
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A systematic incrementalization technique and its application
to hardware design
Steven D. Johnson

�

, Yanhong A. Liu
���

, Yuchen Zhang
�����

Indiana University Computer Science Department, e-mail: sjohnson@cs.indiana.edu

The date of receipt and acceptance will be inserted by the editor

Abstract. A systematic transformation method based on
incrementalization and value caching generalizes a broad
family of program optimizations. It yields significant per-
formance improvements in many program classes, in-
cluding iterative schemes that characterize hardware spec-
ifications. CACHET is an interactive incrementalization
tool. Although incrementalization is highly structured and
automatable, better results are obtained through inter-
action, where the main task is to guide term rewriting
based on data specific identities. Incrementalization spe-
cialized to iteration corresponds to strength reduction, a
familiar program refinement technique. This correspon-
dence is illustrated by the derivation of a hardware-efficient
nonrestoring square-root algorithm, which has also served
as an example of theorem prover based implementation
verification. One goal of this study is to explore how
ingenious design insights are discovered and applied in
contrasting formal systems, as reflected in their support-
ing tools.

Key words: Formal methods – hardware verification –
design derivation – formal synthesis – transformational
programming – floating point operations

�

Supported, in part, by the National Science Foundation under
grant MIP-9601358.
���

Supported in part by the National Science Foundation under grant
CCR-9711253, the Office of Naval Research under grant N00014-99-
1-0132, and Motorola Inc. under a Motorola University Partnership in
Research Grant.
�����

Student recipient of a Motorola University Partnership in Research
Grant

1 Introduction

The transformation technique described in this paper will
be familiar to all programmers and digital engineers. It
centers on incremental computation, the exploitation of
partial results to more efficiently calculate new results.
We present here a general method for performing such
optimizations and a tool called CACHET for systemati-
cally applying that method.

We introduce incrementalization through a series of
small examples, culminating with the derivation of a non-
restoring integer square root implementation originally
verified in Nuprl by O’Leary, Leeser, Hickey, and Aa-
gaard [17]. That, too, was a tutorial illustration of formal-
ized reasoning in a hardware design context. One pur-
pose of this study is to explore how the critical insights
needed to improve a design are discovered and applied
in a given reasoning framework, as reflected in its tools.
In particular, we are interested in contrasting deductive
verification, in which the design process formalized as
a proof, with derivational verification, in which the de-
sign process is formalized as a sequence of equivalence
preserving refinements.

This is not a question of which style is “better,” but of
gaining understanding about how intelligent judgments
are made so that they can be better facilitated in an in-
tegrated reasoning environment. The ultimate goal is an
environment incorporating a broad variety of reasoning
systems, both automatic and interactive. In order to suc-
cessfully reach that goal, we need a clearer picture of
how humans interact, and especially how creative judge-
ment arises.

The sqrt example of Section 4 is relatively small, but
otherwise it is representative of real designs in signal

2 Johnson, Liu & Zhang: Incrementalization for hardware

����������� 	�

�������������������������
 "!$#
%'&)(
*
+,�.-0/21)3
45� 	6�7�8�:9;#
(
<=45>0/2?;&@+BA
��� 	C�EDF��G

+H*
IJ+,(
<�45K0/2?�&L+HA
��� 	C�M�N��G�#

�O� 	P�)�0Q�#
R����S�����T� 	C�

4L�VU���WX� 	Y
Z�������[��/���� 9�\ �
 "!V]�#
%'&)(Z*
+^�_WX-CQ;�)1)3
(
<=4`>P/a?;&L+HA
4L�bU���WY� 	�4c�dU,�eWf#hg9 DNW,��i j+h*ZIJ+k(l<=45Km/a?;&L+HA
4L�bU���WY� 	�4fDnU,�eWf�hg9 �eW,��i j+h*ZIJ+
U���WX� 	 g 9 � i j #R����S�����T� 	PU

Fig. 1. Specification and implementation of nonrestoring sqrt

processing, arithmetic units, microprocessor pipelines,
and so on. Behavioral forms of the sqrt specification and
implementation, expressed in a statement oriented syn-
tax, are shown in Figure 1. The essence of implementa-
tion verification, the key insights, are algebraic identities—
in this case, laws of arithmetic but generally, equational
laws of a type structure over which the specification and
implementation are expressed.

The implementation in Figure 1 is readily reduced to
hardware. The DDD transformation system is an inter-
active tool for formally deriving and manipulating hard-
ware architecture descriptions from behavioral specifica-
tions [6,2]. O’Leary, et. al. include a hardware descrip-
tion in their implementation proof, using an ML variant
to express architectural structures. Thus, a single reason-
ing tool, Nuprl, analyzes both behavioral and architec-
tural expressions. The derivation study also uses dialects
of functional notation to represent behavior and archi-
tecture, but CACHET applies only to behavioral forms.
DDD translates control oriented expressions to architec-
ture oriented expressions and reduces the latter to boolean
systems.

It is shown in Section 4 that, beyond some linear in-
equalities, judicious applications of distributivity, asso-
ciativity, the identity

oqp5rCsut�vfw�p)vxrzy{p@s^r6suv

suffice to support an implementation proof at the integer
level. This observation holds whether the argument is de-
ductive or derivational. However, “judicious application”
implies that the design agent not only has the insight to
tactically apply algebraic identities, but also understands
the logical context, that is, the overall strategy and form
of the proof.. We are interested in contrasting how in-
sights are discovered, visualized, and applied in various
reasoning frameworks.

