
An Open Source Tracking Testbed
and Evaluation Web Site
Robert Collins, Xuhui Zhou, Seng Keat Teh

Robotics Institute, Carnegie Mellon University
[rcollins, xuhui, steh]@cs.cmu.edu

Abstract:

We have implemented a GUI-based tracking testbed
system in C and Intel OpenCV, running within the
Microsoft Windows environment. The motivation for the
testbed is to run and log tracking experiments in near
real-time. The testbed allows a tracking experiment to be
repeated from the same starting state using different
tracking algorithms and parameter settings, thereby
facilitating comparison of algorithms. We have also
developed a tracking evaluation web site to encourage
third-party self-evaluation of state-of-the-art tracking
algorithms. The site hosts source code for the tracking
testbed, a set of ground-truth datasets, and a method for
on-line evaluation of uploaded tracking results.

1. Introduction

This work addresses the need for tools and community
resources for evaluating and comparing the performance
of tracking algorithms. The domain of current interest is
tracking ground vehicles from airborne sensor platforms.
To facilitate evaluation of tracking algorithms on such
datasets, we have implemented an open source,
interactive tracking testbed using C and Intel OpenCV
routines [3] within the Microsoft Windows operating
environment. The testbed allows a tracking experiment to
be “replayed” using different tracking algorithms and
parameter settings.

We have also set up a tracking evaluation web site where
researchers can self-evaluate their own algorithms. The
primary features of the site are: 1) availability of data sets
with ground-truth results; 2) sample baseline tracking
algorithms implemented within the tracking testbed; 3)
provisions for uploading results in a standard data
format; 4) a mechanism for on-line, automated scoring of
uploaded tracking results; 5) a table of algorithm rankings
and pointers to publications describing each algorithm.

Related Work

The tracking evaluation web site is modeled after the
Middlebury stereo evaluation web page [8]. This stereo
page has been quite successful, since it is now nearly
impossible to publish a new algorithm for two-frame
stereo matching without documenting how well the
algorithm performs on the Middlebury datasets. We
believe that much of the success of the Middlebury site is
due to the competitive nature of the online algorithm
rankings table. The competitive nature of the Middlebury
page makes it fun for people to participate in the
evaluation.

A web site for evaluation of face recognition algorithms is
available from Colorado State University [1]. This site
contains baseline implementations of popular face
recognition algorithms and a set of recommended
evaluation protocols. It does not currently contain an on-
line algorithm ranking system.

Evaluation of tracking systems is addressed annually by
the IEEE Performance and Evaluation of Tracking and
Surveillance (PETS) workshop series [6]. The goal of the
PETS workshops is for researchers to run their tracking
algorithms on the same datasets, submit results in an xml
format, and publish their algorithm and results in the
proceedings. Most of the PETS datasets and algorithms
are geared towards stationary camera surveillance, and
therefore most algorithms rely on statistical background
subtraction techniques to detect moving objects – an
approach that is not directly relevant to airborne datasets
where the camera is constantly in motion.

In Section 2 we provide an overview of the open source
tracking testbed, and describe in detail one module
available within it that provides background motion
estimation and foreground motion prediction.
Section 3 presents the tracking evaluation web site, with
an emphasis on its scoring metrics.

2. Open Source Tracking Testbed
2.1 Tracking Testbed System

We have implemented a GUI-based tracking testbed
system in C and Intel OpenCV, running within the
Microsoft Windows environment. We are distributing the
code for public download as an open source resource. A
compiled executable is available for people who just want
to run the tracker as is. Complete source code is available
for people who want to modify the functionality, or add
their own tracking algorithms into the testbed. A user
manual and programmer reference guide are included
with the distribution.

