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Modeling and Analyzing Evaluation Cost of CUDA Kernels

STEFAN K. MULLER, Illinois Institute of Technology, USA
JAN HOFFMANN, Carnegie Mellon University, USA

General-purpose programming on GPUs (GPGPU) is becoming increasingly in vogue as applications such as
machine learning and scientific computing demand high throughput in vector-parallel applications. NVIDIA’s
CUDA toolkit seeks to make GPGPU programming accessible by allowing programmers to write GPU
functions, called kernels, in a small extension of C/C++. However, due to CUDA’s complex execution model,
the performance characteristics of CUDA kernels are difficult to predict, especially for novice programmers.

This paper introduces a novel quantitative program logic for CUDA kernels, which allows programmers to
reason about both functional correctness and resource usage of CUDA kernels, paying particular attention to
a set of common but CUDA-specific performance bottlenecks. The logic is proved sound with respect to a
novel operational cost semantics for CUDA kernels. The semantics, logic and soundness proofs are formalized
in Coq. An inference algorithm based on LP solving automatically synthesizes symbolic resource bounds by
generating derivations in the logic. This algorithm is the basis of RaCuda, an end-to-end resource-analysis
tool for kernels, which has been implemented using an existing resource-analysis tool for imperative programs.
An experimental evaluation on a suite of CUDA benchmarks shows that the analysis is effective in aiding the
detection of performance bugs in CUDA kernels.
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ACM Program. Lang. 1, POPL, Article 1 (January 2021), 31 pages.

1 INTRODUCTION
Many of today’s computational problems, such as training a neural network or processing images,
are massively data-parallel: many steps in these algorithms involve applying similar arithmetic or
logical transformations to a large, possibly multi-dimensional, vector of data. Such algorithms are
naturally suitable for execution on Graphics Processing Units (GPUs), which consist of thousands
processing units designed for vector operations. Because of this synergy, general-purpose GPU
(GPGPU) programming has become increasingly mainstream.With the rise of GPGPU programming
has come tools and languages designed to enable this form of programming. Possibly the best-
known such tool is CUDA, a platform for enabling general-purpose programs to run on NVIDIA
GPUs. Among other features, CUDA provides an extension to C which allows programmers to
write specialized functions, called kernels, for execution on the GPU. The language for writing
kernels, called CUDA C or just CUDA, is very similar to C, enabling easy adoption by developers.
Nevertheless, writing a kernel that executes efficiently on a GPU is not as simple as writing a

C function: small changes to a kernel, which might be inconsequential for sequential CPU code,
can have drastic impact on its performance. The CUDA C Programming Guide [29] lists three
particularly pervasive performance bottlenecks to avoid: divergent warps, uncoalesced memory
accesses, and shared memory bank conflicts. Divergent warps result from CUDA’s execution model:
a group of threads (often 32 threads, referred to as a warp) execute the same instruction on possibly
different data. C functions, however, can perform arbitrary branching that can cause different
threads of a warp to diverge, i.e., take different branches. CUDA is able to compile such code and
execute it on a GPU, but at a fairly steep performance cost, as the two branches must be executed
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1:2 Stefan K. Muller and Jan Hoffmann

sequentially. Even if a conditional only has one branch, there is nontrivial overhead associated
with divergence [3]. The other two bottlenecks have to do with the CUDA memory model and will
be discussed in detail in Section 2.
A number of static [2, 25, 26, 34] and dynamic [6, 36] tools, including several profiling tools

distributed with CUDA, aim to help programmers identify performance bottlenecks such as the
three mentioned above. However, all of these tools merely point out potential performance bugs,
and occasionally estimate the frequency at which such a bug might occur. Such an analysis cannot
guarantee the absence of bugs and gives only a partial picture of the performance impacts. For
example, it is not sufficient to simply profile the number of diverging conditionals because it can
be an optimization to factor out equivalent code in the two branches of a diverging conditional,
resulting in two diverging conditionals but less overall sequentialization [17]. In addition, there
are strong reasons to prefer sound static analyses over dynamic analyses or profiling, particularly
in applications (e.g., real-time machine learning systems such as those deployed in autonomous
vehicles) where input instances that cause the system’s performance to degrade outside expected
bounds can be dangerous. Such instances are not merely hypothetical: recent work [33] has
developed ways of crafting so-called sponge examples that can exploit hidden performance bugs
in neural networks to heavily increase energy and time consumption. For such systems, a static
worst-case bound on resource usage could ensure safety.

In this paper, we present an automated amortized resource analysis (AARA) [18, 21] that statically
analyzes the resource usage of CUDA kernels and derives worst-case bounds that are polynomials
in the integer inputs of a kernel. Our analysis is parametric over a resource metric that specifies the
abstract cost of certain operations or events. In general, a resource metric assigns a non-negative
rational number to an operation that is an upper-bound on the actual cost of that operation
regardless of context. The assigned cost can depend on runtime parameters, which have to be
approximated in a static resource analysis. For example, one metric we consider, “sectors”, estimates
the number of reads and writes of memory. In CUDA, fixed-size blocks of memory read and written
by a single warp can be handled as one hardware operation, so the number of such operations
depends on the footprint of memory locations accessed by a warp (which we estimate using a
specialized abstract interpretation) and the amount of memory accessed in a single operation
(which is a hardware-specific parameter).

The main challenge of reasoning statically about CUDA programs is that reasoning about the
potential values of variables is central to most static analysis techniques; in CUDA, every program
variable has potentially thousands of copies, one for each thread. Reasoning about the contents of
variables then requires (1) reasoning independently about each thread, which is difficult to scale, or
(2) reasoning statically about which threads are active at each point in a program. Some existing
program logics for CUDA (e.g. [23]) take the latter approach, but these are difficult to prove sound
and not very amenable to automated inference. We take a different approach and develop a novel
program logic for CUDA that is sound and designed with automated inference in mind. In addition,
the logic is quantitative, allowing us to use it to reason about both functional and resource-usage
properties of CUDA programs simultaneously.
We formalize our program logic in a core calculus miniCUDA that models a subset of CUDA

sufficient to expose the three performance bugs listed above. The calculus is equipped with a novel
cost semantics that formalizes the execution cost of a kernel under a given resource metric. A
soundness theorem then shows that bounds derived with the program logic are sound with respect
to this cost semantics. The cost semantics, the analysis, and the soundness proof are formalized in
the Coq Proof Assistant.

To automate the reasoning in our program logic, we have implemented the resource analysis tool
RaCuda (Resource-aware CUDA). If provided with the C implementation of a CUDA kernel and a
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Modeling and Analyzing Evaluation Cost of CUDA Kernels 1:3

resource metric, RaCuda automatically derives a symbolic upper bound on the execution cost of
the kernel as specified by the metric. We have implemented, RaCuda on top of Absynth [9, 28], a
resource analysis tool for imperative programs.
Using the aforementioned metrics, we evaluated RaCuda for precision and performance on a

number of CUDA kernels derived from various sources including prior work and sample code
distributed with CUDA. The evaluation shows our tool to be useful in identifying the presence and
quantifying the impact of performance bottlenecks on CUDA kernels, and shows promise as a tool
for novice and intermediate CUDA programmers to debug the performance of kernels.

The features of the analysis described so far are sufficient to analyze properties of a kernel such as
numbers of divergent warps or memory accesses. Analyzing the execution time of a kernel requires
more care because execution time doesn’t compose in a straightforward way: threads are scheduled
onto available processors by a (deliberately) underspecified scheduling algorithm, which exploits
thread-level parallelism of kernels to hide the latency of operations such as memory accesses. While
we do not aim to develop a precise analysis of kernel execution time in this work (even for CPUs
where such Worst-case Execution Time analyses are well-studied, this is a separate and rich area of
research). However, we do take steps toward such an analysis by showing how our analysis can be
used to compute the work and span of kernels, two metrics derived from the literature on parallel
scheduling theory (e.g., [4, 5, 7, 13, 27]) that can be used to abstractly approximate the running
time of parallel algorithms.

The contributions of this paper include:

• Two sets of operational cost semantics for a core calculus for CUDA kernels, one for the
lock-step evaluation of individual warps and one for the parallel evaluation of many warps.
Both formalize the execution of kernels on a GPU under a given resource metric
• A novel Hoare-style program logic for miniCUDA, including both qualitative and quantitative
properties
• A Coq formalization of the cost semantics and soundness proofs of the program logic
• An analysis tool RaCuda that can parse kernels written in a sizable subset of CUDA C and
analyze them with respect to resource metrics such as number of bank conflicts and number
of divergent warps
• An empirical evaluation of our analysis tools on a suite of CUDA kernels.

The remainder of this paper is organized as follows. We begin with an introduction to the features
of CUDA that will be relevant to this paper (Section 2). In Section 3, we introduce the miniCUDA
calculus and the lock-step cost semantics. We use the latter to prove the soundness of the resource
inference in Section 4. In Section 5, we present the parallel cost semantics, which models the work
and span of executing a kernel in parallel on a GPU. We also show that it is approximated by
the lock-step semantics and therefore by the resource analysis. Next, we describe in more detail
our implementation of the analysis (Section 6) and evaluate it (Section 7). We conclude with a
discussion of related work (Section 8).

2 A BRIEF INTRODUCTION TO CUDA
In this section, we introduce some basic concepts of CUDA using a simple running example. We
focus on the features of CUDA necessary to explain the performance bottlenecks targeted by our
analysis. It should suffice to allow a reader unfamiliar with CUDA to follow the remainder of the
paper and is by no means intended as a thorough guide to CUDA.

Kernels and Threads. A kernel is invoked on the GPU by calling it much like a regular function
with additional arguments specifying the number and layout of threads on which it should run. The
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1:4 Stefan K. Muller and Jan Hoffmann

__global__ void addSubk (int *A, int *B, int w, int h) { addSk }

addS0 ≡

for (int i = 0; i < w; i++) {

int j = blockIdx.x * blockDim.x

+ threadIdx.x;

if (j % 2 == 0) {

B[j * w + i] += A[i];

} else {

B[j * w + i] -= A[i];

}

}

addS1 ≡

for (int i = 0; i < w; i++) {

int j = blockIdx.x * blockDim.x

+ threadIdx.x;

B[2 * j * w + i] += A[i];

B[(2 * j + 1) * w + i] -= A[i];

}

}

addS2 ≡

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

for (int j = 0; j < h; j += 2) {

B[j * w + i] += A[i];

B[(j + 1) * w + i] -= A[i];

}

addS3 ≡

__shared__ int As[blockDim.x];

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

As[threadIdx.x] = A[i];

for (int j = 0; j < h; j += 2) {

B[j * w + i] += As[i];

B[(j + 1) * w + i] -= As[i];

}

Fig. 1. Four implementations addSub0,. . .,addSub3 of a CUDA kernel that alternately adds and subtracts from
rows of a matrix.

number of threads running a kernel is often quite large and CUDA organizes them into a hierarchy.
Threads are grouped into blocks and blocks form a grid.

Threads within a block and blocks within a grid may be organized in one, two or three dimensions,
which are specified when the kernel is invoked. A thread running CUDA code may access the x , y
and z coordinates of its thread index using the designated identifiers threadIdx.x, threadIdx.y and
threadIdx.z. CUDA also defines the indentifiers blockDim.(x|y|z), blockIdx.(x|y|z) and gridDim.(x|y|z)

for accessing the dimensions of a block, the index of the current thread’s block, and the dimensions
of the grid, respectively. Most of the examples in this paper assume that blocks and the grid are
one-dimensional (i.e. y and z dimensions are 1), unless otherwise specified.