This paper has two main goals. The first is to intro-
duce the analyses and constructions that, together, com-
prise incrementalization. We begin with a small moti-
vating example relating it to strength reduction, a clas-

sical program transformation technique. Two examples
follow to illustrate generality, in particular, extending the
idea of strength reduction to nonlinear recursion pattern-
s. In software, application of incrementalization has been
shown to yield dramatic asymptotic performance improve-
ments through recursion removal [12].

Loop strength reduction is an important special case,
especially as it applies to hardware design. The second
goal is to illustrate how incrementalization specializes to
the iterations common in hardware specification. In this
context an incrementalization tool, like CACHET intro-
duced in Section 5, facilitates the interplay of designer
insight with formal manipulation.

1.1 Background

The core approach to incrementalization is described by
Liu in her dissertation [13,14]. An incrementalization
tool, CACHET is the focus of [9]. Subsequently, exten-
sions to the basic approach have addressed caching, or
maintaining partial results in auxiliary variables [11,12].
Caching uses an on-line dependence analysis to prune
unneeded accumulators. In [10], Liu outlines the step-
s of a systematic, semi-automatable incrementalization
process, including a brief presentation of the sqrt deriva-
tion detailed here in Section 4. Incremental computation
is involved in a broad family of optimization techniques,
surveyed in [13].

Design derivation refers to a formalized design pro-
cess in which a creative agent interacts with a reason-
ing tool to transform a specification into a correct imple-
mentation. Johnson, Bose, Miner, and others have inves-
tigated an integrated framework for formalized design in
which a derivational tool, DDD, interacts with a theorem
prover. It is demonstrated in [2,1] that such a heteroge-
neous framework reduces the effort of verifying a micro-
processor implementation. In [7,15], Miner explores a
more tightly coupled relationship between a derivation-
al and deductive formalisms. These studies raise basic

Johnson, Liu & Zhang: Incrementalization for hardware 3

questions about the character of interaction as reflected
in the analysis tools.

The past few years have seen increasing attention
paid to term-level reasoning in hardware verification. Va-
lidity checking with uninterpreted function symbols (e.g.
[8]) is a way to increase the power of model checking
and adapt to data path aspects. At the same time, the-
orem proving approaches have repeatedly demonstrated
that the essence of hardware verification lies in equation-
al reasoning performed in the complicated logical con-
text of an implementation proof. Moore’s description of
a symbolic spreadsheet [16] reflects this insight. Greve’s
analysis of the JEM1 microprocessor, and other similar
case studies, explore interactive verification centering on
symbolic simulation (i.e. function expansion) and term
simplification [4].

In 1993, Windley, Leeser, and Aagard pointed out
that numerous hardware verifications have been found
to follow a common proof plan [21]. Incrementalization
might be seen as a “super duper” derivation tactic, but
one that is applicable to a much broader range of speci-
fication classes than just hardware.

1.2 Strength reduction

Incrementalization generalizes a basic programming tech-
nique found in virtually all approaches to program re-
finement, however formal. The illustration below comes
from an undergraduate textbook written in 1978 [20],
which credits Dijkstra for the phrase “strength reduc-
tion” [3]. We use the notation ���������	��� to express par-
tial correctness, “If precondition � holds then execution
of program � establishes postcondition � .”

We want an algorithm to compute the integer square
root of an input

p
; that is, an � such that

��

� p �����	� v � p��Mo � r�� t v �
The and in the postcondition suggests a loop, with one
conjunct serving as the loop’s test and the other the loop
invariant [5]:

��� w
��������� � p"! o � r�� t v$#�%
��� v � p �
��� w � r&�

�	� v � p'�Mo � r&��t v �
To get rid of the expensive term

o � r(� t v
, we can intro-

duce an auxiliary variable) to hold this value. The in-
variant becomes INV *,+-� v � p�.	/10) w o � r&� t v

and
the loop is be adapted to maintain the stronger condition.
Let)12 and 342 denote the values of) and 3 after the next

loop iteration. The analyses (simultaneous in general)

�52 w � r��
)62 w o �72 r&��t v

8w �52 v rzy �72 r��
w o � r&��t v rXy �52 r&�
9w) rXy �52 r��

eliminates the squaring operation. Of course,) must be
properly initialized.

o ��:;) t � w=<
�: ��> �������� � p�!) #?%
� INV * �
��� w � r&� �
)"� w) rzy � r&�

There are four discussion points.
First, the derivation of)@2 exploits the algebraic i-

dentity,
o�A rB��t v wCA v r y	A rB�

, at the third step.
In general, we cannot expect such insight be fully auto-
mated because term equivalence is undecidable in some
structures, including arithmetic. From here on, we re-
fer to the application of algebraic laws as an exercise of
judgment, presumably by an ingenious agent. We indi-

cate points of judgment with the symbol ‘
9 8w

’. However,
even if no such interventions take place, programs are of-
ten improved by reusing intermediate results, as optimiz-
ing compilers commonly do. Incomplete or specialized
equational reasoning can improve the result still more,
even if it can’t always achieve the optimum automatical-
ly.

Second, while incrementalization generally has the
goal of exploiting partial results to eliminate expensive
operations, the measure of expense depends on the target
technology. In the program above, if we regarded “

y � ” as
expensive, we could eliminate it by introducing a second
auxiliary variable variable, to maintain ��D w y ��� . The

analysis DE2 w y �72 w y"o � r&��t 9 8w�y � rXy'w D rXy
shows

we can convert multiply-by-two to add-two, provided we
can see to apply the distributive law. Obviously, this is
not an improvement for hardware, and it may or may not
be for software, depending on the compiler.

