
An Introduction to

Quantum Optimization Approximation Algorithm

Qingfeng Wang, Tauqir Abdullah

December 14, 2018

1

Contents

1 Introduction 3

2 Development for QAOA 3

3 Problem statement 4
3.1 Discussion about U(C, γ) . 5
3.2 Discussion of U(B, β) . 6
3.3 Workflow . 6
3.4 Applying MaxCut To QAOA . 7

4 Implementing Traverse Ising model and final project 9

5 Conclusion and remarks 10

A Supplementary material 12
A.1 Meaning of maximizing 〈A〉 . 12
A.2 Implementing U(C, γ) . 12
A.3 Implementing MAXCUT . 13
A.4 An example of 〈ψ|H|ψ〉 for a 2-qubit system . 14
A.5 Traverse Ising model Figures . 14

2

1 Introduction

Quantum Approximation Optimization Algorithm (QAOA) is one of the algorithms that can be implemented in
the near-term quantum computer and regarded as one of the most promising algorithms to demonstrate quantum
supremacy. QAOA is an approximation algorithm which means it does not deliver the ‘best’ result, but only the
‘good enough’ result, which is characterized by a lower bound of the approximation ratio.

In this report, we will introduce how QAOA works and some of explicit applications of QAOA. This report is
organized in the following way. First, we gave a recent development of the method. Then, we gave the extensive
explanation for how QAOA works and how it can be applied to MaxCut problem and traverse Ising filed model.
Lastly, we present the conclusion and remarks.

2 Development for QAOA

QAOA was first brought by Farhi et al.[1] in 2014. In the paper they gave the first heuristic of QAOA and applied
QAOA on MaxCut problem. Specifically, they showed the complexity of problem depends on p rather than n. If
p = 1, for a 3-regular graph they can achieve 0.6942 times the optimal cut. At a later time, the MaxCut problem was
further discussed by Wang et al.[2]. Farhi et al. also mentioned relationship between QAOA and quantum adiabatic
algorithm (QAA) such they would consider QAOA as a Trotterized QAA so that for p→∞ they are equivalent.

Immediately after the first appearance of original paper, Farhi et al.[3] applied QAOA on another combinatorial
problem Max E3LIN2. The result is not too interesting as even though it shows the capability of satisfying number of
linear equations more than half, it has no significant advantage over classical algorithms. (There is a interesting story
behind this, that initially this QAOA algorithm beat the best classical algorithm but immediately been fight back
by a bunch of computer scientists who designed a better classical algorithm for E3LIN2.) However, this application
of QAOA attracted attention Lin et al.,[4] who refined constraint problems in QAOA by defining the ‘typicality’ in
QAOA notion and and showed µ+ Ω(1/

√
D) fraction of constraints can be satisfied (see original paper for meaning

of labels).
Later, Farhi et al.[5] showed the reason why QAOA is one of the methods that can help achieving so-called

quantum supremacy. The idea is to show that even the lowest depth of QAOA can not be efficiently simulated using
classical computer by arguing that if so then it means P = NP . This means QAOA is a great candidate for early
demonstration of quantum supremacy.

Unlike QAA, QAOA requires a lower coherent time. This advantage get more people interested. Wecker et al.[6]
used a variant of QAOA to solve MAX-2-SAT problem. Instead of finding expectation of operator, they wish to
maximize the overlap of between output and ground state and QAOA indeed gave such a result.

The understanding of QAOA was further deepened by Yang et al.[7]. They called the way that QAOA applying
abrupt operations on state is a ‘bang-bang’ (square pulse) form, and which happens to be the optimal evolution for
fixed computation time. So the rigidity of QAOA is justified.

Even more interestingly, Jiang et al.[8] applied QAOA on unstructured search and achieved a complexity only
√

2
larger than the Grover’s algorithm.

Taking QAOA as the leading candidate to show the power of quantum computing, Hadfield et al.[9, 10] showed how
to implement QAOA with soft and hard constraints. Specifically, they showed how to implement on five problems,
i.e., Max Colorable Subgraph, Max Colorable Induced Subgraph, Min Graph Coloring, Traveling Salesman Problem
and Single Machine Scheduling. Notice that, the authors rephrased the acronym from Quantum Approximation
Optimization Algorithm to Quantum Alternating Operator Ansatz to generalize the applicability of QAOA. Six
month later, Babej et al. echoed this idea and used the Hadfield version of QAOA to solve lattice protein folding
problem.[11]

Recently, QAOA is applied to produce non-trivial quantum states such as Greenberger-Horne-Zeilinger (GHZ)
state or quantum critical ground state. Usually they would use operators such as in traverse field Ising model
(TFIM). People are interested in how to implement QAOA in experiments more efficiently to obtain the ground
state of TFIM. Ho et al. [12] shows that using QAOA, one can implement the circuit with depth O(L) where L is
the linear dimension of system. In addition, soon after, Ho et al.[13] has shown an even more astonishing result that
QAOA with Long Range Interactions can prepare GHZ in O(1) depth and TFIM with > 99% fidelity on 100 qubits
system with merely one iteration of QAOA.

