Automatic Accurate Time-Bound Analysis for
High-Level Languages

Yanhong A. Liu* and Gustavo Gomez*

Computer Science Department, Indiana University, Bloomington, IN 47405
{1iu,ggomezes}@cs. indiana.edu

Abstract. This paper describes a general approach for automatic and
accurate time-bound analysis. The approach consists of transformations
for building time-bound functions in the presence of partially known in-
put structures, symbolic evaluation of the time-bound function based
on input parameters, optimizations to make the overall analysis efficient
as well as accurate, and measurements of primitive parameters, all at
the source-language level. We have implemented this approach and per-
formed a number of experiments for analyzing Scheme programs. The
measured worst-case times are closely bounded by the calculated bounds.

1 Introduction

Analysis of program running time is important for real-time systems, interactive
environments, compiler optimizations, performance evaluation, and many other
computer applications. It has been extensively studied in many fields of computer
science: algorithms [11, 8], programming languages [25,12, 20, 22], and systems
[23,19, 21]. It is particularly important for many applications, such as real-time
systems, to be able to predict accurate time bounds automatically and efficiently,
a.n]d it is particularly desirable to be able to do so for high-level languages [23,
19].

Since Shaw proposed timing schema, for analyzing system running time based
on high-level languages [23], a number of people have extended it for analysis
in the presence of compiler optimizations [5], pipelining [13], cache memory [13,
7], etc. However, there remains an obvious and serious limitation of the timing
schema, even in the absence of low-level complications. This is the inability
to provide loop bounds, recursion depths, or execution paths automatically and
accurately for the analysis [18, 1]. For example, the inaccurate loop bounds cause
the calculated worst-case time to be as much as 67% higher than the measured
worst-case time in [19], while the manual way of providing such information
is potentially an even larger source of error, in addition to its inconvenience
[18]. Various program analysis methods have been proposed to provide loop
bounds or execution paths [1,6,9]. They ameliorate the problem but can not
completely solve it, because they apply only to some classes of programs or use
approximations that are too crude for the analysis, and because separating the
loop and path information from the rest of the analysis is in general less accurate
than an integrated analysis [17].

This paper describes a general approach for automatic and accurate time-
bound analysis. The approach combines methods and techniques studied in the-
ory, languages, and systems. We call it a language-based approach, because it
primarily exploits methods and techniques for static program analysis and trans-
formation.

* This work was partially supported by NSF under Grant CCR-9711253.

The approach consists of transformations for building time-bound functions
in the presence of partially known input structures, symbolic evaluation of the
time-bound function based on input parameters, optimizations to make overall
the analysis efficient as well as accurate, and measurements of primitive param-
eters, all at the source-language level. We describe analysis and transformation
algorithms and explain how they work. We have implemented this approach
and performed a large number of experiments analyzing Scheme programs. The
measured worst-case times are closely bounded by the calculated bounds. We
describe our prototype system, ALPA, as well as the analysis and measurement,
results.

This approach is general in the sense that it works for other kinds of cost
analysis as well, such as space analysis and output-size analysis. The basic ideas
also apply to other programming languages. Furthermore, the implementation
is independent of the underlying systems (compilers, operating systems, and
hardware).

2 Language-based approach

Language-based time-bound analysis starts with a given program written in
a high-level language, such as C or Lisp. The first step is to build a timing
function that (takes the same input as the original program but) returns the
running time in place of (or in addition to) the original return value. This is
done easily by associating a parameter with each program construct representing
its running time and by summing these parameters based on the semantics of
the constructs [25,23]. We call parameters that describe the running times of
program constructs primitive parameters.

Since the goal is to calculate running time without being given particular
inputs, the calculation must be based on certain assumptions about inputs. Thus,
the first problem is to characterize the input data and reflect them in the timing
function. In general, due to imperfect knowledge about the input, the timing
function is transformed into a time-bound function.