Third, while we can certainly argue that the elimina-
tion of

o � rF� t v
improves the program, it is still linear in

the magnitude of its input. Faster convergence requires a
better algorithm, such as the nonrestoring sqrt in Section
4.

Finally, loop invariants are a formal device for declar-
ing intent. They are used here for the more limited pur-
pose of reasoning about incremental computation. The
underlying optimization tactic is loop unrolling (or un-
fold/fold transformation). If we know the optimization
technique being applied, using the more general method

4 Johnson, Liu & Zhang: Incrementalization for hardware

of inductive assertions might be considered overkill. One
measure of a good method is how broadly it can be ap-
plied, but this is not necessarily the case for tools, where
specialization can result in a higher degree of automation
and more perspicuous notation.

2 Systematic incrementalization

In this section we survey the general approach to incre-
mentalization. Programs are represented as recursion e-
quations, that is, systems of first-order function defini-
tions. Each defining expression is a conditional whose
branches are either simple terms or expressions involv-
ing recursive calls to the defined functions. Terms come
from a ground type, or algebraic structure whose specifi-
cation includes a set of equational laws. “Term level rea-
soning” refers to derivations according to these laws. De-
cidability depends on the decision problem for the given
structure. All of the examples in this article involve arith-
metic operations with the usual laws of algebra. Howev-
er, the techniques apply to any abstract data type. As in a
theorem prover, the underlying identities are input to the
system and are not built in.

Our program notation is conventional with one ex-
ception: formal parameters may include nested identi-
fiers and aliasing. For example, the phrase

������� w o � * : � v taw�� ���	�
���
binds the identifier � to the value of expression

�
and also

declares this value to be a pair whose first and second
elements are identified by � * and � v , respectively. We
shall use these forms only for simple destructuring.

In the case that all the functions defined in a system
are tail-recursive, we have the equivalent of a sequential
program. In these cases, we may use the while-program
notation, as in Section 1, for those who are more com-
fortable with that form of expression.

The incrementalization method is actually an inter-
play between two kinds of function extension, increment-
ing and caching, as indicated in Figure 2. A function� ��
���� stands for the specification to be transformed.
Let �
��
 ��
 denote a state mutator

v
, or nonrecur-

sive combination of elementary operations on
�

’s input
domain. The incrementalization of

�
with respect to �

is a function that computes
� o � o D t�t given the value of� o D t . That is,

� 2 � o
���� t ��� has the property that
� 2 o D : � o D t�t w � o � o D t�t

We want to describe how
� o D t is used in calculating the

final result. For example, if
�

returns a data structure;
then incrementalization involves analyzing how compo-
nents of

� o D t are reused in creating the object
� o � o D t�t .

Caching extends a function to return partial results.� ��
���� is extended to
� ��
������ ; that is,

� o D t2w< 37* : 3 v : ���
� :;3 �
>

with the proviso that 3 * w � o D t . The
remaining 3�� are intermediate values, accumulated in the
computation of 34* . Of course, the idea is to cache on-
ly those values that will be useful later. This determina-
tion requires a dependence analysis similar to strictness
analysis [12,18]. Thus, in incrementalization, what we
are really after is

� 2 , the incremented caching extension
of
�

.�
’s increment represents just one step, or branch, of

the computation. It remains to incorporate this step in
the original program. In functional expressions, incre-
menting is analogous to unfolding and incorporation to
folding, as we shall see in the examples that follow.

2.1 Example 1 – Application to recursion

In Figure 3, we begin with the “Fibonacci” scheme, whose
recursion pattern is quadratic, incrementalized with re-
spect to

p0r �
; that is,

� 2 computes
� oqpmr ��t

given� o�p t
. We would later apply this analysis to the recur-

sive call “
� o�p � � t

” in order to get a way of computing� o�p t
given

� oqp	� � t
. The simple increment (Fig. 3, top

right) doesn’t get us very far, because, were it incorpo-
rated in the original, the result would still be a quadratic
recursion:

� oqp)t"!w ��# p � �
� ���$� �
� �&%�� � 2 o�p � � : � o�p	�6yht�tw ��# p � �
� ���$� �
� �&%�� ������� w � oqp'�F� t

�&���&# p � � ���?�$� �
� �&%�� �&# pdw y � ���$� y
� �&%��(� r � o�p'�6yht

A caching version accumulates not only
� o�p t

but al-
so all relevant intermediate values. Assuming addition
is “cheap,” there are two intermediate values,

� o�p)t w < � o�p)t : � oqp'� ��t : � o�p'�6yht >

leading to the definition in Figure 3, lower left. In form-
ing the increment of

�
, the goal is to prune unneeded or

redundant intermediate values. Since
� oqp'�F� taw < � o�p � ��t : � o�p �PyHt : � oqp'�*)Ht;>

the call to
� o�p �PyHt

it can be replaced by) v :
���
� �����) w o) *	:) v :),+ taw � o�p �F� t ���

����� 3 w o 37*	:;3 v :;3-+ taw) v �&�<)@* r 37*�:;)?:;3 >

Johnson, Liu & Zhang: Incrementalization for hardware 5

� ������� original increment

original � �����
	 ��� ����
�	���	� 	 � � �_Wf� � �_W ���=	 � � � �_W ���

caching � ������	��
� 	 � �_W �.	�� � �_W ���VU 9 ���������

� � ����
�	�����	��
� 	 � � �_W,� �u� � �_W ���.	 � � � �_W ���

Fig. 2. Components of incrementalization.

These are not defining equations, but identities relating cached,
incrementalized, and cached-incrementalized variants of � .