Figure 1 shows a screen capture of the tracking testbed.
The object being tracked is outlined with a blue bounding
box. Along the top of the GUI is a menu of options. At
the far left, the “Open” option opens a directory browser
that allows the user to select the first file (frame) in a test
tracking sequence. The user then interactively clicks four
points of a polygon delineating the object to track. After
doing so, the “Track” menu option tracks the object
through the sequence while displaying the updated
bounding box at each frame. Other menu options include
“Stop” for pausing the tracker, “Step>” for single
stepping the tracker forward by a single frame, and
“Rewind” to bring up the first frame in the sequence
again for another tracking run with the same initial
polygon. If “Log” is selected, results are logged for each
frame for later replay. “Predict” turns on motion
prediction to enable tracking through occlusion.

Functionality of the testbed includes:

Output Logging: When logging is turned on, tracking
results for each frame are stored in ascii log files for later
review. Included in each log file is the current bounding
box of the object in that frame and a binary bitmap that
specifies which pixels belong to the object versus the
background. The log file format is compatible with the
automated scoring mechanism on the tracking evaluation
web site (Section 3).

Replay of Experiments: Through use of the log files,
previous tracking sessions can be read back into the
testbed and replayed for review. Furthermore, the replay
can be stopped at any frame and tracking restarted from
that state using a different algorithm or set of parameters.

Batch Mode: Although typical usage will be interactive,
a batch tracking mode is invoked when the user opens a
file that specifies a list of multiple sequences and
polygons for tracker initialization. When batch mode is

invoked, the testbed performs tracking on each sequence
in the list, without interruption, until the end of the list is
reached. This provides a way to run a set of tracking
experiments overnight without intervention.

Figure 1: Screen capture of the real-time C tracking testbed,
showing the tracked object bounding box and menu of
interactive options displayed across the top of the graphical
user interface.

Baseline Algorithms: A set of baseline tracking
algorithms is provided with the testbed. Many algorithms
are available (see Table 1). For example, “Template
Match” refers to normalized correlation template
matching. “Basic Mean Shift” is the algorithm from [5].
“Variance Ratio” refers to an algorithm from [4] that
selects a color tracking feature that maximizes the
separability between feature histograms computed from
the foreground target and its surrounding background
region, prior to running mean-shift. The adaptive version
of this algorithm reruns the feature selection process at
every 10th frame, otherwise the process is performed only
once (nonadaptive). Our main effort at this time is adding
new baseline algorithms to the list.

Table 1: Sample timings for baseline algorithms in the tracking
testbed, in frames per second. Each timing is shown both with
and without the KLT-based motion prediction module turned on
(see Section 2.2). Timings are from an Intel Pentium-4, 2.4GHz
machine with 1 GB of RAM.
Tracker No Prediction

(KLT off)
Prediction
(KLT on)

Fg/Bg Histogram Shift 21 7
Basic Mean shift 18 7
Template Match 20 7
Variance Ratio 20 7
Variance Ratio Adaptive
(Every 10 frames)

17 7

Peak Difference 20 6
Peak Difference Adaptive
(Every 10 frames)

15 5

Algorithm API: As a side benefit of integrating multiple
tracking algorithms we have developed a modular API
that allows researchers to integrate their own tracking
algorithms into the testbed. Three basic functions need to
be provided to integrate a new algorithm into the testbed:

TrackerInit (image, box, mask) –invoked to initialize a
new object track. Arguments are the initial image frame,
initial bounding box, and initial object bitmap.
TrackerNextFrame (image, &box, &TrackResult) –
track target into the next frame, and return the tracking
result. Input arguments are the next image frame and a
predicted bounding box of where the object will be (see
the motion prediction discussion to follow). Outputs are
the new bounding box and a structure containing object
bitmap, tracking confidence score, and an occlusion
detection flag (for algorithms that can compute one).
TrackerCleanup() –End of experiment. Release allocated
memory.

We encourage researchers to make their code available to
others by integrating it into the testbed for release in later
versions.