In programming-language area, Rosendahl proposed the use of partially known
input structures to characterize input data [20]. For example, instead of replacing
an input list [with its length n, as done in algorithm analysis, or annotating
loops with numbers related to n, as done in systems, we simply use as input a list
of n unknown elements. We call parameters for describing partially known input
structures input parameters. The timing function is then transformed automat-
ically into a time-bound function: at control points where decisions depend on
unknown values, the maximum time of all possible branches is computed; oth-
erwise, the time of the chosen branch is computed. Rosendahl concentrated on
proving the correctness of this transformation. He assumed constant 1 for prim-
itive parameters and relied on optimizations to obtain closed forms in terms
of input parameters, but closed forms can not be obtained for all time-bound
functions.

Combining results from theory to systems, we have studied a general ap-
proach for computing time bounds automatically, efficiently, and more accu-
rately. The approach analyzes programs written in a functional subset of scheme.
Functional programming languages, together with features like automatic garbage
collection, have become increasingly widely used, yet work for calculating actual
running time of functional programs has been lacking. Analyses and transfor-
mations developed for functional language can be applied to improve analyses
of imperative languages as well [26].

Language. We use a first-order, call-by-value functional language that has struc-
tured data, primitive arithmetic, Boolean, and comparison operations, condition-
als, bindings, and mutually recursive function calls. For example, the program
below selects the least element in a non-empty list.

least(xz) = if null(cdr(z)) then car(x)
else let s = least(cdr(z))
in if car(z) < s then car(z) else s end

To present various analysis results, we use the following examples: insertion
sort, selection sort (which uses least), mergesort, set union, list reversal (the
standard linear-time version), and reversal with append (the standard quadratic-
time version).

Even though this language is small, it is sufficiently powerful and convenient
to write sophisticated programs. Structured data is essentially records in Pascal
and C. We can also see that time analysis in the presence of arrays and point-
ers is not fundamentally harder [19], because the running times of the program
constructs for them can be measured in the same way as times of other con-
structs. Note that side effects caused by these features often cause other analysis
to be difficult [4]. For pure functional languages, higher-order functions and lazy
evaluations are important. Time-bound functions that accommodate these fea-
tures have been studied [24, 22]. The symbolic evaluation and optimizations we
describe apply to them as well.

3 Constructing time-bound functions

Constructing timing functions. We first transform the original program to con-
struct a timing function, which takes the original input and primitive parameters
as arguments and returns the running time. This is straightforward based on the
semantics of the program constructs.

Given an original program, we add a set of timing functions, one for each
original function, which simply count the time while the original program ex-
ecutes. The algorithm, given below, is presented as a transformation 7 on the
original program, which calls a transformation 7, to recursively transform subex-
pressions. For example, a variable reference is transformed into a symbol T'qprc s
representing the running time of a variable reference; a conditional statement is
transformed into the time of the test plus, if the condition is true, the time of
the true branch, otherwise, the time of the false branch, and plus the time for
the transfers of control.

T[[fl(vl,---,vm) =e1;]:| fi(vi, e vny) = e1; tfi1(viy ey vny) = Teledl;
program:

fm(vl; “')Unm) = €m;

fm('Ul, "‘J’Unm) = €m; tfm(vl, “')vnm) = %[em])

variable reference: 7.[v] = Tyarref

data construction: Zelc(e1,...,en)] = add(T., Tcled], ..., Ze[en])

primitive operation: Z¢[p(ei, ..., €n) = add(Tp, Tcleq] , --., Zelen))

conditional: T.[if e; thene; elsees] = add(T;¢, Telei] , if e1 then Tcles] else Zecfes])
binding;: Te|let v = ej ines end] = add(Tiet, Tefe1] , let v=e; in Zc[e2] end)
function call: Te[f(e1, ...,en)] = add(Teau, Zelei] s---, Zelen] s tf(e1, ..uen))

This transformation is similar to the local cost assignment [25], step-counting
function [20], cost function [22], etc. in other work. Our transformation handles
bindings and makes all primitive parameters explicit at the source-language level.
For example, each primitive operation p is given a different symbol T},, and each

constructor c is given a different symbol T,. Note that the timing function termi-
nates with the appropriate sum of primitive parameters if the original program
terminates, and it runs forever to sum to infinity if the original program does
not terminate, which is the desired meaning of a timing function.

Constructing time-bound functions. Characterizing program inputs and captur-
ing them in the timing function are difficult to automate [25,12,23]. However,
partially known input structures provide a natural means [20]. A special value
unknown represents unknown values. For example, to capture all input lists of
length n, the following partially known input structure can be used.
list(n) = if n =0 then nil
else cons(unknown, list(n — 1))

Similar structures can be used to describe an array of n elements, etc.