Furthermore, the value of interest,)?* r 37* , does not de-
pend on subcomponents) + , 3 v , or 3�+ . An automatic anal-
ysis of transitive dependence, similar to strictness analy-
sis [18], makes this determination [12]. With the irrele-
vant terms pruned from the computation, we get

�
��� � ���) w o)@*�:) v : – taw � oqp � ��t �&�
� ��� 3 w o 3 * : – : – taw) v �&�<) * r 3 * :) * : – >

The cached-incrementalized function
� 2 in Figure 3 also

prunes the triples to pairs. The structure is now linear,
not tree-like, a positive development.

Incorporating these optimizations into the original
scheme and doing some elementary transformations, we
obtain

� oqp5r�� taw �&# p �
 � ���$� < ��>
� �&%�� ��# pNw-� � ����� < y : �	>� �&%��"�����) w o)@*�:;) v t2w � oqp)t�&� <) * r) v :) * >

Letting � + p7r&�
, we can rewrite this as

� o � taw ��# ��� � ���?�$� < �	>
� �&%�� �&# � w y � ���$� <by : ��>� �&%��"� � �) w o) * :) v t2w � o � � ��t

��� <) * r) v :) * >
The important outcome is that the result is a linear re-

cursion, derived, not proven (although it certainly could
be); verification is subsumed by the pruning analysis. It
requires associativity to obtain the iterative version of Fi-
bonacci. This, too, is derivable using (for example) tech-
niques originated by Wand [19].

� o � : � : yht �����"!��
� o � :)�: 3 t !w�&# ���
 � ���$�)�4��% � � o � �F� : 36:) r 3 t

For readers who prefer a statement-oriented form, this
function is expressed as

��� w�p$# �
)�: 3�� w < � : y4> ����?� ��� �&%F
 #�%
o � :)�: 3 t � w=< � � � :;3 :;) r 3 > �

� 3 w � o�p # t �

Liu, Stoller and Teitelbaum present a number of algo-
rithms whose performance is significantly improved by
incrementalization. In most cases, the improvement is a
consequence of recursion removal resulting from caching
and pruning nonlinear data structures [12]. These exam-
ples and others demonstrate that the incrementalization
subsumes a broad family of optimization and refinement
techniques [10].

In summary incrementalization has three main phas-
es: caching partial values, which entails pruning irrele-
vant subcomputations; incrementing with respect to a s-
tate mutator; and incorporating the result in the original
computation.

3 Specialization to strength reduction

Applying incrementalization to iterative systems corre-
sponds to performing strength reduction on loops. Since
we are dealing with loops, we will sometimes use a sim-
ple statement oriented language * .

6 Johnson, Liu & Zhang: Incrementalization for hardware

� ���"���	��fDPQ original increment

original

� ���u� �	 (
<����CQ
?;&@+BA:Q
+h*ZIJ+ � ���c�FQ;�LD � ���c�����

��� ���L�	��� �	 (
<����0/a?;&L+HA Q
+h*ZIJ+,(
<
�`	YQO?;&L+HA5�
+h*ZIJ+��TD � ���c�FQ;�

� 	 ��� ���L� � ���"����	 � ���fDPQ;�

caching
pruned

� ���"� �	(
<����CQ ?�&L+HA �bQ�� – � – �+h*ZIJ+d*l+h?
� 	 ��� ! ��� 9 �����;�T	 � ���c�0Q��U 	 �_U ! ��U 9 ��U��;�n	 � ���c�����(ZA ��� ! DnU ! ���)�VU �
� 	 � ���"��	 � � ���"��� � ���c�FQ;��� � ���'�N��� �

� � ���)����� �	(
<����0/2?�&L+HA �bQ�� – �+h*ZIJ+,(
<
�`	YQO?;&L+HA ���{� �bQ�� – � �+h*ZIJ+d*l+h?x��� ! ��� 9 �=	��2(_A*l+h?x�_U ! �VU 9 �=	�� 9 (_A��� ! D�U ! � ��� ! � – � �
� 	 � � ���L� � ���"����	 � ���fD6Q��

Fig. 3. Cached and incremented versions of Fibonacci

3.1 Example 2 – application to a loop

As a first illustration, consider the integer division pro-
gram below.

� p8w��-.	/10^s w�� �
��� w � �������� � s � � �zp #?%

��� w � r&� �
�	� �F� w������ �

Let us move the expensive operation, ‘ � ’ into the loop:

���
�
���?� ��� D �Xp #?%

��� w � r&� �
D-� wEs �'� ���
�

The function to increment is the body of the loop, which
computes next-state values for

s
, � , and D . Incrementing

with respect to the same function, it is the equivalent of
unrolling the loop. That is,

� o�s : � : D t !w <qs : � r&� : s � � >
� o�s : � : D t !w <qs : � r&� : s � � >

In this example there are no values to be cached. Let � wo ��� : ��� : �� t2w � o�s : � : D t . Then
� o � o�s : � : D t�tmw <qs : o � r�� t=r�� : s � o � r�� t;>

9 8w <qs : o � r�� t=r�� : o�s � � t=rCs�>
w < ��� : ��� r�� : �� r ��� >

Use of distributivity in the second step is marked as an
exercise of judgment—though it might well be automatic—
in order to illustrate one point where judgement is typ-
ically required in incrementalization. We can now form

the incrementalized loop, removing multiplication in fa-
vor of addition.

� p8w�� . /60's w�� ��&# s �zp
���?�$� ��� w �
� ��% � ��� w y �

D � wEs � y �������� � D �zp #�%
� � w � r&� �
D � w D rCs

��� w������ �

Elementary transformations are used to fold the initial-
ization back into the loop, as shown in Figure 4.