2.2 Motion Prediction Module

Two common cases of failure in airborne target tracking
are: 1) sudden, large camera motions (for example, a
panning or zooming motion); and 2) occlusion of the
tracked object behind buildings or foliage. The tracking
testbed includes a motion estimation and prediction
module that addresses both of these issues by estimating
and compensating for apparent motion of both the scene
background and tracked foreground object. Parametric
estimates of background scene displacements provide
coarse predictions of where the object should be in the
current frame based purely on the effects of camera
motion. Foreground motion modeling fine tunes these
estimates by adding a further displacement due to
predicted object motion. Background motion estimation
and foreground object motion prediction are coupled. In
fact, we hypothesize that a constant velocity model is
adequate for modeling object motion once the background
camera motion has been compensated for. This
hypothesis is validated later in this section.

The motion prediction module allows tracking through
temporary, total occlusions. An occlusion event is
flagged when tracking confidence falls below some
percentage of the expected tracking confidence score.
During occlusion, a model of the object motion is
extrapolated forward in time until the object reappears
and is reacquired (Figure 2).

Figure 2. The testbed contains a motion prediction module that
helps track objects through occlusion. The prediction method
assumes object motion has constant velocity after compensating
for affine motion of the scene background.

We estimate background camera motion by fitting a
global parametric motion model to sparse optic flow. The
Kanade-Lucas-Tomasi (KLT) feature tracker [2] is used
to match corner features between adjacent pairs of video
frames to obtain a sparse estimate of the optic flow field.
For each corner feature, the method solves for a subpixel
translational displacement vector that minimizes the sum
of squared intensity differences between an image patch
centered at the corner and a patch in the subsequent frame
centered at the estimated translated position.

A global, six parameter affine motion model is fit to the
observed displacement vectors to approximate the flow
field induced by camera motion and a rigid ground plane.
Higher order motion models such as planar projective
could be used, however the affine model has been
adequate in our experiments due to the large sensor
standoff distance, narrow field of view, and nearly planar
ground structure in these aerial sequences. We use a
Random Sample Consensus (RANSAC) procedure [7] to
robustly estimate affine parameters from the observed
displacement vectors. The method repeatedly selects a
random set of three point correspondences, solves for the
affine transformation induced by them, and counts the
number of other correspondences that can be explained by
the resulting transformation. The largest such set of
correspondences is chosen to represent the statistical
“inliers”, and a least-squares solution applied to these
inliers forms the final global affine estimate. The benefit
of using the robust RANSAC procedure is that the final
least squares estimate is not contaminated by incorrect
displacement vectors, points on moving vehicles, or scene
points with large parallax.

It is important to note that we do not do explicit image
warping to produce stabilized image sequences. Instead,
we compensate for camera motion by predicting apparent
optic flow within an image region local to the object, so
that it can be added to the vector that predicts where the
object will go based on the constant velocity assumption.
This simple linear algebra computation is far less
expensive than image stabilization via warping.

It is also important to note that the motion prediction
mechanism presented here is an optional feature of the
tracking testbed. The user can turn off motion prediction
completely, or can substitute another approach by
implementing it within their own algorithm.

Validating Affine-Compensated Constant Velocity

The motion prediction module assumes the object travels
with constant velocity after first compensating for affine
background motion. To validate this assumption, we
tested a simplified three-frame computation method (the
actual motion prediction module in the testbed uses a
sliding window of N previous object centroids to more
robustly estimate current velocity).

We model the observed displacement of a target from one
video frame to the next using two terms (see Figure 3).
The first term, d_camera, models the displacement that
would have been observed if the object had been
stationary, or in other words, only due to motion of the
camera. Camera motion includes proper movement such
as forward translation of the airplane or rotation of the
camera ball, and apparent motion due to changes in focal
length during a zoom operation.

Figure 3: Decomposition of observed displacement of a target
between two video frames into terms based only on motion of
the camera and motion of the target.

The second term, d_target, models the displacement that
would have been observed if the camera had been
stationary, and thus assumes the displacement was due
solely to motion of the object. To estimate the object-only
displacement term we assume a constant velocity model,
meaning the vehicle is traveling in a “steady-state”. Of
course, in reality the vehicle may be speeding up or

slowing down, but as long as the change in acceleration is
slow a “constant velocity + noise” model should be
sufficient.