Since partially known input structures give incomplete knowledge about in-
puts, the original functions need to be transformed to handle the special value
unknown. In particular, for each primitive function p, we define a new function
fp such that f(vi,...,v,) returns unknown if any v; is unknown and returns
p(v1, ..., v,) as usual otherwise. We also define a new function lub that takes two
values and returns the most precise partially known structure that both values
conform with.

fo(vi,-oyvn) = if v1 = unknown lub(vi,v2) = if v1 is c1(z1, ..., i) A
Vv vy 18 c2(Y1, - Yj) A
vn = unknown ci=c Ni=j
then unknown then ci(lub(z1,y1), ..., lub(z;, ¥s))
else p(v1, ..., V) else unknown

Also, the timing functions need to be transformed to compute an upper bound
of the running time: if the truth value of a conditional test is known, then
the time of the chosen branch is computed normally, otherwise, the maximum
of the times of both branches is computed. Transformation C embodies these
algorithms, where C, transforms an expression in the original functions, and C;
transforms an expression in the timing functions.

c |:|:f1('01,---,’0n1) =e1; tfi(v1, ..., Uny) = €5;]:|
prog:

(U1, ooy Un) = €m tfm (V1 ey Vnn) = €l

fi(viy ey vny) =Celeal; tfi(viy ey vng) =Celeil; fo(vi,...,vn) = ... as above

};n(vl, ey U) = Ce [em];;‘,}m(vl, vy Unm) = Ctlern] ; lub(vr, v2) = ... as above

variable ref.: C. [v] v
data const.: Cclc(er, ..., en)] c(Ce le1], ..., Ce [en])
primitive op.: Ce[p(e1, ..., en)] fo(Celeal, ---, Celex])
conditional: C.[if e;thene; elsees] = let v = Ce [e1]
in if v=wunknown then lub(Ce [e2], Cc [es])
else if v then C. [e2] else C. [es] end
binding: Cc[letv=ejines end] = let v =Cc[e1] in Ce|e2] end
€

[

function call: Cc|[f(e1,...,en)] (Celeil, ..., Ceenl)

f
primitive parameter: Cy [T] =T
summation: C¢[add(e1, ..., en)] = add(Ciled], ---, Ct [en])
conditional: ~ C;[if e;thene;elsees] = let v = C. [e1
in if v=wunknown then max(C;[e2], C: [es])

else if v then C; [es] else C; [es] end
binding: Ci[letv=ejines end] = let v =C;[ei] in C; [e2] end
function call: C[tf(e1, ..., en)] = tf(Cslei], ..., Celen])

The resulting time-bound function takes as arguments partially known input
structures, such as list(n), which take as arguments input parameters, such
as n. Therefore, we can obtain a resulting function that takes as arguments
input parameters and primitive parameters and computes the most accurate
time bound possible.

Both transformations 7 and C take linear time in terms of the size of the
program, so they are extremely efficient, as also seen in our prototype system
ALPA. Note that the resulting time-bound function may not terminate, but
this occurs only if the recursive structure of the original program depends on
unknown parts in the partially known input structure. As a trivial example, if
partially known input structure given is unknown, then the corresponding time-
bound function for any recursive function does not terminate.

4 Optimizing time-bound functions

This section describes symbolic evaluation and optimizations that make com-
putation of time bounds more efficient. The transformations consist of partial
evaluation, realized as global inlining, and incremental computation, realized as
local optimization. In the worst case, evaluation of the time-bound functions
takes exponential time in terms of the input parameters, since it essentially
searches for the worst-case execution path for all inputs satisfying the partially
known input structures.

Partial evaluation of time-bound functions. In practice, values of input param-
eters are given for almost all applications. While in general it is not possible
to obtain explicit loop bounds automatically and accurately, we can implicitly
achieve the desired effect by evaluating the time-bound function symbolically in
terms of primitive parameters given specific values of input parameters.

The evaluation simply follows the structures of time-bound functions. Specif-
ically, the control structures determine conditional branches and make recursive
function calls as usual, and the only primitive operations are sums of primitive
parameters and maximums among alternative sums, which can easily be done
symbolically. Thus, the transformation simply inlines all function calls, sums all
primitive parameters symbolically, determines conditional branches if it can, and
takes maximum sums among all possible branches if it can not.

