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BY A. MILIČEVIĆa AND N. TRINAJSTIĆb
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1 Introduction

In the present Report we review the literature on combinatorial enumeration in
chemistry published in the last two years – from June 2003 to May 2005. This
represents a continuation of our reporting on advances in counting objects in
chemistry since June 1999. The first Report was entitled Enumeration in
Chemistry1 in which we reviewed historically important enumerations, enu-
meration methods and the literature published between June 1999 to May 2001.
The second Report was entitled Combinatorial Enumeration in Chemistry2 in
which we reviewed the literature published between June 2001 and May 2003
and some past achievements related to the discussed results.

As before, we will review current results and will also present the related past
results to help the reader to see how the certain area of combinatorial
enumeration evolved.

2 Current Results

2.1 Isomer Enumeration. – In the past two years (2003–2005) there were
somewhat less reports on the enumeration of isomeric structures unlike the
periods between 1999–2001 and 2001–2003.

2.1.1 Chiral Isomers of Alkanes. In a continuation of his enumerative works,3–5

Lukovits6 reported constructive enumeration of chiral alkanes. It should be
noted that the constructive enumeration means counting objects by constructing
each object separately using a suitable code.7,8 In his work, Lukovits represented
alkanes by chemical trees. Chemical trees are graph-theoretical trees9 that rep-
resent the carbon skeleton of alkanes and in which no vertex has a degree greater
than 4.10 The degree of a vertex is the number of edges meeting at this vertex.11
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Lukovits’ approach6 is based on the lowest degree first (LDF) tree and the
concept of canonical labeling.12 A LDF tree is a Morgan tree (and consequently
a physical tree, as well). A physical tree13 is a tree obtained by assigning labels
to its vertices consecutively and each vertex to be labeled must be adjacent to an
already labeled vertex. Therefore, each vertex, except the vertex labeled 1, has
exactly one neighbor with a lower label. Such labeling results in the vertex-
adjacency matrix10 A of a physical tree that contains only one non-zero element
in each column of its upper triangle.14 This fact allows the vertex-adjacency
matrix to be replaced by the condensed representation, called the compressed
adjacency matrix and denoted by CAM. Each digit in CAM denotes the row in
the upper-half of the vertex-adjacency matrix in which digit 1 is placed. Thus
CAM is a linear representation of the vertex-adjacency matrix composed of
N�1 entries and it can be set up directly by inspecting the labeling of a physical
tree. It can be also used for coding trees. Physical trees with no vertex-degree
greater than 4 have been generated and enumerated using the N-tuple
code.13,15,16 An illustrative example of a physical tree representing the carbon
skeleton of 3-methyl-4-ethylhexane, the upper-half of the corresponding vertex-
adjacency matrix and the related CAM code is given in Figure 1.

A Morgan-tree, so named by Lukovits3 in honour of H.L. Morgan, who
years ago proposed an algorithm for unique labeling of chemical compounds,17

is a physical tree in which the vertex-labeling must obey an additional restric-
tion with respect to physical trees:3,18 Each new label must be attached to a
vertex adjacent to the vertex labeled with the lowest ordinal. The structure of
the vertex-adjacency matrix belonging to a Morgan tree also allows it to be
condensed to CAM. The number of Morgan trees is a small fraction of the
number of physical trees. Figure 2 displays the Morgan tree representing the
carbon skeleton of 3-methyl-4-ethylhexane, the upper-half of the corresponding
vertex-adjacency matrix and the related CAM code.

A LDF tree is a tree in which a new label is attached to the vertex that has a
first neighbour labeled with the lowest ordinal k and which in addition has the
lowest degree of all vertices attached to the vertex labeled k. Labeling in LDF
trees must start at an end-vertex. The structure of the vertex-adjacency matrix
belonging to a LDF tree also allows it to be condensed to CAM. Labeling of a
LDF tree is exemplified in Figure 3. This figure displays the LDF tree repre-
senting the carbon skeleton of 3-methyl-4-ethylhexane, the upper-half of the
corresponding vertex-adjacency matrix and the related CAM code.

If the CAM codes of physical tree A, Morgan tree B and LDF tree C are
lexicographically ordered, the obtained order is CAM(A)o CAM (B)o CAM
(C). LDF trees, therefore, have the maximal lexicographical value of all CAM
codes related to the same molecule; hence they are unique.