3

Undoubtedly, QAOA is a successful quantum heuristic can be implemented on near-term quantum computer and
has drawn many people’s attention. It is expected there will be more theoretical improvement of QAOA as well as
experiment implementation of QAOA.

3 Problem statement

Some of the explanation might be trivial to readers but they are important for beginners to understand the reasoning
behind it. For such details, they will be moved to the supplementary part to make the report concise.

Suppose we wish to maximize a objective function C =
∑m
k=1 Cm(z) where z = z1z2 · · · zn where zk ∈ {0, 1}n.

Cm ∈ {0, 1} is a function that queries string z to see if the substring satisfies certain property. For example, C1 = 1
if z3 = 0 & z5 = 1 and C1 = 0 otherwise. There are 2n possible different z and our goal is to find a z that can
maximize C. Classically, we have to query each of z which requires O(2n) queries. It is still unclear how to solve
this problem exactly efficiently. If an approximate solution is all we need, then there are already many classical
approximate algorithms available. However, we (probably) can do better using a quantum approximate optimization
algorithm.

The first step is to treat the objective function C as an operator. Since

C |z〉 =

m∑
k=1

Ck(z) |z〉 = f(z) |z〉 ,

the C has eigenvectors |z〉 and eigenvalues
∑m
k=1 Ck(z) = f(z). The eigenvalue set {f(z), z ∈ {0, 1}n} can be

ordered from smallest to largest. The largest value f(z), which we can denote f(z′), is the Cmax, with corresponding
eigenvector |z′〉. With basis |z〉, we can construct arbitrary state as general superposition state where az are 2n

coefficients that are properly normalized |ψ〉 =
∑
z∈{0,1}n az |z〉 s.t.

∑
z∈{0,1}n |az|2 = 1. It is easy to check that

az = 1 then it corresponds to basis state |z〉. For |ψ〉 we can construct expectation value of C, that is 〈C〉 = 〈ψ|C|ψ〉.
If |ψ〉 = |z〉, 〈C〉 = 〈z|C|z〉 = f(z), which can be evaluated classically if |z〉 is known. Finding the |z〉 that can
maximize C(z) corresponding to finding a state |ψ〉 that maximize 〈C〉. See in Supplementary Material (SM A.1)

〈C〉 = 〈ψ|C|ψ〉 =
∑

z∈{0,1}n
f(z)|az|2 ≤

∑
z∈{0,1}n

f(z′)|az|2 = f(z′)
∑

z∈{0,1}n
|az|2 = f(z′)

So 〈C〉max = f(z′) and only when |ψ〉 = |z′〉. In other words, if we can maximize and obtain 〈C〉max, then it means
we are applying |z′〉, which means if we measure the state |ψ〉 with |z〉 basis we will obtain |z′〉 with probability 1.
But in general, we don’t know how to find such 〈C〉max efficiently, we can only find a 〈C〉 that is close to 〈C〉max.
That is to say we can only find a |ψ〉 that is a superposition of |z〉 basis and with a probablity |a′z|2 for obtaining
|z′〉 and hoping that |a′z|2 is large enough so that after we measure |ψ〉 many times we might accidentally obtain |z′〉.
Later we can see that in general |a′z|2 is so small that we can only hope to find a |z〉 that makes C(z) close to C(z′).

Consider an example state |ψ〉 = |s〉 which is an uniform superposition of all |z〉:

|s〉 = H⊗n |0〉⊗n =
1√
2n

∑
z∈{0,1}n

|z〉

If we measure it in |z〉 , each result is a single basis state |z〉, and each basis state |z〉 correspond to a C(z). After
we measure it in basis T times, we can obtained a distribution of basis states as well as distribution of C(z) with
maximum value C(z′′) and corresponding state |z′′〉.

The average of the distribution will be

〈C〉 =
∑

z∈{0,1}n
f(z)|az|2 =

1

2n

∑
z∈{0,1}n

f(z).

The probability of obtaining |z′〉 for each measurement is 1
2n and we have

C(z′′)
T→inf−−−−→ C(z′) = Cmax

4

which is no better than enumerating |z〉 or by random guess.
So, |s〉 state is not interesting, but we can somehow rotate |s〉 to make it closer to the |z′〉. To do this, we define

two types of rotation unitary matrices U(C, γ) = e−iγC and U(B, β) = e−iβB .

3.1 Discussion about U(C, γ)

First we discuss operation U(C, γ), which is defined:

U(C, γ) = e−iγC = e−iγ
∑m
α=1 Cα

T
= Πm

α=1e
−iγCα + err

where T means Trotter decomposition and γ is an angle which we will come back later. If two Cα are commute
then err = 0, which means the expression is exact without error. Since here we use a operator gives [Ci, Cj] = 0, we
can write the exponential of summation as the product of exponentials . That is

U(C, γ) = e−iγC = Πm
α e
−iγCα .