The symbolic evaluation £ defined below performs the transformations. Tt
takes as arguments an expression e and an environment p of variable bindings
and returns as result a symbolic value that contains the primitive parameters.
The evaluation starts with the application of the program to be analyzed to a
partially unknown input structure, e.g., mergesort(list(250)), and it starts with
an empty environment. Assume symbAdd is a function that symbolically sums
its arguments, and symbM azx is a function that symbolically takes the maximum
of its arguments.

variable ref.:. Efv]p
primitive parameter: £[T]p
data constr.: Efc(et, ...,en)]p
primitive op.: Elp(e1,...,exn)]p
summation: £ladd(es,...,en)]p
maximum: Elmax(ey,...;en)lp
2
&
&

(v) look up binding in environment

(Eer] py s Efenl)

p(€le] p, ..., Elen] p)

symbAdd(Elei] p, ..., € [ex] p)
symbMaz(E[ei] p, -.-, € [ex])

if ertheneselsees|p = Elea]p if Eer] p = true

Eleslp if Elei]l p = false

let v = e1inezend] p = Efes] p[v—EJe1] p] bind v in environment
f(ela-"76n)]p = 6[’!)1 l—>5[€1]p,...,vn HE[en]p]

where f is defined by f(v1,...,vn) =€

N

conditional:

binding:
function call:

This symbolic evaluation is exactly a specialized partial evaluation. It is fully
automatic and computes the most accurate time bound possible with respect to
the given program structure. It always terminates as long as the time-bound
function terminates.

Awvoiding repeated summations over recursions. The symbolic evaluation above
is a global optimization over all time-bound functions involved. During the eval-
uation, summations of symbolic primitive parameters within each function def-
inition are performed repeatedly while the computation recurses. Thus, we can
speed up the symbolic evaluation by first performing such summations in a pre-
processing step. Specifically, we create a vector and let each element correspond
to a primitive parameter. The transformation S performs this optimization.

tfi (/Ul, sy ’Unl) = elll; tfl('Ul, B ’Unl) =S [6,1])
program: S || ... = ..
tfm(”l,---,'Unm) ZeIT:'w tfm(vla"'vv"m) Z‘S‘t[elTn]a
primitive parameter: S; [T = create a vector of 0’s except with the
component corresponding to T set to 1
summation: St¢ladd(ey, ..., en)] = component-wise summation of all the
vectors among Sy [e1], ..., St [en]
maximum: Si[maz(es, ..., en)] = component-wise maximum of all the
vectors among St [e1], ..., St [en]
all other: Sile] =e

This incrementalizes the computation in each recursion to avoid repeated
summation. Again, this is fully automatic and takes time linear in terms of the
size of the cost-bound function.

The result of this optimization is dramatic. For example, optimized symbolic
evaluation of the same quadratic-time reverse takes only 2.55 milliseconds, while
direct evaluation takes 0.96 milliseconds, resulting in less than 3 times slow-
down.

5 Making time-bound functions accurate

While loops and recursions affect time bounds most, the accuracy of the time
bounds calculated also depends on the handling of the conditionals in the original
program, which is reflected in the time-bound function. For conditionals whose
test results are known to be true or false at the symbolic-evaluation time, the
appropriate branch is chosen; so other branches, which may even take longer,
are not considered for the worst-case time. This is a major source of accuracy
for our worst-case bound.

For conditionals whose test results are not known at symbolic-evaluation
time, we need to take the maximum time among all alternatives. The only case
in which this would produce inaccurate time bound is when the test in a condi-
tional in one subcomputation implies the test in a conditional in another sub-
computation. For example, consider an expression ey whose value is unknown

and
e1 = if ¢g then 1 else Fibonacci(1000)
ez = if ep then Fibonacci(2000) else 2

If we compute time bound for e; + e directly, it is at least tF'ibonacci(1000) +
tFibonacci(2000). However, if we consider only the two realizable execution
paths, we know that the worst case is tFibonacci(2000) plus some small con-
stants. This is known as the false-path elimination problem [1].