Enumeration of chiral alkanes is carried out in the following way. The
computer program performing the generation procedure,3,5,18 starts calcula-
tions by generating the LDF trees with N vertices, and then sorts out all chiral
trees. To determine whether the LDF code represents a chiral tree, all vertices
of degrees three or four need to be inspected. If two branches attached to these
vertices are identical, the tree is not a chiral tree. To accomplish this task, two
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rules are used to delete non-chiral structures and to determine whether two
branches are identical or not. For example, among the 9 heptane trees, 18
octane trees, 35 nonane trees and 75 decane trees there are 2, 5, 15 and 40 trees,
respectively, possessing at least one chiral vertex. As an illustration, all chiral
octane trees are given in Figure 4.

2.1.2 Counting Disconnected Structures. A great deal of research has been
done on counting connected structures, e.g.1,2 However, Petkovšek and Pisan-
ski19 presented a method, using the graph-theoretical language,9–11 for enu-
merating disconnected graphs (structures) with a given number vertices if the
number of connected graphs is known. They have also shown that the method
can be used in reverse direction, that is, if the numbers of all structures are
known, the number of connected structures can be readily determined. Their
method can be summarized as follows. If F(x) is the generating function of the
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Figure 1 Physical tree depicting the carbon skeleton of 3-methyl-4-ethylhexane, the

upper-half of the corresponding vertex-adjacency matrix and the CAM code
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counting sequence of connected graphs, then the corresponding generation
function G(x) of the counting sequence of all graphs is given by:20

GðxÞ ¼ exp
X
k�1

FðxkÞ=k ð1Þ

Applying a variant of the Möbius inversion to equation (1), it is possible to
express F(x) in terms of G(x):

FðxÞ ¼
X
k�1

½mðxÞ=k� logGðxkÞ ð2Þ

where m stands for the Möbius function.20
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An illustrative example is given below. The number of connected simple
graphs (that is, graphs without loops and multiple edges)11 with N vertices is
given by:

FðxÞ ¼xþ x2 þ 2x3 þ 6x4 þ 21x5 þ 112x6 þ 853x7 þ 11117x8

þ 261080x9 þ 11716571x10 þ 1006700565x11 þ . . .
ð3Þ

and the number of all simple graphs with N vertices is given by:

GðxÞ ¼xþ 2x2 þ 4x3 þ 11x4 þ 34x5 þ 156x6 þ 1044x7 þ 12346x8

þ 274668x9 þ 12005168x10 þ 1018997864x11 þ . . .
ð4Þ

while the corresponding sequence of disconnected simple graphs is:

0, 1, 2, 5, 13, 44, 191, 1229, 13588, 288597, 12297299, . . . (5)

Figure 5 gives as an example all simple graphs with five vertices.

1 2 3 4 5 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34

6

Figure 5 All simple graphs with five vertices
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Numbers given above in (3) and (4) can be checked in the On-Line Encyclo-
pedia of Integer Sequences � see sequences A001349 (3) and A000088 (4). This
Encyclopedia is a marvellous, free of charge, source of a great many integer
sequences published electronically by Neil J.A. Sloane in 2005 at the address
http://www.research.att.com/njas/sequence/. It should be appreciated by all
those who do combinatorial enumeration or any other research in which there
is need for integer sequences. The number of all connected and all simple
graphs with up to nine vertices can be also found in the book Graphical
Enumeration by Harary and Palmer.21 However, the number of all simple
graphs with nine vertices (308708) in Harary’s masterpiece Graph Theory9 must
be a misprint since the correct number is 274668.

2.1.3 Isomeric Fullerenes. Fullerenes CN are carbon cages built from fused
pentagons and hexagons. With increasing the value of N, the number of
possible fullerenes increases considerably. The smallest fullerene is C20 (there
was a recent report on the existence of this fullerene)22 and C22 fullerene is not
possible. In the mentioned On-Line Encyclopedia of Integer Sequences, the
following numbers of isomeric fullerenes are given starting with C20 and
increasing the subscript by 2 – see sequence A007894:

1, 0, 1, 1 , 2, 3, 6, 6, 15, 17, 40, 45, 89, 116, 199, 271, 437, 580, 924, 1205,
1812, 2385, . . . (6)

These numbers have been known for some time, e.g.23–28 Nevertheless,
enumeration of fullerenes, notably higher fullerenes with N 4 100 is still being
pursued. Thus, Livshits and Lozovik29 introduced the cut-and-unfold approach
to fullerene enumeration. Their approach combines the formalism of a fullerene
graph cut-and-fold onto a planar triangular lattice and a topological descrip-
tion of closed quasi-2D clusters. The authors have tested their approach against
the available data27 and enumerated fullerenes for 100r Nr 110 (see Table 1)
and fullerenes that satisfy the isolated pentagon rule (IPR)30,31 for 102 r N r
150 (see Table 2). The IPR predicts fullerenes with all the pentagons isolated by
hexagons to be more stable than those with abutted pentagons.

