap of communication and computation.

RDMA based protocols require that the ini-
tiator of the RDMA operation be aware of both
the source and destination buffers. To avoid a
memory copy and to allow the user to send and
receive from arbitrary buffers of arbitrary length
the peer’s memory region must be obtained by
the intiator prior to each request.

Figure 3 illustrates a timing of a typical
RDMA transfer in MPI using an RDMA Write.
The RTS, CTS and FIN can either be sent us-
ing send/receive or small message RDMA. Ei-
ther method requires the receiver to be in the
MPI library to progress the RTS, send the CTS
and then to handle the completion of the RDMA
operation by receiving the FIN message.

In contrast to traditional RDMA interfaces,
one method of providing asynchronous progress
is by moving the matching of the receive buffer
of the MPI message to the network interface.
Portals [7] style interfaces allow this by asso-
ciating target memory locations with the tuple
of MPI communicator, tag, and sender address
thereby eliminating the need for the sender to
obtain the receivers target memory address.

Peer 1 Peer 2
Match - RTS

CTS

RDMA Write

Fin

Figure 3: RDMA Write

From Figure 3 we can see that if the receiver
is not currently in the MPI library on the initial
RDMA of the RTS, no progress is made on the
RDMA write until after the receiver enters the
MPI library.

Open MPI addresses asynchronous progress
for Infiniband by introducing a progress thread.
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The progress thread allows the Open MPI li-
brary to continue to progress messages by pro-
cessing RTS/CTS and FIN messages. While this
is a solution to asynchronous progress, the cost
in terms of message latency is quite high. In
spite of this, some applications may benefit from
asynchronous progress even in the presence of
higher message latency. This is especially true
if the application is written in a manner to take
advantage of communication/computation over-
lap.

6 Results

This section presents a comparison of our work.
First we present scalability results in terms of
per node resource allocation. Next we examine
performance results, showing that while Open
MPI is highly scalable it also provides excel-
lent performance in the NAS Parallel benchmark
(NPB) [2].

6.1 Scalability

As demonstrated earlier, the memory footprint
of a pure RDMA protocol as used in MVAPICH
increases linearly with the number of peers.
This is partially due to lack of dynamic con-
nection management as well as resource alloca-
tion. Resource allocation for the small RDMA
protocol is per peer. Specifically, each peer is
allocated a memory region in every other peer.
As the number of peers increases this memory
allocation scheme becomes intractable. Open
MPI avoids these costs in two ways. First, Open
MPI establishes connections dynamically on the
first send to a peer. This allows resource allo-
cation to reflect the communication pattern of
the MPI application. Second, Open MPI option-
ally makes use of the Infiniband SRQ so that re-
ceive resources (pre-registered memory) can be
shared among multiple endpoints.

To examine memory usage of the MPI li-
brary we have used three different benchmarks.
The first is a simple “hello world” applica-
tion that does not communicate with any of its
peers. This benchmark establishes a baseline
of memory usage for an application. Figure 4
demonstrates that Open MPI’s memory usage is
constant as no connections are established and
therefore no resources are allocated for other
peers. MVAPICH on the other hand preallo-
cates resources for each peer at startup so mem-
ory resources increase as the number of peers
increases. Both MVAPICH small and medium
configurations consume more resources.
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Figure 4: Hello World Memory Usage

Our next benchmark is a pairwise ping-pong,
where peer’s of neighbor rank ping each other,
that is rank 0 pings rank 1 and rank 2 pings rank
3 and so on. As Figure 5 demonstrates, Open
MPI memory usage is constant. This is due
to dynamic connection management, only peers
participating in communication are allocated re-
sources. Again we see that MVAPICH memory
usage ramps up with the number of peers.