We can decompose U(C, γ) into the product form because U(C, γ) can be implemented by applying terms succes-
sively. (Detail in Supplementary A.2)

|ψ〉 =
∑

z∈{0,1}n
az |z〉

U(C,γ)−−−−→
∑

z∈{0,1}n
[Πm
α=1U(Cα(z), γ)] az |z〉 , where:

{
U(Cα(z), γ) = 1, if Cα(z) = 0

U(Cα(z), γ) = e−iγ , if Cα(z) = 1

This means for a certain component |z〉, a phase e−iγ will be added in front of |z〉 for each of satisfied condition
Cα. This can be easily translated into a explicit circuit using controlled-phase gates with the help of an ancilla qubit.
Notice, an ancilla qubit is not always required depending on the C causes. A circuit would looks like this: See in
Supplementary Material (SM A.2)

|x1〉

U(C, γ)
|x2〉

...
|xn〉

=

|x1〉
Control 1

with
C1

Control 2
with
C2 · · ·

Control
m

with
Cm

|x2〉
...|xn〉

|0〉 Target 1
R(γ)

Target 2
R(γ)

Target m
R(γ)

where R(γ) =

[
1 0
0 eiγ

]
is a phase gate with γ ∈ [0, 2π].

To analyze,

|ψ〉 |1〉 = |x1x2 · · ·xn〉 |1〉 =
∑

z∈{0,1}n
az |z〉 |1〉 .

For component az |z〉 |1〉, if Cα is satisfied then az |z〉 ⊗ R(γ) |1〉 = azR(γ) |z〉 ⊗ |1〉 which effectively change the
phase; and if Cα is not satisfied then leave the component |z〉 alone.

As an explicit example, suppose a state |ψ〉 = |x1〉 |x2〉, where n = 2 and in general x1 = α0 |0〉 + α1 |1〉 and
x2 = β0 |0〉+ β1 |1〉. Also we have m = 2 clauses:{

C1 = 1, if x1 = |1〉
C2 = 1, if x1 = x2 = |1〉

which gives truth table C1(00) = 0, C1(01) = 0, C1(10) = 1, C1(11) = 1 and C2(00) = 0, C2(01) = 0, C2(10) =
0, C2(11) = 1. For a U(C, γ) gate, we should expect the result: (Detail in SM A.2)

|x1x2〉
U(C,γ)−−−−→ α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R2(γ)α1β1 |11〉

5

Or eqivalently can construct circuit with the help of ancilla qubit |1〉 (Detail in SM A.2)

|x1〉 • •
|x2〉 •
|1〉 R(γ) R(γ)

|x1x2〉 |1〉
control−R(γ)−−−−−−−−→ α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R(γ)α1β1 |11〉
CC−R(γ)−−−−−−→ (α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R2(γ)α1β1 |11〉) |1〉

which is exactly the same as applying U(C, γ). It also can be observed that if certain |z〉 satisfies m(z) clauses, then
it has a phase Rm(z) = e−im(z)γ . Notice that, if we consider the control gate can be implemented in depth 1, then
the depth of a single U(C, γ) presented in this way is m. However, depth could be much larger since large control
gates probably require a lot of basic gates. To sum up, by decomposing the C, we can implement gate U(C, γ) using
basis gates with depth m. It is worth noting here that different type of clauses C will likely require different type of
gate implementations other than simple control gates, as mentioned in MaxCut problem.

3.2 Discussion of U(B, β)

Phase change U(C, γ) alone does not change the probability of obtaining a certain basis since |Rm(z)az|2 = e−im(z)γei(z)γ |az|2 =
|az|2. So we have to introduce rotation operator U(B, β). Here define B as

B =

n∑
j=1

σxj = σx1 ⊗ I⊗(n−1) + I1 ⊗ σx2 ⊗ I⊗(n−2) + · · ·+ I⊗(n−1) ⊗ σx2

We define U(B, β) = e−iβB = e−iβ
∑n
j=1 σ

x
j = Πn

j=1e
−iβσxj = Πn

j=1U(Bj , β) where U(Bj , β) = e−iβσ
x
j

The decomposition of B is exact because

[σxi , σ
x
j] = [σxi ⊗ Ij , Ii ⊗ σxj] = (σxi ⊗ Ij)(Ii ⊗ σxj)− (Ii ⊗ σxj)(σxi ⊗ Ij) = σxi ⊗ σxj − σxi ⊗ σxj = 0

A rotation operator Rx(θ) = e−i
θ
2σ

x

, where θ ∈ [0, 2π], can be used to construct U(B, β) with

Rx(2β) = e−i
2β
2 σ

x

= U(B, β)

It is now clear that 2β ∈ [0, 2π]→ β ∈ [0, π]. This U(B, β) can be implemented efficiently with depth 1:

|x1〉 Rx(2β)
...

|xn〉 Rx(2β)

3.3 Workflow

It is not guaranteed that after |ψ′〉 = U(B, β)U(C, γ) |ψ〉 the new state |ψ′〉 is good enough (or close enough to |z′〉).
A natural remedy is to applying U(B, β)U(C, γ) multiple times, with different β and γ each time. Suppose we apply
p times such operation, we obtained a new state which depends on the angles and defined as:

|ψ(γ, β)〉 = |γ, β〉 = U(B, βp)U(C, γp) · · ·U(B, β2)U(C, γ2)U(B, β1)U(C, γ1) |ψ〉

where γ = (γ1, γ2, · · · , γp) and β = (β1, β2, · · · , βp). It is not easy to determine β and γ in advance and there are
many possible ways to find such optimal angle with iterations and this corresponds to a 2p-dimensional optimization.
In a typical workflow:

6

1. Begin with a trial state |ψ〉 = |s〉

2. (Classical computer) Initialize 2p parameters β and γ (determine what angles to use for gates). This could be
all 0 if no better choice is implied.