Table 1 Fullerene-numbers (FN) for 100 r N r
110 obtained by the cut-and-unfold ap-
proach. These results are taken from ref. 29

N FN

100 285 914a

102 341 658a

104 419 013a

106 497 529
108 604 217
110 713 319

a Numbers labeled by a are also given in the On-Line Encyclo-
pedia of Integer Sequences.
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Buckminsterfullerene, the C60 isomer,32 is the smallest possible fullerene that
obeys the IPR and the most stable one among the 1812 cages with 60 carbon
atoms.33,34

2.1.4 Mathematical Models of Isomerism. Papers in this area are highly
mathematical and often difficult to read. Here we report on publications by
Iliev, Fujita and Balasubramanian that have appeared in the last few years.

Lunn and Senior35 proposed many years ago a mathematical model of
isomerism in organic chemistry which Iliev generalized in recent years.36–38

Lunn and Senior considered three types of isomerism: (i) univalent substitution
isomerism (positional isomerism), (ii) skeletal (structural) isomerism and (iii)
enantiomorphism. Univalent substitution isomerism is the relationship existing
between any two compounds A1 and A2 with the same empirical formula in
case that structural formula of A1 can be converted into that of A2 by a
permutation of the univalent substituents without disturbing the skeleton. Then
the molecules A1 and A2 are said to be univalent substitution isomers. For
example, 1-chloropropane and 2-chloropropane are univalent substitution
(positional) isomers. Skeletal isomers are any two compounds A1 and A2 with

Table 2 Numbers of isolated-pentagon fullerenes
(NIPF) for 102 r N r 150 obtained by
the cut-and-unfold approach. These re-
sults are taken from ref. 29

N NIPF

102 616
104 823
106 1233
108 1799
110 2355
112 3342
114 4468
116 6063
118 8148
120 10774
122 13977
124 18769
126 23589
128 30683
130 39393
132 49878
134 62372
136 79362
138 98541
140 12354
142 151201
144 186611
146 225245
148 277930
150 335569
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the same empirical formula that differ in the connectivity (Lunn and Senior
used the older term connexity) relations within their respective structures. Or in
other words, skeletal isomerism is the relationship that exists between com-
pound A1 and the isomeric compound A2 if the skeleton of A1 cannot be
converted into that of A2 without disturbing its skeleton. Then the molecules
A1 and A2 are said to be skeletal isomers. For example, butane and isobutane
are skeletal isomers. Enantiomorphism or optical isomerism is a special form of
stereoisomerism. A pair of molecules is defined as enantiomeric if one molecule
in the pair is not a superimposable mirror image of the other.

Substitution isomerism, structural isomerism and stereoisomerism define
three equivalence relations on the set Tl of all structural formulas A ¼ (A1,
A2,. . .) with a fixed empirical formula, skeleton and with d univalent substitu-
ents. On the other hand, the symmetric group Sd and any of its subgroups acts
naturally on the set Tl. The basic idea of the Lunn-Senior model is that one can
obtain these equivalence relations by means of the action of three permutation
groups G, G0, G00 r Sd, respectively, and G is not generally the 3-dimensional
symmetry group of the molecule. Thus, Lunn and Senior35 supposed that the
number of orbits constitutes the upper boundaries of the number of isomers
obtained by the experiment (though the computed and experimental values
often coincide). In his first paper (part I),36 Iliev defined precisely the set where
the above groups act (structural formulas are identified with the tabloids with d
nodes) and introduced a partial order that models the substitution reactions
between isomers. This partial order can be used for prediction of certain
substitution reactions and for proving the impossibility of such reactions.
For any permutation group W r Sd (W could be, for example, any of G, G0

or G00) and for any one-dimensional character w of W, Iliev defined W-orbits
with a special maximum property, which in the case W ¼ G0 and w is the two-
valued character with kernel G r G0, specializes to the chirality. Thereby Iliev
was also able to get a type property35 of the molecule under consideration. Note
that the type properties of the molecule do not depend on the nature of the
univalent substituents. Moreover, Iliev established a formula for counting these
special W-orbits. Thus, in particular, one obtains the well-known inventory of
the enantiomorphous pairs. In case that w is the unit character of W, one gets a
formula for counting all W-orbits. Iliev also generalized the formula obtained
by Ruch et al.39 for the number of isomers corresponding to a given partition of
d. In addition, the results of Ruch et al.39 which relates the dominance order
between partitions and the existence of chiral pairs is reached as a consequence
of a much more general statement.