3.2 Example 3

Let us return momentarily to the the naive sqrt from Sec-
tion 1.2. With the expensive squaring operation moved
from the loop’s test to its body, the function to increment
is

� oqp : � :) tTw <qp : � r�� : o�o � r&��t=r&��t v t;>

Again, because we are dealing with a loop, we want � w

� . Assume � w o ��! : ��� : ��" t2w � oqp : � :) t , and for clarity
let us write #� in place of “ � r��

”. Then

o ��! : ��� : ��" taw=<�p :$#� : o #� r�� t�v�t
(1)

Johnson, Liu & Zhang: Incrementalization for hardware 7

� 	 � original increment

original

�c� 	YQ�#
WY� 	 �
eQ�#
%'&L(Z*
+,WzK � 1)3
� � 	��xDPQ�#
WX� 	 �
��H#

� �7	���������� 	�	�

�����c� 	YQ�#
WY� 	 �u#
%'&)(
*
+,WzK �u1)3
�^� 	��2D6Q�#
WY� 	6W�D �

caching not used not used

Fig. 4. Incrementalization of integer division.

and hence,

� o � o�p : � :) t�tw � o�p :�#��: o #� r&��t v t
(�)w <qp : #� r�� : o�o #� r&��t=r&��t v >
(�)9 8w < � ! : � � r&� : o�o #� r&��t.r&��t v >
(eq. 1)9 8w < � ! : � � r&� : o #� r�� t v rzy"o

#� r�� t=r��E>
w < � ! : � � r&� : � " rzy"o

#� r�� t=r��E>
(eq. 1)w < � ! : � � r&� : � " rzy"o � � r&��t.r&�,>
(eq. 1)

Judgment was exercised in the third step, where we de-
cided not to replace #� by � � ; and in the fourth step, where
a subterm was rewritten. Including

p
in the incremental-

ization was unnecessary because its value never changes.
In Section 4 we will narrow our attention to those state
variables that benefit from incrementalization. As in the
previous example, the increment is now incorporated and
folded in the original loop to obtain the result in Section
1.2.

3.3 More about incorporation

Since we are incrementalizing a loop, incorporating and
folding are automatable [14]. Briefly, in the loop

p � w�A # �� ����� ��� #?% p � w��{oqp)t �
output

oqp)t

the increment of the body
�{o�p t

introduces � as a trailer
variable:

p � w&A # ��&#�� � ���$�
o�p : � t � w <��{o�p t : p1> ����?� ����� #�% p : � � w�� 2 o�p : � t : p �

output
o�p)t

We are often able to rewrite the test � , the update
� 2 o�p : � t ,

and the output combination exclusively in terms of � (de-
noted ��� ,

� � o � t and ����������� � , respectively); hence,
p

can be eliminated
� � w&A�# ���# ��� � �����
� � w!� � o � t �������� ����� #?% � � w�� � o � t �
output � o � t �

In practice, we rename � (or its components) to
p

(or it-
s components). It is also usually possible to fold some
or all of � ’s initialization, as well as some or all of the
output � combination back into the loop. In summary,
loop incrementalization involves three phases:

1. Move expensive terms out of tests, introducing vari-
ables as needed.

2. Solve the incrementalization problem using the loop
body as the state mutator.

3. Incorporate, simplify, and fold the solution.

4 Application to sqrt [17]

Figure 1 shows the source and target expressions of sqrt,
a nonrestoring integer square root algorithm, verified in
Nuprl by O’Leary, Leeser, Hickey and Aagaard [17]. In
this section we show the details of a formal derivation
based on incrementalization. This derivation was also
performed in CACHET, as discussed in the next section.

Of course, it should first be established that the spec-
ification is correct. O’Leary, et.al prove in Nuprl in that
the result is correct, except possibly in the least signifi-
cant bit [17]. That is, For any proper input,

p
,

o#"%$'&)(;oqp)t � ��t�v � p"�Mo*"+$,&-($o�p t.r&��t�v
Since we are optimizing a loop, incrementalization

specializes to the case that the function
�

and state mu-
tator � are the same. In this case, the variable . is un-
changed, and the loop index / decrements independently
of other variables. Let us therefore focus on the update
to 0 , denoted by 1 below.
� o . :%0 :%/ taw � < . :20�:2/ > w < . :+1 o . :%0 :%/ t :2/ �F�	>

8 Johnson, Liu & Zhang: Incrementalization for hardware

where

1 o . :20�:2/ tTw ������� w . � 0 v ���
�&#�� %
 � ����� 0 rzy �
�4��% � ��#�� �
 ���?�$� 0 �6y ��4��% � 0

4.1 Incrementalization

A caching extension of 1 is

1 o . :%0 :%/ t !w������� w . � 0 v �&�
�����) wEy � ���
�&#�� %
 � ���$�< 0 r)�: � :;)?: y 0)?:;) v >� �&%��E��#�� �
 � �����< 0 �)�: � :;)?: y 0)?:;) v >� �&%�� < 0 :
�: – : – : – >

The extension includes two auxiliary values,
y 0) and

) v , that do not contribute directly to 1 ’s result but do
contribute to the computation of 1�� � . In order to see
this, consider

� o � o . :%0 :%/ t�tw � o . : 1 o . :%0 :%/ t :2/ � ��t
w=< . : 1 o . : 1 o . :20�:2/ t :2/ � ��t :2/ �6y7>

The subterm 1 o . : 1 o . :20�:2/ t�t expands to

������� w . � 0 v ���
�&#�� %
 � ���$�

������� w . �Yo 0 rzy � t v �&�
�&#�� %F
 � ���$� o 0 rzy � t.rXy ���@*
� �&%�� ��#�� �
 ���?�$� o 0 rXy � t �6y ��� *
� �&%�� o 0 rzy � t

� �&%��E��#�� �
 ���?�$�"�
�
�

From this it can be seen that) w y � is a candidate for
caching. 1	� � also computes

. � o 0�
) t v
9 8w . � 0 v
� y 0) �) v (2)

and so 1 saves
y 0) and) v . The partial result 0 v is

pruned because it is not used separately. Caching auxil-
iary information is discussed in greater detail in [11].