3. (Quantum computer) Construct |γ, β〉 using U(B, βp)U(C, γp) · · ·U(B, β2)U(C, γ2)U(B, β1)U(C, γ1) |s〉 with
angles determined in previous step. The circuit for individual operator is shown in previous sections. Now
|ψ〉new = |γ, β〉 is updated.

4. (Quantum computer) Measure |γ, β〉 in computational basis set and obtain a value |z〉.

5. (Classical computer) Using
∑m
k=1 Ck(z) to calculate C(z).

6. Repeat step 1 to 4 to a number of times. It means we measure the same |γ, β〉 for many times, and to obtain
distribution of states |z〉. Each |z〉 corresponds a C(z) which results in a distribution of C(z) with largest
value C(z′′) and average (expectation) value of C will be 〈γ, β|C|γ, β〉. We only output the C(z′′) and it’s
eigenvector |z′′〉 as the result of applying 2p parameters β and γ.

7. Select a new set of 2p parameters β and γ, repeat step 3 to 6. Obtain a distribution of C(z′′) and choose
the largest one as the final output. The termination condition depends on how you update next set of angles.
Consider this as a 2p-parameter function optimization problem with only function evaluation (step 3 to 6)
involves quantum system. If you choose angles from a fine grid, then just run through 2p dimensional grid.
This could become prohibitively large as the number grows O(r2p) where r is roughly the grid resolution
(number of points) for each parameter. Other ways of updating new angles including gradient descend or other
classical optimization methods. If so, the algorithm will terminate with a preset convergence value.

3.4 Applying MaxCut To QAOA

It is interesting to see how different objective functions C applied in QAOA. Different C means different set of
clauses. Take MaxCut problem as example. The problem can be phrased is this way. Suppose we have a connected
graph, it can be determined by n vertices and edge set {〈jk〉} of size m. We can classify each vertex into one of the
two categories, by setting values to g(i) = +1 or g(i) = −1, where g(i) is a function to query the belonging of vertex
i. A cut occurs if two vertices of an edge disagrees, or g(i)g(j) = −1. Our goal is to find a classification such that
we have the maximum number of cuts, or disagreement of signs alone edges set {〈jk〉}. Notice, the true maximum
could be less than m, consider cutting a triangular as an example.

So our objective function becomes:

C =
∑
〈jk〉

C〈jk〉

where

C〈jk〉 =
1

2
(−g(i)g(j) + 1) =

{
1, if edge 〈jk〉 is a cut, that is, g(i)g(j) = −1

0, if edge 〈jk〉 is not a cut, that is, g(i)g(j) = 1

This MaxCut problem can be translated in the quantum perspective in the following way. Consider n vertices as
n qubits in computational basis and regard the classification of a vertex as assigning the state of that qubit, |0〉 or
|1〉. At the end of day, measure the basis state |z〉 which is a tensor product of |0〉 and |1〉, giving the classification
of qubits. In this way, all 2n different vertex classifications correspond to 2n computational basis. We still want to
use the classical objective function, so we need to consider C as operator:

C |z〉 =
∑
〈jk〉

C〈jk〉(z) |z〉 = C(z) |z〉

where

C〈jk〉 |z〉 =
1

2
(−gj ⊗ gk + I) |z〉 =

{
|z〉 , if edge 〈jk〉 is a cut, that is, gj ⊗ gk |z〉 = −I
0, if edge 〈jk〉 is not a cut, that is, gj ⊗ gk |z〉 = I

7

Since gi ⊗ gj |z〉 = (gi |zi〉) ⊗ (gj |zj〉), and we want it to be −I if zi and zj are both |0〉 or |1〉 and I if zi and zj
belong different qubits, we can choose function g = σz to satisfy this property since σz |0〉 = +1 and σz |1〉 = −1. So
C〈jk〉 = 1

2 (−σzj ⊗ σzk + I).
Similar to previous discussion, we will construct U(C, γ) and U(B, β) so that

U(C, γ) = e−iγC = e−iγ
∑
〈jk〉 C〈jk〉 = Π〈jk〉e

−iγC〈jk〉 = Π〈jk〉U(C〈jk〉, γ)

U(C〈jk〉, γ) = e−iγ
1
2 (−σ

z
j⊗σ

z
k+I) = e−i

−γ
2 (σzi⊗σ

z
j)e−i

1
2γI .