Figure 4 illustrates the terms involved in predicting where
an object should be in the current frame based on a
constant velocity model, given that we must first adjust
for camera motion before we can compute the vehicle’s
velocity. The formula to predict the location Pt of the
object in the current frame t, given its previously observed
positions Pt-1 and Pt-2 in the last two frames, is

 2
2

111
1 *

 t
t

ttt
t

tt PTPPTP

where 2
1

t

tT is the affine motion between frames t-2 to t-1,

and 1t
tT is the affine motion between frames t-1 and t.

Figure 4: Prediction of current location of target, Pt, based on
its previous two observed positions, and computed inter-frame
displacements due to camera motion.

Once the object velocity is computed between two frames,
prediction of object location based on constant velocity
can be extrapolated into subsequent frames without
further observation of the object position, as long as
camera motion is estimated between each pair of frames.
This multi-frame “blind” prediction of target location is
important, since it forms the basis of tracking through
occlusion.

We have used a large set of hand-labeled aerial tracking
sequences to validate this motion prediction method. In
these sequences, objects in every 10th frame have been
outlined by polygons. The sequences include a variety of
object resolutions (lens zoom factors), camera motions,
and relative object motions. We test the predicted
location of an object polygon centroid in frame t given its
known location in frames t-2 and t-1 and estimates of
inter-frame affine camera motions computed from sparse
optic flow. [Since ground truth is only available for every
10th frame in the sequences, frame t-1 is actually 10
frames in the past, and t-2 is 20 frames in the past. Thus,
the test is more demanding than the frame-to-frame
prediction that occurs in the on-line tracking system.]

Figure 5 plots two-frame displacements of 13,852 target
centroids with no motion compensation (left plot), after

compensation for affine camera motion only (middle),
and after compensation for both camera motion and
constant velocity object motion components (right). Since
displacement scales with respect to zoom factor, we use a
simple method for normalizing across zoom (vehicle size)
by measuring centroid displacement in pixels divided by
the square root of the number of pixels in the object image
polygon. When an object is relatively compact, as is the
case with vehicles, displacements within its borders map
roughly to a circle of radius 1, which is overlaid on the
plots. For tracking methods based on gradient descent
(e.g. Lucas-Kanade method and Mean-shift), we want the
observed displacements to fall within this circle so that
the predicted object polygon in the next frame overlaps
well with the true object polygon. Points outside of radius
1 represent cases where a gradient descent tracker may
fail, and points outside of radius 2 represent cases that are
almost guaranteed to fail, since the predicted object
polygon does not overlap the new object polygon at all.

Figure 5: Validation of camera motion compensation and
constant velocity location prediction. Units in the plots are
centroid displacement / sqrt(pixels on target). Each plot is
overlaid with a circle of unit radius. These plots result from
13,852 motion prediction tests.

As we see from Figure 5, without motion compensation
there are many cases of interframe displacements that are
large enough to cause tracking failure. In contrast,
compensating for affine camera motion brings the vast
majority of the location predictions within the circle of
radius 1, thereby bounding the displacement to a degree
where success is likely. We see in the far right plot the
effects of applying both camera motion AND constant
velocity target motion prediction. Although a few more
points fall outside the circle of radius 1, the clustering of
compensated points around the origin is actually tighter
(major axis standard deviation of 0.13 as opposed to 0.20
using only camera motion compensation, and 0.83 with
no compensation at all). The results clearly validate that
affine background motion compensation followed by
constant velocity motion prediction is an adequate motion
prediction model for airborne tracking, and that it can
greatly increase the likelihood of success of simple
gradient descent target search methods.