We arrive at the cached version of 1 shown in Fig-
ure 5, lower left. The next goal is to incrementalize 1
with respect to � w 1 , that is, compute

o 0 2�: � 2 :)12�:;342 : DE2 t w 1 o . :20�:2/ �F� t����������
o 0�: � :;)?:;3 :;D t w 1 o . :20 # :%/ t

As discussed at the end of Section 3, we would like an
increment involving only cached values. Forming the in-
crement involves two applications of judgment. In 1 , D
maintains the value) v (Fig. 5, lower left); so in 1 2

D 2 w o) 2 t�vfw��) y�� v 9 8w D �
(3)

These derivations take place in context of the tests
that guard them. Thus, for example, in the case that both� %F
 and � 2 %
 the fourth component of the result is

y 0 2 .@2 w y"o 0 r) t " v9 8w v�� "v r v "��vw�� v r D
(4)

The remainder of 1 2 is given in Figure 5.

4.2 Incorporating, folding, and simplifying

Incorporating the incrementalized result in the original
program loop opens opportunities to optimize in three
ways, each based on dependence analyses already used
in incrementalization, and each possibly involving tacti-
cal judgment. The goal is to eliminate unneeded terms.

1. Replace the loop test. 1 2 no longer refers to the loop
index, / . If we can remove / from the test (Fig. 1,
left), it is no longer needed at all. In 1) ’s role is to
maintain

y � and D maintains) v . Hence,

/ 2 !
! #" / !(�
 #") !�y
9 8 #") v ! �
 #" D ! � (5)

Thus, / is unneeded since we can use either) or D .
2. Minimize maintained information. On termination the

loop test fails, that is,

/ 2 w � � #" / w
$ %") w-� 9 8 #" D w-�
(6)

Furthermore the only value needed is 0 , the first
component of 1 2 , which depends on the previous
value of 0 ,) , and � . If) wC�

then, since 3 main-
tains

y 0) , we can recover this value as

0 w ��#�� %
���?�$� � v r��
� �&%�� �&#&� �
���?�$� � v �F�

� ��% � � v
Analyzing the dependencies in 1 2 we determine that
the only values needed to maintain � and 3 are com-
ponents � , 3 , and D . Thus, if we choose D to compute
the loop test in the preceding step, we can also prune
) .

Johnson, Liu & Zhang: Incrementalization for hardware 9

� 	�� original increment

original

�E�_�����e��� �.	
*
+�?)4'	6�`�d� 9O(_A
(
< 45>m/a?;&L+HA'� D0� G
+h*ZIJ+k(l<=45Km/a?;&L+HA'�M��� G
+h*ZIJ+ �

not used

caching
pruned

���_�����8�V�b� �	
*
+�? 4'	P�5�e� 9 (_A
*
+�? �7	C� G (ZA
(
<=45>0/a?;&L+HA �Z� D �)�q4L� �)���$� �)���"9 �
+h*ZIJ+k(
<=45K0/a?;&L+HA �Z� � �)�q4@�	�)���;� �)��� 9 �
+h*ZIJ+ �Z�e��4L� – � – � – �

� � �_�e��4L���L��U���W � �	
(
<�45>0/x?�&L+HA
*l+h?)4'	�4^�8U,�8WF(_A
(l<=45>m/a?;&L+HA �Z��D�� 9 ��4L��� 9 � g 9 D�W,� i j �+h*ZIJ+ (
<=45K0/2?;&@+BA �Z� � � 9 ��4L� � 9 � g 9 DNW,� i j$�
+h*ZIJ+��Z�8��4L� � 9 �{g 9 DnW,��i j �+h*ZIJ+k(
<=45K0/a?;&L+HA
*l+h?)4'	�4 D�U,�8WF(_A
(l<=45>m/a?;&L+HA �Z�ED � 9 ��4L� �)� g9 DNWf� i j �+h*ZIJ+ (
<=45K0/2?;&@+BA �Z�M��� 9 ��4@���)� g9 D�Wf� i j �+h*ZIJ+��Z�8��/���� 9 � g 9 DnW,� i j �+h*ZIJ+ �Z�8�_4L� � 9 ��g 9 D�Wf��i j �

Fig. 5. Incrementalization of sqrt

3. Fold and initialize. The body of the loop in sqrt’s
implementation, Figure 1, incorporates a version of
1 2 with values 0 and) pruned.

4.3 Review of the example

Judgment, in the form of equational reasoning, was in-
volved in all the steps of incrementalization. Caching, (2
and 3) incrementalization (4), incorporation and folding
(5 and 6), all entailed theorems depending on arithmetic
identities. Induction was not explicit, although it might
be argued that folding is an inductive tactic. The entailed
dependence analyses are already provided for incremen-
talization.

5 CACHET: an incrementalization tool

CACHET [9,14] is a program transformation tool de-
veloped to explore and demonstrate incrementalization.
Figure 6 shows snapshots of CACHET in operation, as it
is applied to the sqrt example.