It can be verified that exp
(
−i θ2 (σzj ⊗ σzk)

)
can be implemented as:

|x1〉 • •

|x2〉 Rz(θ)

Supplementary material A.3 shows that the circuit has the same result as applying operator directly.

As a result, we can implement e−i
−γ
2 (σzi⊗σ

z
j) using CNOT gates and Rz(γ). The second part e−i

γ
2 I is a phase

change which can be done using R(−γ/2).
So the circuit can be implemented :

|xj〉
U(C〈jk〉, γ)...

|xk〉
=

|xj〉 • •

|xk〉 Rz(−γ)

|0〉 R(−γ/2)

The circuit result can be obtained as:

(α0β0e
−i−γ2 |00〉+ α0β1e

i−γ2 |01〉+ α1β0e
i−γ2 |10〉+ α1β1e

−i−γ2 |11〉) |0〉
I⊗n⊗R(γ)−−−−−−−→ (α0β0e

−i−γ2 |00〉+ α0β1e
i−γ2 |01〉+ α1β0e

i−γ2 |10〉+ α1β1e
−i−γ2 |11〉)e−iγI |0〉

= e−i
γ
2 (α0β0 |00〉+ α0β1e

iγ |01〉+ α1β0e
iγ |10〉+ α1β1 |11〉) |0〉

As can be seen, a phase eiγ is added to |z〉 if two qubits are different (a cut), which is exactly what we want.
The operator U(B, β) is the same and described in the previous chapter. The normal work flow will be the same

as described in the previous chapter. However, some more simplifications can be performed based on the property of
graphs. First, for each edge 〈jk〉 we only need to evaluate a subgraph that is p steps away from edge 〈jk〉 instead of
whole graph. The idea is that we observe that not all vertices are involved in U(B, β) and U(C, γ), or mathematically
when we write out 〈C〉 explicitly, only terms contains 〈C〉 and those no more than p steps aways are kept. It is p
steps because U(C, γ) contains terms σxj σ

x
k that mixed one more outer layer of qubits each step. This is a powerful

statement because now complexity has transformed from n dependent to p dependent. So, if p is fixed or grows
slowly with n, then this algorithm can give dramatic speed up. However, this is not always the case as for a graph,
with maximum degree v, the number of qubits in the tree is given as:

qtree = 2
(v − 1)p+1 − 1

v − 2

and it can be seen qtree could still be large with large p. Does this simplify the circuit implementation? Indeed, only
qubits involved in 〈jk〉 and distance less than p are required, reducing the depth of circuit, especially for U(C, γ).

The second layer of simplification is that only some of the edges in 〈jk〉 need to be evaluated. It is based on
observation that, subgraphs could be isomorphic, which means will generate the same result. As a result only need
to evaluate such subgraph once and multiply the occurrence of such graph. The occurrence depend on n but can
be easily calculated classically with a given graph. This does not seems as powerful as first simplification but still
can give a speed boost when there are many isomorphic subgraphs. For example, in a ring model, there is only one
type of subgraph of segment of 2p + 2 connected vertices. Does this help with the implementation of circuit? Now
it means we are braking down the expectation value of original C into fewer smaller terms. For ring graph, we just
need to evaluate one C12 expectation value rather than all edges.

8

4 Implementing Traverse Ising model and final project

In the final project we wish to know if we can find intrinsic pattern to the solution angles so that we can make more
informed guess on the initialized input angles. If such pattern can be found, we can feed the quantum computer with
those guessed initial values and reduce the number iteration and the chance of being trapped in local minimum. The
model we used here is traverse filed Ising model (TFIM), which is one of the most wildly used model in quantum
simulation. It originates from the spin-spin interactions. For n aligned 1D interacting spin chain, the Hamiltonian
for TFIM is:

H =

n∑
j=1

Jjσ
z
jσ

z
j+1 +

n∑
j=1

hjσ
x
j

where σzi σ
z
j denotes the interaction between adjacent spins with strength Jj and hj denotes the external magnetic

field. Here we consider Jj = 1 and hj = 1. In addition we have boundary condition σzn+1 = σz1 so that the last term
in first summation is σznσ

z
1 . As described before, we can implement this in QAOA with C = H:

e−iγC = e−iγH = e−iγ(
∑n
j=1 σ

z
j σ
z
j+1+

∑n
j=1 σ

x
j)

= e−iγ
∑n
j=1 σ

x
j e−iγ

∑n
j=1 σ

z
j σ
z
j+1

For B, we still have the same σx operators as before. Notice that, we can simplify the expression before implement
the circuit:

U(β)U(γ) = e−iβBe−iγC =
(
e−iβ

∑n
j=1 σ

x
j

)(
e−iγ

∑n
j=1 σ

x
j e−iγ

∑n
j=1 σ

z
j σ
z
j+1

)
= e−i(β+γ)

∑n
j=1 σ

x
j e−iγ

∑n
j=1 σ

z
j σ
z
j+1

= e−iβ
′∑n

j=1 σ
x
j e−iγ

∑n
j=1 σ

z
j σ
z
j+1

so that we can consider β′ = β + γ as our new β. The sample QAOA circuit with n = 4, p = 1 will look like:

1 • • Rz(2γ) Rx(2β)

2 Rz(2γ) • • Rx(2β)

3 Rz(2γ) • • Rx(2β)

4 Rz(2γ) • • Rx(2β)

The result processing contains two parts.

