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Abstract

This paper presents program analyses and transformations for strengthening in-
variants for the purpose of efficient computation. Finding the stronger invariants
corresponds to discovering a general class of auxiliary information for any incre-
mental computation problem. Combining the techniques with previous techniques
for caching intermediate results, we obtain a systematic approach that transforms
non-incremental programs into efficient incremental programs that use and main-
tain useful auxiliary information as well as useful intermediate results. The use of
auxiliary information allows us to achieve a greater degree of incrementality than
otherwise possible. Applications of the approach include strength reduction in op-
timizing compilers and finite differencing in transformational programming.

1 Introduction

Efficient computation via incremental computation. In essence, every
program computes by fixed-point iteration, expressed as recursive functions
or loops. This is why loop optimizations are so important. A loop body can
be regarded as a program f parameterized by an induction variable x that
is incremented on each iteration by a change operation &@. Efficient iterative

* This work was supported in part by ONR under grants N00014-92-J-1973,
N00014-99-1-0132, and N00014-99-1-0358 and by NSF under grants CCR-9503319,
CCR-9711253, and CCR-9876058. This article is a revised and extended version of
a paper that appeared in Conference Record of the 23rd Annual ACM Symposium
on Principles of Programming Languages, St. Petersburg Beach, Florida, January
1996.

1" Corresponding author. E-mail: liu@cs.sunysb.edu

Preprint submitted to Elsevier Preprint 4 April 2001



computation relies on effective use of state, i.e., computing the result of each
iteration incrementally using stored results of previous iterations. This is why
strength reduction [3], finite differencing [64], and related techniques are cru-
cial for performance.

Given a program f and an input change operation @, a program f’ that
computes f(x @ y) efficiently by using the result of the previous computa-
tion of f(z) is called an incremental version of f under @. Often, information
other than the result of f(z) needs to be maintained and used for efficient
incremental computation of f(x @ y). We call a program that computes such
information an extended version of f. Thus, the goal of computing loops effi-
ciently corresponds to constructing an extended version of a program f and
deriving an incremental version of the extended version under an input change
operation .

In general, incremental computation aims to solve a problem on a sequence of
inputs that differ only slightly from one another, making use of the previously
computed output in computing a new output, instead of computing the new
output from scratch. Incremental computation is a fundamental issue rele-
vant throughout computer software, e.g., optimizing compilers [2,3,17,23,78],
transformational program development [8,20,62,65,77], and interactive sys-
tems [5,6,10,22,33,41,71,72]. Numerous techniques for incremental computa-
tion have been developed, e.g., [3,4,25,34-36,56,64,68,70,73,76,79,86].

Strengthening invariants for incrementalization. We are engaged in
an ambitious effort to derive incremental extended programs automatically
(or semi-automatically) from non-incremental programs written in standard
programming languages. This approach contrasts with many other approaches
that aim to ewvaluate non-incremental programs incrementally. We call this
approach incrementalization. We have partitioned the core of the problem
into three subproblems:

e P1. Exploiting the result, i.e., the return value, of f(x).

e P2. Caching, maintaining, and exploiting intermediate results of the com-
putation f(x).

e P3. Discovering, computing, maintaining, and exploiting auziliary informa-
tion about x, i.e., values not computed by f(z).

Our current approaches to problems P1 and P2 are described in [56] and [54],
respectively. In this paper, we address problem P3 and contribute:

e A novel proposal for finding auxiliary information.
e A comprehensive methodology for deriving incremental programs that ad-
dresses all three subproblems.



Since auxiliary information is not computed by the original body of compu-
tation f(x), adding it strengthens the invariants that hold over the iterative
computation that uses f(x).

Some approaches to efficient computation have exploited specific kinds of aux-
iliary information for strengthening invariants, e.g., auxiliary arithmetic asso-
ciated with some classical strength-reduction rules [3], auxiliary maps main-
tained by finite differencing rules for aggregate primitives in SETL [64] and
INC [86], and auxiliary data structures for problems with certain properties
like stable decomposition [70]. However, systematic discovery of auxiliary in-
formation for arbitrary programs has been a subject completely open for study.

Auxiliary information is, by definition, useful information about z that is
not computed by f(z). Where, then, can one find it? The key insight of our
proposal is:

A. Consider, as candidate auxiliary information for f, all intermediate re-
sults of an incremental version of f that depend only on z; such an in-
cremental version can be obtained using some techniques we developed for
solving P1 and P2. P2 is included here so that candidate auxiliary informa-
tion useful for efficiently maintaining intermediate results is also included.

How can one discover which pieces of candidate auxiliary information are
useful and how they can be used? We propose:

B. Extend f with all candidate auxiliary information, and then apply some
techniques used in our methods for P1 and P2 to obtain an extended version
and an incremental extended version that together compute, exploit, and
maintain only useful intermediate results and useful auxiliary information.

Thus, on the one hand, one can regard the method for P3 in this paper as
an extension to methods for P1 and P2. On the other hand, one can regard
methods for P1 and P2 (suitably revised for their different applications here)
as aids for solving P3. The modular components complement one another to
form a comprehensive principled approach for incrementalization and therefore
also for achieving efficient iterative computation generally. Although the entire
approach seems complex, each module or step is simple.

We summarize here the essence of our methods:

P1. In [56], we gave a systematic transformational approach for deriving an
incremental version f’ of a program f under an input change @. The basic idea
is to identify in the computation of f(x @ y) those subcomputations that are
also performed in the computation of f(x) and whose values can be retrieved
from the cached result r of f(x). The computation of f(x @ y) is symbolically
transformed to avoid re-performing these subcomputations by replacing them



with corresponding retrievals. This efficient way of computing f(z & y) is
captured in the definition of f'(z,y,r).

P2. In [54], we gave a method, called cache-and-prune, for statically trans-
forming programs to cache all intermediate results useful for incremental com-
putation. The basic idea is to (I) extend the program f to a program f that
returns all intermediate results, (IT) incrementalize the program f under @ to
obtain an incremental version f’ of f using our method for P1, and (III) ana-
lyze the dependencies in f’, then prune the extended program f to a program f
that returns only the useful intermediate results, and prune the program f’ to
obtain a program f " that incrementally maintains only the useful intermediate
results.

P3. This paper presents a two-phase method that discovers a general class
of auxiliary information for any incremental computation problem. The two
phases correspond to A and B above. For Phase A, we have developed an
embedding analysis that helps avoid including redundant information in an
extended version, and we have exploited a forward dependence analysis that
helps identify candidate auxiliary information. All the program analyses and
transformations used in this method are combined with considerations for
caching intermediate results, so we obtain incremental extended programs that
exploit and maintain intermediate results as well as auxiliary information.

We illustrate our approach by applying it to problems in list processing, VLSI
design, graph algorithms, and other application areas.

The rest of this paper is organized as follows. Section 2 formulates the problem.
Section 3 discusses discovering candidate auxiliary information. Section 4 de-
scribes how candidate auxiliary information is used. A number of examples are
given in Section 6. Finally, we discuss related work and conclude in Section 7.

2 Formulating the problem

We use a simple first-order, call-by-value functional programming language.
The expressions of the language are given by the following grammar:

e n=v variable
c(er,...,en) constructor application
plet,...,en) primitive function application

|

|

| flet,...,en) function application

| if e; then ey else e3 conditional expression
|

let v = e1 in e2 binding expression



A program is a set of mutually recursive function definitions of the form

flor,...,v,) =e (1)

and a function fy that is to be evaluated with some input = = (x1, ..., Z)-
Figure 1 gives some example definitions.

cmp compares sum of odd and product of even positions of list x.

emp(z) = sum(odd(z)) < prod(even(x))

odd(z) £ if null(z) then nil sum(z) £ if null(z) then 0

else cons(car(z), even(cdr(z))) else car(z) + sum(cdr(z))
even(z) = if null(x) then nil prod(z) £ if null(z) then 1

else odd(cdr(x)) else car(z) * prod(cdr(x))

Fig. 1. Example function definitions.

An input change operation @ to a function f; combines an old input z =
(21, ..., T,) and a change y = (y1, ..., Ymm) to form a new input ' = (2, ..., z] ) =
x @ y, where each z} is some function of z;’s and y;’s. For example, an input
change operation to function emp in Figure 1 may be defined by 2’ =z @y =

cons(y, ).

We use an asymptotic cost model for measuring time complexity and write
t(f(v1, ..., vn)) to denote the asymptotic time of computing f(v1, ..., v,). Thus,
assuming all primitive functions take constant time, it suffices to consider
only the values of function applications as candidate information to cache. Of
course, maintaining extra information takes extra space. Our primary goal is
to improve the asymptotic running time of the incremental computation. We
save space by maintaining only information useful for achieving this.