The primary window in CACHET is a syntax-directed
program editor; the cursor addresses and operates on subex-
pressions according to the program grammar. Subwin-
dows may be opened to manipulate subexpressions, dis-
play analyses, and so forth. The CACHET commands al-
lowed in a given editing context are displayed as buttons

in a second subwindow, as shown in the figure. Subwin-
dows inherit the contingencies of conditional tests, let
bindings, and the accumulation of new function defini-
tions. Thus, one can symbolically expand and manipu-
late a subexpression according to those conditions in ef-
fect where it occurs.

CACHET has limited rewriting capability. It can be
programmed with a collection of identities to apply in
simplifying a term. Thus, derivations once established
can often be reexecuted automatically under minor changes
to the specification. However, it does not have general
facilities for algebra nor any built-in deciders for logic,
arithmetic, etc.

Figure 6 shows the key steps in a CACHET deriva-
tion of sqrt. The series covers a sequence of sixteen CA-
CHET actions, most being operations invoked by click-
ing on a button, but a couple involving editing operations
in the expression window. It should also be mentioned
that the derivation involved setting up a design specific
file of algebraic identities to steer term rewriting.

(a) The update function is the cached extension of the
function 1 of Section 4.

(b) Update is incremented with respect to itself to ob-
tain update1.

(c) In this step, we have backtracked to add
y 0 y � andy � � to the cache set. These are the auxiliary values

10 Johnson, Liu & Zhang: Incrementalization for hardware

indirectly generated in Section 4 by expanding the
original increment (cf. (b)).

(d) Once again, update is expanded with respect to it-
s state mutator to begin derivation of the increment.
One of the conditional branches is selected for spe-
cialization.

(e) The goal is to replace terms in the function body
with components of R The CACHE SET lists values
maintained in R and its components.

(f) This frame shows an interaction in which the opera-
tor has invoked an identity to rewrite

y"o 0 rXy � t�y ���@*
as
y 0 y ��� * rzy���y � ��y ��� * .

(g) With subterms now in appropriate form, CACHET
performs replacement from the cache set. . .

(h) Resulting in the increment.

Enhancement of CACHET to support incorporating,
folding, and optimizing the increment is underway.

6 Conclusions and directions

Incrementalization is a powerful technique, applicable to
general recursion schemes and, hence, to a broad class of
software and hardware specifications. Understanding it-
s full generality is not necessary if its use is restricted
to strength reduction; hence, CACHET may be too pow-
erful a tool for refining hardware specifications as they
are currently expressed. The same is often said about us-
ing theorem provers in hardware verification. As tools
and methods for hardware design progress, and as code-
sign introduces software to the system specification task,
the character of specification will change. As it does, the
need will arise for higher levels of abstraction and more
general reasoning tools.

In evaluating any verification technique, one should
distinguish ingenious interactions—those requiring in-
sight, planning, and judgment—from the routine interac-
tions imposed by the proof strategy. One can then work
toward automating the logical “boilerplate” and provid-
ing shortcuts and visual support for creative intervention.
Many proof assistants have a strategy language for this
purpose, and one can also use scripting facilities to make
arguments reusable.

This study demonstrates that derivational formalis-
m, conducted in in an appropriate context, is an effective
verification method. In this study, that context was incre-
mentalization specialized to strength reduction. We con-
trasted the derivational proof of a nonrestoring square-
root computation with its deductive proof in Nuprl. The
Nuprl proof of the behavioral specification also follows
a strength reduction paradigm, represented by invariant
strengthening, as sketched in Section 1.2.

The algorithm implementation in Figure 1 is the same
as that of O’Leary, et. al. [17]. There, the verification
proof is carried into the architectural level using an em-
bedded hardware description language called HML. Some
optimizations are performed on the architecture. For in-
stance, elimination of the loop index, / is done in there,
rather than in the algorithm. Formal derivation and sub-
sequent refinement of a correct architecture for Figure
1 is straightforward in the DDD algebra. Numerous ex-
amples at a similar level of abstraction have been pub-
lished [6,2,15]. However, one future direction for this
work is to compare performing refinements on the be-
havioral and architectural sides.

CACHET is a research prototype developed, primar-
ily, to investigate and demonstrate incrementalization al-
gebra. We are only beginning to explore its use as an in-
teractive design tool. The sqrt case study reveals a num-
ber of issues for continued study.

A specialized mode for strength reduction would make
the tool easier to use in hardware applications. In soft-
ware, the “big wins” often come from recursion removal
either in control or data. In hardware, there is usually no
recursion to remove, and optimizations come from clever
reuse of partial values. This difference in focus should be
reflected in the tool. For example, in the sqrt derivation,
we had to backtrack to manually extend the cache set.
This step can be automated.

Both CACHET and DDD need greater flexibility in
integrating both logical and equational reasoning facil-
ities. Justifications 2 through 6 in Section 4 illustrate
points in the derivation where one would like attach d-
eductive reasoning, perhaps even a proof assistant. Con-
versely, we have found long algebraic derivations to be
difficult to execute in sequent style proof assistants. Even
more difficult are arguments involving systems, which
are best represented by simultaneous recursive defini-
tions.

Notes

1. (p. 5) There are some minor departures from con-
ventional ������� � -program syntax. We rely on inden-
tation, rather than begin–end brackets, to depict the
scope of compound statements; and we use explicit
tuples,

o 3 * :;3 v t � w < �
� : � � > to express parallel as-

signment.
2. (p. 4) Liu gives the state mutator � the signature
�
��
 � � �
 , allowing for the introduction of
external “inputs” from a set

�
. External inputs are

not used in any of our examples, so we simplify �
for this exposition.