〈H〉 = 〈ψ|
n∑
j=1

σzjσ
z
j+1 +

n∑
j=1

σxj |ψ〉

= 〈ψ|
n∑
j=1

σzjσ
z
j+1|ψ〉+ 〈ψ|

n∑
j=1

σzjσ
z
j+1|ψ〉

= 〈H1〉+ 〈H2〉

where the final state |ψ〉 =
∑
i ci|z〉. The first term on the right can be calculated directly based on the distribution

of |z〉 basis since final state is an eigenstate of Z matrices. The second term requires more work since |ψ〉 is not an
eigenstate of Pauli-X matrices. In order to get the second term, we have to measure the result with the change of
basis from Z to X by applying H gate before measurement, as shown below:

9

1 • • Rz(2γ) Rx(2β) H

2 Rz(2γ) • • Rx(2β) H

3 Rz(2γ) • • Rx(2β) H

4 Rz(2γ) • • Rx(2β) H

An example of post-processing of 〈ψ|H|ψ〉 for a 2-qubit system is given in appendix A.4.
We used the Regetti Forest code those circuits and use Python to make pre-processing and post-processing. We

tested p from 1 to 10 and from 4 to 9 qubits. However we did not go above 9 qubits due to the limitation of
our computer capability. The result is not very promising, as the optimized angles are distributed with no strong
correlation. It is not surprised that such correlation is difficult to find. The main reason is we have too few data
points so that generalizing to higher number of qubits seems unlikely. Figures in appendix A.5. In the future, we
could use some quantum cloud services since large companies have much higher simulation capabilities.

5 Conclusion and remarks

With this extensive overview of QAOA above, is any of it useful? Is Quantum Approximate Optimization Algorithm
better than using a classical algorithm? Currently the answer is unknown. The MAX-CUT graph problem described
above can be viewed as a special case of a constrained satisfaction problem (CSP). A CSP is defined by n variables
and a collection of constraints. MAX-CUT can be viewed as a specific case of a MAX-2XOR. After The QAOA
solution was more efficient than any classical algorithm at the time. In direct response to the quantum algorithm, a
classical algorithm was design that out performs the quantum algorithm for general MAX-kXOR. In response to the
classical algorithm, another quantum algorithm was designed that improved upon the previous result. However the
improved QAOA does not beat the classical algorithm. This leaves the open question of if there exists a quantum
algorithm that can beat a classical algorithm for the Mac-kXOR CSP problem. Although the QAOA applied to a
CSP may not beat classical algorithms, it does show quantum supremacy [5]. Quantum Supremacy suggests that
QAOA is able to solve a problem that a classical computer cannot. In other words, if one can simulate QAOA
classically then P=NP.

Lastly, the QAOA implementation subject to the limitation of gate fidelity. In current noisy quantum computer
the number of layers of p will mostly likely result in even worse accuracy since the the gate error negates the benefit
of higher p. However, that does not rule out that QAOA can be used in noisy intermediate-scale quantum computer
to demonstrate quantum supremacy in the near future.

References

[1] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv
Prepr. arXiv1411.4028, pages 1–16, 2014.

[2] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel. Quantum approximate optimization algo-
rithm for MaxCut: A fermionic view. Phys. Rev. A, 97(2):1–13, 2018.

[3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm Applied
to a Bounded Occurrence Constraint Problem. arXiv Prepr. arXiv1411.4028, pages 1–13, 2014.

[4] Cedric Yen-yu Lin, Yechao Zhu, Quantum Information, Computer Science, and For Theoretical Physics.
Performance of QAOA on Typical Instances of Constraint Satisfaction Problems with Bounded Degree.
arXiv:1601.01744, 2016.

[5] Edward Farhi. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv Prepr.
arXiv1602.07674, pages 1–22, 2016.

10

[6] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Training a quantum optimizer. Phys. Rev. A,
94(2):1–10, 2016.

[7] Zhi Cheng Yang, Armin Rahmani, Alireza Shabani, Hartmut Neven, and Claudio Chamon. Optimizing varia-
tional quantum algorithms using pontryagin’s minimum principle. Phys. Rev. X, 7(2):1–9, 2017.

[8] Zhang Jiang, Eleanor G. Rieffel, and Zhihui Wang. Near-optimal quantum circuit for Grover’s unstructured
search using a transverse field. Phys. Rev. A, 95(6):1–9, 2017.

[9] Stuart Hadfield, Zhihui Wang, Eleanor G Rieffel, Bryan O’Gorman, Davide Venturelli, and Rupak Biswas.
Qantum Approximate Optimization with Hard and Soft Constraints. Number November. 2017.