Our final memory usage benchmark is a worst
case for Open MPI, each peer communicates
with every other peer. As can be seen in Fig-
ure 6 Open MPI SRQ memory usage does in-
crease as the number of peers increases, but at a
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Figure 5: Pairwise Ping-Pong Memory Usage

much smaller rate than that of MVAPICH. This
is due to the use of the SRQ for resource allo-
cation. Open MPI without SRQ scales slightly
worse than the MVAPICH medium configura-
tion, this is due to Open MPI’s use of two QPs
per peer.
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Figure 6: All-to-all Memory Usage

6.2 Performance

To verify the performance of our MPI imple-
mentation we present both micro benchmarks as
well as the NAS Parallel Benchmarks

6.2.1 Latency

Ping-pong latency is a standard benchmark of
MPI libraries. As with any micro-benchmark,
ping-pong provides only part of the true repre-
sentation of performance. Most ping-pong re-
sults are presented using two nodes involved in
communication. While this number provides a
lower bound on communication latency, multi-
node ping-pong is more representative of com-
munication patterns in anything but trivial ap-
plications. As such, we present ping-pong la-
tencies for a varying number of nodes in which
N nodes perform the previously discussed pair-
wise ping-pong. This enhancement to the ping-
pong benchmark helps to demonstrate scalabil-
ity of small message transfers because in larger
MPI jobs the number of peers communicating at
the same time often increases.

In this test, the latency of a zero byte mes-
sage is measured for each pair of peers. We have
then ploted the average with errorbars for each
of these runs. As can be seen in Figure 7, the
small message RDMA mechanisms provided in
MVAPICH provides a benefit with a small num-
ber of peers. Unfortunately, the polling of mem-
ory regions is not a scalable architecture as can
be seen when the number of peers participating
in the latency benchmark increases. For each
additional peer involved in the benchmark, ev-
ery other peer must allocate and poll an addi-
tional memory region. Costs of polling quickly
erode any improvements in latency. Memory
usage is also higher on a per peer and aggre-
gate basis. This trend occurs in both small and
medium MVAPICH configurations. Open MPI
provides much more predictable latencies and
outperforms MVAPICH latencies as the number
of peers increases. Open MPI - SRQ latencies
are a bit higher than Open MPI - No SRQ laten-
cies as the SRQ path under Mellanox HCA’s is
more costly.

The following Table 1 shows the Open MPI
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send/receive latencies trail MVAPICH small
message RDMA latencies but are better than
MVAPICH send/receive latencies. This is an
important result as larger MVAPICH clusters
will make more use of send/receive and not
small message RDMA.

Average Latency
Open MPI - Optimized 5.64
Open MPI - Default 5.94
MVAPICH - RDMA 4.19
MVAPICH - Send/Receive 6.51

Table 1: Two node Ping-Pong latency in µ-sec.
Optimized - Limits the number of WQE on the
RQ Defaults - Default number of WQE on the
RQ
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6.2.2 NPB

To demonstrate the performance of our imple-
mentation outside of micro benchmarks we used
the NAS Parallel Benchmarks [2]. NPB is a set
of benchmarks derived from computational fluid
dynamics applications. All NPB benchmarks
were run using the class C size of problem and
all results are given in run-time (seconds). The

results of these benchmarks are summarized in
Table 2. Open MPI was run using 3 configu-
rations, with SRQ, SRQ with simple flow con-
trol and without SRQ. MVAPICH was run in
both small and medium cluster configurations.
Open MPI without SRQ and MVAPICH perfor-
mance is similar. With SRQ, Open MPI perfor-
mance is similar for the BT, CG, and EP bench-
marks. BT, FT and IS performance is lower with
SRQ as receive resources are quickly consumed
in collective operations. Our current flow con-
trol mechanism addresses this issue for the BT
benchmark but both the FT and IS benchmarks
are still effected due to global broadcast and all-
to-all communication patterns respectively. Fur-
ther research into SRQ flow control techniques
are ongoing.

6.3 Experimental Setup

Our experiments were performed on two dif-
ferent machine configurations. Two node ping-
pong benchmarks were performed on dual In-
tel Xeon X86-64 3.2 Ghz processors with 2GB
of RAM, and Mellanox PCI-Express Lion-Cub
adapters connected via a Voltair 9288 switch.
The Operating System is Linux 2.6.13.2 with
Open MPI pre-release 1.0 and MVAPICH 0.9.5-
118. All other benchmarks were performed on a
256 node cluster consisting of dual Intel Xeon
X86-64 3.4 Ghz processors with a minimum
6GB of RAM, Mellanox PCI-Express Lion Cub
adapters also connected via a Voltair switch.
The Operating System is Linux 2.6.9-11 with
Open MPI pre-release 1.0 and MVAPICH 0.9.5-
118.