Johnson, Liu & Zhang: Incrementalization for hardware 11

(a) (b)

(c) (d)

Fig. 6. Key steps in the CACHET derivation of sqrt

12 Johnson, Liu & Zhang: Incrementalization for hardware

(e) (f)

(g) (h)

Figure 6 continued

Johnson, Liu & Zhang: Incrementalization for hardware 13

Acknowledgements. We are indebted to Warren Hunt and John
O’Leary for their comments on early versions of this article.

References

1. Bhaskar Bose. DDD-FM9001: Derivation of a Verified
Microprocessor. PhD thesis, Computer Science Depart-
ment, Indiana University, USA, December 1994. Techni-
cal Report No. 456, 155 pages.

2. Bhaskar Bose and Steven D. Johnson. DDD-FM9001:
Derivation of a verified microprocessor. an exercise in in-
tegrating verification with formal derivation. In G. Milne
and L. Pierre, editors, Proceedings of IFIP Conference on
Correct Hardware Design and Verification Methods, pages
191–202. Springer, LNCS 683, 1993.

3. Edsger Wybe Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

4. David A. Greve. Symbolic simulation of the JEM1 micro-
processor. In Ganesh Gopalakrishnana and Phillip Wind-
ley, editors, Formal Methods in Computer Aided Design
(FMCAD’98), volume 1522 of Lecture Notes in Computer
Science, pages 321–333. Springer, 1998.

5. David Gries. The Science of Programming. Springer-
Verlag, New York, 1981.

6. Steven D. Johnson and Bhaskar Bose. A system for mech-
anized digital design derivation. In IFIP and ACM/SIGDA
International Workshop on Formal Methods in V LSI De-
sign, 1991. Available as Indiana University Computer Sci-
ence Department Technical Report No. 323 (rev. 1997).

7. Steven D. Johnson and Paul S. Miner. Integrated reasoning
support in system design: design derivation and theorem
proving. In Hon F. Li and David K. Probst, editors, Ad-
vances in Hardware Design and Verification, pages 255–
272. Chapman-Hall, 1997. IFIP WG 10.5 Advanced Re-
search Working Conference on Correct Hardware Design
and Verification Methods (CHARME’97).

8. Boert B. Jones, Jens U. Skakkebaek, and David L. Dil-
l. Reducing manual abstraction in formal verification
of out-of-order execution. In Ganesh Gopalakrishnana
and Phillip Windley, editors, Formal Methods in Comput-
er Aided Design (FMCAD’98), volume 1522 of Lecture
Notes in Computer Science, pages 2–17. Springer, 1998.
Second International Conference, FMCAD’98.

9. Yanhong A. Liu. CACHET: An interactive, incremental-
attribution-based program transformation system for de-
riving incremental programs. In Proceedings of the
10th Knowledge-Based Software Engineering Conference,
pages 19–26, Boston, Massachusetts, November 1995.
IEEE CS Press, Los Alamitos, Calif.

10. Yanhong A. Liu. Principled strength reduction. In Richard
Bird and Lambert Meertens, editors, Algorithmic Lan-
guages and Calculi, pages 357–381. Chapman & Hall,
London, U.K., 1997.

11. Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum.
Discovering auxiliary information for incremental compu-
tation. In Conference Record of the 23rd Annual ACM
Symposium on Principles of Programming Languages,

pages 157–170, St. Petersburg Beach, Florida, January
1996. ACM, New York.

12. Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum.
Static caching for incremental computation. ACM Tran-
s. Program. Lang. and Syst., 20(2):1–40, March 1998.

13. Yanhong A. Liu and Tim Teitelbaum. Systematic deriva-
tion of incremental programs. Sci. Comput. Program.,
24(1):1–39, February 1995.

14. Yanhong Annie Liu. Incremental Computation: A
Semantics-Based Systematic Transformational Approach.
PhD thesis, Department of Computer Science, Cornell U-
niversity, Ithaca, New York, January 1996.

15. Paul S. Miner. Hardware Verification using Coinductive
Assertions. PhD thesis, Computer Science Department,
Indiana University, USA, 1997. To appear shortly.

16. J Strother Moore. Symbolic simulation: an ACL2 ap-
proach. In Ganesh Gopalakrishnana and Phillip Windley,
editors, Formal Methods in Computer Aided Design (FM-
CAD’98), volume 1522 of Lecture Notes in Computer Sci-
ence, pages 334–350. Springer, 1998.

17. John O’Leary, Miriam Leeser, Jason Hickey, and Mark
Aagaard. Non-restoring integer square root: A case s-
tudy in design by principled optimization. In Ramayya
Kumar and Thomas Kropf, editors, Proceedings of the
2nd International Conference on Theorem Provers in Cir-
cuit Design: Theory, Practice, and Experience, volume
901 of Lecture Notes in Computer Science, pages 52–71,
Bad Herrenalb (Black Forest), Germany, September 1994.
Springer-Verlag, Berlin.

18. Phillip Wadler and John Hughes. Projections for strictness
analysis. In 3rd International Conference on Function-
al Programming Languages and Computer Architecture,
pages 385–407, Berlin, 1987. Springer LNCS 274.

19. Mitchell Wand. Continuation-based program transforma-
tion strategies. Journal of the ACM, 27:164–180, 1980.

20. Mitchell Wand. Induction, Recursion and Programming.
North Holland, 1980.

21. Phillip Windley, Mark Aagard, and Miriam Leeser. To-
wards a super duper hardware tactic. In Jeffery J. Joyce
and Carl Seger, editors, Higher-Order Logic Theorem
Proving and its Applications, volume 780 of Lecture Notes
in Computer Science. Springer-Verlag, August 1993.