[10] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas.
From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. arXiv
Prepr. arXiv1709.03489, pages 1–46, 2017.

[11] Tomas Babej, Mark Fingerhuth, and Christopher Ing. A quantum alternating operator ansatz with hard and
soft constraints for lattice protein folding. pages 1–10, 2018.

[12] Wen Wei Ho and Timothy H. Hsieh. Efficient unitary preparation of non-trivial quantum states. arXiv Prepr.
arXiv1803.00026, pages 1–9, 2018.

[13] Wen Wei Ho, Cheryne Jonay, and Timothy H. Hsieh. Ultrafast State Preparation via the Quantum Approximate
Optimization Algorithm with Long Range Interactions. arXiv Prepr. arXiv1810.04817, pages 1–9, 2018.

11

A Supplementary material

A.1 Meaning of maximizing 〈A〉

〈C〉 = 〈ψ|C|ψ〉 =

 ∑
z∈{0,1}n

a∗z 〈z|

C

 ∑
z∈{0,1}n

az |z〉


=

 ∑
z∈{0,1}n

a∗z 〈z|

 ∑
z∈{0,1}n

azC |z〉


=

 ∑
z∈{0,1}n

a∗z 〈z|

 ∑
z∈{0,1}n

azf(z) |z〉


=

∑
z∈{0,1}n

f(z)|az|2 ≤
∑

z∈{0,1}n
f(z′)|az|2

= f(z′)
∑

z∈{0,1}n
|az|2 = f(z′)

A.2 Implementing U(C, γ)

To show how we can implement U(C, γ) successively, we begin with a general superposition state |ψ〉 =
∑
z∈{0,1}n az |z〉

|ψ〉 =
∑

z∈{0,1}n
az |z〉

U(C,γ)−−−−→
∑

z∈{0,1}n
e−iγCaz |z〉 =

∑
z∈{0,1}n

e−iγ
∑m
α=1 Cα(z)az |z〉

decompose−−−−−−−→
∑

z∈{0,1}n

(
Πm
α=1e

−iγCα(z)
)
az |z〉 =

∑
z∈{0,1}n

[Πm
α=1U(Cα(z), γ)] az |z〉

|x1〉

U(C, γ)
|x2〉

...
|xn〉

=

|x1〉

U(C, γ)
|x2〉

...
|xn〉
|0〉

(after decomposition) =

|x1〉

U(C1, γ) U(C2, γ) · · · U(Cm, γ)|x2〉
...

|xn〉
|0〉

=

|x1〉
Control 1

with
C1

Control 2
with
C2 · · ·

Control
m

with
Cm

|x2〉
...|xn〉

|0〉 Target 1
R(γ)

Target 2
R(γ)

Target m
R(γ)

12

For a U(C, γ) gate, we should expect the result :

|x1x2〉
U(C,γ)−−−−→ e−iγC2e−iγC1 |x1x2〉 = e−iγC2e−iγC1(α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉)
= e−iγC2(00)e−iγC1(00)α0β0 |00〉+ e−iγC2(01)e−iγC1(01)α0β1 |01〉

+ e−iγC2(10)e−iγC1(10)α1β0 |10〉+ e−iγC2(11)e−iγC1(11)α1β1 |11〉
= e−iγ0e−iγ0α0β0 |00〉+ e−iγ0e−iγ0α0β1 |01〉

+ e−iγ0e−iγ1α1β0 |10〉+ e−iγ1e−iγ1α1β1 |11〉
= α0β0 |00〉+ α0β1 |01〉+ e−iγα1β0 |10〉+ e−2iγα1β1 |11〉
= α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R2(γ)α1β1 |11〉

Or eqivalently can construct circuit with the help of ancilla qubit is equivalent to

|x1〉 • •
|x2〉 •
|0〉 R(γ) R(γ)

If we use the second explicit circuit, we have

|x1x2〉 |1〉 = (α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉) |1〉
control−R(γ)−−−−−−−−→ α0β0 |00〉 |1〉+ α0β1 |01〉 |1〉+ α1β0 |10〉 ⊗R(γ) |1〉+ α1β1 |11〉 ⊗R(γ) |1〉
= α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R(γ)α1β1 |11〉
CC−R(γ)−−−−−−→ α0β0 |00〉 |1〉+ α0β1 |01〉 |1〉+R(γ)α1β0 |10〉 ⊗ |1〉+R(γ)α1β1 |11〉 ⊗R(γ) |1〉
= α0β0 |00〉 |1〉+ α0β1 |01〉 |1〉+R(γ)α1β0 |10〉 |1〉+R2(γ)α1β1 |11〉 ⊗ |1〉
= (α0β0 |00〉+ α0β1 |01〉+R(γ)α1β0 |10〉+R2(γ)α1β1 |11〉) |1〉

A.3 Implementing MAXCUT

Consider applying operator U(C, γ) directly:

|x1x2〉 = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉

e−i
θ
2
(σz1⊗σ

z
2)