Two transformations, lifting conditions and simplifying conditionals, allow
us to achieve the accurate analysis results above. In each function definition,
the former lifts conditions to the outmost scope that the test does not depend
on, and the latter simplifies conditionals according to the lifted condition. These
transformations are not needed for the examples in this paper. They are discussed
further in [14].

6 Implementation and experimentation

We have implemented the analysis approach in a prototype system, ALPA (Au-
tomatic Language-based Performance Analyzer). The implementation is for a
subset of Scheme. The measurements and analyses are performed for source pro-
grams compiled with Chez Scheme compiler [3]. The particular numbers below
are taken on a Sun Ultra 1 with 167MHz UltraSPARC CPU and 64MB main
memory, but we have also performed the analysis for several other kinds of
SPARC stations, and the results are similar.

We tried to avoid compiler optimizations by setting the optimization level to
0. To handle garbage-collection time, we performed two sets of experiments: one
set excludes garbage-collection times in both calculations and measurements,
while the other includes them in both.

Since the minimum running time of a program construct is about 0.1 mi-
croseconds, and the precision of the timing function is 10 milliseconds, we use
control/test loops that iterate 10,000,000 times, keeping measurement error un-
der 1%. Such a loop is repeated 100 times, and the average value is taken to
compute the primitive parameter for the tested construct (the variance is less
than 10% in most cases). The calculation of the time bound is done by plugging
these measured parameters into the optimized time-bound function. We then run
each example program an appropriate number of times to measure its running
time with less than 1% error.

Figure 1 shows the calculated and measured worst-case times for six example
programs on inputs of size 10 to 2000. For the set union example, we used
inputs where both arguments were of the given sizes. These times do not include
garbage-collection times. The item me/ca is the measured time expressed as
a percentage of the calculated time. In general, all measured times are closely
bounded by the calculated times (with about 90-95% accuracy) except when
inputs are extremely small (10 or 20, in 1 case) or extremely large (2000, in 3
cases), which is analyzed below.

For measurements that include garbage-collection times, the results are simi-
lar, except that the percentages are consistently higher and underestimates occur
for a few more inputs and start on inputs of size 1000 instead of 200. We be-
lieve that this is the effect of garbage collection, which we have not analyzed
specifically.

Examples such as sorting are classified as complex examples in previous study
[19,13], where calculated time is as much as 67% higher than measured time,
and where only the result for one sorting program on a single input (of size 10
[19] or 20 [13]) is reported in each experiment.

We found that when inputs are extremely small, the measured time is oc-
casionally above the calculated time for some examples. Also, when inputs are
large, the measured times for some examples are above the calculated time. We
attribute these to cache memory effects, and this is further confirmed by mea-
suring programs, such as Cartesian product, that use extremely large amount of
space even on small inputs (50-200). While this shows that cache effects need to
be considered for larger applications, it also helps validate that our calculated
results are accurate relative to our current model.

insertion sort selection sort mergesort
size||calculated[measured]me/cal[calculated[measured]me/cal[calculated[measured[me/ca
10 0.06751| 0.06500] 96.3 0.13517| 0.12551I| 92.9 0.11584] 0.11013] 95.1
20 0.25653| 0.25726(100.3 0.52945| 0.47750 90.2 0.29186| 0.27546| 94.4
50 1.55379| 1.48250| 95.4 3.26815| 3.01125(92.1 0.92702| 0.85700| 92.4
100 6.14990| 5.86500(95.4 13.0187| 11.9650| 91.9 2.15224| 1.98812| 92.4
200 24.4696| 24.3187 99.4 51.9678| 47.4750(91.4 4.90017| 4.57200(93.3
300 54.9593| 53.8714| 98.0 116.847| 107.250| 91.8 7.86231| 7.55600| 96.1
500 152.448| 147.562| 96.8 324.398| 304.250 93.8 14.1198| 12.9800| 91.9
1000 609.146| 606.000(99.5 1297.06| 1177.50| 90.8 31.2153| 28.5781| 91.6
2000 2435.29| 3081.25| 126.5 5187.17| 5482.75| 105.7 68.3816| 65.3750| 95.6