SIMT Execution. GPUs are designed to execute the same arithmetic or logical instruction on
many threads at once. This is referred to as SIMT (Single Instruction, Multiple Thread) execution.
To reflect this, CUDA threads are organized into groups called warps1. The number of threads in
a warp is defined by the identifier warpSize, but is generally set to 32. All threads in a warp must
execute the same instruction (although some threads may be inactive).
SIMT execution leads to a potential performance bottleneck in CUDA code. If a branching

operation such as a conditional is executed and two threads within a warp take different execution
paths, the GPU must serialize the execution of that warp. It first deactivates the threads that took
one execution path and executes the other, and then switches to executing the threads that took
the second execution path. This is referred to as a divergence or divergent warp and can greatly
reduce the parallelism of a CUDA kernel.

1Warp refers to the set of parallel threads stretched across a loom during weaving; according to the CUDA programming
manual [29], “The term warp originates from weaving, the first parallel thread technology.”
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Modeling and Analyzing Evaluation Cost of CUDA Kernels 1:5

The functions addSubk in Figure 1 implement four versions of a kernel that adds the w-length array A

pointwise to even rows of the w× hmatrix B and subtracts it from odd rows. The annotation __global__

is a CUDA extension indicating that addSubk is a kernel. To simplify some versions of the function,
we assume that h is even. Otherwise, the code is similar to standard C code.

Consider first the function addSub0 that is given by addS0. The for loop iterates over the columns
of the matrix, and each row is processed in parallel by separate threads. There is no need to iterate
over the rows, because the main program instantiates the kernel for each row.
The implementation of addSub0 contains a number of performance bugs. First, the conditional

diverges at every iteration of the loop. The reason is that every warp contains thread identifiers
(threadIdx) that result in both odd and even values for the variable j. A straightforward way to fix
this bug is to remove the conditional, unroll the loop and perform both the addition of an even
row and the subtraction of an odd row in one loop iteration. The resulting code, shown in addSub1,
does not have more parallelism than the original—the addition and subtraction are still performed
sequentially—but will perform better because it greatly reduces the overhead of branching.

Memory Accesses. The next performance bottleneck we discuss relates to the way CUDA handles
global memory accesses. CUDA warps can access up to 128 consecutive bytes of such memory at
once. When threads in a warp access memory, such as the accesses to arrays A and B in the example,
CUDA attempts to coalesce these accesses together into as few separate accesses as possible. If
a warp accesses four consecutive 32-bit elements of an array, the memory throughput of that
instruction is four times higher than if it performs four non-consecutive reads.
The execution of the function addSub1 is unable to coalesce accesses to B because, assuming w is

larger than 32 and the arrays are stored in row-major order, no two threads within a warp access
memory within 128 bytes of each other. This is fixed by instead iterating over the rows of the
matrix and handling the columns in parallel. This way, all of the memory accesses by a warp are
consecutive (e.g., threads 0 through 31 might access A[0] through A[31] and B[w] through B[w+63]).
The updated code is shown in the function body addSub2.

Shared Memory. In all of the kernels discussed so far, the arrays A and B reside in global memory,
which is stored on the GPU and visible to all threads. CUDA also provides a separate sharedmemory
space, which is shared only by threads within a block. Shared memory has a lower latency than
global memory so we can, for example, use it to store the values of A rather than access global
memory every time. In the function addsub3, we declare a shared array As and copy values of A
into As before their first use.

Some care must be taken to ensure that the code of addsub3 is performant because of how shared
memory is accessed. Shared memory consists of a number, generally 32, of separate banks. Separate
banks may be accessed concurrently, but multiple concurrent accesses to separate addresses in the
same bank are serialized. It is thus important to avoid “bank conflicts”. Most GPUs ensure that 32
consecutive 32-bit memory reads will not result in any bank conflicts. However, if a block accesses
a shared array at a stride other than 1, bank conflicts can accumulate.

3 THE MINICUDA CORE CALCULUS
In this section, we present a core calculus, called miniCUDA, that captures the features of CUDA
that are of primary interest in this paper: control flow (to allow for loops and to study the cost
of divergent warps) and memory accesses. We will use this calculus to present the theory of our
resource analysis for CUDA kernels.

In designing the miniCUDA calculus, we have made a number of simplifying assumptions which
make the presentation cleaner and more straightforward. One notable simplification is that a mini-
CUDA program consists of a single kernel, without its function header. In addition, we collapse the
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1:6 Stefan K. Muller and Jan Hoffmann

Types τ ::= int | bool | B | arr(τ )
Operands o ::= x | p | c | tid
Arrays A ::= G | S
Expressions e ::= o | o op o | A[o]
Statements s ::= skip | s; s | x ← e | A[o] ← e | if e then s else s | while (e) s

Fig. 2. Syntax of miniCUDA

structure of thread and block indices into a single thread ID, denoted tid. This loses no generality as
a three-dimensional thread index can be converted in a straightforward way to a one-dimensional
thread ID, given the block dimension. The resource analysis will be parametric over the block index
and other parameters, and will estimate the maximum resource usage of any warp in any block.

Syntax. The syntax of the miniCUDA calculus is presented in Figure 2. Two types of data are
particularly important to the evaluation and cost analysis of the calculus: integers are used for both
array indices (which determine the costs of memory accesses) and loop bounds (which are crucial
for estimating the cost of loops), and booleans are used in conditionals. All other base types (e.g.,
float, string) are represented by an abstract base type B. We also include arrays of any type.

The terms of the calculus are divided into statements, which may affect control flow or the state
of memory, and expressions, which do not have effects. We further distinguish operands, which
consist of thread-local variables, parameters to the kernel (these include arguments passed to the
kernel function as well as CUDA parameters such as the block index and warp size), constants (of
type int, bool and B) and a designated variable tid. Additional expressions include o1 op o2, which
stands for an arbitrary binary operation, and array accesses A[o]. The metavariable A stands for
a generic array. When relevant, we use metavariables that indicate whether the array is stored
in (G)lobal or (S)hared memory. Note that subexpressions of expressions are limited to operands;
more complex expressions must be broken down into binary ones by binding intermediate results
to variables. This restriction simplifies reasoning about expressions without limiting expressivity.
Statements include two types of assignment: assignment to a local variable and to an array

element. Statements also include conditionals and while loops. The keyword skip represents the
“empty” statement. Statements may be sequenced with semicolons, e.g., s1; s2.

Our later results require certain “sanity checks” on code, namely that array indices be integers.
We enforce these with a type system for miniCUDA, which is straightforward and therefore omitted
for brevity. We write Σ ⊢ e : τ to indicate that e has type τ under a signature Σ that gives the types
of local variables, parameters, operators, functions and arrays. Statements do not have return values,
but the judgment Σ ⊢ s is used to indicate that s is well-formed in that all of its subexpressions have
the expected type.

Costs and Resource Metrics. In the following, we present an operational cost semantics and then a
quantitative program logic for miniCUDA kernels. Both the operational semantics and the logic are
parametric over a resource metric, which specifies the exact resource being considered. A resource
metricM is a function whose domain is a set of resource constants that specify particular operations
performed by a CUDA program. The resource metric maps these constants to rational numbers,
possibly taking an additional argument depending on the constant supplied. A resource metric
applied to a constant rc is writtenM rc, and its application to an additional argument n, if required,
is written M rc(n). The only resource constant that does not correspond to a syntactic operation
is Mdiv, which is the cost overhead of a divergent warp. The resource constants for miniCUDA,
their types and the meanings of their additional argument (if any) are defined in Table 1.
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Const. Type Param. sectors conflicts divwarps steps

Mvar Q 0 0 0 1
Mconst Q 0 0 0 1
Mparam Q 0 0 0 1
Mop Q 0 0 0 1
Mgread N→ Q # of seq. reads λn. F (n) λ_. 0 λ_. 0 λn. F (n)
Msread N→ Q # of conflicts λ_. 0 λn. F (n) − 1 λ_. 0 λn. F (n) − 1
M if Q 0 0 0 1
Mdiv Q 0 0 1 1
Mvwrite Q 0 0 0 1
Mgwrite N→ Q # of seq. reads λn. F (n) λ_. 0 λ_. 0 λn. F (n)
Mswrite N→ Q # of conflicts λ_. 0 λn. F (n) − 1 λ_. 0 λn. F (n) − 1

Table 1. Resource constants and sample resource metrics. We use F (n) to convert from integers to rationals.

The cost of accessing an array depends upon a parameter specifying the number of separate
accesses required (for global memory) or the maximum number of threads attempting to access
a single shared memory bank (for shared memory). These values are supplied by two additional
parameters to the operational semantics and the resource analysis. Given a set of array indices R,
the function MemReads(R) returns the number of separate reads (or writes) required to access all
of the indices, and the function Conflicts(R) returns the maximum number of indices that map to
the same shared memory bank. These parameters are separated from the resource metric because
they do not depend on the resource, but on the details of the hardware (e.g., the size of reads and
the number of shared memory banks). We discuss these functions more concretely in the next
subsection. Resource metrics applied to the appropriate constants simply take the output of these
functions and return the cost (in whatever resource) of performing that many memory accesses. We
require only that this cost be monotonic, i.e. that if i ≤ j, thenMgread(i) ≤ Mgread(j), and similarly
forMsread,MgwriteandMswrite.

The table also lists the concrete cost values for four resourcemetrics we consider in our evaluation:
• conflicts: Counts the cost of bank conflicts.
• sectors: Counts the total number of reads and writes to memory, including multiple requests
needed to serve uncoalesced requests2.
• divwarps: Counts the number of times a warp diverges.
• steps: Counts the total number of evaluation steps.

Lock-step Operational Semantics. We now define an operational semantics for evaluating mini-
CUDA kernels that also tracks the cost of evaluation given a resource metric. We use this semantic
model as the basis for proving the soundness of our resource analysis in the next section. The
operational semantics evaluates an expression or statement over an entire warp at a time to
produce a result and the cost of evaluation. Because it only evaluates one warp and threads of
a warp execute in lock-step, we refer to this as the “lock-step” semantics to differentiate it from
the “parallel” semantics we will introduce in Section 5. Recall, however, that warps can diverge at
conditionals, resulting in only some subset of the threads of a warp being active in each branch. We
therefore track the set T of currently active threads in the warp as a parameter to the judgments.
Finally, the operational semantics also requires a store σ , representing the values stored in memory.
2the term “sectors” comes from the NVIDIA profiling tools’ terminology for this metric
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(OC:Var)

σ ; x ↓TM (σ (x , t ))t∈T ;M
var

(EC:Op)
σ ;o1 ↓TM R1;C1 σ ;o2 ↓TM R2;C2

σ ;o1 op o2 ↓TM (R1(t ) op R2(t ))t∈T ;C1 +C2 +Mop

(EC:GArr)
σ ;o ↓TM R;C

σ ;G[o] ↓TM (σ (G , R(t )))t∈T ;C +Mgread(MemReads(R))

(OC:Tid)

σ ; tid ↓TM (Tid(t ))t∈T ;M
var

(EC:SArr)
σ ;o ↓TM R;C

σ ; S [o] ↓TM (σ (S , R(t )))t∈T ;C +M
sread(Conflicts(R))

(SC:GWrite)
σ ;o ↓TM R1;C1 σ ; e ↓TM R2;C2

σ ;G[o] ← e ⇓TM σ [(G , R1(t )) 7→ R2(t ) | t ∈ T];C1 +C2 +Mgwrite(MemReads(R1))

(SC:SWrite)
σ ;o ↓TM R1;C1 σ ; e ↓TM R2;C2

σ ; S [o] ← e ⇓TM σ [(S , R1(t )) 7→ R2(t ) | t ∈ T];C1 +C2 +M swrite(Conflicts(R1))

(SC:Skip)