Given a program f, and an input change operation @, we use the approach
in [56] to derive an incremental version f} of fo under @, such that, if fo(z) =7,
then whenever fo(z @ y) returns a value, fj(x,y,r) returns the same value
and is asymptotically at least as fast. While fy(z) abbreviates fo(z1, ..., Zn),
and fo(z @ y) abbreviates fo({z1, ..., Zn) B (Y1, -, Ym)), [§(2,y,r) abbreviates
F3(x1y oo Ty Y1y ooy Ym, 7). Note that some of the parameters of f§ may be dead
and eliminated [56]. For example, for function sum of Figure 1 and input
change operation z @ y = cons(y, =), function sum' in Figure 2 is derived.

In order to use also intermediate results of fo(z) to compute fo(z@y) possibly
faster, we use the approach in [54] to cache useful intermediate results of fy and
obtain a program that incrementally computes the return value and maintains
these intermediate results. For example, for function emp of Figure 1 and input



change operation = & (y1, y2) = cons(yi1, cons(ya, x)), the intermediate results
sum(odd(z)) and prod(even(z)) are cached, and functions ¢mp and cémp' in
Figure 2 are obtained.

Sometimes, auxiliary information other than the intermediate results of fo(x)
is needed to compute fo(x @ y) quickly. For example, for function cmp of Fig-
ure 1 and input change operation @&y = cons(y, x), the values of sum(even(z))
and prod(odd(x)), in addition to the intermediate values sum(odd(z)) and
prod(even(x)), are crucial for computing cmp(cons(y,x)) incrementally but
are not computed in cmp(z). Using the method in this paper, we can derive
functions ¢mp and émp’ in Figure 2 that compute these pieces of auxiliary
information, use them in computing cmp(cons(y,z)), and maintain them as
well. Function ¢mp’ computes incrementally using only O(1) time. We use this
example as a running example.

If sum(z) = r, then sum/(y,r) = sum(cons(y,z)). sum!(y,7) = y+r
For z of length n, sum/(y,r) takes time O(1);

sum(cons(y,x)) takes time O(n).

emp(z) = 1st(cmp(z)). cmp(z) £ let vy = sum(odd(z)) in
For z of length n, cmp(x) takes time O(n); let v2 = prod(even(z)) in
cmp(z) takes time O(n). <v1<wa, vi, v3 >

If c/m\p(w) = 7, then @’(yl,yz,f) = c/m\p(cons(yhcons(yz,z))). c/m\pl(yl,yz,f) 2 let v1 = y1+2nd(#) in

For z of length n, c/nﬂ)’(yl,yz, 7) takes time O(1); let vy = y2*3rd(F) in
emp(cons(yi, cons(yz,))) takes time O(n). < v < v, v1, v2 >
cmp(z) = 1st(cmp(z)). cmp(z) £ let vy = odd(z) in
For x of length n, cmp(x) takes time O(n); let u; = sum(v1) in
cmp(z) takes time O(n). let vy = even(z) in
If cmp(z) =T, then c/r;z_;l/nl(y,;) = emp(cons(y, ©)). let uz = prod(vz2) in
For z of length n, c/fn_fJ’(y,F) takes time O(1); <wui < w2, ut, uz, sum(va), prod(vy) >

emp(cons(y, x)) takes time O(n). %’(y,;) L <y+4th(r) < 5th(r),
y+4th(r), 5th(r), 2nd(r), y*3rd(r) >

Fig. 2. Resulting function definitions.

Notation. We use <> to construct tuples that bundle intermediate results
and auxiliary information with the original return value of a function. We use
selectors 1st, 2nd, 3rd, ... to select the first, second, third, ... elements of such
a tuple.



We use z to denote the previous input to fo; 7, the cached result of fy(x); v,
the input change parameter; z’, the new input = @ y; and fj, an incremental
version of fy under &. We let fo return all intermediate results of fj, and let
fo return candidate auxiliary information for fy under ®. We use fy to de-
note a function that returns all intermediate results and candidate auxﬂlary
information; 7, the cached result of fo( ); and fo, an incremental version of fj
under &@. Finally, we use fo to denote a function that returns only the useful
intermediate results and auxiliary information; 7, the cached result of fy(z);
and %’, a function that incrementally maintains only the useful intermedi-
ate results and auxiliary information. Note that (useful) intermediate results
include the original return value. Table 1 summarizes the notation.

function H return value ‘ denoted as H incremental function
fo original value T 75
fo all i.r. F
fo candidate a.i. 7
fo all i.r. & candidate a.i. i ¥d
ﬁ) useful i.r. & useful a.i. T }B’
Table 1
Notation.

For convenience, we assume that bound variables have distinct names.

3 Phase A: Discovering candidate auxiliary information

Auxiliary information is, by definition, useful information not computed by
the original program fj, so it cannot be obtained directly from f,. However,
auxiliary information is information depending only on x that can speed up
the computation of fy(z @ y). Seeking to obtain such information system-
atically, we come to the idea that when computing fo(z @ y), for example in
the manner of incremental version f{(z,y,r), there are often subcomputations
that depend only on x and r, but not on y, and whose values cannot be re-
trieved from the return value or intermediate results of fo(x). If the values of
these subcomputations were available, then we might make f] faster.

To obtain such candidate auziliary information, the basic idea is to transform
fo(z @ y) similarly as for deriving f} and to collect subcomputations in the
transformed fy(x @ y) that depend only on z and whose values cannot be re-
trieved from the return value or intermediate results of fy(z). Note that com-
puting intermediate results of fo(x) incrementally, with their corresponding
auxiliary information, is often crucial for efficient incremental computation.
Thus, we modify the basic idea just described so that it starts with fo(z @ y)
instead of fo(z @ ).



Phase A has three steps. Step 1 extends f; to a function f; that caches all
intermediate results. Step 2 transforms fo(z @) into a function fg, similar to
fo, that exposes candidate auxiliary information. Step 3 constructs a function
fo that computes only the candidate auxiliary information in f.

3.1 Step A.1: Caching all intermediate results

Extending f; to cache all intermediate results uses the transformations in
Stage I of [54]. It first performs a straightforward extension transformation
to embed all intermediate results in the final return value and then performs
administrative simplifications.

Certain improvements, suggested in [55] but not given in [55] or [54], can be
made to the extension transformation. In particular, we can avoid caching
redundant intermediate results, i.e., values of function applications that are
already embedded in the values of their enclosing computations, since these
omitted values can be retrieved from the results of the enclosing applications.
These improvements are more important for discovering auxiliary information,
since the resulting program should be much simpler and therefore easier to
treat in subsequent analyses and transformations. These improvements also
benefit the modified version of this extension transformation used in Step A.3.

We first briefly describe the extension transformation in [54]; then, we describe
an embedding analysis that leads to the desired improvements to the extension
transformation.

Extension transformation. For each function definition f(vq,...,v,) = e,
we construct a function definition
f(v, .., v,) £ Extle] (2)

where Ert[e] extends an expression e to return the values of all function calls
made in computing e, i.e., it considers subexpressions of e in applicative and
left-to-right order, introduces bindings that name the results of function calls,
builds up tuples of these values together with the values of the original subex-
pressions, and passes these values from subcomputations to enclosing compu-
tations.

The definition of &zt is given in Figure 3. We assume that each introduced
binding uses a fresh variable name. For a constructed tuple <>, while we use
1st to return the first element, which is the original return value, we use rst to



return a tuple of the remaining elements, which are the corresponding inter-
mediate results. We use an infix operation @ to concatenate two tuples. For
transforming a conditional expression, the transformation Pad[e] generates a
tuple of _’s of length equal to the number of function applications in e, where
_ is a dummy constant that just occupies a spot. The length of the tuple
generated by Pad[e] can easily be determined by static inspection of e. The
use of Pad ensures that each possible intermediate result appears in a fixed
position independent of values of the conditions in conditional expressions.

Extv] =<v>
Ertlg(e1,...,en)] where giscorp = let v1 =&tle1] in ... let v, =&ten] in
< g9(1st(v1), ..., Lst(vn)) > Q rst(vy) Q ... Q rst(vy)
Ext[f(er,-.. en)] = let v1 =&xtfe1] in ... let v, =E&xtfe,] in
let v=f(1st(v1), ..., 15t(vy)) in
< 1st(v) > Q rst(v1) Q ... Q rst(vy) Q< v >
Ext[if e; then ey else e3] = let v; =&xtfe;1] in
if 1st(v1) then let vy =&xtfez] in
< 1st(v2) > Q@ rst(vy) Q rst(ve) Q Pad[es]
else let vz =&rtfes] in
< lst(vs) > Q rst(vi) @ Pad[ez] Q rst(vs)
Ext[let v=e1 in e2] = let v1 =&rtfe1] in
let v=1st(v1) in let vo=E&xt[es] in
< 1st(vz) > Q rst(vy) Q rst(vz)

Fig. 3. Definition of &xt.

It is easy to show by induction that each rule &rt[e] = €' guarantees that
1st(e') = e. Thus, 1st(f(vi,...,vn)) = f(vi,...,v,). Essentially, f performs
the same computation as f except that f builds a tree of intermediate results
computed in computing f. The original value returned by any subcomputation
is always a leftmost component. Each leftmost component is consumed as in
the original computation to produce the original value. Values of function calls
are also kept in the other components, as first established by the last < v >
in the rule for function applications and propagated by Qrst(v;) in the other

rules.