Iliev devoted the second part38 of his generalization of the Lunn-Senior
mathematical model of isomerism to identification of the isomers of a given
molecule with their structural formulas on the basis of their substitution reactions.
A classical prototype of this identification is the Körner scheme of substitution
reactions40 between the three di-substituted and the three tri-substituted homo-
geneous products of benzene, which allows all these products to be identified as
ortho, meta, para, vicinal, asymmetric, symmetric, respectively, in agreement with
the combinatorics of the substituent positions on the six-membered ring.
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In his pioneering work, Körner was concerned with the dibromo- and
tribromo-benzenes.40 A few words about now almost forgotten Körner are in
order. Wilhelm Guglielmo Körner (1839–1925) was a student of Friedrich
August Kekulé (1824–1896) and professor of chemistry at the University of
Milan. He devised one of the chemical proofs of the equivalence of the six
hydrogen atoms of benzene and was the first to propose the accepted formula
for pyridine. It should be noted that the problem of assigning structures to
isomeric benzene derivatives was known as orientation in the benzene nucleus.
This was solved in two ways; one way is known as the Körner absolute method
(the Körner scheme of substitution reactions) and the other as the interconver-
sion method.41 Illiev developed the algebraic approach within the framework of
the Lunn-Senior model that allows for all couples of isomers that can and that
cannot be distinguished by means of substitution reactions to be found. He also
introduced distinguishability by means of characters, proved that the enantio-
mers cannot be distinguish either by substitution reactions or by characters and
discussed the examples of ethylene, benzene and cyclopropane.

In a related paper, Iliev37 considered organic compounds with one mono-
substituted and at least three di-substituted homogeneous derivatives. Exam-
ples of molecules studied were benzene and cyclopropane. The Lunn–Senior
permutation groups of substitutional isomerism of these compounds were
described and upper bounds of the numbers of their di-substituted and tri-
substituted homogeneous derivatives were found. Lists of the possible simple
substitution reactions among di-substituted homogeneous derivatives, di-sub-
stituted heterogeneous and tri-substituted homogeneous derivatives were given.
Substitution reactions were found that allowed some derivatives to be identified
by their structural formulas.

Very active in devising mathematical models of isomerism is Shinsaku Fujita.
His aim is to restructure stereochemistry by clarifying ambiguous concepts.
Fujita’s efforts in the past were directed toward defining precisely the basic
stereochemical concepts: chirality and stereogenicity,42,43 since in many text-
books the difference between these two fundamental concepts was not fully
demonstrated, e.g.44,45 Stereochemistry is concerned with at least two aspects of
organic molecules: One is the geometric aspect known as chirality and the other
is the nomenclature aspect called stereogenicity. The geometrical aspect was
studied by point groups which are well-suited to treat continuous objects. But
point groups are unsuitable for treating those stereochemical problems which
are characterized by a discrete nature, such as isomer classification and com-
binatorial enumeration. Stereogenicity was related to the RS-nomeclature,46–48

where the permutability of ligands determines the R- and S-descriptors. Such
permutability was treated by permutation groups, which appear to be insuffi-
cient to treat chirality.49 In order to discuss chirality and stereogenicity from a
common point, Fujita43 introduced the concept of stereoisomeric groups,
which is a combination between the coset representation of point groups and
permutation groups. He then proposed the concepts of holantimers and ster-
eoisograms and concluded that RS-stereogenicity is more useful than stereo-
genicity in discussing the R,S-nomeclature.50 Above we stated when two
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molecules make an enantiomeric pair. Additionally, two molecules can be
defined to be enantiomeric as follows. When a molecule is regarded as a
skeleton with ligands, its mirror image comprises the corresponding mirror
skeleton and the corresponding ligands of opposite chirality. On the other
hand, two molecules based on the same skeleton are defined as being ho-
lantimeric if the chirality of each ligand in one molecule of the pair is changed
into opposite chirality to give the other molecule based on that same skeleton.
These two molecules are then said to be holantimers. Roots of the terms
holantimers and holantimeric, proposed by Fujita, are Greek words holo or hol
meaning whole or entire, and anti meaning opposite to. Fujita introduced the
concept of stereoisogram in order to correlate a set of stereoisomers based on
holantimeric and enantiomeric relationships. The term stereoisogram results
from combining the terms stereoisomer and isogram. Stereogenicity, character-
ized by a stereoisogram and called RS-stereogenicity, has been identified as a
property that should be correlated with chirality.