3. Evaluation Web Page Development

We have developed an on-line, tracking evaluation web
site to facilitate third-party self-evaluation of tracking
systems on airborne video data. The inspiration for the
site is the successful Middlebury stereo evaluation web
page [8]. Our evaluation site provides: 1) ground-truth
datasets for tracking experiments; 2) the tracking testbed
software; 3) a mechanism for uploading and automatically
scoring tracking results; and 4) a table showing the user’s
score ranked in relation to other algorithm submissions.
See Figure 6.

Figure 6. Framework for development of a tracking evaluation
web page. PHP-enabled web scripts interface with a My-SQL
database on a dedicated server, yielding great flexibility in
designing and implementing web page functionality.

The basic website framework is built on PHP web scripts
on a dedicated Apache server. PHP is an open source,
server-side, HTML-embedded scripting language used to
create dynamic Web pages. PHP can perform callouts to C
programs, giving us great flexibility in designing the web
page functionality. However, the primary strength of PHP
lies in its compatibility with many types of databases. In
our evaluation setup, PHP interfaces with a My-SQL
database. We determined that it would be necessary to
have an underlying database to manage the large volume
of test datasets and uploaded results submitted by the web
page users. Furthermore, the database enables dynamic
manipulation and tabulation of evaluation scores.

The evaluation website is account-based. Each time a
user submits results for a different algorithm, they set up
an account that maintains its own set of evaluation scores
on the web server’s MySQL database. To improve
security for the website, we prevent automated account
registrations by using visual captcha’s – the user must
read a distorted picture representing a string of letters and
numerals that must be entered for verification. We also
limit the size of file uploads to prevent malicious usage.

3.1 Evaluation Datasets

The aerial tracking datasets are a subset of public release
data collected under the DARPA VIVID program. In
selecting evaluation video clips, the goal has been to offer

a representative sample of object resolution, contrast,
pose, and degree of occlusion, in both visible and thermal
IR imagery. A sample sequence thumbnail page is shown
in Figure 7.

Figure 7. A sample dataset thumbnail page. From this page,
the user can download the dataset, which consists of a zipped
sequence of jpeg image frames.

The original video clips are avi movie files encoded via
motion-jpeg. To remove any potential variability due to
use of different decoders, we distribute the video frames
as sequences of numbered jpeg image files. We use a
program called Videomach to “explode” avi files into
color image frames, postprocess the decoded frames with
a de-interlace filter that replaces every odd scan line with
new values bilinearly interpolated from neighboring even
scan lines, and store the results as a numbered sequence
of images in jpeg file format. The de-interlace filter
removes even-odd scan-line artifacts due to sensor
interlace, allowing more accurate delineation of the
boundaries and bounding boxes of fast moving objects.

3.2 Baseline Algorithms

Distribution of a set of baseline algorithms into the public
domain is accomplished through the open source tracking
testbed described in the previous section and available for
download from the web page. Making baseline code

available is valuable because it encourages and facilitates
scientific repeatability. Additionally, it reduces the cost
of entry into the evaluation “competition” since people
can start with one of the baseline algorithms and tweak its
modules to improve performance.

3.3 Evaluation Metrics

The automated scoring algorithm is written in C++. It
uses ground truth files as a benchmark against which to
compare user-generated tracking results. Two types of
metrics are used: tracking success rate and shape
accuracy of computed foreground masks (which can be
reported just as a bounding box by algorithms that do not
attempt to do shape segmentation). Specifically, the
evaluation algorithm uses five criteria to rate and rank
submitted results:
1) percentage of dataset tracked: this is the number of
frames in which the user tracked the object before losing
it, divided by the total number of frames. The track is
considered to be lost if the bounding box does not overlap
the ground truth bounding box at all. The first such
occurrence terminates the evaluation. This implies that
we do not allow the user’s tracker to reacquire the target
after tracking failure.
2) average overlap between bounding boxes: this is the
percentage of overlap between the user's bounding box
and the bounding box identified by ground truth files.
This is only computed over the portion of the dataset
reported in the percentage score above.
3) average overlap between bitmaps within overlapping
bounding box area. This is computed in the area of
intersection between the user bounding box and the
ground-truth bounding box. This criterion measures the
accuracy/similarity of the bitmap (binary foreground
mask) specified by the user’s algorithm to the ground
truth object bitmap.
4) average distance transform focused on ground-truth
object. As motivated in the next section, we choose the
chamfer distance as a measure of distance between two
binary bitmaps. This version of the score uses the ground
truth object bitmap to compute the distance transform
against which the user object bitmap is scored.
5) average distance transform focused on user-identified
object. Same as above, but the user-supplied bitmap is
now used to compute the distance transform against
which the ground truth bitmap is scored. We need both
versions since the chamfer distance is not symmetric.
Alternatively, we could compute the average of the two
directed chamfer distances to generate a symmetric error.