Administrative simplifications are performed on the resulting functions to sim-
plify tuple operations for passing intermediate results, unwind binding expres-
sions that become unnecessary as a result of simplifying their subexpressions,
and lift bindings out of enclosing expressions whenever possible to enhance
readability. For example, for functions sum and prod in Figure 1, we obtain
functions sum and prod, respectively, in (7), where intermediate values of re-
cursive calls to sum and prod, respectively, are returned as well as the original




return values.

The following improvements, not given in [55] or [54], can be made to the
above brute-force caching of all intermediate results. First, before applying
the extension transformation, common subcomputations in both branches of
a conditional expression are lifted out of the conditional. This simplifies pro-
grams in general. For caching all intermediate results, this lifting saves the
extension transformation from caching values of common subcomputations
at different positions in different branches, which makes it easier to reason
about using these values for incremental computation. The same effect can be
achieved by explicitly allocating, for values of common subcomputations in
different branches, the same slot in each corresponding branch.

Next, we concentrate on major improvements. These improvements are based
on an embedding analysis.

Embedding analysis. First, we define and compute embedding predicates
Mf and Me, where “is embedded in” means “can be retrieved from”. We
use Mf(f,i) to indicate whether the value of v; is embedded in the value of
f(v1,...,v,), and we use Me(e,v) to indicate whether the value of variable v
is embedded in the value of expression e. These predicates must satisfy the
following safety requirements:

if Mf(f,i) = true, then there exists a function f;*
such that, if u = f(vy, ..., v,), then v; = f;*(u)

if Me(e,v) = true, then there exists a function e,'

such that, if u = e, then v = €,}(u)

For each function definition f(vi, ..., v,) = e;, we define Mf(f,i) = Me(es,v;),
and we define Me recursively as in Figure 4. For a primitive function p, Jp;"
denotes true if p has an inverse for the 7th argument, and false otherwise. For
a conditional expression, ifl,. denotes true if the value of e; can be deter-
mined statically or inferred from the value of if e; then e, else e3, and false
otherwise. For example, if¢l,. is true if e; is T (for true) or F' (for false), or if
the two branches of the conditional expression return applications of different
constructors. For a Boolean expression ey, e, - Me(e, v) means that whenever
the value of ey is T', the value of v is embedded in the value of e. In order that
the embedding analysis does not obviate useful caching, it considers a value
to be embedded only if the value can be retrieved from the value of its imme-
diately enclosing computation in constant time; in particular, this constraint

applies to the retrievals when 3p;" or i eres 1S true.

10



Me(u,v) true ifv=u
e(u,v =
’ false otherwise

Me(c(et,...,en),v) = Me(e1,v) V ... V Me(en,v)
Me(p(er,...,en),v) = (Elpjl/\Me(el,v)) V...V (Elpzl/\Me(en,v))
Me(f(e1,...,en),v) = (Mf(f,l)/\Me(e1,v)) V ..V (Mf(f,n)/\Me(en,'u))

Me(if e; then e; else e3,v) = if:;eS A (el I—Me(eg,v)) A (—|e1 l—Me(eg,v))
Me(ea2,v) V (Me(el,v) /\Me(ez,u))

(
(
e
(
(

2

e(let u =€y in ez, v)

Fig. 4. Definition of Me.

We can easily show by induction that the safety requirements (3) are satisfied.
To compute Mf, we start with Mf(f,i) = true for every f and i and iterate
using the above definitions to compute the greatest fixed point in the point-
wise extension of the Boolean domain with false C true. The iteration always
terminates since these definitions are monotonic and the domain is finite.

Next, we compute embedding tags. For each function definition f(vy,...,v,) =

ey, we associate an embedding tag Mtag(e) with each occurrence of each
subexpression e of ey, indicating whether the value of e is embedded in the
value of e;. Mtag can be defined in a similar fashion to Me. We define
Mtag(ey) = true, and define the true values of Mtag for subexpressions e
of ey as in Figure 5; the tags of other subexpressions of e; are defined to
be false. These tags can be computed directly once the above embedding

if Mtag(c(e1,...,en)) = true then Mtag(e;) = true, for i =1..n

if Mtag(p(e1,...,en)) = true then Mtag(e;) = true if Epzl, fori=1..n

if Mtag(f(e1,...,en)) = true then Mtag(e;) = true if Mf(f,4), fori =1..n

if Mtag(if e; then ey else e3) = true then Mtag(e;) = true if ife)e,, for i =1,2,3

if Mtag(let v=e; in e3) = true then Mtag(e2) = true; Mtag(e1) = true if Me(e2,v)

Fig. 5. Definition of Mtag.

predicates are computed.

Finally, we use the embedding tags to compute, for each function f, an
embedding-all property Mall(f) indicating whether all intermediate results of f
are embedded in the value of f. We define, for each function f(vi,...,v,) = e I

Mall(f) = A Mtag(g(e1,...,em)) A Mall(g)  (4)
all function applications

g(ei,...,e,) occurring in ey

11



where Mtag is with respect to e;. To compute Mall, we start with Mall(f) =
true for all f and iterate using the definition in (4) until the greatest fixed
point is reached. This fixed point exists for similar reasons as for Mf.

Embedding analysis is related to the transmission analysis for compile-time
garbage collection [39], in that both analyze values that appear in the result
of the enclosing computation. While embedding analysis determines whether a
value appears in the result, transmission analysis determines what components
of a value appear in certain components of the result. The domain formed
with true and false for embedding analysis is finite, so it allows an efficient
linear-time analysis, which is also precise for our usage here. The components
in transmission analysis are described as nested patterns that form an in-
finite domain, causing the analysis to be imprecise or inefficient in general.
Embedding analysis is also related to the propagation analysis for update op-
timization [81], but that analysis only determines whether a value is the same
as the result of the enclosing computation.

Improved extension transformation. The above embedding analysis is
used to improve the extension transformation as follows.

First, if Mall(f) = true, i.e., if all intermediate results of f are embedded
in the value of f, then we do not construct an extended function for f. This
makes the transformation for caching all intermediate results idempotent.

If there is a function not all of whose intermediate results are embedded in its
return value, then an extended function for it needs to be defined as in (2).
We modify the definition of &xt[f(es,...,e,)] as follows. If Mall(f) = true,
which includes the case where f does not contain function applications, then,
due to the first improvement, f is not extended, so we reference the value of
f directly:

Ert[f(er,....,en)] = let vy =Extfeq] in ... let v, =Exte,] in
let v=f(1st(vy), ..., 1st(v,)) in (5)
<v>Qrst(vy) Q... Qrst(v,) Q< v >

Furthermore, if Mall(f) = true, and Mtag(f(ei,...,en)) = true, i.e, the value
of f(eq,...,e,) is embedded in the value of its enclosing application, then we
avoid caching the value of f separately:

Ext[f(eq,...,en)] = let vy =CExt[e;] in ... let v, =Ext[e,] in (©)
< f(lst(vy), ..., Lst(vy)) > @Q rst(vy) Q ... Q rst(vy,)

12



To summarize, the transformation £rt remains the same as in Figure 3 ex-
cept that the rule for a function application f(ey,...,e,) is replaced with
the following: if Mall(f) = true and Mtag(f(ey,...,e,)) = true, then define
Ert[f(ey,...,en)] as in (6); else if Mall(f) = true but Mtag(f(ey,...,en)) =
false, then define &xt[f(eq, ..., e,)] as in (5); otherwise define Ext[f (e, ..., €,)]
as in Figure 3. Note that function applications f(ey, ..., €,) such that Mall(f) =
true and Mtag(f(ei,...,en)) = true should not be counted by Pad. The
lengths of tuples generated by Pad can still be statically determined.

For function ¢mp in Figure 1, this improved extension transformation yields
the following functions:

emp(z) = let vy = odd(z) in
let u; = sum(v;) in
let v = even(z) in
let uy = W(’l]z) in

< lst(u1) < 1st(u2), v1, u1, va, uz >

sum(z) £ if null(z) then <0,_ > (7)
else let v; = sum(cdr(z)) in
< car(z) + 1st(v1), v1 >
prod(z) £ if null(z) then < 1,_ >

else let v1 = prod(cdr(z)) in

< car(z) * 1st(v1), v1 >

where emp is extended to return values of odd and even, as well as recursive
calls to sum and prod. Functions odd and even are not extended, since all
their intermediate results are embedded in their return values.

3.2 Step A.2: Exposing auziliary information by incrementalization

This step transforms fo(z © y) to expose subcomputations depending only on
x and whose values cannot be retrieved from the cached result of fy(x). It uses
analyses and transformations similar to those in [56] that derive an incremental
program f¢(x,v,7), by expanding subcomputations of fy(z @®y) depending on
both z and y and replacing those depending only on x by retrievals from 7
when possible.