σ ; skip ⇓TM σ ; 0

(SC:Seq)
σ ; s1 ⇓TM σ1;C1 σ1; s2 ⇓TM σ2;C2

σ ; s1; s2 ⇓TM σ2;C1 +C2

(SC:VWrite)
σ ; e ↓TM R;C

σ ; x ← e ⇓TM σ [(x , t ) 7→ R(t ) | t ∈ T];C +Mvwrite

(SC:IfT)
σ ; e ↓TM (T rue)t∈T ;C1 σ ; s1 ⇓TM σ1;C2

σ ; if e then s1 else s2 ⇓TM σ1;C1 +M if +C2

(SC:IfD)
TT = {t ∈ T | R(t )} , ∅ TF = {t ∈ T | ¬R(t )} , ∅
σ ; e ↓TM R;C1 σ ; s1 ⇓

TT
M σ1;C2 σ1; s2 ⇓

TF
M σ2;C3

σ ; if e then s1 else s2 ⇓TM σ2;C1 +M if +C2 +C3 +Mdiv

(SC:WhileAll)
σ ; e ↓TM (T rue)t∈T ;C1 σ ; s ⇓TM σ1;C2 σ1;while (e) s ⇓TM σ2;C3

σ ;while (e) s ⇓TM σ2;C1 +C2 +M if +C3

(SC:WhileSome)
σ ; e ↓TM R;C1 ∅ , TT , T σ ; s ⇓TTM σ1;C2

TT = {t ∈ T | R(t )} σ1;while (e) s ⇓
TT
M σ2;C3

σ ;while (e) s ⇓TM σ2;C1 +C2 +M if +Mdiv +C3

(SC:WhileNone)
σ ; e ↓TM (False)t∈T ;C

σ ;while (e) s ⇓TM σ ;C +M if

Fig. 3. Selected evaluation rules.

Expressions (and operands) differ from statements in that expressions do not alter memory but
simply evaluate to a value. Because every thread might compute on different values, the result is
not a single value but rather a family of values, one per active thread, which we represent as a
family R indexed by T . We write the result computed by thread t as R(t). In contrast, statements
do not return values but simply change the state of memory; statement evaluation therefore simply
produces a new store. These distinctions are evident in the two semantic judgments:

σ ; e ↓TM R;C

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.
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indicates that, under store σ , the expression e evaluates on threads T to R with cost C . Statements
are evaluated with the judgment

σ ; s ⇓TM σ ′;C
Selected evaluation rules for both judgments are presented in Figure 3. Some rules are omit-

ted for space reasons. We now discuss additional representation details and discuss some rules
in more detail. As suggested above, the elements of T are abstract thread identifiers t . The
function Tid(t) converts such an identifier to an integer thread ID. The domain of a store σ
is (Arrays × Z) ∪ (LocalVars ×Threads). For an array A (regardless of whether it stored in global or
shared memory), σ (A,n) returns the nth element of A. Note that, for simplicity of presentation, we
assume that out-of-bounds indices (including negative indices) map to some default value. For a
local variable x , σ (x, t) returns the value of x for thread t .

The evaluation of expressions is relatively straightforward: we simply evaluate subexpressions in
parallel and combine appropriately, but with careful accounting of the costs. The cost of execution
is generally obtained by summing the costs of evaluating subexpressions with the cost of the head
operation given by the resource metricM . For example, Rule EC:Op evaluates the two operands
and combines the results using the concrete binary operation represented by op. The cost is the
cost of the two subexpressions, C1 and C2, plusMop. Array accesses evaluate the operand to a set
of indices and read the value from memory at each index. The cost of these operations depends
on MemReads(R) or Conflicts(R), where R is the set of indices. Recall that these functions give the
number of global memory reads necessary to access the memory locations specified by R, and the
number of bank conflicts resulting from simultaneously accessing the memory locations specified
by R, respectively. As discussed before, we leave these functions as parameters because their exact
definitions can change across versions of CUDA and hardware implementations. As examples
of these functions, we give definitions consistent with common specifications in modern CUDA
implementations [29]:

MemReads(R) ≜
��{⌈ i

32
⌉
| (i)t ∈ R

}��
Conflicts(R) ≜ max

j ∈[0,31]
{R(t) ≡ j mod 32 | t ∈ Dom(R)}

Above, we assume that global reads are 128 bytes in size and array elements are 4 bytes. In reality,
and in our implementation, MemReads(R) depends on the type of the array.
Statement evaluation is slightly more complex, as statements can update the state of mem-

ory and also impact control flow: the former is represented by updating the store σ and the
latter is represented by changing the thread set T when evaluating subexpressions. For assign-
ment statements, the new state comes from updating the state with the new assignment. We
write σ [(x, t) 7→ (v)t | t ∈ T ] to indicate the state σ updated so that for all t ∈ T , the binding (x, t)
now maps to (v)t . Array updates are written similarly.
Conditionals and while loops each have three rules. If a conditional evaluates to True for all

threads (SC:IfT), we simply evaluate the “if” branch with the full set of threads T , and similar if all
threads evaluate to False. If, however, there are non-empty sets of threads where the conditional
evaluates to True and False (TT and TF , respectively), we must evaluate both branches. We evaluate
the “if” branch with TT and the “else” branch with TF . Note that the resulting state of the “if” branch
is passed to evaluation of the “else” branch; this corresponds to CUDA executing the two branches
in sequence. This rule, SC:IfD, also adds the cost Mdiv of a divergent warp. The three rules for
while loops similarly handle the cases in which all, some or none of the threads in T evaluate the
condition to be True. The first two rules both evaluate the body under the set of threads for which
the condition is true and then reevaluate the loop. Rule SC:WhileSome also indicates that we must
payMdiv because the warp diverges.
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1:10 Stefan K. Muller and Jan Hoffmann

4 QUANTITATIVE PROGRAM LOGIC
In this section, we present declarative rules for a Hoare-style logic that can be used to reason
about the resource usage of a warp of a miniCUDA kernel. The analysis for resource usage is
based on the ideas of automated amortized resource analysis (AARA) [18, 21]. The key idea of this
analysis is to assign a non-negative numerical potential to states of computation. This potential
must be sufficient to cover the cost of the following step and the potential of the next state. For
imperative programs, the potential is generally a function of the values of local variables. Rules
of a quantitative Hoare logic specify how this potential function changes during the execution of a
statement. A derivation in the quantitative Hoare logic then builds a set of constraints on potential
functions at every program point. In an implementation (Section 6), these constraints are converted
to a linear program and solved with an LP solver.

As an example, consider the statement for (int i = N; i >=0; i--) { f(); } and suppose we wish
to bound the number of calls to f. This corresponds to a resource metric in which the cost of a
function call is 1 and all other operations are free. The potential function at each point should be
a function of the value of i: it will turn out to be the case that the correct solution is to set the
potential to i+1 in the body of the loop before the call to f and to i after the call. This difference
“pays for” for the cost of 1 for the function call. It also sets up the proper potential for the next loop
iteration: when i is decremented following the loop, the potential once again becomes i+1.
The particular challenge of designing such a logic for CUDA is that each thread in a warp has

a distinct local state. To keep inference tractable and scalable, we wish to reason about only one
copy of each variable, but must then be careful about what exactly is meant by any function of a
state, and in particular the resource functions: such a function on the values of local variables is not
well-defined for CUDA local variables, which have a value for each thread. To solve this problem,
we make an observation about CUDA programs: There is often a separation between local program
variables that carry data (e.g., are used to store data loaded from memory or intermediate results
of computation) and those that carry potential (e.g., are used as indices in for loops). To develop
a sound and useful quantitative logic, it suffices to track potential for the latter set of variables,
which generally hold the same value across all active threads.

Pre- and Post-Conditions. Conditions of our logic have the form {P ;Q ;X } and consist of the logical
condition P and the potential function Q (both of which we describe below) as well as a set X of
variables whose values are uniform across the warp and therefore can be used as potential-carrying
variables as described above. We write σ ,T ⊢ X to mean that for all x ∈ X and all t1, t2 ∈ T ,
we have σ (x, t1) = σ (x, t2). The logical condition P is a reasonably standard Hoare logic pre- or
post-condition and contains logical propositions over the state of the store. We write σ ,T ⊨ P to
indicate that the condition P is true under the store σ and values t ∈ T for the thread identifier.
If either the store or the set of threads is not relevant in a particular context, we may use the
shorthand σ ⊨ P to mean that there exists some T such that σ ,T ⊨ P or the shorthand T ⊨ P to
mean that there exists some σ such that σ ,T ⊨ P3. We write P ⇒ P ′ to mean that P implies P ′:
that is, for all σ ,T such that σ ,T ⊨ P , it is the case that σ ,T ⊨ P ′.
The second component of the conditions is a potential function Q , a mapping from stores and

sets of variables X as described above to non-negative rational potentials. We use the potential
function to track potential through a kernel in order to analyze resource usage. If σ ,T ⊢ X ,
then QX (σ ) refers to the potential of σ under function Q , taking into account only the variables
in X . Formally, we require (as a property of potential functions Q) that if for all x ∈ X and t ∈ T ,
we have σ1(x, t) = σ2(x, t), then QX (σ1) = QX (σ2). That is, Q can only consider the variables in X .

3To aid in reasoning, you can read the shorthands as “σ is compatible with P ” and “T is compatible with P .”
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For a nonnegative rational cost C , we use the shorthand Q +C to denote a potential function Q ′
such that for all σ andX , we haveQ ′X (σ ) = QX (σ )+C . We writeQ ⪰ Q ′ to mean that for all σ ,T ,X
such that σ ,T ⊨ P , we have QX (σ ) ≥ Q ′X (σ ).
In this section, we leave the concrete representation of the logical condition and the potential

function abstract. In Section 6, we describe our implementation, including the representation of
these conditions. For now, we make the assumptions stated above, as well as that logical conditions
obey the standard rules of Boolean logic. We also assume that logical conditions and potential
functions are equipped with an “assignment” operation P ′ ⇐ P[x ← e] (resp. Q ′ ⇐ Q[x ← e])
such that if σ ,T ⊨ P ′ and σ ; e ↓TM R;C then
• σ [(x, t) 7→ R(t) | t ∈ T ],T ⊨ P
• If x ∈ X and there exists v such that R(t) = v for all t ∈ T , then Q ′X (σ ) = QX (σ [(x, t) 7→
R(t) | t ∈ T ])

For simplicity, we also assume that the potential function depends only on the values of local
variables in the store and not on the values of arrays. This is sufficient to handle the benchmarks
we studied. We write σ ;T ⊨ {P ;Q ;X } to mean σ ,T ⊨ P and σ ,T ⊢ X .

Cost of Expressions. Before presenting the Hoare-style logic for statements, we introduce a simpler
judgment that we use for describing the resource usage of operands and expressions. The judgment
is written P ⊢M e : C and indicates that, under condition P , the evaluation of e costs at most C .
The rules for this judgment are presented in Figure 4. These rules are similar to those of Figure 3,
with the exception that we now do not know the exact store used to evaluate the expression
and must conservatively estimate the cost of array access based on the possible set of stores. We
write P ⇒ MemReads(o) ≤ n to mean that for all σ and all T such that σ ,T ⊨ P , if σ ;o ↓TM R;C ,
then MemReads(R) ≤ n. The meaning of P ⇒ Conflicts(o) ≤ n is similar.

