
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes
Supplementary Material

Zhengqi Li1 Simon Niklaus2 Noah Snavely1 Oliver Wang2

1 Cornell Tech 2 Adobe Research

1. Scene Flow Regularization Details
Recall that Lreg is used as a regularization loss for the predicted scene flow fields, consisting of three terms with equal

weights: Lreg = Lsp + Ltemp + Lmin, corresponding to spatial smoothness, temporal smoothness, and minimal scene flow.
Scene flow spatial smoothness [5] minimizes the weighted `1 difference between scenes flows sampled at neighboring 3D

position along each ray ri. In particular, the spatial smoothness term is written as:

Lsp =
∑
xi

∑
yi∈N (xi)

∑
j∈{i±1}

wdist(xi,yi)||fi→j(xi)− fi→j(yi)||1, (1)

whereN (xi) is the neighboring points of xi sampled along the ray ri, and weights are computed by the Euclidean distance
between the two points: wdist(x,y) = exp (−2||x− y||2).

Scene flow temporal smoothness, inspired by Vo et al. [9], encourages 3D point trajectories to be piece-wise linear with
least kinetic energy prior. This is equivalent to minimizing sum of forward scene flow and backward scene flow from each
sampled 3D point along the ray:

Ltemp =
1

2

∑
xi

||fi→i+1(xi) + fi→i−1(xi)||22 (2)

Lastly, we encourage scene flow to be minimal in most of 3D space [8] by applying a l1 regularization term to each
predicted scene flow:

Lmin =
∑
xi

∑
j∈{i±1}

||fi→j(xi)||1 (3)

2. Data Driven Prior Details
Geometric consistency prior. Recall the geometric consistency prior minimizes the reprojection error of scene flow
displaced 3D points w.r.t. the derived 2D optical flow. Suppose pi is a 2D pixel position at time i. The corresponding 2D pixel
location in the neighboring frame at time j displaced through 2D optical flow ui→j can be computed as pi→j = pi + ui→j .

To estimate the expected 2D point location p̂i→j at time j displaced by predicted scene flow fields, we first compute the
expected scene flow F̂i→j(ri) and the expected 3D point location X̂i(ri) of the ray ri through volume rendering:

F̂i→j(ri) =

∫ tf

tn

Ti(t)σi(ri(t)) fi→j(ri(t))dt, (4)

X̂i(ri) =

∫ tf

tn

Ti(t)σi(ri(t))xi(ri(t))dt. (5)

p̂i→j is then computed by performing perspective projection of the expected 3D point location displaced by the scene flow (i.e.
X̂i(ri) + F̂i→j(ri)) into the viewpoint corresponding to the frame at time j:

p̂i→j(ri) = π(K(Rj(X̂i(ri) + F̂i→j(ri)) + tj)), (6)

1

where (Rj , tj) ∈ SE(3) are rigid body transformations that transform 3D points from the world coordinate system to the
coordinate system of frame at time j. K is a camera intrinsic matrix shared among all the frames, and π is perspective division
operation. The geometric consistency can be applied by comparing the l1 difference between p̂i→j and pi→j :

Lgeo =
∑
ri

∑
j∈N (i)

||p̂i→j(ri)− pi→j(ri))||1. (7)

Single-view depth prior. The single view depth prior encourages the expected termination depth Ẑi computed along each
ray to be close to the depth Zi predicted from a pre-trained single-view depth network [7]. As single-view depth predictions
are defined up to an unknown scale and shift, we utilize a robust scale-shift invariant loss [7]:

Lz =
∑
ri

||Ẑ∗i (ri)− Z∗i (ri)||1 (8)

We normalize the depths to have zero translation and unit scale using robust estimator:

Z∗(ri) =
Z(ri)− shift(Z)

scale(Z)
,

where shift(Z) = median(Z), scale(Z) = mean(|Z − shift(Z)|). (9)