Our goal here is not to quickly retrieve values from 7, but to find potentially
useful auxiliary information, i.e., subcomputations depending on z (and 7)
but not y whose values cannot be retrieved from #. Thus, time considerations
in [56] are dropped here but are picked up after Step A.3, as discussed in
Section 5.
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In particular, in [56], a (recursive) application of a function f is replaced by
an application of an incremental version f’ only if a fast retrieval from some
cached result of the previous computation can be used as the argument for
the parameter of f’' that corresponds to a cached result. For example, if an
incremental version f'(x,y,r) is introduced to compute f(x@®7y) incrementally
for r = f(z), then in [56], a function application f(g(z) @ h(y)) is replaced
by an application of f' only if some fast retrieval p(r) for the value of f(g(z))
can be used as the argument for the parameter r of f'(x,y,r), in which case
the application is replaced by f'(g(z), h(y),p(r)). In Step A.2 here, an appli-
cation of f is replaced by an application of f’ also when a retrieval cannot
be found; in this case, the value needed for the cache parameter is computed
directly, so for this example, the application f(g(x) @ h(y)) is replaced by
f'(g(x),h(y), f(g(x))). It is easy to see that, in this case, f(g(x)) becomes a
piece of candidate auxiliary information.

Since the functions obtained from this step may be different from the incre-
mental functions f’ obtained in [56], we denote them by f*.

For function @mp in (7) and input change operation = @ y = cons(y,x), we
transform the computation of emp(cons(y, x)), with emp(z) = 7

1. unfold e¢mp(cons(y, x))
= let v1 = odd(cons(y,x)) in

let u; = sum(v1) in

let v = even(cons(y,z)) in

let u2 = prod(v2) in

< 1st(ur) < 1st(uz), vi, u1, v2, uz >
2. unfold odd, sum, even and simplify
= let v} = even(z) in

let v} = sum(v)) in

let vy = odd(z) in

let uy = W(’UQ) in

< y+1st(u]) < Lst(uz), cons(y,v}), <y+1st(u)), v} >, va, uz >
3. replace applications of even and odd by retrievals
= let v} = 4th(F) in

let ) = sum(v]) in

let vy = 2nd(F) in

let us = prod(v2) in

< y+1st(u]) < 1st(uz), cons(y,v]), <y+1st(u}), v} >, v2, ua >

Simplification, i.e., unwinding the bindings for v and vy here, yields the follow-
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ing function ¢mp' such that, if emp(x) = 7, then emp'(y, 7) = emp(cons(y, x)):

4

let u} = sum(4th(7)) in
let uy = prod(2nd(7)) in (8)
<y+1st(u)) <lst(uz),cons(y,4th(F)), < y+1st(u)),u] >, 2nd(F), uz >

cmp'(y, )

3.8 Step A.3: Collecting candidate auxiliary information

This step collects candidate auziliary information, i.e., intermediate results
of fo(z,y,7) that depend only on z and 7, and yields function fo(x, 7). It is
similar to Step A.1 in that both collect intermediate results; they differ in that
Step A.1 collects all intermediate results, while this step collects only those
that depend only on x and 7.

Forward dependence analysis. First, we use a forward dependence anal-
ysis to identify subcomputations of fg(x,y,7) that depend only on z and 7.
The analysis is in the same spirit as binding-time analysis [38,45] for partial
evaluation, if we regard the arguments corresponding to x and r as static and
the rest as dynamic. We compute the following sets, called forward dependency
sets, directly.

For each function f(vi,...,v,) = e;, we compute a set Sf(f) that contains
the indices of the arguments of f such that, in all uses of f, the values of
these arguments depend only on z and 7, and, for each occurrence of each
subexpression e of ey, we compute a set Se(e) that contains the free variables
in e that depend only on z and 7. The recursive definitions of these sets are
given in Figure 6, where F'V(e) denotes the set of free variables in e and is

For each function f(v1,...,v5) = ef, define Se(ef) = {v; |4 € Sf(f)} and, for each subexpression e of ey,

if e is c(e1,...,en) or p(e1,...,en) then Se(er) = ... = Se(en) = Se(e)
ifeis fi(e1,...,en) then Se(e1) = ... = Se(en) = Se(e), Sf(f1)={i| FV(e;) CSe(e)} N Sf(f1)
if e is if e; then e3 else e3 then Se(e1) = Se(ez) = Se(e3) = Se(e)

Se(e) U {v} if FV(e1) C Se(e)

ifeislet v =e; in ey then Se(e1) = Se(e), Se(e2) =
Se(e) \ {v} otherwise

Fig. 6. Definition of Sf and Se.
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defined as follows:

FV(v) = {v}

FV(g(ey,...,en)), where gisc, p,or f = FV(e;)U..UFV(ey,)
FV (if e; then e; else e3) = FV(e1) UFV(ep) UFV(e3)
FV(let v =e;in ey) = FV(e1) U(FV(es) \ {v})

To compute these sets, we start with Sf(fy) containing the indices of the
arguments of fg corresponding to z and 7, and, for all other functions f, Sf(f)
containing the indices of all arguments of f, and iterate until a greatest fixed
point with respect to the point-wise extension of subset ordering is reached.
This iteration always terminates since, for each function f, f has a fixed arity,
Sf(f) decreases, and a lower bound ) exists.

Sf (prod) =
(e). For

) = {«}.

For the running example, we obtain Sf (emp') = {2} and Sf (sum ) =
{1}. For every subexpression e in the definition of cmp'(y,7), 7 € S
every subexpression e in the definitions of swm(x) and prod(z), Se(e
Collection transformation. Next, we use a collection transformation to
collect the candidate auxiliary information. The main difference between this
collection transformation and the extension transformation in Step A.1 is that,
in the former, the value originally computed by a subexpression is returned

only if it depends only on x and 7, while in the latter, the value originally
computed by a subexpression is always returned.

For each function f(vi,...,v,) = e called in the program for f; and such that
Sf(f) # 0, we construct a function definition

f(vil,...,vik) £ Col[e] 9)

where Sf(f)= {i1,...,ix} and 1< iy <...<ix <n. Cole] collects the results of
intermediate function applications in e that have been statically determined to
depend only on z and 7. Note, however, that an improvement similar to that

in Step A.1 is made, namely, we avoid constructing such a collected version
for fif Sf(f) ={1,...,n} and Mall(f) = true.

The transformation Col always first examines whether its argument expression
e has been determined to depend only on z and 7, i.e., F'V(e) C Se(e). If so,
Col[e] = &xt[e], where Ext is the improved extension transformation defined in
Step A.1. Otherwise, Col[e] is defined as in Figure 7, where Pad[e] generates
a tuple of _’s of length equal to the number of the function applications
in e, except that function applications f(ei, ..., e,) such that Sf(f) = 0, or
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Sf(f) = {1,...,n} but Mall(f) = true and Mtag(f(e1,...,en)) = true are
not counted. Note that if e has been determined to depend only on x and 7,
then 1st(Col[e]) is the original value of e, and rst(Col[e]) contains values of
intermediate function applications that depend only on z and 7; otherwise,
(Col[e] contains only values of intermediate function applications that depend
only on x and 7.

Col[v] = <>
Col[g(e1,...,en)] where gis corp = Colfe1] @Q ... @ Colen]

Col[f(e1,-.,en)] = let v1 =Colfe1] in ... let v, =Colfer] in ] @ ... Qe), @ €
rst(v;) if ¢ € Sf(f)
where e} =
v; otherwise
<> if Sf(f)=0

e =

<f(1st(vy), ...,1st(v;,)) > otherwise
where Sf(f)= {é1,...,ix} and 1< i1 <...<ix<m
Col[if e; then ey else e3] = let v; =Colfe;] in if FV(e1) C Se(er)
if 1st(v1) then let va =Col[e2] in
rst(vi) Q v Q Pad[es]
else let vz =Col[es] in
rst(vy) Q Piadfes] Q v3
= let v1 =Col[e1] in let v2 =Col[e2] in otherwise
let v3=Col[e3] in
v Q vy Q vg
Col[let v=e; in es] = let v1 =Colfe1] in if FV(e1) C Se(e1)
let v=1st(v1) in let va =Cole2] in
rst(v1) Q vy
= let v1 =Col[e1] in let vo =Col[ez] in otherwise

v1 Q vy

Fig. 7. Definition of Col when FV (e) € Se(e).

Although this forward dependence analysis is equivalent to binding time anal-
ysis in partial evaluation [37], the application here is different. In partial eval-
uation, the goal is to obtain a residual program that is specialized on a given
set, of static arguments and takes only the dynamic arguments, while here,
we construct a program that computes only on the “static” arguments. In
a sense, what is computed by our resulting program corresponds to what is
computed by the first of the two stages from the staging transformation [40].
The resulting program obtained here is similar to the slice obtained from for-
ward slicing [84]. However, our forward dependence analysis finds parts of a
program that depend only on certain information, while forward slicing finds
parts of a program that depend possibly on certain information. Furthermore,
our resulting program also returns all intermediate results on the arguments
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of interest.