Inference Rules. Figure 4 presents the inference rules for the Hoare-style logic for resource usage
of statements. The judgment for these rules is written

{P ;Q ;X } s {P ′;Q ′;X ′}

which states that if (1) P holds, (2) we haveQ resources and (3) all variables inX are thread-invariant,
then if s terminates, it ends in a state where (1) P ′ holds, (2) we have Q ′ resources left over and
(3) all variables in X ′ are thread-invariant. The simplest cases (e.g., Q:Skip and Q:Seq) simply
thread conditions through without altering them (note that Q:Seq feeds the post-conditions of s1
into the pre-conditions of s2). Most other rules require additional potential in the pre-condition
(e.g. Q +C), which is then discarded because it is used to pay for an operation. For example, if s1
usesC1 resources and s2 usesC2 resources, we might start withQ +C1 +C2, haveQ +C2 left in the
post-condition of s1 and Q left in the post-condition of s2.
The most notable rules are for conditionals if e then s1 else s2, which take into account the

possibility of a divergent warp. There are four cases. First (Q:If1), we can statically determine that the
conditional expression e does not vary across a warp: this is expressed with the premise P ⇒ e unif,
which is shorthand for

∀σ ,T . σ ,T ⊨ P ⇒ ∃c . σ ; e ↓TM (c)t ∈T ;C
That is, for any compatible store, e evaluates to a constant result family. In this case, only one
branch is taken by the warp and the cost of executing the conditional is the maximum cost of
executing the two branches (plus the costM if of the conditional and the cost C of evaluating the
expression, which are added to the precondition). This is expressed by using Q ′ as the potential
function in the post-condition for both branches. If the two branches do not use equal potential,
the one that has more potential “left over” may use rule Q:Weak (discussed in more detail later) to
discard its extra potential and use Q ′ as a post-condition. We thus conservatively approximate the
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1:12 Stefan K. Muller and Jan Hoffmann

(OQ:Var)

P ⊢M x :Mvar

(OQ:Const)

P ⊢M c :M const

(OQ:Param)

P ⊢M p :M const

(OQ:Tid)

P ⊢M tid :Mvar

(EQ:Op)
P ⊢M o1 :C1 P ⊢M o2 :C2

P ⊢M o1 op o2 :C1 +C2 +Mop

(EQ:GArray)
P ⊢M o :C P ⇒ MemReads(o) ≤ n

P ⊢M G[o] :C +Mgread(n)

(EQ:SArray)
P ⊢M o :C P ⇒ Conflicts(o) ≤ n

P ⊢M S [o] :C +M sread(n)

(Q:Skip)

⊢M {P ;Q ;X } skip {P ;Q ;X }

(Q:If1)
P ⊢M e :C ⊢M {P ∧ e ;Q ;X } s1 {P ′;Q ′;X ′ }
P ⇒ e unif ⊢M {P ∧ ¬e ;Q ;X } s2 {P ′;Q ′;X ′ }

⊢M {P ;Q +M if +C ;X } if e then s1 else s2 {P ′;Q ′;X ′ }

(Q:If2)
P ⊢M e :C P ⇒ e ⊢M {P ;Q ;X } s1 {P ′;Q ′;X ′ }

⊢M {P ;Q +M if +C ;X } if e then s1 else s2 {P ′;Q ′;X ′ }

(Q:If3)
P ⊢M e :C P ⇒ ¬e ⊢M {P ;Q ;X } s2 {P ′;Q ′;X ′ }

⊢M {P ;Q +M if +C ;X } if e then s1 else s2 {P ′;Q ′;X ′ }

(Q:If4)
P ⊢M e :C ⊢M {P ∧ e ;Q ;X } s1 {P1;Q1;X1 } P ∧ ¬e ⇒ P ′ P1 ⇒ P ′

{P ′;Q1;X1\W (s1)} s2 {P2;Q2;X2 } P1 ⇒ P ′′ P2 ⇒ P ′′ X ′=X2\W (s2)

⊢M {P ;Q +M if +C +Mdiv;X } if e then s1 else s2 {P ′′;Q2;X ′ }

(Q:Seq)
⊢M {P ;Q ;X } s1 {P1;Q1;X1 }
⊢M {P1;Q1;X1 } s2 {P ′;Q ′;X ′ }

⊢M {P ;Q ;X } s1; s2 {P ′;Q ′;X ′ }

(Q:While1)
P ⇒ e unif P ⊢M e :C

⊢M {P ∧ e ;Q ;X } s {P ;Q +M if +C ;X }

⊢M {P ;Q +M if +C ;X }while (e) s {P ∧ ¬e ;Q ;X }

(Q:While2)
P ⊢M e :C X ′ = X \W (s) ⊢M {P ∧ e ;Q ;X } s {P ;Q +M if +Mdiv +C ;X }

⊢M {P ;Q +M if +Mdiv +C ;X }while (e) s {P ∧ ¬e ;Q ;X ′ }

(Q:VWrite1)
x ∈ X P ⇒ e unif P ⊢M e :C
P ⇐ P ′[x ← e] Q ⇐ Q ′[x ← e]

⊢M {P ;Q +Mvwrite +C ;X } x ← e {P ′;Q ′;X }

(Q:VWrite2)
P ⊢M e :C P ⇐ P ′[x ← e]

⊢M {P ;Q +Mvwrite +C ;X } x ← e {P ′;Q ;X \ {x }}

(Q:GWrite)
P ⊢M o :C1 P ⊢M e :C2 P ⇒ MemReads(o) ≤ n

⊢M {P ;Q +Mgwrite(n) +C1 +C2;X }G[o] ← e {P ;Q ;X }

(Q:SWrite)
P ⊢M o :C1 P ⊢M e :C2 P ⇒ Conflicts(o) ≤ n

⊢M {P ;Q +M swrite(n) +C1 +C2;X } S [o] ← e {P ;Q ;X }

(Q:Weak)
⊢M {P2;Q2;X2 } s {P ′2;Q

′
2;X

′
2 } P1 ⇒ P2 Q1 ⪰ Q2 X1 ⊃ X2 P ′2 ⇒ P ′1 Q ′2 ⪰ Q

′
1 X ′2 ⊃ X ′1

⊢M {P1;Q1 +C ;X1 } s {P ′1;Q
′
1 +C ;X ′1 }

Fig. 4. Hoare logic rules for resource analysis.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Modeling and Analyzing Evaluation Cost of CUDA Kernels 1:13

potential left over after executing one branch. In the next two cases (Q:If2 and Q:If3), we are able
to statically determine that the conditional expression is either true or false in any compatible store
(i.e., either P ⇒ e or P ⇒ ¬e), and we need only the “then” or “else” branch, so only the respective
branch is considered in these rules.
In the final case (Q:If4), we consider the possibility that the warp may diverge. In addition to

accounting for the case where we must execute s1 followed by s2 in sequence, this rule must also
subsume the three previous cases, as it is possible that we were unable to determine statically that
the conditional would not diverge (i.e., we were unable to derive the preconditions of Q:If1) but
the warp does not diverge at runtime. To handle both cases, we require that the precondition of s2
is implied by:
• P ∧ ¬e , the precondition of the conditional together with the information that e is false, so
that s2 can execute by itself if the conditional does not diverge, as well as by
• P1, the postcondition of s1, so that s2 can execute sequentially after s1.

In a similar vein, we require that the postcondition of the whole conditional is implied by the
individual postconditions of both branches. In addition, we remove from X1 the set of variables
possibly written to by s1 (denoted W (s1), this can be determined syntactically) because if the warp
diverged, variables written to by s1 no longer have consistent values across the entire warp. We
similarly remove W (s2) from X2.

Note that it is always sound to use rule Q:If4 to check a conditional. However, using this rule in
all cases would produce a conservative over-estimate of the cost by assuming a warp diverges even
if it can be shown that it does not. Our inference algorithm will maximize precision by choosing
the most precise rule that it is able to determine to be sound.

The rules Q:While1 and Q:While2 charge the initial evaluation of the conditional (M if +C) to
the precondition. For the body of the loop, as with other Hoare-style logics, we must derive a loop
invariant: the condition P must hold at both the beginning and end of each iteration of the loop
body (we additionally know that e holds at the beginning of the body). In addition, the potential
after the loop body must be sufficient to “pay”M if +C for the next check of the conditional, and still
have potential Q remaining to execute the next iteration if necessary. Recall that Q is a function of
the store. So this premise requires that the value of a store element (e.g. a loop counter) change
sufficiently so that the corresponding decrease in potential QX (σ ) is able to pay the appropriate
cost. The difference between the two rules is that Q:While1 assumes the warp does not diverge, so
we need not payMdiv and also need not remove variables assigned by the loop body from X .

The rules for local assignment are an extension of the standard rule for assignment in Hoare
logic. If x ∈ X and P ⇒ e unif, we add a symmetric premise for the potential function. Otherwise,
we cannot use x as a potential-carrying variable and only update the logical condition. The rules
for array assignments are similar to those for array accesses, but additionally include the cost of
the assigned expression e .
Finally, as discussed above, Q:Weak allows us to strengthen the preconditions and weaken

the postconditions of a derivation. If s can execute with precondition {P2;Q2;X } and postcondi-
tion {P ′2;Q

′
2;X }, it can also execute with a precondition P1 that implies P2 and a potential functionQ1

that is always greater than Q2. In addition, it can guarantee any postcondition implied by P ′2 and
any potential function Q ′1 that is always less than Q

′
2. We can also take subsets of X as necessary in

derivations. The rule also allows us to add a constant potential to both the pre- and post-conditions.

Example Derivation. Figure 5 steps through a derivation for the addSub3 kernel from Section 2,
with the pre- and post-conditions interspersed in red. The code is simplified to more closely resemble
miniCUDA. For illustrative purposes, we consider only the costs of array accesses (writes and reads)
and assume all other costs are zero. The potential annotation consists of two parts: the constant
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1
2
3 __global__ void addSub3 (int *A, int *B, int w, int h) {

4 __shared__ int As[32];

5 As[tid % 32] = A[tid];

6 for (int j = 0; j < h; j += 2) {

7 B[j * w + tid] += As[tid];

8 B[(j + 1) * w + tid] -= As[tid];

9 }

10 }

L ≜ 2M sread(1) + 2Mgwrite(5)
{⊤;M swrite(1) +Mgread(4) + h

2 L; {w , h, j }}

{⊤; h2 L; {w , h, j }}
{j < h; h−j2 L; {w , h, j }}
{j < h;M sread(1) +Mgwrite(5) + h−j−2

2 L; {w , h, j }}
{j < h; h−j−22 L; {w , h, j }}

{j ≥ h; 0; {w , h, j }}

Fig. 5. A derivation using the program logic. We define L to be 2Msread(1) + 2Mgwrite(5).

potential and a component that is proportional to the value of h − j (initially we write this as just h
because j = 0). The initial constant potential is consumed by the write on line 5, which involves
a global memory access with 4 separate reads (128 consecutive bytes with 32-byte reads4 and a
shared write with no bank conflicts. The information needed to determine the number of global
memory sectors read and the number of bank conflicts is encoded in the logical conditions, which
we leave abstract for now; we will discuss in Section 6 how this information is encoded and used.
On line 6, we establish the invariant of the loop body. On line 7, we transfer L to the constant
potential (this is accomplished by Rule Q:Weak). We then spend part of this on the assignment
on line 7 and the rest on line 8. These require 5 global reads each because we read 128 bytes of
consecutive memory with 32-byte reads and the first index is not aligned to a 32-byte boundary.
This establishes the correct potential for the next iteration of the loop, in which the value of j will
be decremented. After the loop, we conclude j ≥ h and have no remaining potential.

Soundness. We have proved the soundness of the analysis: if there is a derivation under the
analysis showing that a program can execute with precondition {P ;Q ;X }, then for any store σ
and any set of threads T such that σ ;T ⊨ {P ;Q ;X }, the cost of executing the program under σ
and threads T is at most QX (σ ). We first state the soundness result of the resource analysis for
expressions.