Due to computational limits, we are not able normalize the entire depth image during training, so we normalize the
depth value using the shift and scale estimate from current sampled points in each training iteration. Furthermore, since we
reconstruct the entire scene in normalized device coordinate (NDC) space, and the MiDAS model [7] predicts disparity in
Euclidean space with an unknown scale and shift, we can use the NDC ray space derivation from NeRF [4] to derive that
the depth in NDC space is equal to negative disparity in Euclidean space up to scale and shift, so our single-view term is
implemented as:

Lz =
∑
ri

||Ẑ∗i (ri) +
1

Zi

∗
(ri)||1 (10)

3. Space-Time Interpolation Visualization
In Sec 3.4 of our main paper, we propose a splatting-based plane-sweep volume tracing approach to perform space-time

interpolation to synthesize novel views in at novel view points, and in between input time indices. We show a visual illustration
of this in Fig. 1. In practice, we use the CUDA implementation of average splatting from Niklaus et al. [6] to efficiently
perform forward splatting of the 3D points through scene flow fields.

4. Volume Rendering Equation Approximation
Recall in Sec 3.3, the combined rendering equation is written as:

Ĉcb
i (ri) =

∫ tf

tn

T cb
i (t)σcb

i (t) ccb
i (t)dt, , (11)

where σcb
i (t) ccb

i (t) is a linear combination of static scene components c(ri(t),di)σ(ri(t)) and dynamic scene components
ci(ri(t),di)σi(ri(t)), weighted by v(ri(t)):

σcb
i (t) ccb

i (t) = v(t) c(t)σ(t) + (1-v(t)) ci(t)σi(t). (12)

We approximate this combined rendering equation using the same quadrature approximations technique described in prior
work [3, 4]. Suppose {tl}Ll=1 are the points sampled within the near and far bounds and we denote the distance between every
sampled points δl = tl+1 − tl, the discrete approximation of Eq. 11 is then written as:

Ĉcb
i (ri) =

L∑
l=1

T cb
i (tl)

(
v(tl)α(σ(tl)δl) c(tl) + (1− v(tl))α(σi(tl)δl) ci(tl)

)
,

where T cb
i (tl) = exp

(
−

l−1∑
l′=1

(
v(tl

′
)σ(tl

′
) + (1− v(tl

′
))σi(t

l′)
)
δl′
)
,

and α(x) = 1− exp(−x) (13)

2

Figure 1: Space-time view synthesis. We propose a 3D splatting-based approach to perform space-time interpolation at
specified novel viewpoint (shown as green camera) at an intermediate time i + δi. Specifically, we sweep over every ray
r emitted from the specified novel viewpoint from front to back. At each sampled step t along the ray, we query the color
and density information (c, α), as well as the scene flows at both times i and i+ 1. We then displace the 3D points by the
scaled scene flow δifi→i+1, (1− δi)fi→i−1 respectively (left). The 3D displaced points and their associated attributes are then
splatted from time i and i+ 1 onto a (c, α) accumulation buffer at the specified novel viewpoint. The splats the accumulation
buffer are blended with linear weights 1 − δi, δi (middle) followed by standard volume rendering to obtain final rendered
image (right).

5. Network Architecture
Our network architecture is a variant of the original NeRF, which adopts MLPs as a backbone. Our full model consists of

two separate MLPs, corresponding to a static (time-independent) scene representation (Fig. 2) and a dynamic (time-dependent)
scene representation (Fig. 3).

6. Implementation Details
Initialization. We denote the initialization stage as the first 1000N iterations during training, whereN is the number training
views. To warm up the optimization, during the initialization stage, we only compute the temporal losses only in temporal
window of size 3, i.e. j ∈ {i, i± 1}, and switch to a temporal window of size 5, i.e. j ∈ N (i) = {i, i± 1, i± 2} after the
initialization stage.