7 Future Work - Conclusions

Open MPI addresses many of the concerns re-
garding the scalability and use of Infiniband in
HPC. In this section we summarize the results
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BT CG EP
Nodes 64 256 32 64 128 256 32 64 128 256
Open MPI - No SRQ 100.03 25.03 20.17 12.74 7.39 5.56 38.89 19.84 9.95 5.11
Open MPI - SRQ 114.92 26.92 20.45 12.86 7.49 5.61 38.85 19.72 10.04 5.26
Open MPI - SRQ FC 100.13 25.33 21.13 12.83 7.38 5.63 39.10 19.76 12.88 5.12
MVAPICH - Small 98.78 27.40 20.33 12.96 7.84 6.11 39.15 19.65 10.02 5.32
MVAPICH - Large 99.22 27.58 20.24 13.15 7.83 6.09 39.10 19.59 9.89 5.31

SP FT IS
Nodes 64 256 32 64 128 256 32 64 128 256
Open MPI - No SRQ 54.39 16.08 36.64 18.28 9.39 4.81 2.23 1.62 0.97 0.52
Open MPI - SRQ 140.81 22.53 75.48 68.36 56.92 26.96 32.21 33.29 25.06 21.97
Open MPI - SRQ FC 54.90 14.61 54.81 35.87 19.39 24.54 5.32 4.38 12.35 11.12
MVAPICH - Small 53.66 15.16 37.59 19.42 10.17 4.84 2.19 1.55 0.87 0.42
MVAPICH - Large 53.87 15.84 37.91 19.51 9.85 4.88 2.20 1.56 0.87 0.50

Table 2: NPB Results - Each benchmark uses the class C option with a varying number of nodes,
1 process per node. Results are given in seconds.

of this paper and provide directions for future
work.

7.1 Conclusions

Open MPI’s Infiniband support provides several
techniques to improve scalability. Dynamic con-
nection management allows per peer resource
usage to reflect the applications chosen commu-
nication pattern, thereby allowing scalable MPI
codes to preserve resources. Per peer mem-
ory usage in these types of applications will be
significantly less in Open MPI when compared
to other MPI implementations which lack this
feature. Optional support for an asynchronous
progress thread addresses the lack of direct sup-
port for asynchronous progress within Infini-
band, potentially further reducing buffering re-
quirements at the HCA. Shared resource alloca-
tion scales much more effectively than per peer
resource allocation through the use of the Infini-
band Shared Receive Queue (SRQ). This should
allow even fully connected applications to scale

to a much higher level.

7.2 Future work

This work has identified additional areas for im-
provement. As the NAS parallel benchmarks il-
lustrated, there are concerns regarding the SRQ
case that require further consideration. Prelim-
inary results indicate that an effective flow con-
trol and/or resource replacement policy must be
implemented, as resource exhaustion results in
significant performance degredation.

Additionally, Open MPI currently utilizes an
OOB communication channel for connection es-
tablishment, which is based on TCP/IP. Using
an OOB channel based on the unreliable data-
gram protocol will decrease first message la-
tency and potentially improve the performance
of the Open MPI run-time environment.

While connections are established dynami-
cally, once opened, all connections are persis-
tent. Some MPI codes which randomly commu-
nicate with peers may experience high resource
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usage even if communication with the peer is
infrequent. For these types of applications, dy-
namic connection teardown may be beneficial.

Open MPI currently supports both caching
of RDMA registrations as well as a hybrid
RDMA pipeline protocol. The RDMA pipeline
provides good results even in applications that
rarely reuse application buffers. Currently
Open MPI does not cache RDMA registra-
tions used in the RDMA pipeline protocol.
Caching these registration would allow subse-
quent RDMA operations to avoid the cost of reg-
istration/deregistration if the send/recv buffer is
used more than once, while providing good per-
formance even when the buffer is not used again.
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