For function emp' in (8), collecting all intermediate results that depend only
on its second parameter yields

crp(r) 2 < sum(4th(F)), prod(2nd(7)) > (10)

We can see that computing cmp(7) is no slower than computing cmp(z). We
will see that this guarantees that incremental computation using the program
obtained at the end is at least as fast as computing cmp from scratch.

4 Phase B: Using auxiliary information

Phase B determines which pieces of the collected candidate auxiliary informa-
tion are useful for incremental computation of fy(z @ y) and exactly how they
can be used. The basic idea is to merge the candidate auxiliary information
with the original computation of fo(x), derive an incremental version for the
merged program, and determine the least information useful for computing
the value of fo(x @ y) in that incremental version.

However, we want the incremental computation of fy(z @ y) to have access
to the auxiliary information in addition to the intermediate results of fo(z).
Thus, we merge the candidate auxiliary information in fy(z, 7) with fo(z) in-
stead of fo(x). After deriving an incremental version for the resulting program,
we prune out the useless auxiliary information and the useless intermediate
results.

Phase B has three steps. Step 1 merges fo with fy to form a function f;) that
returns candidate auxiliary information as well as all intermediate results. It
also determines a projection Ily that projects the return value of f; out of fo.
Step 2 incrementalizes f, under @ to obtain an incremental version fg. Step 3
prunes out of fy and fJ the intermediate results and auxiliary information
that are not useful.

4.1 Step B.1: Combining intermediate results and auxiliary information

To merge the candidate auxiliary information with fo, we could simply attach
it onto fy by defining f, to be the pair of fy and fy:

fo(z) 2 let 7 = fo(z) in let # = fo(z,7) in < 7,7 >
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and use the projection ITy(7) = 1st(1st(r)) to project out the original return
value of fy. However, we can do better by using a transformation to integrate
the computation of fo more tightly into the computation of fy, as opposed to
carrying out two disjoint computations. The integrated computation is usually
more efficient; so is its incremental version.

We do not describe the integration in detail. Basically, it uses traditional
transformation techniques [14] like those used in tupling tactic [24,66,15]. We
require only that ITy(fo(x)) always project out 1st(fy(z)), which is the value
of fy(z), and that the values of all other components of fo(z) and fy(z,7) are
embedded in the value of fy(z). This allows re-arranging the components in
the return value.

For functions ¢mp in (7) and cmp in (10), we first define a function

A

c¢mp(z) = let 7 = cmp(z) in let 7 = crip(F) in < 7,7 >

and a projection Ig(7) = 1st(1st(r)). Next, we transform cmp(z) to integrate
the computations of emp and crp,

1. unfold ¢émip, then cmp and crip
= let 7 =let v; = odd(z) in
let u; = sum(vy) in
let vo = even(z) in
let uz = prod(v2) in
< 1st(u1) < 1st(uz), v1, u1, v2, u2 > in
let # = < sum(4th(F)), prod(2nd(7)) > in
< 7,7 >

2. lift bindings for vi, w1, v2, u2, and simplify
= let v = odd(z) in
let u1 = sum(v1) in
let v = even(z) in
let us = W(w) in
let 7 = <1st(u1) < 1st(u2), v1, u1, v2, u2 > in
let 7 = <3wm(v2), prod(vi) > in
<FF>
3. unfold bindings for 7 and 7
= let v; = odd(z) in
let u1 = sum(v1) in
let v = even(z) in
let us = W(w) in

< <1st(ur) < 1st(uz), vi, u1, v2, uz >, < sum(vz), prod(vi) >>
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Simplifying the return value and Ily, we obtain the function

cmp(z) £ let vi = odd(x) in
let u; = sum(vy) in
let v2 = even(z) in (11)
let uz = prod(vz) in

< Ist(ur) < 1st(uz), vi, u1, v2, u2, sum(vz), prod(vy) >

and the projection Iy(7) = 1st(r).
4.2 Step B.2: Incrementalization

To derive an incremental version ];’ of }:) under @, we can use the method
in [56], as sketched in Section 1. Depending on the power expected from the
derivation, the method can be made semi-automatic or fully automatic.

For function e¢mp in (11) and input change operation = @ y = cons(y,x), we
derive an incremental version of cmp under @:

1. unfold ¢mip(cons(y, x))
= let v1 = odd(cons(y,x)) in
let u; = sum(vy) in
let v = even(cons(y,z)) in
let us = W(vg) in
< 1st(u1) < 1st(ua), v1, u1, v2, u2, sTA(vs), prod(vi) >
2. unfold odd, 5w, even, prod and simplify
= let v| = even(z) in
let v} = sum(v]) in
let v3 = odd(z) in
let us = W(vz) in
let u) = prod(v}) in
<y + 1st(u)) < 1st(uz), cons(y,v]), <y+1st(u)),u] >, v2, uz,
sum(va), <yxlst(ul),ul >>
3. replace all applications by retrievals
= let v} = 4th(r) in
let ) = 6th(r) in
let v3 = 2nd(7) in
let up = 7th(7) in
let u} = 5th(r) in
<y + 1st(u)) < 1st(uz), cons(y,v]), <y+1lst(u]),u] >, v2, us,
3rd(r), <y*lst(u}),u) >>

Simplification, i.e., unwinding all the bindings, yields the following incremental
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version cmp’ such that, if cmp(z) =7, then cmp'(y,7) = cmp(cons(y, x)):

emp' (y,7) £ <y+1st(6th(1) < 1st(Tth(r)),
cons(y, Ath(1)), <y-+1st(6th(r)), 6th(r) >, 2nd(r), Tth(r), (12)
3rd(r), <yx1st(5th(r)), 5th(r)>>

Clearly, cmp'(y,7) computes cmp(cons(y,x)) in only O(1) time.
4.8 Step B.3: Pruning

To prune f;) and f:)', we use the analyses and transformations in Stage IT1
of [54]. A backward dependence analysis determines the components of 7 and
subcomputations of f§ whose values are useful in computing IIy(fs(z, y,7)),
which is the value of fy;. A pruning transformation replaces useless computa-
tions with _. Finally, the resulting functions are optimized by eliminating the
_ components, adjusting the selectors, etc. Improved methods for pruning are
described in [48,52].

For functions cmp in (11) and emp’ in (12), 1st(cmp'(y, 7)) depends on 1st(6th(r))
and 1st(7th(r)), which depend on 1st(3rd(r)) and 1st(5th(r)), respectively. All
other components are not needed. We obtain

cmp(z) £ let v1 = odd(x) in
let u; = sum(v1) in
let vy = even(z) in
let us = W(vz) in
< 1st(ur) < 1st(uz), —, < lst(ui),— >, —, < 1st(u2),— >,
< 1st(zum(va)), — >, < lst(prod(vi)), - >>

cmp (y,7) 2 <y+1st(6th(F)) < Lst(Tth(F)), —, < y+1st(6th(F)), = >, _, < Lst(Tth(r)), - >,
< 1st(3rd(r)), — >, < y*1st(5th(r)), - >>

Optimizing these functions, i.e., eliminating unneeded components, adjusting
indexing, and simplifying tuple constructions and selections, yields the final
definitions of ¢mp and émp’, which appear in Figure 2.

5 Discussion

Correctness. Auxiliary information is maintained incrementally, so at the
step of discovering it, we should not be concerned with the time complexity
of computing it from scratch; this is why time considerations were dropped in
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Step A.2. However, to make the overall approach effective, we must consider
the cost of computing and maintaining the auxiliary information. Here, we
simply require that the candidate auxiliary information be computed at least
as fast as the original program, i.e., t(fo(x,7)) < t(fo(x)) for 7 = fo(x). This
can be checked after Step A.3. We guarantee this condition by simply dropping
pieces of candidate auxiliary information for which it cannot be confirmed.
Standard constructions for mechanical time analysis [75,83,49] can be used,
although further study is needed, and it is being carried out for both time
analysis [29] and space analysis [80]. The trade-off between time and space is
a problem open for study.

Suppose Step B.1 projects out the original value using 1st. With the above
condition, in a similar way to [54], we can show that, if fo(z) = r, then

Lst(fo(@)) =r and #(fo(2)) < t(fo(e)) (13)

and if fo(z) =7 and fy(z @ y) = ', then

Lst(fi(z,y,7) =1, fi(z,y,7) = folz @),

. (14)
and i(fol(.’l,',y,f)) < t(fo(l' s> y))

i.e., the programs % and %’ preserve the semantics and compute asymptot-
ically at least as fast as fy. Note that fo(z) may terminate more often than
fo(z), and f¢(z,y,7) may terminate more often than fo(z @ y), due to the
transformations used in Steps B.2 and B.3.

Multi-pass discovery of auxiliary information. The program fo can
sometimes be computed even faster by maintaining auxiliary information use-
ful for incremental computation of the auxiliary information already in f,. We
can obtain such auxiliary information of auxiliary information by iterating the
above approach. Whether to continue iteration using the approach depends on
whether the desired performance improvement is achieved. Therefore, again,
analysis of performance of the transformed program is important.