Lemma 1. If Σ ⊢ e : τ and Σ ⊢T σ and P ⊢M e :C and σ ,T ⊨ P and σ ; e ↓TM R;C ′, then C ′ ≤ C .

Theorem 1. If Σ ⊢ s and Σ ⊢T σ and {P ;Q ;X } s {P ′;Q ′;X ′} and σ ;T ⊨ {P ;Q ;X ′} and σ ; s ⇓TM
σ ′;Cs then σ ′;T ⊨ {P ′;Q ′;X ′} and QX (σ ) −Cs ≥ Q ′X ′(σ

′) ≥ 0.

All proofs are by induction on the derivation in the logic and are formalized in Coq. The case for
while loops also includes an inner induction on the evaluation of the loop.

5 LATENCY AND THREAD-LEVEL PARALLELISM
The analysis developed in the previous section is useful for predicting cost metrics of CUDA
kernels such as divergent warps, global memory accesses and bank conflicts, the three performance
bottlenecks that are the primary focus of this paper: one can specify a resource metric that counts
the appropriate operations, run the analysis to determine the maximum cost for a warp and multiply
by the number of warps that will be spawned to execute the kernel (this is specified in the main
program when the kernel is called). If we wish to work toward predicting actual execution time
4The amount of memory accessed by a single read is hardware-dependent and complex; this is outside the scope of this
paper
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of a kernel, the story becomes more complex; we begin to explore this question in this section. A
first approach would be to determine, via profiling, the runtime cost of each operation and run the
analysis with a cost metric that assigns appropriate costs. Such an approach might approximate
the execution time of a single warp, but it is not immediately clear how to compose the results to
account for multiple warps, unlike divergences or memory accesses which we simply sum together.
Indeed, the question of how execution times of warps compose is a complex one because of

the way in which GPUs schedule warps. Each Streaming Multiprocessor (SM), the computation
units of the GPU, can execute instructions on several warps simultaneously, with the exact number
dependent on the hardware. However, when a kernel is launched, CUDA assigns each SM a number
of threads that is generally greater than the number it can simultaneously execute. It is profitable
to do so because many instructions incur some amount of latency after the instruction is executed.
For example, if a warp executes a load from memory that takes 16 cycles, the SM can use those 16
cycles to execute instructions on other warps. At each cycle, the SM selects as many warps as
possible that are ready to execute an instruction and issues instructions on them.

In order to predict the execution time of a kernel, wemust therefore reason about both the number
of instructions executed and their latency. In this section, we show how our existing analysis can
be used to derive these quantities and, from them, approximate execution time bounds on a block
of a CUDA kernel (we choose the block level for this analysis because it is the granularity at which
synchronization occurs and so composing execution times between blocks is more straightforward).

To derive such an execution time bound, we leverage a result from the field of parallel schedul-
ing [27], which predicts execution times of programs based on their work, the total computational
cost (not including latency) of operations to be performed, and span, the time required to perform
just the operations along the critical path (including latency). One can think of the work as the time
required to execute a program running only one thread at a time, and the span as the time required
to execute the program running all threads at the same time (assuming infinitely parallel hardware).
In our CUDA setting, the work is the total number of instructions executed by the kernel across all
warps and the span is the maximum time required to execute any warp from start to finish. Given
these two quantities, we can bound the execution time of a block assuming that the SM schedules
warps greedily, that is, it issues instructions on as many ready warps as possible.

Theorem 2. Suppose a block of a kernel has workW and span S and that the block is scheduled on
an SM that can issue P instructions at a time. Then, the time required by the SM to execute the block is
at most W

P + S .

Proof. This is a direct result of Theorem 1 of [27], which shows the same bound for a general
computation of workW and span S under a greedy schedule on P processors. □

We can, and will, use our analysis of the previous sections to independently calculate the work
and span of a warp. Independently, we can compose the work and span of warps to obtain the
work and span of a block: we sum over the work of the warps and take the maximum over the
spans. This approach is not sound in general because warps of a block can synchronize with each
other using the __syncthreads() built-in function5, which acts as a barrier forcing all warps to wait
to proceed until all warps have reached the synchronization point. Consider the following code:
__global__ void tricky(int *A) {

if (threadIdx.x < 32) {

A[threadIdx.x] = 42;

}

5We have not mentioned __syncthreads() up to this point because it was not particularly relevant for the warp-level
analysis, but it is supported by our implementation of miniCUDA and used in many of the benchmarks.
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__syncthreads ();

if (threadIdx.x >= 32) {

A[threadIdx.x] = 42;

}

}

Assume that the latency of the write to global memory dominates the span of the computation. Each
warp performs only one write, and so taking the maximum span would result in an assumption
that the span of the block includes only one write. However, because of the synchronization in the
middle, the span of the block must actually account for the latency of two writes: threads 32 and
up must wait for threads 0-31 to perform their writes before proceeding.
Determining that, in the kernel above, each warp only performs one write, would require a

sophisticated analysis that tracks costs separately for each thread: this is precisely what our analysis,
to retain scalability, does not do. As a result, it is sound to simply compose the predicted spans
of each warp in a block by taking the maximum. The remainder of this section will be devoted to
proving this fact. In order to do so, we develop another cost semantics, this time a parallel semantics
that models entire CUDA blocks and tracks the cost in terms of work and span.
The cost semantics tracks the work and span for each warp. At each synchronization, we take

the maximum span over all warps to account for the fact that all warps in the block must wait
for each other at that point. A cost is now a pair (cw , cs ) of the work and span, respectively. A
resource metric M maps resource constants to costs reflecting the number of instructions and
latency required by the operation. We can take projectionsMw andMs of such a resource metric
which project out the work and span components, respectively, of each cost. For the purposes of
calculating the span, we assume that the span of an operation (the second component of the cost)
reflects the time taken to process the instruction plus the latency (in other words, the latency is the
span of the operation minus the work). We represent the cost of a block as a warp-indexed family
of costs C. We use ∅ to denote the collection ((0, 0)i ∈Warps). We will use a shorthand for adding a
cost onto a collection for a subset of warps:

(C ⊕Warps (c
w , cs ))i ≜

{
(cw0 + c

w , cs0 + c
s ) Ci = (c

w
0 , c

s
0) ∧ i ∈ Warps

Ci otherwise
We will overload the above notation to add a cost onto a collection for a subset of threads:

C ⊕T C ≜ C ⊕{WarpOf (t ) |t ∈T} C

whereWarpOf (t) is the warp containing thread t .
We denote the work of a collection byW (C) and the span by S(C). We can calculate the work

and span of a block by summing and taking the maximum, respectively, over the warps:

W (C) ≜ Σi ∈Warpsfst Ci
S(C) ≜ maxi ∈Warps snd Ci

Note that here it is safe to take the maximum span over the warps because we have also done so at
each synchronization point.

Figure 6 gives selected rules for the cost semantics for statements, for which the judgment is

σ ;C; s

Z⇒ T
M σ ′;C′

meaning that, on a set of threads T , with heap σ , the statement s results in final heap σ ′ and if the
cost collection is initially C, the cost extended with the cost of executing s is C′. The judgments for
operands and expressions are similar; as with the lock-step cost semantics, they return a result
family rather than a new heap. The rule SC:Sync handles taking the maximum at synchronization
points, and rules SC:If and SC:While add the cost of divergence only to warps that actually diverge.
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(SC:Skip)

σ ; C; skip

Z⇒ T
M σ ; C

(SC:Sync)

σ ; (W , S ); sync

Z⇒ T
M σ ; (W , (max S )Warps) ⊕T M sync

(SC:Seq)
σ ; C; s1

Z⇒ T
M σ1; C′ σ1; C′; s2

Z⇒ T
M σ2; C′′

σ ; C; s1; s2

Z⇒ T
M σ2; C′′

(SC:VWrite)
σ ; C; e

7→ T
M R; C′

σ ; C; x ← e

Z⇒ T
M σ [(x , t ) 7→ R(t ) | t ∈ T]; C′ ⊕T Mvwrite

(SC:If)
σ ; C; e

7→ T
M R; C′ TT = {t ∈ T | Rt } TF = {t ∈ T | ¬Rt }
σ ; C′; s1

Z⇒ TT
M σ ′; C′′ σ ′; C′′; s2
Z⇒ TF

M σ ′′; C′′′

σ ; C; if e then s1 else s2

Z⇒ T
M σ ′′; C′′′ ⊕T M if ⊕{w |∃t1∈TT ,t2∈TF .WarpOf (t1)=WarpOf (t2)} M

div

(SC:While)
σ ; C; e

7→ T
M R; C′ σ ; C′; s

Z⇒ TT
M σ ′; C′′

TT = {t ∈ T | Rt } σ ′; C′′;while (e) s

Z⇒ TT
M σ ′′; C′′′

σ ; C;while (e) s

Z⇒ T
M σ ′′; C′′′ ⊕T M if ⊕{w |∃t1∈TT ,t2∈T\TT .WarpOf (t1)=WarpOf (t2)} M

div

Fig. 6. Selected rules for thread-level parallelism.

Otherwise, the rules (including rules omitted for space reasons) resemble those of the lock-step
semantics.
We now show that the analysis of Section 4, when applied on work and span independently,

soundly approximates the parallel cost semantics of Figure 6. We do this in two stages: first, we
show that the costs derived by the parallel semantics are overapproximated by the costs derived by
the lock-step cost semantics of Section 3 (extended with a rule treating __syncthreads() as essentially
a no-op). Second, we apply the soundness of those cost semantics. The lock-step cost semantics
were designed to model only single-warp execution, and so it may seem odd to model an entire
block using these semantics. However, doing so results in a sound overapproximation: for example,
in the kernel shown above, the lock-step cost semantics ignores the synchronization but assumes
that the two branches must be executed in sequence anyway because not all threads take the same
branch. As we now show formally, these two features of the warp-level cost semantics cancel each
other out. Lemma 2 states that if evaluating an expression e with initial cost collection C results in
a cost collection C′, then e can evaluate using Mw and Ms , under the lock-step semantics, with
costs Cw and Cs , respectively. The difference in span between C and C′ is overapproximated by Cs
and the difference in work is overapproximated by Cw times the number of warps. Lemma 3 is the
equivalent result for statements. Both proofs are straightforward inductions and are formalized in
Coq.

Lemma 2. If Σ ⊢ e : τ and Σ ⊢T σ and σ ;C; e

7→ T
M R;C′ then there exist Cw and Cs such that

(1) σ ; e ↓TMw
R;Cw

(2) σ ; e ↓TMs
R;Cs

(3) W (C′) −W (C) ≤ Cw |{WarpOf (t) | t ∈ T }|
(4) S(C′) − S(C) ≤ Cs

Lemma 3. If Σ ⊢ s and Σ ⊢T σ and σ ;C; s

Z⇒ T
M σ ′;C′ then there exist Cw and Cs such that

(1) σ ; s ⇓TMw
σ ′;Cw

(2) σ ; s ⇓TMs
σ ′;Cs
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(3) W (C′) −W (C) ≤ Cw |{WarpOf (t) | t ∈ T }|
(4) S(C′) − S(C) ≤ Cs

We now apply Theorem 1 to show that the analysis of Section 4, when run independently using
the work and span projections of the resource metricM , soundly approximates the work and span
of a block.