The above concepts were applied to tetrahedral organic molecules and to
square-planar inorganic complexes.50,51 Fujita earlier52 enumerated tetrahedral
molecules with various substituents with respect to their molecular formulas
and their point-group symmetries. He also classified them in terms of permu-
tation-group symmetries in addition to point-group symmetries.49 Using the
concepts of holantimers and stereoisograms, Fujita50 examined all the enumer-
ated tetrahedral molecules and found that their stereoisograms can be classified
into five stereogenecity types: Type I (chiral/RS-stereogenic), Type II (chiral/
RS-astereogenic), Type III (chiral/RS-stereogenic), Type IV (achiral/RS-aster-
eogenic) and Type V (achiral/RS-stereogenic). The stereoisograms of square-
planar complexes were classified into two types: Type II and Type IV. These are
called RS-stereogenicity types since each depends on whether it can be specified
by the RS-nomeclature or not. Later Fujita53 was able to give a proof for the
existence of five stereogenecity types that was based on the existence of five
factor groups derived from RS-stereoisomeric groups. In the same paper,
Fujita also put the concepts of holantimers and stereoisograms on the firm
mathematical basis.

However, further questions emerged from this work on the relationship
between stereogenicity and chirality,50,51 i.e., how stereogenicity and RS-ster-
eogenicity (or stereoisomeric groups and R,S-stereoisomeric groups) differ and
what happens if they are identical. Since these questions remained after his
approach was applied to tetrahedral molecules, Fujita applied his approach to
other types of molecules. In a two-part series of papers54,55 he studied allene
derivatives and square-planar complexes in more detail. In the first part,54

Fujita, like in the case of tetrahedral molecules, discussed chirality, R,S-
stereogenicity, stereogenicity and skeletal isomerism of allene derivatives using
his terminology for groups (point groups, R,S-permutation groups, R,S-ster-
eoisomeric groups and isoskeletal groups) and for isomers (enantiomers, ho-
lantimers, R,S-diastereomers, diastereomers and isoskeletal isomers). In the
case of allene derivatives, Fujita established that R,S-stereoisomeric groups
coincide with stereoisomeric groups so that diastereomers are identical with
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R,S-diastereomers. In this first paper of the series,54 Fujita also proposed the
concept of stereoisogram set to discuss the relationship between (R,S-)di-
astereomers and isoskeletal isomers. Each stereoisogram set for allene deriva-
tives contains three stereoisograms to represent isoskeletal isomerism and each
of these stereoisograms was classified into five stereogenicity types (Types I–V).
Combination of these stereogenicity types can be used to characterize the
isomerism of allene derivatives. Fujita54 also discussed the case of the tetrahe-
dral skeleton, for which he found the following hierarchy of groups: point
groups C R,S-stereoisomeric groups ¼ stereoisomeric groups ¼ isoskeletal
groups.

In the second part,55 Fujita found the following hierarchy of groups for
square-planar complexes: point groups ¼ R,S-stereoisomeric groups C ster-
eoisomeric groups¼ isoskeletal groups. It appears that the R,S-nomenclature is
not applicable to square-planar complexes because R,S-stereoisomeric groups
coincide with point groups, so that all square-planar complexes are determined
to be R,S-astereogenic. Further, there exist no isoskeletal isomers for square-
planar complexes, because isoskeletal groups coincide with stereoisomeric
groups. In order to discuss stereogenicity, Fujita proposed the concept of
extended stereoisogram, which contains three degenerate stereoisograms.
Applying this concept, square-planar complexes were classified into types
(Types II-II-II, IV-IV-IV, etc.) on the basis of relevant stereoisograms (Types
I–V). The meaning of the number three of degenerate stereoisograms in an
extended stereoisogram is that square-planar complexes cannot be named by a
dichromous nomenclature like R,S-nomenclature or E/Z-nomeclature.

Fujita56 also discussed the E/Z-nomenclature for ethylene derivatives using
group-theoretical arguments. He comprehensively discussed chirality, R,S-
stereogenicity, stereogenicity and isoskeletal isomerism for ethylene derivatives
by considering point groups, R,S-stereoisomeric groups, stereoisomeric groups
and isoskeletal groups. He selected ethylene derivatives as a typical example of
general cases in which stereoisomeric groups should be considered in addition
to R,S-stereoisomeric groups. He established that the R,S-stereoisomeric
groups for ethylene derivatives do not coincide with their stereoisomeric
groups, so that diastereomers (E/Z-isomers) are not identical with R,S-di-
astereomers. In order to consider the relationships amongst R,S-diastereomers,
m-diastereomers (cis/trans-isomers) and isoskeletal isomers, Fujita utilized the
concepts of extended stereoisograms and extended stereoisogram sets. Using
these concepts, Fujita classified ethylene derivatives into Types II-II/II-II/II-II,
IV-IV/IV-IV/IV-IV, etc. on the basis of relevant stereoisograms (Types I-V).
Fujita concluded that the stereoisomerism of ethylene derivatives should be
treated in terms of m-diastereomers characterized by E/Z-nomeclature and not
to be treated in terms of R,S-diastereomers characterized by R,S-nomenclature.