Other auxiliary information. There are cases where the auxiliary infor-
mation discovered using the above approach is not sufficient for efficient in-
cremental computation. For example, we do not yet know how to discover a
heap data structure systematically for computing a minimum element in a
set under element deletions. In these cases, classes of special parameterized
data structures are often used. Ideally, we could collect them as auxiliary in-
formation parameterized with certain classes of data types. Then, we could
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systematically extend a program to compute such auxiliary information and
maintain it incrementally. How to do this precisely is a problem open for study.
In the worst case, we could code manually discovered auxiliary information
to obtain an extended program f,, and then use our systematic approach to
derive an incremental version fq that incrementally computes the new output
using the auxiliary information and also maintains the auxiliary information.

Incrementalization for program efficiency improvement. To use our
approach for program efficiency improvement, we need to identify expensive
computations f and appropriate change operations .

Expensive computations are generally easy to determine, e.g., function calls,
especially calls of non-linear functions, in a language that contains functions,
operations on sets and maps in a very-high-level language, or multiplications
and exponentiations in a hardware description language. Change operations
in an iterative program are simply updates to the parameters of f by the
loop body, but change operations in a recursive program, especially for non-
linear recursive functions, are non-trivial to determine. Nevertheless, Liu and
Stoller have studied a general method for identifying change operations [51]
for recursive functions. The basic idea is to use a minimal input change that is
in the opposite direction of change compared to arguments of recursive calls.
Using the opposite direction of change yields an increment; using a minimal
change allows maximum reuse, i.e., maximum incrementality.

Section 6 gives examples where efficient incremental programs are derived
using the method in this paper based on identified expensive computations f
and change operations .

6 Examples

The running example on list processing illustrates the application of our ap-
proach to solving explicit incremental problems for, e.g., interactive systems
and reactive systems. Other applications include optimizing compilers and
transformational programming. This section first presents an example for each
of these two applications, based on problems in VLSI design and graph al-
gorithms, respectively. Then, we describe four other examples, taken from
problems in games, string processing, combinatorial optimization, and image
processing. They help show that this systematic method for discovering aux-
iliary information is powerful, that the underlying principle is general and
applies to other language features, and that it has many application areas.
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6.1 Strength reduction in optimizing compilers: binary integer square root

This example is from formal hardware design [60], where a specification of a
non-restoring binary integer square root algorithm is transformed into a VLSI
circuit design and implementation. There, a strength-reduced program was
manually discovered and then proved correct using Nuprl [18]. Here, we show
how our method can automatically derive the strength reductions. This is of
particular interest in light of the Pentium chip flaw in 1994 [28].

The initial specification of the algorithm is given in (15). Given a binary integer
n of [ bits, where n > 0 (and [ is usually 8, 16, ...), it computes the binary
integer square root m of n using the non-restoring method [26,60], which is
exact for perfect squares and off by at most 1 for other integers. The method
is to first set bit [ — 1 of the answer m to 1 and then adjust bits [ — 2 to 0 in
order: increase m by 2! if m is smaller than /n, and decrease m by 2! if m is
larger than /n.

for ; := 1 — 2 downto 0 do
pi=n—m?
if p> 0 then (15)
m = m + 2%
else if p < 0 then
m:=m — 2%

write(m);

In hardware, multiplications and exponentials are much more expensive than
additions and shifts (doublings or halvings), so the goal is to replace the former
by the latter.

To simplify the presentation, we jump to the heart of the problem, namely,
computing n — m? and 2! incrementally in each iteration under the change
m' =m+2" and i’ =i — 1. Let f; be

fo(n,m,i) £ pair(n —m?,2¢)

where pair is a constructor with selectors fst(a,b) = a and snd(a,b) = b, and
let input change operation & be

(nlvm’ail) = (namai> @< ) = (nz mi2ia 1 — 1)
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Step A.1. We cache all intermediate results of fy, obtaining

— A 5

fo(n,m,i) £ let v = m? in < pair(n —v, 2¢), v >

Step A.2. We transform f; under @, obtaining

fo(n,m,i,7) £ let v = 2nd(F) + 2xmxsnd(1st(F)) + (snd(1st(7)))? in
< pair(n — v, snd(1st(7))/2), v >

Step A.3. We collect candidate auxiliary information, obtaining

fo(n,m,i,7) & < 2xmxsnd(1st(7)), (snd(1st(r)))? > (16)

Step B.1. We merge the collected candidate auxiliary information with f;,
obtaining ITy(r) = 1st(7) and

Jo(n,m,i) £ let v =m? in let u = 2 in

<pair(n — v,u), v, 2¥xm*u, u?>

Step B.2. We derive an incremental version of };) under 6, obtaining

73 (nym,i,7) £ let v = 2nd(r) + 3rd(7) + 4th(r) in

let u = snd(1st(r))/2 in

< pair(fst(1st(r)) F 3rd(r) — 4th(r), u),
v, 3rd(¥)/2 £ 4th(r), 4th(r)/4 >

Step B.3. We prune functions };) and ﬁ)’, eliminating their second components
and obtaining

ﬁ)(n,m, i) 2 let u=2%in < pair(n —m?2,u), 2xmxu, u> > (17)

fo’(n,m,i,?) £ < pair(fst(1st(r)) T 2nd(r) — 3rd(r), snd(1st(r))/2),

N N (18)
2nd(r)/2 £ 3rd(r), 3rd(r)/4 >

Thus, we can initialize using (17) and perform the corresponding incremen-
tal update in the loop body using (18). The expensive multiplications and
exponentials in the loop body have been completely replaced with additions,
subtractions, and shifts. We even discover that an unnecessary shift is done
in [60]. Thus, a systematic approach such as ours is desirable not only for
automating designs and guaranteeing correctness, but also for reducing costs.
Explicit incrementalization also enables further optimizations on the overall
loop structure, as discussed in [47].
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6.2 Promotion and accumulation in transformational programmaing: path se-
quence problem

This example was used by Bird to illustrate important program transformation
strategies called promotion and accumulation [8]. Given a directed acyclic
graph, and a string whose elements are vertices in the graph, the problem
is to compute the length of the longest subsequence in the string that forms
a path in the graph. We focus on the second half of the example, where an
exponential-time recursive solution is improved (incorrectly in [8], corrected

in [9]).

Function llp defined below computes the desired length. The input string is
given explicitly as the argument to [lp. The input graph is represented by a
predicate arc such that arc(a,b) is true iff there is an edge from vertex a to
vertex b in the graph. The primitive function maz returns the maximum of
its two arguments.

lp(l) £ if null(l) then 0
else maz(llp(cdr(l)), 1+ f(car(l), cdr(l)))
f(n,1) £ if null(l) then 0 (19)
else if arc(n,car(l)) then
maz(f(n, cdr(l)), 1+ f(car(l), cdr(l)))
else f(n,cdr(l))

The problem is to compute [/p incrementally under the input change operation
I'=1®1i=cons(i,l). Using the method described in this paper, we obtain

lip(l) 2 if null(l) then <0>
else let v = f(car(l),cdr(l)) in
<maz(llp(cdr(l)), 1+1st(v)), v >

fln,1) 2 if null(l) then <0> (20)
else let u = f(car(l), cdr(l)) in
if arc(n,car(l)) then
<maz(f(n,cdr(l)), 1+1st(u), u>

else < f(n,cdr(l)), u>
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and

{ip'(3,1,7) 2 if null(l) then <1,<0>>
else let v = ‘ff\;(l, 1,2nd(r)) in
<mazx(1st(r), 1+ 1st(v)), v>
F(i,1,71) 2 if null(cdr(l)) then
if arc(s, car(l)) then <1,<0>> (21)
else <0,<0>>
else let u = ﬁ(z, cdr(l),2nd(r1)) in
if arc(i, car(l)) then
<maz(1st(u),1+1st(r1)), 11 >
else <1st(u), r1>

Computing llp(cons(i, 1)) from scratch takes exponential time, but computing
lp'(i,1,7) takes only O(n) time, where n is the length of [, since llp'(i, [, 7)
calls f’, which goes through the list [ once.

Finally, we use these derived functions to compute the original function lip.
Note that lIp(l) = 1st(llp(l)) and, if llp(l) = 7, then llp(cons(i, 1)) = Up'(i,1, 7).

Using the definition of llp’ in (21) in this last equation, we obtain

lip(cons(i,1)) = if null(l) then <1,<0>>
else let 7 = lE)(l) in
let v = f/(4,1,2nd(7)) in
<maz(1st(r), 1+1st(v)), v>

Using this equation and the base case ﬁ;;)(ml) = < 0 >, we obtain a new
definition of llp:

lip(l) 2 if null(l) then <0>
else if null(cdr(l)) then <1,<0>>
else let 7 = ll~p(cdr(l)) in (22)
let v = ﬁ(car(l),cd’r(l), 2nd(r)) in
<mazx(1st(r), 1+1st(v)), v>

where f’ is defined in (21). This new lip recursively considers tails of the input
sequence and, for each element at the head of a subsequence, calls f’ to use
it to extend recursively computed sequence lengths. It takes only O(n?) time,
since it calls f' only O(n) times.