After scoring, a table showing the user’s ranking with
respect to other submitted algorithms is automatically
generated and displayed (Figure 8).

Figure 8. Upon uploading a set of results to the web site, an
automated scoring mechanism is invoked that compares the
user’s results to a ground truth dataset for that sequence. The
algorithm score is displayed in a table in relation to the results
achieved by other submitted algorithms.

3.4 More on Metrics – Position and Shape

We want to have a metric describing how well the tracker
has found the tracked object in the current frame. If we
represent the object as a point (centroid) location, a
natural measure for goodness of fit is distance to the
ground truth location. However, a tracking algorithm
should know not just the object location but also the
spatial extent of the object in the image. It is common to
display the extent of an object hypothesis with a bounding
box overlaid on the image. It is therefore natural to
consider percentage of overlap of bounding boxes as a
joint measure on similarity of location and extent.
Bounding boxes are also fairly easy to ground truth in the
image. However, Figure 9 shows that overlap of
bounding boxes can be a poor description of similarity for
objects that are not oriented along scan lines of the image.
For the pathological example shown on the left of the
figure, two hypotheses with very different shapes have
identical bounding boxes and, incidentally, identical
centroid locations as well.

We propose to represent extent and shape of an object by
a bounding box and a binary bitmap, and to measure
accuracy of an object hypothesis by its similarity to a
ground truth object bitmap. Several measures have been
devised in the past to compute similarity of segmented
shapes. If a bitmap mask is treated as a binary

classification of pixels into foreground and background
classes, one similarity score between hypothesis and
ground truth masks is TP/(TP+FP+FN) where TP is the
number of correctly labeled foreground pixels, FP is the
number of pixels incorrectly labeled as foreground, and
FN is the number of pixels incorrectly labeled as
background. This score ranges from 0 when there is no
overlap of hypothesis and ground truth, to 1 when they
are exactly the same. The trouble with this score is the
inability to make fine distinctions between bitmaps that
don’t overlap: a hypothesis bitmap that does not overlap
the ground truth but is nevertheless nearby should not be
penalized as much as a bitmap that is located far away
(Figure 9). [Since we terminate a tracking experiment
when bounding boxes no longer overlap, ability to
measure this distance is moot. However, the drawback
described is still valid.]

The evaluation web page scoring mechanism uses the
chamfer distance to jointly measure similarity of bitmap
positions and shapes. Chamfer distance is the average of
the minimum distances from foreground pixels in one
bitmap to foreground pixels in another. Chamfer distance
can be computed efficiently based on algorithms for
computing distance transforms. Note that chamfer
distance behaves sanely on the two pathological cases we
have shown in Figure 9. The chamfer distance for two
objects that completely overlap is 0. The chamfer
distance for two objects that do not overlap at all is
proportional to the distance between them. In cases of
partial overlap the score quantifies the trade-off between
position and shape accuracy.