Additionally, as both of the data-driven priors are noisy (in that they rely on inaccurate or incorrect predictions), we use
these for initialization only, and linearly decay the weight of Ldata to zero during training for a fixed number of iterations. In
particular, we linearly decrease the weight by factor of 10 every 1000N iterations.
Hard mining sampling. Optionally, in order to sufficiently initialize the depth and scenes flows of small, fast moving
objects such as the limbs of a person, we precompute a coarse binary motion segmentation mask from each frame, and sample
an additional 512 points from the motion mask regions during the initialization stage. These additionally sampled points are
added to the data-driven terms used in our dynamic (time-variant) scene representation.

Similar to prior work [10], we compute the above coarse binary motion segmentation masks using a combination of physical
and semantic estimates of rigidity. In particular, the physical mask is wherever the distance between the optical flow [2] at
each pixel and its corresponding epipolar line from the neighboring frame at time j ∈ N (i) is greater than 1 pixel, and the
semantic mask is computed using an off-the-shelf instance segmentation network [1] to label all pixels corresponding to
possible moving objects such as people and animals. Finally, We union the two masks followed by morphological dilation to
obtain the final binary mask. Note this coarse motion segmentation is mainly used to increase the number of samples for the
data-driven priors during initialization and does not need to be accurate for training static (time-invariant) scene representation.

3

Figure 2: Network architecture of static (time-invariant) scene representation. Modified from the original NeRF architec-
ture diagram. We predict an extra blending weight field v from intermediate features along with opacity σ.

Figure 3: Network Architecture of dynamic (time-variant) scene representation. Modified from the original NeRF
architecture diagram. We encode and input time indices i into the MLP and predict time-dependent scene flow fields Fi and
disocculusion weight fieldsWi from the intermediate features along with opacity σi.

Hyperparameters and evaluation details. We implement our framework using PyTorch. We empirically set βcyc =
1, βreg = 0.1, βdata ∈ {0.2, 0.4} in our experiments. We also perform forward-backward checks after we use pretrained
network to estimate optical flow between adjacent frames. When we evaluate all the baselines, we resize their rendered images
to be same as our rendered images before performing evaluation.

In order to accurately determine which region is moving, we compute ground truth dynamic masks for numerical evaluation

4

(Dynamic Only described in the main manuscript) from the multi-view videos. In particular, we compute optical flow between
reference time instance and its neighboring time instances at the same viewpoint, and segment out the dynamic region where
the flow magnitude is larger than one pixel.

References
[1] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proc. Int. Conf. on Computer Vision (ICCV), pages

2961–2969, 2017. 3
[2] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolution of optical

flow estimation with deep networks. In Proc. Computer Vision and Pattern Recognition (CVPR), pages 2462–2470, 2017. 3
[3] Ricardo Martin-Brualla, N. Radwan, Mehdi S. M. Sajjadi, J. Barron, A. Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural

radiance fields for unconstrained photo collections. ArXiv, abs/2008.02268, 2020. 2
[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes

as neural radiance fields for view synthesis. Proc. European Conf. on Computer Vision (ECCV), 2020. 2
[5] Richard A Newcombe, Dieter Fox, and Steven M Seitz. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time.

In Proc. Computer Vision and Pattern Recognition (CVPR), 2015. 1
[6] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proc. Computer Vision and Pattern Recognition

(CVPR), pages 5436–5445, 2020. 2
[7] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation:

Mixing datasets for zero-shot cross-dataset transfer. 2020. 2
[8] Jack Valmadre and S. Lucey. General trajectory prior for non-rigid reconstruction. pages 1394–1401, 2012. 1
[9] Minh Vo, S. Narasimhan, and Yaser Sheikh. Spatiotemporal bundle adjustment for dynamic 3d reconstruction. Proc. Computer Vision

and Pattern Recognition (CVPR), pages 1710–1718, 2016. 1
[10] Jonas Wulff, Laura Sevilla-Lara, and Michael J Black. Optical flow in mostly rigid scenes. In Proc. Computer Vision and Pattern

Recognition (CVPR), pages 4671–4680, 2017. 3

5