27



6.3 Towers of Hanoi

This problem computes the sequence of steps needed to move a stack of n disks,
one at a time, from one peg a, initially with no larger disks on top of smaller
ones, to a second peg b via a third peg ¢, without ever putting a larger disk on
top of a smaller one [1,67]. This can be solved using a simple recursion that has
one move operation, two recursive calls, and two concatenation operations, but
computing the recursive function for n disks takes O(2") time, due to repeated
recursive calls on the same arguments.

Pettorossi and Proietti use tupling [66] to give, to our knowledge, the most
recent derivation of a linear-time program for this problem [67]. The transfor-
mation involves unfolding functions 9 times and eventually identifying that 6
function calls can be computed in a tuple using a recursion with step size 2.
The resulting program consists of 9 moves and 18 concatenations in a recursive
equation and 3 moves and 6 concatenations together in five other non-recursive
equations.

Our method identifies a change operation that corresponds to step size 1, uses
the method for discovering auxiliary information twice, and yields an incre-
mental function that has 3 moves and 6 concatenations. Using this function
directly to form a new recursion, we obtain a linear-time program that is one
quarter the size of that in [67].

Function hanoi defined below computes the desired length, where skip and
move are constructors, and :: is a primitive function for concatenation.

hanoi(n,a, b, c) 2 ifn < 0 then skip (23)

else hanoi(n — 1,a,¢,b) :: move(a, b) :: hanoi(n — 1, ¢,b,a)

The problem can be formulated as computing hano: incrementally under the
input change operation (n’,a’, ¥, ') = (n,a,b,c)®() = (n+1, a, ¢, b), identified
using the method in [51] as the minimum input increment operation. After
discovering auxiliary information twice using the method in this paper, we
obtain

A

Im(n,a,b, c) < hanoi(n,a,b,c), hanoi(n,b,c,a), hanoi(n,c,a,b) > (24)

and

Im’(n,a,b, ¢,7) 2 if n+1<0then < skip,skip,skip >
else < 1st(r) :: move(a, c) :: 2nd(7),
3rd(r) :: move(c, b) :: 1st(r),

2nd(r) :: move(b, a) :: 3rd(r) >

(25)
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Clearly, computing hanoi(n + 1,a, ¢, b) from scratch takes exponential time,

but computing m'(n, a, b, c,7) takes only O(1) time. To compute the origi-

nal hanoi, note that hanoi(n, a, b, c) = lst(i%(n, a,b,c)) and, if%(n, a,b,c) =
7, then h/a;z_o/z'(n—i— 1,a,¢,b) = h/a;z_o/z"(n, a, b, c,7). Using the definition of hanoi'

in this last equation, we obtain

hanoi(n + 1,a,¢,b) = if n+1 <0 then < skip,skip, skip >
else let 7 = Im(n,a, b,¢) in
< 1st(r) :: move(a, c) :: 2nd(r),
3rd(r) :: move(c, b) :: 1st(r),
2nd(r) :: move(b, a) :: 3rd(r) >

Replacing n + 1 with n, and exchanging b and ¢, we obtain a new definition

of hanoi:

hanoi(n,a,b,c) = if n < 0 then < skip, skip, skip >
else let 7 = Im(n —1,a,¢,b) in
< 1st(r) :: move(a, b) :: 2nd(r), (26)
3rd(r) :: move(b, c) :: 1st(r),
2nd(r) :: move(c, a) :: 3rd(r) >

P

Clearly, we can compute hanoi using the new hanoi, which takes O(n) time.

6.4 Longest common subsequence

Suppose we want to compute the length of the longest common subsequence
of two given sequences z and y of lengths n and m, respectively [19]. This can
be programmed as a straightforward recursive function that takes O(2"*t™)
time to compute. Using the method in this paper, in a similar fashion to the
path sequence problem discussed earlier, we can derive an optimized program
that runs in O(n * m) time.

Function lcs below computes the desired length, where z(n) is the nth element
of sequence z, and y(m) is the mth element of sequence y.

A

if n <0 or m <0 then 0
else if z(n) = y(m) then lcs(n —1,m — 1) +1 (27)

les(n,m)

else maz(les(n,m — 1),les(n — 1,m))

We incrementalize lcs under the input change operation (n',m’) = (n,m) &
() = (n+ 1,m), identified using the method in [51] as a minimum input
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increment operation, and obtain

l;;(n,m)é ifn<0orm<0then <0>
else let v = l?;(n,mf 1) in (
28)

if z(n) = y(m) then <les(n —1,m—1)+1,v >
else < maxz(lst(v),les(n —1,m)),v >

and

iz;’(n,m,’rv)é ifn+1<00rm<0then <0>
else if n < 0 then
letU:l,;;'(n+1,m71,< 0>)in
if z(n + 1) = y(m) then <1,v > (29)
else < 1st(v),v >
else let v = lcs. (n+1,m —1,2nd(r)) in
if z(n 4+ 1) = y(m) then < 1st(2nd(r)) + 1,v >
else < maz(1st(v), 1st(r)),v >

Computing lZs(n + 1, m) from scratch takes exponential time, but computing
les'(n, m, 7) takes only O(m) time. Note that lcs(n, m) = 1st(lcs(n, m)) and,
if les(n,m) = 7, then les(n + 1,m) = les'(n, m, 7). Using les' to form a new
lActs’, we obtain

les(n,m) 2 lst(igg(n,m))
Eg(n,m)éifngﬂormSOthen <0> (30)

o~ o~ —~1 ~
else let r = les(n — 1,m) in lcs (n — 1,m,r)

Function lcs takes O(n * m) time since it calls les’ O(n) times.

The auxiliary information used in this problem and the path sequence prob-
lem belongs to a special class that can be discovered using a simpler method
than the general method described in this paper. Basically, the auxiliary in-
formation needed corresponds to “intermediate results” that are computed in
some branches but not some other branches of the original program. Comput-
ing such results also in these other branches forms the auxiliary information.
Thus, the simpler method only needs to perform (I) a modified caching trans-
formation, extending Step A.1, (II) incrementalization, as in Step B.2, and
(IIT) pruning, as in Step B.3.

For example, for function f in the original program (19) for the path se-
quence problem, the result of f(car(l), cdr(l)) is computed in the branch where
arc(n, car(l)) is true but not in the alternative branch, and the truth value
of the predicate arc is independent of the local variables n and [. In function

f in the resulting extended program (20), this result is computed and put in
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variable u regardless of the truth value of arc(n,car(l)), i.e., it is computed
when arc(n, car(l)) is false as well, as the auxiliary information; this informa-
tion is used and maintained in the resulting incremental program (21). The
details of this simpler but restricted method and the derivation for the longest
common subsequence problem are described in [51].

6.5 0-1 Knapsack

This problem computes the maximum value for a subset of n items of integer
weight whose total weight does not exceed w [19]. It can be programmed as
the following recursive function knap(n,w), where value(n) and weight(n)
are the value and weight, respectively, of the nth item. The running time of
knap(n,w) is O(2").

knap(n,w) 2 if n <0 or w < 0 then 0
else if weight(n) > w then knap(n — 1,w) (31)
else maz(value(n) + knap(n — 1,w — weight(n)), knap(n — 1,w))

Using the method in this paper, we can find a piece of auxiliary information,
knap(n,w — weight(n + 1)), that is needed for computing knap(n + 1, w),
where weight(n + 1) can be any integer from 0 to w. Since w — weight(n + 1)
can also be any integer from 0 to w, taking knap(n, k) for any particular
value k£ as auxiliary information is not sufficient for efficient computation of
knap(n + 1,w). We need knap(n, k) for all k£ such that 0 < k£ < w. We can
extend the method in this paper to cache an array for these values, and use
the rest of the method in the same way; this yields an optimized program that
runs in O(n * w) time. The precise formulation of this extension needs to be
studied, but if we assume that the construct for & := i to j do alk] := e
assigns expression e to the kth element of array a for each £ and returns a, we
can incrementalize knap under (n',w') = (n,w) ® () = (n + 1, w) and obtain

lg;z\a./p(n,w) 2 for k:=0to w do
k] := knap(n, k)

(32)

and

7) & for k:=0 to w do
v

[k]:= if n+1<0o0r w<0then0

knap (n,,
N (33)
else if weight(n + 1) > w then r{w]

else maz(value(n + 1) + r{w — weight(n + 1)], 7{w])
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Computing l%(n—#l, w) from scratch takes exponential time, but computing
knap'(n,w,7) takes only O(w) time. Note that knap(n,w) = knap(n,w)[w]
and, if knap(n,w) = 7, then knap(n + 1,w) = knap'(n,w, 7). Using knap’ to

—~—

form a new knap, we obtain

knap(n,w) £ knap(n,w)[w]

kfn\a/p(n,w) 2 if n <0 or w <0 then for k := 0 to w do 7[k] := 0 (34)

~ —_~— —_~1 ~
else let r = knap(n — 1,w) in knap (n — 1, w,7)

The auxiliary information used here is essentially a map and is used extensively
in finite differencing of set expressions [64]. It is interesting to notice that most
previous methods have used arrays as the only data structures for caching,
e.g., [16,19,65], and often ended up using asymptotically more space than
necessary. We use arrays only when necessary, and we found that, for most
problems, arrays are not needed [51].