In a separate paper, Fujita jointly with Sherif El-Basil57 used the concept of
doubly-colored graphs to visualize the abstract concepts such as subductions of
coset representations, double cosets, and unit-subduced-cycle-indices,58 which
had been mathematically formulated in the framework of coset algebraic
theory developed by Fujita.42
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In another two-part series,59,60 Fujita presented the stereochemical extension
of the Pólya theorem.61 In the first part,59 he points out that the Pólya theorem
is concerned with graphs and not with molecules although the key paper of
Pólya61 contains also chemical compounds in the title: Kombinatorische An-
zahlbestimmungen für Gruppen, Graphen and chemische Verbindungen (trans-
lated later into English as Combinatorial Enumeration of Groups, Graphs, and
Chemical Compounds). The basic assumption was that chemical compounds
can be regarded as kinds of graphs. Although this assumption works in many
cases, there are problems when the Pólya theorem is applied to chiral/achiral
ligands. Fujita set a task to correct this situation. In the past, several ap-
proaches were proposed to treat the chirality/achirality of ligands. Hässelbarth
and Ruch39,62–64 reported an approach based on double cosets of permutation
groups, whilst Fujita42 proposed the unit-subduced-cycle-index approach. In
this approach, the author has shown that the sphericity of an orbit is important
to stereochemical discussion when taking account of chirality/achirality of
ligands49,65 and that the chirality fittingness due to sphericity produces the unit-
subduced-cycle-index with the chirality fittingness that can be applied to
combinatorial enumerations.66

In this work,59 Fujita reexamined the original definition of the sphericity
concept in terms of conjugacy classes so that the Pólya theorem could be
substantially extended in combination with the sphericity concept. To take
account of chiral ligands together with achiral ligands, permutations of the
coset representations for cyclic subgroups have been classified into proper and
improper elements. This has resulted in classifying the k-cycle contained in each
permutation as an enantiospheric, homospheric or hermispheric cycle. Spheri-
city indices were then defined according to the enantiospheric, homospheric or
hermispheric character of each k-cycle. Now, using sphericity indices, cycle
indices with chirality fittingness have replaced the Pólya cycle indices. The use
of cycle indices with chirality fittingness to enumerate stereoisomers with chiral
and achiral ligands has been illustrated on allene derivatives.

In the second part of the series,60 Fujita proposed a proligand approach to
enumerate nonrigid isomers. The proligand approach is based on the concepts
of proligand and promolecule52 and it takes into consideration both chiral and
achiral (pro)ligands. Fujita used the extended sphericity indices of k-cycles,
which were also been defined according to the enantiospheric, homospheric or
hermispheric character of each k-cycle. Then, as before, the cycle indices with
chirality fittingness have been defined so as to enumerate nonrigid stereoiso-
mers with chiral and achiral ligands. The proligand approach was applied to
tetramethylmethane and compared to the Pólya approach with the conclusion
that the Pólya theorem is applicable to graphs and his (Fujita’s) approach to
nonrigid molecules.

Balasubramanian67 reported all irreducible representations of the octahedral
(cubic) symmetry for vertex-, face- and edge-colorings of a pair of closely
related Platonic bodies, the octahedron and its dual the cube using multinomial
combinatorics. Combinatorial tables for all irreducible representations and all
multinomial partitions were constructed and visualized by the Young tableaux.
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These enumerations constitute multinomial expansions of character-based
cycle index polynomials and grow in combinatorial complexity as a function
of vertex- or edge-coloring partitions. It should be noted that the Pólya
combinatorial theory of enumeration61 provides the generating function for
multinomial expansion in terms of the ordinary cycle index of a group which is
the sum of all orbits of permutation of a group when it acts on a given set
divided by the order of the group. Several authors have independently
generalized the cycle index, e.g.68–70 Balasubramanian has not only generalized
the cycle index, which he called the generalized character cycle index, but
also provided a physical and geometric interpretation of the numbers
generated.67,71,72