Figure9. Pathologies of some simple hypothesis similarity
measures. Left) the green object is not very similar to the blue
object, but their centroids coincide and their bounding boxes
overlap perfectly. Right) cases a and b show two hypotheses
that do not overlap, and thus would both score 0 using some
similarity measures. We claim situation a should have a higher
score than situation b. The proposed chamfer similarity
measure behaves correctly in each of these examples

3.5 Generating Hand-labeled Data

Any measure based on similarity of object bitmaps means
that ground truth segmentation of the foreground object
must be achieved. This requires significantly more
human effort than just selecting bounding boxes. We
have developed a simple Matlab ground truthing tool that

allows the user to interactively draw a polygonal outline
around the object, using the mouse. The process is
illustrated in Figure 10. When a frame is displayed, the
user initially selects a region of interest containing the
object. A zoomed in version is then displayed and the
user proceeds to draw a polygonal boundary around the
object. A simple sequence of left and right mouse clicks
allows the user to add or remove points (based on the
Matlab command “roipoly”), until they are satisfied with
the object contour. The next frame to be labeled is then
displayed.

Figure 10. Overview of our current process for hand-labeling
ground truth object masks for tracking evaluation: 1) user
selects a region of interest that contains the object, 2) a zoomed
in image is displayed, and the user draws a polygonal boundary
around the object using a sequence of mouse clicks. The
resulting contour is then converted into a bounding box and a
binary mask denoting the shape and location of the object.

Figure 11 shows some samples of ground truth frames.
The interactive outlining tool allows the user to quickly
label a variety of cases, including unoccluded object
boundaries, partial occlusions, complete occlusions
(which is easy), and even cases where the object is split
into multiple pieces by thin occluding objects. We are
currently able to ground truth roughly 5 frames per
minute, and currently we ground truth every 10th frame in
a sequence.

Figure 11. Some sample ground truth labelings, ranging from
unoccluded contours, partial occlusion, complete occlusion,
and breaking into multiple pieces due to thin occluding objects.

4. Conclusion

We have developed an open source tracking testbed and
evaluation web site to encourage third-party
experimentation and evaluation of tracking algorithms.
By making these resources available we seek to make it
easier for the tracking research community to compare
performance of different algorithms on the same data. We
also hope that researchers will contribute new algorithms
to the growing library of baseline algorithms distributed
within the testbed system.

Although the tracking testbed can be used on any video
sequences, the current datasets on the evaluation page are
focused on ground vehicle tracking from airborne video
Our development effort was sponsored by a project for
which these are the relevant datasets to consider. These
sequences are also interesting in their own right due to
the challenges of a constantly moving background. In the
future we may add datasets of other types, such as static
camera surveillance scenarios, and would welcome being
a mirror site for the PETS benchmark datasets.

Acknowledgements

This work was funded by the DARPA/IXO VIVID project
under contract NBCH1030013.

References

1. Beveridge, R., Evaluation of face recognition algorithms
web site. URL: http://cs.colostate.edu/evalfacerec

2. Birchfield, S., KLT: an Implementation of the Kanade-
Lucas-Tomasi Feature Tracker, 1997, URL:
http://www.ces.clemson.edu/~stb/klt/

3. Bradski, G. "OpenCV: Examples of Use and New
Applications in Stereo, Recognition and Tracking", The
15th Intl Conference on Vision Interface, 2002. (URL:
http://www.intel.com/research/mrl/research/opencv/)

4. Collins, R. and Liu, Y. “On-Line Selection of
Discriminative Tracking Features, IEEE Int’l Conference
on Computer Vision, Nice, France, Oct 2004, pp. 346-352.

5. Comaniciu, D., Ramesh, V. and Meer,P., “Kernel-Based
Object Tracking,” IEEE Trans. Pattern Anal. Machine
Intell., Vol. 25, No. 4, 2003

6. Ferryman, J., IEEE Int’l Workshops on Performance
Evaluation of Tracking and Surveillance, 2000-2004.
(URL: http://www.cvg.cs.rdg.ac.uk/VSPETS/)

7. Fischler, M. and Bolles, R., “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography,” Comm. of the
ACM, Vol 24, 1981, pp. 381-395.

8. Scharstein, D., Middlebury stereo vision page, URL:
http://www.middlebury.edu/stereo/