6.6 Local neighborhood problems

Many image processing problems compute information about local neighbor-
hoods of objects, such as pixels, rows, and regions [82,85,87,88]. For example,
an algorithm to blur a picture computes the sum of a square area for every
pixel. Such programs are often easily written using loops and arrays, rather
than recursive functions.

To optimize these programs using incrementalization, we identify aggregate
computations on arrays performed by loops as function f, identify updates to
loop variables and array subscripts as operation &, and incrementalize f under
@ [50]; incrementalization is reduced to solving constraints on loop variables
and array subscripts, for which we use Omega [69].

To increase incrementality, intermediate results and a special kind of auxil-
iary information for aggregate array computations are also cached and used
when needed [50]. The auxiliary information there corresponds to “interme-
diate results” that are re-associated based on associativity of operations. For
example, given an array a with n; rows and ny columns, the row-neighborhood-
summation problem computes, for each row i (0 < i < n;—m), the sum of the
m-by-ns rectangle comprising rows ¢ through i+m—1. The following straight-
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forward program computes this in O(nynem) time.

for i := 0 to n; — m do
s[i] 1= 05
for k:=0tom —1do (35)
forl:=0tons —1do
s[i] == s[i] +ali + k,1]

Using the method in [50], we cache a special kind of auxiliary information that
corresponds to the innermost for-I-loop, which computes the sum of row i+ k
of array a, and incrementalize the for-k-loop with respect to i’ = 7 + 1 of the
for-i-loop, yielding

s[0] := 05
for k:=0tom—1do
s1[k] := 05
forl:=0tons—1do
s1lk] := s1[k] + alk, 1];
s[0] := s[0] + s1[k]; (36)
for i:=1ton; —mdo
sifi+m—1]:=0;
for[:=0tonz —1do
sifi+m—1]:= s1[i+m—1] + a[i+m—1,1];
s[i] := s[i—1] — s1[i—1] + s1i[i+m—1]

Using the ideas in this paper, we can discover the above auxiliary information
by directly incrementalizing the for-k-loop with respect to ' = i + 1 of the
for-i-loop without caching them specially in the first place. Observe that
computing the for-k-loop for 7/ = i + 1 requires adding elements in row i +
m + 1 and subtracting elements in row 7; this exposes these rows as auxiliary
information. This approach is more general, since, even if we exchange the
for-k-loop and for-/-loop in (35) to compute the same thing, this method
yields the same additions and subtractions. However, if we use the method
in [50], using the special kind of auxiliary information in the innermost for-
k-loop yields no improvement. We believe that the basic ideas for identifying
general auxiliary information in this paper also apply to discovering general
auxiliary information for aggregate array computations. Detailed analyses and
transformations are being developed.
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7 Related work and conclusion

Work related to our analysis and transformation techniques has been dis-
cussed throughout the presentation. Here, we take a closer look at related
work on discovering auxiliary information for incremental computation and
on strengthening invariants for efficient computation in general.

Interactive systems and reactive systems often use incremental algorithms to
achieve fast response time [5,6,10,22,33,41,71,72]. Since explicit incremental
algorithms are hard to write and appropriate auxiliary information is hard to
discover, the general approach in this paper provides a systematic method for
developing particular incremental algorithms. For example, for the dynamic
incremental attribute evaluation algorithm in [73], the characteristic graph is
a kind of auxiliary information that would be discovered following the general
principles underlying our approach. For static incremental attribute evaluation
algorithms [42,43], where no auxiliary information is needed, the approach can
cache intermediate results and maintain them automatically [54].

Strength reduction [3,17,78] is a traditional compiler optimization technique
that aims at computing each iteration incrementally based on the result of
the previous iteration. Basically, a fixed set of strength-reduction rules for
primitive operators like times and plus are used. Our method can be viewed
as a principled strength reduction technique not limited to a fixed set of rules:
it can be used to reduce strength of computations where no given rules apply
and, furthermore, to derive or justify such rules when necessary, as shown in
the integer square root example.

Finite differencing [61-64] generalizes strength reduction to set-theoretic ex-
pressions for systematic program development. Basically, rules are manually
developed for differentiating set expressions. For continuous expressions, our
method can derive such rules directly using properties of primitive set op-
erations. For discontinuous set expressions, auxiliary expressions need to be
discovered and rules for maintaining them derived. Based on careful study of
the finite differencing rules [64], we believe that our basic ideas for discov-
ering auxiliary information apply to discovering auxiliary set expressions as
well, and once discovered, our method can also be used to derive rules that
maintain these expressions. In general, such rules apply only to very-high-level
languages like SETL; our method applies also to lower-level languages like Lisp
or Java.

Maintaining and strengthening loop invariants has been advocated by Dijkstra,
Gries, and others [21,31,32,74] for almost two decades as a standard strategy
for developing loops. In order to produce efficient programs, loop invariants
need to be maintained by the derived programs in an incremental fashion. To
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make a loop more efficient, the strategy of strengthening a loop invariant, often
by introducing fresh variables, is proposed [32]. This corresponds to discover-
ing appropriate auxiliary information and deriving incremental programs that
maintain such information. Work on loop invariants stressed mental tools for
programming, rather than mechanical assistance, so no systematic procedures
were proposed.

Induction and generalization [11,59] are the logical foundations for recursive
calls and iterative loops in deductive program synthesis [57] and constructive
logics [18]. These corpora have for the most part ignored the efficiency of the
programs derived, and the resulting programs “are often wantonly wasteful
of time and space” [58]. In contrast, the approach in this paper is particu-
larly concerned with the efficiency of the derived programs. Moreover, we can
see that induction, whether course-of-value induction [44], structural induc-
tion [11,13], or well-founded induction [11,59], enables derived programs to
use results of previous iterations in each iteration, and generalization [11,59]
enables derived programs to use appropriate auxiliary information by strength-
ening induction hypotheses, just like strengthening loop invariants. The ap-
proach in this paper may be used for systematically constructing induction
steps [44] and strengthening induction hypotheses.

The promotion and accumulation strategies are proposed by Bird [8,9] as
general methods for achieving efficient transformed programs. Promotion at-
tempts to derive a program that defines f(cons(a,x)) in terms of f(x), and
accumulation generalizes a definition by including an extra argument. Thus,
promotion can be regarded as deriving incremental programs, and accumula-
tion as identifying appropriate intermediate results or auxiliary information.
Bird illustrates these strategies with two examples. However, no systematic
steps were given in [8]. As demonstrated with the path sequence problem,
our approach can be regarded as a systematic formulation of the promotion
and accumulation strategies. It helps avoid the kind of errors reported and
corrected in [9)].

Other work on transformational programming for improving program effi-
ciency, including the extension technique in [20], the transformation of recur-
sive functional programs in the CIP project [7,12,65], and the finite differenc-
ing of functional programs in the semi-automatic program development system
KIDS [77], can also be further automated with our systematic approach.

In conclusion, incremental computation has widespread applications for im-
proving the efficiency of computations throughout computing. This paper
proposes a systematic approach for strengthening invariants by discovering
a general class of auxiliary information for incremental computation. It is nat-
urally combined with methods for reusing the previous result and intermediate
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results to form a comprehensive approach for efficient incremental computa-
tion. The modularity of the approach lets us integrate other techniques in our
framework and re-use our components for other optimizations.

Although our approach is presented in terms of a first-order functional lan-
guage, the underlying principles are general and apply to other languages as
well. For example, the method has been used to improve imperative programs
with arrays for the local neighborhood problems in image processing [50].

A prototype system, CACHET, for incrementalization has been under devel-
opment. It was first developed as a semi-automatic transformation system [46]
for deriving incremental programs that exploit return values [56]. Soon after,
transformations and analyses for cache and prune [55,54], fully automated,
were added. Later on, a subset of the transformations for exploiting return
values were made fully automatic [89], and the analysis for pruning was dras-
tically improved [52]. A separate module for optimizing aggregate array com-
putations [50] was added most recently. All these are implemented using the
Synthesizer Generator [72], making extensive use of its scripting language,
STk [30], a dialect of Scheme. CACHET has been used in teaching several
graduate courses on related topics. To better integrate existing functionalities
in the system, and to facilitate implementation of improvements to these func-
tionalities, we are currently planning on a redesign and cleanup of the system.
This should also allow us to easily add new extensions [51,53].
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