set union list reversal reversal w/app.
size||calculated[measured]me/cal[calculated[measured]me/cal[calculated[measured]me/ca
10 0.10302] 0.09812] 95.2 0.00918] 0.00908] 988 0.05232] 0.04779] 91.3
20 0.38196| 0.36156| 94.7 0.01798| 0.01661| 92.4 0.19240| 0.17250| 89.7
50 2.27555| 2.11500 92.9 0.04436| 0.04193| 94.5 1.14035| 1.01050| 88.6
100 8.95400| 8.33250| 93.1 0.08834| 0.08106| 91.8 4.47924| 3.93600| 87.9
200 35.5201| 33.4330| 94.1 0.17629| 0.16368| 92.9 17.7531| 15.8458| 89.3
300 79.6987| 75.1000| 94.2 0.26424| 0.24437| 92.5 39.8220| 35.6328| 89.5
500 220.892| 208.305| 94.3 0.44013| 0.40720| 92.5 110.344| 102.775| 93.1
1000 882.094| 839.780| 95.2 0.87988| 0.82280| 93.5 440.561| 399.700| 90.7
2000 3525.42| 3385.31] 96.0 1.75937| 1.65700] 94.2 1760.61| 2235.75| 127.0

Fig. 1. Calculated and measured worst-case times (in milliseconds), without garbage collection.

Among fifteen programs we analyzed using ALPA, two of the time-bound
functions did not terminate. One is quicksort, and the other is a contrived vari-
ation of sorting; both diverge because the recursive structure for splitting a
list depends on the values of unknown list elements. We have found a different
symbolic-evaluation strategy that uses a kind of incremental path selection, and
the evaluation would terminate for both examples, as well as all other examples,
giving accurate worst-case bounds. We are implementing that algorithm. We
also noticed that static analysis can be exploited to identify sources of nonter-
mination.

7 Related work and conclusion

Compared to work in algorithm analysis and program complexity analysis [12,
22], this work consistently pushes through symbolic primitive parameters, so it
allows us to calculate actual time bounds and validate the results with exper-
imental measurements. Compared to work in systems [23,19,18,13], this work
explores program analysis and transformation techniques to overcome the dif-
ficulties caused by the inability to obtain loop bounds, recursion depths, or
execution paths automatically and precisely. There is also work for measuring
primitive parameters of Fortran programs for the purpose of general performance
prediction [21], not worst-case analysis.

A number of techniques have been studied for obtaining loop bounds or
execution paths [18,1,6,9]. Manual annotations [18,13] are inconvenient and
error-prone [1]. Automatic analysis of such information has two main problems.
First, separating the loop and path information from the rest of the analysis [6] is
in general less accurate than an integrated analysis [17]. Second, approximations
for merging paths from loops, or recursions, very often lead to nontermination
of the time analysis, not just looser bounds [6,17]. Some new methods, while
powerful, apply only to certain classes of programs [9]. In contrast, our method
allows recursions, or loops, to be considered naturally in the overall execution-
time analysis based on partially known input structures.

The most recent work by Lundqvist and Stenstrom [17] is based on essen-
tially the same ideas as ours. They apply the ideas at machine instruction level

and can more accurately take into account the effects of instruction pipelining
and data caching, but their method for merging paths for loops would lead to
nonterminating analysis for many programs, e.g., a program that computes the
union of two lists with no repeated elements. Our experiments show that we can
calculate more accurate time bound and for many more programs than merging
paths, and the calculation is still efficient.

The idea of using partially known input structures originates from Rosendahl
[20]. We have extended it to manipulate primitive parameters. We also handle
binding constructs, which is simple but necessary for efficient computation. An
innovation in our method is to optimize the time-bound function using par-
tial evaluation [2,10], incremental computation [16,15], and transformations of
conditionals to make the analysis more efficient and more accurate.

We are starting to explore a suite of new language-based techniques for tim-
ing analysis, in particular, analyses and optimizations for further speeding up the
evaluation of the time-bound function. To make the analysis even more accurate
and efficient, we can automatically generate measurement programs for all maxi-
mum subexpressions that do not include transfers of control; this corresponds to
the large atomic-blocks method [19]. We also believe that the lower-bound anal-
ysis is entirely symmetric to the upper-bound analysis, by replacing maximum
with minimum at all conditional points. Finally, we plan to accommodate more
lower-level dynamic factors for timing at the source-language level [13,7]. In
particular, we plan to apply our general approach to analyze space consumption
and hence to help predict garbage-collection and caching behavior.