Theorem 3. If Σ ⊢ s and Σ ⊢T σ and ⊢M {P ;Qw ;Xw } s {P
′;Q ′w ;X ′w } and ⊢M {P ;Qs ;Xs } s {P

′;Q ′s ;X ′s }
and σ ;T ⊨ {P ;Qw ;Xw } and σ ;T ⊨ {P ;Qs ;Xs } and σ ; ∅; s

Z⇒ T
M σ ′;C then

W (C) ≤ (QwXw
(σ ) −Q ′wX ′w

(σ ′)) |{WarpOf (t) | t ∈ T }|

and
S(C) ≤ QsXs

(σ ) −Q ′sX ′s
(σ ′)

Proof. Note thatW (∅) = S(∅) = 0, so by Lemma 3, we have Cw and Cs such that
(1) σ ; s ⇓TMw

σ ′;Cw

(2) σ ; s ⇓TMs
σ ′;Cs

(3) W (C) ≤ Cw |{WarpOf (t) | t ∈ T }|
(4) S(C) ≤ Cs

and by Theorem 1, we have QwXw
(σ ) −Cw ≥ Q ′wX ′w

(σ ′) ≥ 0 and QsXs
(σ ) −Cs ≥ Q ′sX ′s

(σ ′) ≥ 0.
The result follows. □

6 INFERENCE AND IMPLEMENTATION
In this section, we discuss the implementation of the logical conditions and potential functions of
Section 4 and the techniques used to automate the reasoning in our tool RaCuda. The automation
is based on instantiations of the boolean conditions and potential functions similar to existing
work [9, 10]. We have implemented the inference algorithms as an extension to the Absynth
tool [9, 28]. We begin by outlining our implementation, and then detail the instantiations of the
potential annotations and logical conditions.

Implementation Overview. Absynth is an implementation of AARA for imperative programs. The
core analysis is performed on a control-flow-graph (CFG) intermediate representation. Absynth
first applies standard abstract interpretation to gather information about the usage and contents
of program variables. It then generates templates for the potential annotations for each node in
the graph and uses syntax-directed rules similar to those of the quantitative Hoare logic to collect
linear constraints on coefficients in the potential templates throughout the CFG. These constraints
are then solved by an LP solver.
RaCuda uses a modified version of Front-C6 to parse CUDA, which we then lower into a

representation similar to miniCUDA. Another set of transformations converts this representation
into IMP, a simple resource-annotated imperative language that serves as a front-end to Absynth.
Part of this process is adding annotations that express the cost of each operation in the given
resource metric.
We have extended the abstract interpretation pass to gather CUDA-specific information that

allows us to bound the values of the functions MemReads(·) and Conflicts(·) (recall that these
functions were used to select which rules to apply in the program logic of Figure 4, but their
definitions were left abstract). We describe the extended abstraction domain in the next subsection.
For the most part, we did not modify the representation of potential functions, but we briefly

discuss this representation at the end of this section. In addition, we implemented a “simulated
6https://github.com/BinaryAnalysisPlatform/FrontC
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evaluation” mode that interprets the CUDA representation according to the cost semantics of
Section 3.

Logical Conditions. The logical conditions of the declarative rules of Section 4 correspond to the
abstraction domain we use in the abstract interpretation. The abstract interpretation is designed to
gather information that will be used to select the most precise rules (based on memory accesses,
bank conflicts and divergent warps) when applying the program logic. The exact implementation of
the abstraction domain and analysis is therefore orthogonal to the implementation of the program
logic, and is somewhat more standard (see Section 8 for comparisons to related work). Still, for
completeness, we briefly describe our approach here.
The abstraction domain is a pair (C,M). The first component is a set of constraints of the

form
∑

x ∈Var kxx + k ≤ 0, where kx ,k ∈ N. These form a constraint system on the runtime values
of variables which we can decide using Presburger arithmetic. The second component is a mapping
that stores, for each program variable x , whether x may currently be used as a potential-carrying
variable (see the discussion in Section 4). It also stores two projections of x ’s abstract value, one
notatedMtid(x) that tracks its dependence on tid (in practice, this consists of three components
tracking the projections of x ’s dependence on the x , y and z components of threadIdx, which is
three-dimensional as described in Section 2) and one notatedMconst(x) that tracks its constant
component. Both projections are stored as polynomial functions of other variables, or ⊤, indicating
no information about that component. These projections provide useful information for the CUDA-
specific analysis. For example, ifMtid(x) = (0, 0, 0), then the value of x is guaranteed to be constant
across threads. As another example, ifMtid(x) = (1, 1, 1), then x = tid+ c , where c does not depend
on the thread, and so the array access A[x] has a stride of 1.
This information can directly be extended to expressions, and therefore to update the variable-

specific information at assignments and determine whether expressions used in conditionals might
be divergent. The use of this information to predict uncoalesced memory accesses and bank conflicts
is more interesting. We assume the following definitions of MemReads(·) and Conflicts(·), now
generalized to usem as the number of array elements accessed by a global read and B as the number
of shared memory banks.

MemReads(R) ≜
��{⌈ i

m

⌉
| (i)t ∈ R

}��
Conflicts(R) ≜ max

j ∈[0,B−1]
{a ≡ j mod B | a ∈ Cod(R)}

Theorem 4 formalizes and proves the soundness of a bound on MemReads(x) given abstract
information about x .

Theorem 4. If Mtid(x) = k and C ⇒ tid ∈ [t, t ′] and σ ,T ⊨ (C,M) and σ ;x ↓TM R;C
then MemReads(R) ≤

⌈
k(t ′−t )

m

⌉
+ 1.

Proof. By the definition of σ ,T ⊨ (C,M), we have T ⊂ [t, t ′]. Let a = mint ∈T R(t) and b =
maxt ∈T R(t). We have

MemReads(R) ≤
⌊
b

m

⌋
−

⌊ a
m

⌋
+ 1 ≤

b − a

m
+ 2 ≤

⌈
b − a

m

⌉
+ 1 ≤

⌈
k(t ′ − t)

m

⌉
+ 1

□

Theorem 5 proves a bound on Conflicts(x) given abstract information about x . This bound as-
sumes thatx is divergent; for non-divergent operandso, it is the case by assumption that Conflicts(o) =
1. The proof relies on Lemma 4, a stand-alone result about modular arithmetic.
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Theorem 5. IfMtid(x) = k > 0 and C ⇒ tid ∈ [t, t ′] and σ ,T ⊨ (C,M) and σ ;x ↓TM R;C then

Conflicts(R) ≤

⌈
t ′ − t

min(t ′ − t, B
gcd(k ,B) )

⌉
Proof. Let t0 ∈ T . By the definition of σ ,T ⊨ (C,M), we have Tid(t0) ∈ [t, t ′]. We have R(t0) =

kt0 + c . Let R′ = (kt mod B)t ∈T . The accesses in R access banks from R′ at uniform stride, and
so the maximum number of times any such bank is accessed in R is

⌈
t ′−t

|Dom(R′) |

⌉
. The result follows

from Lemma 4. □

Lemma 4. Let k,m,n,a ∈ N and m ≤ n. Then |{i · a mod n | i ∈ {k, . . . ,k + m − 1}}| =
min(m, n

gcd(a,n) ).

Proof. Let c = lcm(a,n)
a = n

gcd(a,n) . Then A = {ka, 2ka, . . . , (k + c − 1)a} is a residue system
modulo n (that is, no two elements of the set are congruent modulo n) because if ik · a ≡ jk · a
mod n for j − i ≤ c , then ak(j − i) is a multiple of a and n smaller than ca, which is a contradiction.
This means that ifm ≤ c , then |{i · a mod n | i ∈ {k, . . . ,k +m − 1}}| =m. Now consider the case
wherem > c and let c + k < i < m + k . Let b = (i − k) mod c . We then have (i − k)a ≡ ba mod n,
and so ia is already included in A. Thus,{i · a mod n | i ∈ {k, . . . ,k +m − 1}} = A. □

As an example of how the abstraction information is tracked and used in the resource analysis, we
return to the code example in Figure 5. Figure 7 steps through the abstract interpretation of the same
code. For the purposes of this example, we have declared two variables temp0 and temp1 to hold
intermediate computations. This reflects more closely the intermediate representation on which
the abstract interpretation is done. We establish C from parameters provided to the analysis that
specify that blockDim.x is 32, which also bounds threadIdx.x. The assignment to i on line 3 then
establishes that i is a multiple of threadIdx.x and has a constant component of 32blockIdx.x.
This information is then used on line 4 to bound MemReads(i) and Conflicts(threadIdx.x). By
Theorem 4, we can bound MemReads(i) by

⌈ 32
m

⌉
+ 1. Note that both t and t ′ in the statement of

Theorem 4 are multiples of 32 (and, in practice,m will divide 32), so we can improve the bound

to
⌈ 32
m

⌉
. By Theorem 5, we can bound Conflicts(threadIdx.x) by

⌈
32

min(32, 32
gcd(1,32) )

⌉
= 1.

When j is declared, it is established to have no thread-dependence. Its constant component is
initially zero, but the loop invariant setsMconst(j) = ⊤. The assignments on lines 6 and 8 propagate
the information that i depends on threadIdx.x as well as some additional information about the
constant components. This information is used in the two global loads to bound MemReads(temp0)
and MemReads(temp1) by

⌈ 32
m

⌉
+ 1. In this case, without further information about the value of w,

we are unable to make any assumptions about alignment and cannot derive a more precise bound.
As above, we can determine Conflicts(i) ≤ 1 for the loads on both lines.

Potential functions. Our implementation of potential functions is taken largely from prior work on
AARA for imperative programs [9, 28]. We instantiate a potential functionQ as a linear combination
of a fixed set I of base functions from stores to rational costs, each depending on a portion of the
state. A designated base function b0 is the constant function and tracks constant potential. For each
program, we select a set of N base functions, plus the constant function, notated b0,b1, . . . ,bN , that
capture the portions of the state relevant to calculating potential. A potential function Q is then a
linear combination of the selected base functions:

Q(σ ) = q0 +
N∑
i=1

qibi (σ )
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1 __global__ void addSub3 (int *A, int *B, int w, int h) {

2 __shared__ int As[blockDim.x];

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 As[threadIdx.x] = A[i];

5 for (int j = 0; j < h; j += 2) {

6 int temp0 = j * w + i;

7 B[temp0] += As[i];

8 int temp1 = (j + 1) * w + i;

9 B[temp1] -= As[i];

10 }

11 }

blockDim.x = 32, threadIdx.x ≤ 32

Mtid(i) = (1, 0, 0),Mconst(i) = 32blockIdx.x

Mtid(j) = (0, 0, 0),Mconst(j) = ⊤

Mtid(temp0) = (1, 0, 0),Mconst(temp0) = j ∗ w

Mtid(temp1) = (1, 0, 0),Mconst(temp1) = (j + 1) ∗ w

Fig. 7. A sample abstract interpretation.

In the analysis we use, base functions are generated by the following grammar:

M ::= 1 | x | M ·M | |[P, P]|
P ::= k ·M | P + P

In the above, x stands for a program variable and k ∈ Q and |[x,y]| = max(0,y − x). The latter
function is useful for tracking the potential of a loop counter based on its distance from the loop
bound (as we did in Figure 5). These base functions allow the computation of intricate polynomial
resource bounds; transferring potential between them is accomplished through the use of rewrite
functions, described in more detail in prior work [9].