−−−−−−−−→ α0β0e
−i θ2 (σ

z
1⊗σ

z
2) |00〉+ α0β1e

−i θ2 (σ
z
1⊗σ

z
2) |01〉+ α1β0e

−i θ2 (σ
z
1⊗σ

z
2) |10〉+ α1β1e

−i θ2 (σ
z
1⊗σ

z
2) |11〉

= α0β0e
−i θ2 |00〉+ α0β1e

i θ2 |01〉+ α1β0e
i θ2 |10〉+ α1β1e

−i θ2 |11〉

It can be verified that exp
(
−i θ2 (σzj ⊗ σzk)

)
can be implemented as:

|x1〉 • •

|x2〉 Rz(θ)

Consider going through the circuit:

|x1x2〉 = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉
CNOT−−−−→ α0β0 |00〉+ α0β1 |01〉+ α1β0 |11〉+ α1β1 |10〉
I⊗Rz(θ)−−−−−→ α0β0e

−i θ2σ
z
2 |00〉+ α0β1e

−i θ2σ
z
2 |01〉+ α1β0e

−i θ2σ
z
2 |11〉+ α1β1e

−i θ2σ
z
2 |10〉

= α0β0e
−i θ2 |00〉+ α0β1e

i θ2 |01〉+ α1β0e
i θ2 |11〉+ α1β1e

−i θ2 |10〉
CNOT−−−−→ α0β0e

−i θ2 |00〉+ α0β1e
i θ2 |01〉+ α1β0e

i θ2 |10〉+ α1β1e
−i θ2 |11〉

13

A.4 An example of 〈ψ|H|ψ〉 for a 2-qubit system

Suppose a general final state |ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉, where coefficients {a00, a01, a10, a01} are
given as the probability distribution from the circuit result. Also we have < H >=< H1 > + < H2 >.

〈ψ|H1|ψ〉 = 〈ψ|
1∑
j=0

σz0σ
z
1 |ψ〉

= (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)(σz0σz1 + σz1σ
z
0)(a00|00〉+ a01|01〉+ a10|10〉+ a11|11)〉

= (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)σz0σz1(a00|00〉+ a01|01〉+ a10|10〉+ a11|11)〉
+ (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)σz1σz0(a00|00〉+ a01|01〉+ a10|10〉+ a11|11)〉

= (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)(a00|00〉 − a01|01〉 − a10|10〉+ a11|11)〉
+ (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)(a00|00〉 − a01|01〉 − a10|10〉+ a11|11)〉

= 2(a200 − a201 − a210 + a201)

For second term, we have to rerun the circuit again with change of basis, so we will apply H gate to the end of
circuit. The new state we have is

|ψ〉 H−→ (a00 + a01 + a10 + a11)|00〉+ (a00 − a01 + a10 − a11)|01〉+ (a00 + a01 − a10 − a11)|10〉+ (a00 − a01 − a10 + a11)|11〉
= b00|00〉+ b01|01〉+ b10|10〉+ b11|11〉

, and also σx
H−→ σz, so we have:

〈H2〉 = (b00〈00|+ b01〈01|+ b10〈10|+ b11〈11|)(σz0 + σz1)(b00|00〉+ b01|01〉+ b10|10〉+ b11|11〉)
= (b00〈00|+ b01〈01|+ b10〈10|+ b11〈11|)(σz0)(b00|00〉+ b01|01〉+ b10|10〉+ b11|11〉)

+ (b00〈00|+ b01〈01|+ b10〈10|+ b11〈11|)(σz1)(b00|00〉+ b01|01〉+ b10|10〉+ b11|11〉)
= b200 + b201 − b210 − b211 + b200 − b201 + b210 − b211
= 2b200 − 2b211

= 2(a00a01 + a00a10 + a11a01 + a11a10)

This is the same result if we calculate directly without change of basis:

〈H2〉 = (a00〈00|+ a01〈01|+ a10〈10|+ a11〈11|)(σx0 + σx1)(a00|00〉+ a01|01〉+ a10|10〉+ a11|11)〉
= 2(a00a01 + a00a10 + a11a01 + a11a10)

It seems to imply that if we know the probability of state |ψ〉z in z basis then we can simply calculate the probability
in |ψ〉x. This is not true since knowing the |a00|2 is not the same as knowing a00 where the sign (phase) is implicitly
still unknown. As a result, we still have to run the circuit with the change of basis when measuring the Hamiltonian
in corresponding basis.

A.5 Traverse Ising model Figures

14

Figure 1: Traverse Ising with p = 1

Figure 2: Traverse Ising with p = 2

15

Figure 3: Final gamma and beta for various number of qubits with p = 4

16

	Introduction
	Development for QAOA
	Problem statement
	Discussion about U(C,)
	Discussion of U(B,)
	Workflow
	Applying MaxCut To QAOA

	Implementing Traverse Ising model and final project
	Conclusion and remarks
	Supplementary material
	Meaning of maximizing "426830A A"526930B
	Implementing U(C,)
	Implementing MAXCUT
	An example of "426830A | H | "526930B for a 2-qubit system
	Traverse Ising model Figures