References

1. P. Altenbernd. On the false path problem in hard real-time programs. In Pro-
ceedings of the 8th FEuroMicro Workshop on Real-Time Systems, pages 102-107,
L’Aquila, June 1996.

2. B. Bjgrner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mized
Computation. North-Holland, Amsterdam, 1988.

3. Cadence Research Systems. Chez Scheme System Manual. Cadence Research
Systems, Bloomington, Indiana, revision 2.4 edition, July 1994.

4. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation, pages 296-310. ACM, New York, June 1990.

5. J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating worst-case execution
time analysis for optimized code. In Proceedings of the 10th EuroMicro Workshop
on Real-Time Systems, Berlin, Germany, June 1998.

6. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of
execution time. In In Proceedings of Euro-Par’97, volume 1300 of Lecture Notes
in Computer Science, pages 1298-1307. Springer-Verlag, Berlin, Aug. 1997.

7. C. Ferdinand, F. Martin, and R. Wilhelm. Applying compiler techniques to cache
behavior prediction. In Proceedings of the ACM SIGPLAN 1997 Workshop on
Languages, Compilers, and Tools for Real-Time Systems, pages 37-46, 1997.

8. P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of
algorithms. Theoretical Computer Science, Series A, 79(1):37-109, Feb. 1991.

9. C. Healy, M. Sj6din, V. Rustagi, and D. Whalley. Bounding loop iterations for
timing analysis. In Proceedings of the IEEE Real-Time Applications Symposium.
IEEE CS Press, Los Alamitos, Calif., June 1998.

10. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Englewood Cliffs, N.J., 1993.

11. D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,
Reading, Mass., 1968.

12. D. Le Métayer. Ace: An automatic complexity evaluator. ACM Trans. Program.
Lang. Syst., 10(2):248-266, Apr. 1988.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, S.-M. Moon, and C.-S. Kim. An accurate worst case timing analysis for
RISC processors. IEEE Trans. Softw. Eng., 21(7):593-604, July 1995.

Y. A. Liu and G. Gomezes. Automatic accurate time-bound analysis for high-level
languages. Technical Report TR 508, Computer Science Department, Indiana
University, Bloomington, Indiana, Apr. 1998.

Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental com-
putation. ACM Trans. Program. Lang. Syst., 20(3), May 1998.

Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Sci.
Comput. Program., 24(1):1-39, Feb. 1995.

T. Lundqvist and P. Stenstrom. Integrating path and timing analysis using
instruction-level simulation techniques. Technical Report No. 98-3, Department
of Computer Engineering, Chalmers University of Technology, Gdteborg, Sweden,

1998.
C. Y. Park. Predicting program execution times by analyzing static and dynamic

program paths. Real-Time Systems, 5:31-62, 1993.

C. Y. Park and A. C. Shaw. Experiments with a program timing tool based on
source-level timing schema. IEEE Computer, 24(5):48-57, 1991.

M. Rosendahl. Automatic complexity analysis. In Proceedings of the 4th Interna-
tional Conference on Functional Programming Languages and Computer Architec-
ture, pages 144-156. ACM, New York, Sept. 1989.

R. H. Saavedra and A. J. Smith. Analysis of benchmark characterization and
benchmark performance prediction. ACM Transactions on Computer Systems,
14(4):344-384, Nov. 1996.

D. Sands. Complexity analysis for a lazy higher-order language. In Proceedings
of the 8rd European Symposium on Programming, volume 432 of Lecture Notes in
Computer Science, pages 361-376. Springer-Verlag, Berlin, May 1990.

A. Shaw. Reasoning about time in higher level language software. IEEE Trans.
Softw. Eng., 15(7):875-889, July 1989.

P. Wadler. Strictness analysis aids time analysis. In Conference Record of the 15th
Annual ACM Symposium on Principles of Programming Languages. ACM, New
York, Jan. 1988.

B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528-538, Sept.

1975.
D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs:

Representation without taxation. In Conference Record of the 21st Annual ACM
Symposium on Principles of Programming Languages. ACM, New York, Jan. 1994.