7 EVALUATION
We evaluated the range and and precision of RaCuda’s analysis on a set of benchmarks drawn
from various sources. In addition, we evaluated how well the cost model we developed in Section 3
approximates the actual cost of executing kernels on a GPU—this is important because our analysis
(and its soundness proofs) target our cost model, so the accuracy of our cost model is as important
a factor in the overall performance of the analysis as is the precision of the analysis itself. Table 2
lists the benchmarks we used for our experiments. For each benchmark, the table lists the source
(benchmarks were either from sample kernels distributed with the CUDA SDK, modified from such
kernels by us, or written entirely by us). The table also shows the number of lines of code in each
kernel, and the arguments to the kernel whose values appear as parameters in the cost results. The
kernels used may appear small, but they are representative of CUDA kernels used by many real
applications; recall that a CUDA kernel corresponds essentially to a single C function and that
an application will likely combine many kernels used for different purposes. We also give the x
and y components of the block size we used as a parameter to the analysis for each benchmark (a z
component of 1 was always used). Some of the benchmarks merit additional discussion. The matrix
multiplication (matMul) benchmark came from the CUDA SDK; we also include two of our own
modifications to it: one which deliberately introduces a number of performance bugs (matMulBad),
and one (matMulTrans) which transposes one of the input matrices in an (as it happens, misguided)
attempt to improve shared memory performance. For all matrix multiplication kernels, we use
square matrices of dimension N . The CUDA SDK includes several versions of the “reduce” kernel
(collectively reduceN), in which they iteratively improve performance between versions. We include
the first 4 in our benchmark suite; later iterations use advanced features of CUDA which we do
not currently support. Kernels reduce2 and reduce3 use complex loop indices that confuse our
inference algorithm for some benchmarks, so we performed slight manual refactoring on these
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Benchmark Source LoC Params. Block

matMul SDK 26 N 32 × 32
matMulBad SDK* N 32 × 32
matMulTrans SDK* 26 N 32 × 32
mandelbrot SDK 78 N 32 × 1
vectorAdd SDK 5 N 256 × 1
reduceN SDK 14–18 N 256 × 1
histogram256 SDK 19 N 64 × 1
addSub0 Us 9 h,w h × 1
addSub1 Us 7 h,w h

2 × 1
addSub2 Us 7 h,w w × 1
addSub3 Us 8 h,w w × 1

Table 2. The benchmark suite used for our experiments. SDK = benchmarks distributed with CUDA SDK.
SDK* = benchmarks derived from SDK by authors. Us = benchmarks written by authors.

examples (kernels reduce2a and reduce3a) so our algorithm can derive bounds for them. We also
include the original versions. Finally, we include the examples from Section 2 (addSubN).
We analyzed each benchmark under the four resource metrics defined in Table 1: “conflicts”,

“sectors”, “divwarps” and “steps”.

7.1 Evaluation of the Cost Model
Two of the resource metrics above, “conflicts” and “sectors”, correspond directly to metrics collected
by NVIDIA’s NSight Compute profiling tool for CUDA. This allows us to compare the upper bounds
predicted by RaCuda with actual results from CUDA executions (which we will do in the next
subsection) as well as to evaluate how closely the cost semantics we presented in Section 3 tracks
with the real values of the corresponding metrics, which we now discuss.

To perform this comparison, we equipped RaCuda with an “evaluation mode” that simulates
execution of the input kernel using rules similar to the cost semantics of Figure 3 under a given
execution metric. The evaluation mode, like the analysis mode, parses the kernel and lowers it into
the miniCUDA-like representation. The kernel code under this representation is then interpreted
by the simulator. In addition, the evaluation mode takes an input file specifying various parameters
such as the block and grid size, as well as the arguments passed to the kernel, including arrays and
data structures stored in memory.
We ran each kernel on a range of input sizes. For kernels whose performance depends on the

contents of the input, we used worst-case inputs. For the histogram benchmark, whose worst-case
“conflicts” value depends heavily on the input (we will discuss this effect in more detail below),
limitations of the OCaml implementation prevent us from simulating the worst-case input. We
therefore leave this benchmark out of the results in this subsection.
Because of edge effects from an unfilled last warp, the precision of our analysis often depends

on N mod 32 where N is the number of threads used. In order to quantify this effect, where
possible we tested inputs that were 32N for some N , as well as inputs that were 32N + 1 for
some N (which will generally be the best and worst case for precision) as well as random input
sizes drawn uniformly from an appropriate range. The matrix multiplication, reduce and histogram
benchmarks require (at least) that the input size is a multiple of 32, so we are not able to report on
non-multiple-of-32 input sizes for these benchmarks. We report the average error for each class of
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Error on metric “sectors” Error on metric “conflicts”

Benchmark 32N 32N + 1 Rand. Avg. 32N 32N + 1 Rand. Avg.

matMul 5.5 × 10−5 5.5 × 10−5 0 0
matMulBad 0.01 0.01 0 0
matMulTrans 2.6 × 10−4 2.6 × 10−4 0 0
mandelbrot 0 0 0 0 0 0 0 0
vectorAdd 0 0.06 0.38 0.15 0 0 0 0
reduce0 0.21 0.21 0 0
reduce1 0.21 0.21 5.93 5.93
reduce2 0.21 0.21 0 0
reduce3 1.22 1.22 0 0
addSub0 4.9 × 10−3 4.7 × 10−3 0.01 4.98 × 10−3 0 0 0 0
addSub1 4.9 × 10−3 0.01 0.01 0.01 0 0 0 0
addSub2 0 0.01 0.03 0.01 0 0 0 0
addSub3 0 0.03 0.04 0.02 0 0 0 0

Table 3. Error of the cost semantics with respect to profiled values for the “sectors” and “conflicts” metrics.

input sizes separately, as well as in aggregate. Average error between the simulated value (derived
from our tool simulating execution under the cost semantics) and the profiled value (taken from a
GPU execution profiled with NSight Compute) is calculated as

1
|Inputs |

∑
i ∈Inputs,Profiled(i),0

Simulated(i) − Profiled(i)
Profiled(i)

neglecting inputs that would cause a division by zero. This calculation of the error reflects the
fact that, in almost all cases in which the cost semantics is not exactly precise, the cost semantics
overestimates the actual cost of GPU execution (for some inputs, the cost semantics provides a
slight underestimate but these differences are small enough that they do not appear in the average
results below). Because the soundness result (Theorem 1) applies to the soundness of the analysis
with respect to the cost semantics, this gives some assurance that the analysis is also a sound upper
bound with respect to actual execution values.
Table 3 reports the average relative error of the cost model with respect to profiled values. In

many cases, the cost model is extremely precise (exact or within 5%). Larger differences in a small
number of cells could be due to a number of factors: CUDA’s memory model is quite complex,
and we model only part of the complexity. In addition, our simulator does not track all values and
parameters, sometimes relying on default values or symbolic execution. Finally, our simulator is
essentially an interpreter running the CUDA source code, while the GPU executes code that has
been compiled to a special-purpose assembly language. We do not attempt to model performance
differences that may be introduced in this compilation process.

7.2 Evaluation of the Analysis
In this subsection, we compare the execution costs predicted by RaCuda with the actual execution
costs obtained by profiling (for the “conflicts” and “sectors” metrics) or the simulated costs from
our cost semantics (for the “divwarps” and “steps” metrics). We discuss the “conflicts” and “sectors”
metrics first. Tables 4 and 5 contain the results for these two metrics. For each benchmark, we
present the total time taken, and the cost bound inferred, by RaCuda’s analysis. The timing results
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Error

Benchmark Time (s) Predicted Bound 32N 32N + 1 Random Average

matMul 0.11 31(31 + N )
⌈N
32
⌉

— —
matMulBad 8.13 0 0 0
matMulTrans 0.12 1023 31+N

32
⌈N
32
⌉

33.4 33.4
mandelbrot 346.88 0 0 0 0 0
vectorAdd 0.00 0 0 0 0 0
reduce0 0.03 0 0 0
reduce1 0.02 23715

⌈N
32
⌉

1806 1806
reduce2 1.07 n/b n/b n/b
reduce2a 0.03 0 0 0
reduce3 1.54 n/b n/b n/b
reduce3a 0.03 0 0 0
histogram 1.19 56 63+N

64 0 0
addSub0 0.18 0 0 0 0 0
addSub1 0.01 0 0 0 0 0
addSub2 0.01 0 0 0 0 0
addSub3 0.01 0 0 0 0 0

Table 4. Analysis time, inferred bound and average error for the “conflicts” metric. For matMul, the correct
value is 0 for all inputs, so no error is reported. An entry of “n/b” indicates that our analysis was unable to
determine a bound.

Error

Benchmark Time (s) Predicted Bound 32N 32N + 1 Random Average

matMul 1.05 (4 + 10 31+N
32 )

⌈N
32
⌉

0.30 0.30
matMulBad 8.31 15(31 + N )

⌈N
32
⌉

0.20 0.20
matMulTrans 1.05 (4 + 10 31+N

32 )
⌈N
32
⌉

0.30 0.30
mandelbrot 350.31 36N 0.13 0.13 0.13 0.13
vectorAdd 0.00 12

⌈N
32
⌉

0.00 3.4 × 10−4 7.23 × 10−5 1.4 × 10−4
reduce0 0.03 5

⌈N
32
⌉

0.21 0.21
reduce1 0.02 5

⌈N
32
⌉

0.21 0.21
reduce2 0.09 5

⌈N
32
⌉

0.21 0.21
reduce3 0.10 9

⌈N
32
⌉

1.22 1.22
histogram 1.14 1

64 (5740 + 10(63 + N )) 0.25 0.25
addSub0 0.18 132w

⌈ h
32
⌉

1.01 1.15 1.06 1.06
addSub1 0.01 132w

⌈ h
64
⌉

0.02 0.17 0.06 0.07
addSub2 0.01 14(h + 1)

⌈w
32
⌉

0.17 0.13 0.19 0.16
addSub3 0.01 (4 + 10(h + 1))

⌈w
32
⌉

0.25 0.16 0.27 0.23
Table 5. Analysis time, inferred bound and average error for the “sectors” metric.
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Error

Benchmark Time (s) Predicted Bound 32N 32N + 1 Random Average

matMul 0.12 0 0 0 0 0
matMulBad 7.98 31 + N 0.04 0 0.01 0.02
matMulTrans 0.12 0 0 0 0 0
mandelbrot 471.76 n/b n/b n/b n/b
vectorAdd 0.01 1 — — — —
reduce0 0.03 257 27.56 27.56
reduce1 0.02 257 41.83 41.83
reduce2 1.06 n/b n/b n/b
reduce2a 0.03 129.5 24.90 24.90
reduce3 1.52 n/b n/b n/b
reduce3a 0.04 130.5 25.10 25.10
histogram 1.14 0 0 0
addSub0 0.22 w 0 0 0 0
addSub1 0.01 0 0 0 0 0
addSub2 0.01 0 0 0 0 0
addSub3 0.01 0 0 0 0 0
SYN-BRDIS 9.35 N 0 0 0 0
SYN-BRDIS-OPT 18.67 2N 0 0 0 0

Table 6. Analysis time, inferred bound and average error for the “divwarps” metric. An entry of “n/b” indicates
that our analysis was unable to determine a bound.

show that RaCuda is quite efficient, with analysis times usually under 1 second; analysis times
on the order of minutes are seen for exceptionally complex kernels. Recall that RaCuda produces
bounds for a single warp. To obtain bounds for the kernel, we multiplied by the number of warps
required to process the entire input (often

⌈N
32
⌉
if the input size is N ). Several of the kernels perform

internal loops with a stride of 32. Precise bounds of such loops would, like the number of warps, be
of the form

⌈N
32
⌉
. However, Absynth can only produce polynomial bounds and so must approximate

this bound by N+31
32 , which is the tightest possible polynomial bound.