Balasubramanian73,74 also carried out combinatorial and group-theoretical
analyses of a C48N12 dodecaazafullerene. The IUPAC name of this compound
is rather unwieldy (8,13,18,23,26,29,32,35,40,45,50)-dodeca[60-S6]fullerene.
Balasubramanian75 found earlier that there are 233,227,974,475 possible iso-
mers of this compound. Many of these isomers are not expected to have much
of the life-time, since if two nitrogen atoms are adjacent in an isomer, there will
be nitrogen-nitrogen repulsion that would destabilize the structure. Balasubra-
manian73 presented the correlation table of the rotational levels of C48N12 into
the S6 group and also its induction into the Ih parent group. He predicted the
properties of the 3Au,

3Eg, and
3Eu excited states of C48N12 that lie 1.9 eV above

the 1Ag ground state and also predicted that the 3Eg and 3Eu states would
undergo the Jahn-Teller distortion into chiral structures with no symmetry and
an achiral structure with C1 symmetry. In a related paper, Balasubramanian74

presented the nuclear spin statistics of C48N12: the nuclear spin multiplets and
statistical weights of 14N spin-1 bosons, and the 13C nuclear spin species and
spin statistical weights of 13C48N12.

Balasubramanian76 also considered combinatorial and group-theoretical
analysis of three C60H36 isomers. The first paper on C60H36 appeared in
1990, in which Haufler et al.77 demonstrated the formation of C60H36 through
low-temperature Birch reduction of C60 and since that time C60H36 has been
studied by a number of authors. Balasubramanian75 predicted in 1991 that
there were over 600 trillion isomers including chiral isomers of C60H36 (the
exact number of isomers being 600,873,146,368,170). Among them, there are
only four T isomers without chirality (or eight isomers with chirality), 31280 C3

isomers78 whilst the majority of C60H36 isomers belong to the C1 group. The
current report by Balasubramanian was stimulated by a recent paper of Gakh
et al.79 in which the authors presented NMR spectra of three isomers of C60H36

obtained using the high temperature hydrogenation reaction of C60. Balasu-
bramanian obtained the generating functions for nuclear spin species of pro-
tons and 13C nuclei. Special cases of generating functions produce the NMR
spectral patterns. The predicted NMR results for the three C60H36 isomers with
C1, C3 and T symmetries agreed with the experimental results. Balasubrama-
nian also predicted the ESR hyperfine patterns of radicals obtained from the
three C60H36 isomers and gave complete tables of the nuclear spin species of
these isomers.
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Balasubramanian80 additionally prepared a nice and very informative au-
thor’s review on the applications of enumerative combinatorics to chemistry
and spectroscopy for a special issue of Advances in Quantum Chemistry,
dedicated to Chemical Graph Theory (guest editor: D.J. Klein). The author
first presented the essence of enumerative combinatorics by means of the Pólya
theorem,61 generalization of the Pólya theorem to all irreducible representa-
tions,81–83 the de Bruijn84,85 extension of the Pólya theorem and the Balasu-
bramanian generalization of the de Bruijn extension to all characters of any
finite permutation group.86 He then showed how these techniques can produce
full multinomial combinatorics of all irreducible representations of any group.
As an illustration, he used octahedral (cubic) and icosahedral symmetries as a
function of partitions for vertex-, face- and edge-coloring. He has also given full
combinatorial tables for all irreducible representations and all multinomial
representations. Application was illustrated on fullerenes. This Balasubrama-
nian’s review may be regarded as a sequel to his 1985 review87 which followed
the path set by Rouvray’s early review on enumeration in chemistry.88

2.1.5 Stereoisomers of Oligoinositols. In our last Report,2 we presented enu-
merative works on oligoinositols by Dolhaine et al.89,90 and by Dolhaine and
Hönig.91,92 The problem of counting oligoinositols was started by the question
posed by Hudlicky et al.93 These authors wondered how many stereoisomers
exist of diinositols (b) and triinositols (c) existed. See the considered oligoino-
sitols in their Haworth projections in Figure 6.

Stereoisomerism of a–e is due to tetrahedral stereocenters (chiral centers).
The number of stereoisomers depends on the possibilities of distributing C–O
bonds above and below the average planes of the cyclohexane rings. Because of
the rapid interconversion of conformers, each cyclohexane ring can be sche-
matized by a planar hexagon (see Figure 6). Since the considered oligoinositols
exhibit high constitutional symmetry, many conformers are identical; thus the
number of distinct stereoisomers is much less than 2c, where c is the number of
chiral centers.