We also ran versions of each kernel on a GPU using NSight Compute. Similar to the above error
calculation for evaluating the cost model, average error is calculated as

1
|Inputs |

∑
i ∈Inputs,Actual(i),0

Predicted(i) − Actual(i)
Actual(i)

neglecting inputs that would cause a division by zero.
The analysis for global memory sectors is fairly precise. Note also that, for the reduce kernels, the

error is the same as the error of the cost model in Table 3; this indicates that the analysis precisely
predicts the modeled cost and the imprecision is in the cost model, rather than the analysis. Most
other imprecisions are because our abstraction domain is insufficiently complex to show, e.g., that
memory accesses are properly aligned. We note, however, that more efficient versions of the same
kernel (e.g., the successive versions of the reduce and addSub kernels) generally appear more
efficient under our algorithm, and also that our analysis is most precise for better-engineered
kernels that follow well-accepted design patterns (e.g., matMul, reduce3a, addSub3). These results
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Error

Benchmark Time (s) Predicted Bound 32N 32N + 1 Random Average

matMul 0.12 75 + 1621 31+N
32 1.69 1.58 1.61 1.63

matMulBad 9.11 51 + 2678 31+N
32 0.07 0.01 0.03 0.04

matMulTrans 0.12 75 + 1652 31+N
32 1.61 1.50 1.53 1.56

mandelbrot 557.40 n/b n/b n/b n/b
vectorAdd 0.01 27 0 0 0 0
reduce0 0.04 6412 26.06 26.05
reduce1 0.03 30892 87.77 87.77
reduce2 1.22 n/b n/b n/b
reduce2a 0.04 3352 14.31 14.31
reduce3 1.76 n/b n/b n/b
reduce3a 0.04 4139 13.63 13.63
histogram 1.38 383.75 + 128 63+N

64 0.51 0.51
addSub0 0.22 7 + 177w 0.59 0.59 0.59 0.59
addSub1 0.02 7 + 183w 0.01 0.01 0.01 0.01
addSub2 0.01 14 + 32(h + 1) 0.07 0.02 0.05 0.05
addSub3 0.01 22 + 29(h + 1) 0.08 0.02 0.06 0.06
SYN-BRDIS 331.43 9 + 85MN + 64N 0 0 0 0
SYN-BRDIS-OPT 234.97 9 + 69MN + 62N 0 0 0 0

Table 7. Analysis time, inferred bound and average error for the “steps” metric. An entry of “n/b” indicates
that our analysis was unable to determine a bound.
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Fig. 8. Our inferred cost estimates (blue line) vs. actual worst-case costs (purple crosses) for various inputs.
Left: addSub1, sectors; Right: histogram, conflicts (also includes a random input, green crosses)

indicate that our analysis can be a useful tool for improving CUDA kernels, because it can give
useful feedback on whether modifications to a kernel have indeed improved its performance.
RaCuda is generally able to correctly infer that a kernel has no bank conflicts, but often over-

estimates the number of bank conflicts when some are present. Again, this means that RaCuda
can be used to determine whether improvements need to be made to a kernel. We believe the bank
conflicts analysis can be made more precise with a more complex abstraction domain.

Figure 8 plots our predicted cost versus the actual worst-case for two representative benchmarks.
In the right figure, we plot executions of random inputs generated at runtime in addition to
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the worst-case input. The benchmark used for this figure is histogram, whose shared memory
performance displays interesting behavior depending on the input. The benchmark computes a
256-bin histogram of the number of occurrences of each byte (0x0-0xff) in the input array. The bins
are stored in shared memory, and so occurrences of bytes that map to the same shared memory
bank (e.g. 0x00 and 0x20) in the same warp might result in bank conflicts7. In the worst case, all
bytes handled by a warp map to the same memory bank, resulting in an 8-way conflict at each
access (32 bins are accessed, but as there are only 256 bins, only 256/32 = 8 map to each memory
bank). On the other hand, in a random input, bytes are likely to be much more evenly distributed.
This figure shows the benefit of static analysis over random testing in safety-critical applications
where soundness is important: at least in this benchmark, random testing is highly unlikely to
uncover, or even approach, the true worst case.

We present the results for the “divwarps” and “steps” metrics in Tables 6 and 7. For the purposes
of these tables, the bounds are shown per warp rather than for the entire kernel (composing the
“steps” metric across multiple warps is not so straightforward, as we discuss in Section 5). Again,
the analysis is fairly efficient, though in this table we see that the performance of RaCuda is
harmed most by nesting of divergent conditionals and loops, as in the benchmarks SYN-BRDIS
and SYN-BRDIS-OPT. Still, analysis times remain at most on the order of minutes (and are still
under 1 second for most benchmarks). For the “steps” and “divwarps” metrics, we do not compare
to a profiled GPU execution because NVIDIA’s profiling tools do not collect metrics directly related
to these. Instead, we compare to RaCuda’s “evaluation mode”.
These experiments show the utility of RaCuda over tools that merely identify one type of

performance bug. Often, there is a tradeoff between two performance bottlenecks. For example,
reduce3 has worse global memory performance than reduce2, but performs the first level of the
reduction immediately from global memory, reducing shared memory accesses. By combining these
into a metric (e.g. “steps”) that takes account the relative cost of each operation, we can explore the
tradeoff: we see that in terms of “steps”, reduce2 is more efficient than reduce3, but the situation will
likely be reversed depending on the actual runtime costs of each operation, which we do not attempt
to profile for the purposes of this evaluation. As another example, the SYN-BRDIS-OPT kernel was
designed to reduce the impact of divergent warps over SYN-BRDIS using a transformation called
branch distribution. Branch distribution factors out code common to two branches of a divergent
conditional (for example, if e then (A; B; C) else (A’; B; C’) would become (if e then
A else A’); B; (if e then C else C’)). In this code example (and in the benchmarks), the
transformation actually increases the number of divergences: we can see this in the “divwarps”
metric for the two benchmarks. However, the total amount of code that must execute sequentially
is decreased (in the small example above, code section B is not sequentialized), as evidenced by the
“steps” metric.

8 RELATEDWORK
Resource Bound Analysis. There exist many static analyses and program logics that (automatically

or manually) derive sound performance information such as provably-correct worst-case bounds
for imperative [9, 16, 22, 35] and functional [11, 15, 19, 21, 24, 32] programs. However, there are
very few tools for parallel [20] and concurrent [1, 12] execution and there are no such tools that
take into account the aforementioned CUDA-specific performance bottlenecks.

7Of course, these would also result in data races in the absence of synchronization (which is present in the benchmark as
originally written), but such synchronization would also be likely to result in performance impacts when such conflicts
occur; for illustration purposes, we disable the synchronization so that this performance impact shows up as a bank conflict.
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Most closely related to our work is automatic amortized analysis (AARA) for imperative programs
and quantitative program logics. Carbonneaux et al. [8] introduced the first imperative AARA in
the form of a program logic for verifying stack bounds for C programs. The technique has then
been automated [9, 10] using templates and LP solving and applied to probabilistic programs [28].
A main innovation of this work is the development of an AARA for CUDA code: Previous work on
imperative AARA cannot analyze parallel executions nor CUDA specific memory-access cost.

Parallel Cost Semantics. The model we use for reasoning about a CUDA block in terms of its
work and span is derived from prior models for reasoning about parallel algorithms. The ideas of
work and span (also known as depth) date back to work from the 1970s and 1980s showing bounds
on execution time for a particular schedule [7] and later for any greedy schedule [13]. Starting in
the 1990s [4, 5], parallel algorithms literature has used directed acyclic graphs (DAGs) to analyze
the parallel structure of algorithms and calculate their work and span: the work is the total number
of nodes in the DAG and the span is the longest path from source to sink. In the case of CUDA, we
do not need the full generality of DAGs and so are able to simplify the notation somewhat, but our
notation for costs of CUDA blocks in Section 5 remains inspired by this prior work. We build in
particular on work by Muller and Acar [27] that extended the traditional DAG models to account
for latency (Muller and Acar were considering primarily costly I/O operations; we use the same
techniques for the latency of operations such as memory accesses). Their model adds latencies as
edge weights on the graph and redefines the span (but not work) to include these weights.

Analysis of CUDA Code. Given its importance in fields such as machine learning and high-
performance computing, CUDA has gained a fair amount of attention in the program analysis
literature in recent years. There exist a number of static [25, 31, 37] and dynamic [6, 14, 30, 36]
analyses for verifying certain properties of CUDA programs, but much of this work focused on
functional properties, e.g., freedom from data races. Wu et al. [36] investigate several classes of bugs,
one of which is “non-optimal implementation”; this class includes several types of performance
problems. They don’t give examples of kernels with non-optimal implementations, and don’t
specify whether or how their dynamic analysis detects such bugs. PUG [25] and Boyer et al. [6]
focus primarily on detecting data races but both demonstrate an extension of their race detectors
designed to detect bank conflicts, albeit with somewhat imprecise results. Kojima and Igarashi
[23] present a Hoare logic for proving functional properties of CUDA kernels. Their logic does not
consider quantitative properties and, unlike our program logic, requires explicit reasoning about
the sets of active threads at each program point, which poses problems for designing an efficient
automated inference engine.
GKLEE [26] is an analysis for CUDA kernels based on concolic execution, and targets both

functional errors and performance errors (including warp divergence, non-coalesced memory
accesses and shared bank conflicts). GKLEE requires some user annotations in order to perform its
analysis. Alur et al. [2] and Singhania [34] have developed several static analyses for performance
properties of CUDA programs, including uncoalesced memory accesses. Their analysis for detecting
uncoalesced memory accesses uses abstract interpretation with an abstract domain similar to ours
but simpler (in our notation, it only tracksMtid(x) and only considers the values 0, 1, and -1 for it).
Their work does not address shared bank conflicts or divergent warps. Moreover, they developed a
separate analysis for each type of performance bug. In this work, we present a general analysis
that detects and quantifies several different types of performance bugs.

The two systems described in the previous paragraph only detect performance errors (e.g., they
might estimate what percentage of warps in an execution will diverge); they are not able to quantify
the impact of these errors on the overall performance of a kernel. The analysis in this paper has
the full power of amortized resource analysis and is able to generate a resource bound, parametric
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in the relevant costs, that takes into account warp divergence, uncoalesced memory accesses and
shared bank conflicts.
Other work has focused on quantifying or mitigating, but not detecting, performance errors.

Bialas and Strzelecki [3] use simple, tunable kernels to experimentally quantify the impact of warp
divergence on performance using different GPUs. Their findings show that there is a nontrivial cost
associated with a divergent warp even if the divergence involves some threads simply being inactive
(e.g. threads exiting a loop early or a conditional with no “else” branch). This finding has shaped
our thinking on the cost of divergent warps. Han and Abdelrahman [17] present two program
transformations that lessen the performance impact of warp divergence; they experimentally
analyze the benefit of these optimizations but do not have a way of statically identifying whether a
kernel contains a potential for divergent warps and/or could benefit from their transformations.

9 CONCLUSION
We have presented a program logic for proving qualitative and quantitative properties of CUDA
kernels, and proven it sound with respect to a model of the cost of executing kernels on GPUs.
We have used the logic to develop a resource analysis for CUDA as an extension to the Absynth
tool, and shown that this analysis provides useful feedback on the performance characteristics of a
variety of CUDA kernels.

This work has taken the first step toward automated static analysis tools for analyzing and
improving performance of CUDA kernels. In the future, we plan to extend the logic to handle more
advanced features of CUDA such as dynamic parallelism, by further embracing the connection to
DAG-based models for dynamic parallelism (Sections 5 and 8).
The “steps” metric of Section 7 raises the tantalizing question of whether it is possible to use

our analysis to predict actual execution times of kernels by using appropriate resource metrics
to analyze the work and span and combine them as in Section 5. Deriving such metrics is largely
a question of careful profiling of specific hardware, which is outside the scope of this paper, but
in future work we hope to bring these techniques closer to deriving wall-clock execution time
bounds on kernels. Doing so may involve further extending the analysis to handle instruction-level
parallelism, which hides latency by beginning to execute instructions in the same warp that do not
depend on data being fetched.
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