Hudlicky et al.93 gave two answers to their question for b: 212 ¼ 4096
stereoisomers (theoretical result) and 990 stereoisomers (true result). The
authors did not explain how they reached the latter number. Dolhaine
et al.89 obtained 528 as the number of stereoisomers of b by applying their
program ISOMERS. In one of the two subsequent papers, Dolhaine and
Hönig92 published tables of oligoinositol isomers up to tetramers. But, they
did not answer the question regarding the number of stereoisomers of c. They
produced, however, the number of all stereoisomeric linear triinositols, i.e., the
sum of stereoisomers enumerations for c and its constitutional isomers d and e.
They also asked about the number of achiral stereoisomers among all stereo-
isomeric diinositols and triinositols and treated this problem by inspecting
many thousands of stereoisomers.

Rücker et al.94 provided the answer. These authors used three methods
to count the stereoisomers of oligoinositols: (i) Manual exhaustive con-
struction of all stereoisomers, (ii) Counting without construction by using the
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Cauchy-Frobenius lemma (or the Burnside lemma)95 and (iii) Application of
the computer program MOLGEN 3.5.96–99 Actually, the paper of Rücker
et al.94 aimed to show the potential of constructive enumeration for problems
with up to a certain level of complexity, especially if it can be helped by
symmetry arguments. The other two methods are used to support and check the
results obtained by manual enumeration. Rücker et al.94 obtained the following
results: (1) There are 9 monoinositols (a) and 7 are achiral, (2) there are 528
diinositols (b) and 48 are achiral (Dolhaine et al.89 give 48 in their 1999 paper
whilst in the second92 of their 2002 papers Dolhaine and Hönig give 46 as the
number of achiral isomers of b) and (3) there are 82176 triinositols (c–e) with
only a small fraction of isomers being achiral (768). All three counting methods
used produced the same stereoisomer counts, but the differentiation between
chiral and achiral stereisomers was not implemented in the version of MOL-
GEN employed in the paper.
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Figure 6 Considered diinositols and triinositols in their Haworth projections
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2.2 Kekulé Structures. – Kekulé structures are still attracting attention of
chemists and mathematicians. In the language of mathematics, Kekulé structures
are often called perfect matchings.100–103 Matching theory is a well-developed
part of graph theory,100 but it is still of interest,104–107 especially in the theory of
benzenoid hydrocarbons, e.g.108–112 The importance of Kekulé structures, among
other concepts, in the graph-theoretically formulated electronic-structure theory
was recently discussed by Klein.113 Kekulé structures are essential in the conju-
gated-circuit model of aromaticity114–116 and in the Simpson-Herndon vari-
ant117,118 of the valence-bond resonance theory.119 It should be also noted that
a widely used topological index,120,121 called the Hosoya index,10 is based on
matchings in a molecular graph.122 Similarly, the key concept in the topological
resonance energy (TRE) is the matching polynomial.123–126 The TRE is still used
in assessing the aromatic character of conjugated systems, in recent years
especially of fullerenes, e.g.127 It should also be noted that the absolute value
of the constant coefficient in the matching polynomial yields the number of
Kekulé structures of a given conjugated system. Balasubramanian,128 for exam-
ple, calculated matching polynomials of fullerenes C20–C50 and thus also pro-
duced their K-numbers. His results were, for example, utilized by Torrens in his
work on structural properties of fullerenes.129–134

2.2.1 Benzenoid Hydrocarbons. Došlić135 reported counting Kekulé structures
in benzenoid parallelograms and triangular benzenoids using an approach
based on the theory of lattice animals and lattice paths. A lattice animal is a 1-
connected collection of congruent regular polygons arranged in a plane such
that two polygons are either completely disjoint or have a common edge. A
benzenoid in the parallelogram-like shape, called the benzenoid parallelogram,
Bm,n, consists of m � n hexagons, arranged in m rows, each row containing n
hexagons, shifted by half a hexagon to the right from the row immediately
below. A triangular benzenoid Tm consists of m rows with the number of
hexagons in each row decreasing by one from the lowest to one hexagon in the
uppermost row, each row shifted by one and a half hexagon to the right from
the row immediately below.

Došlić135 proved that there is a one-to-one correspondence between the
number of Kekulé structures in a benzenoid parallelogram and the number of
all square-lattice paths from (0,0) to (n,m) with steps (1,0) and (0,1). As
illustrative examples we give all Kekulé structures of anthanthrene in
Figure 7 and the corresponding square-lattice paths in Figure 8.

A consequence of the above correspondence is the exact formula for count-
ing the number of Kekulé structures K of benzenoid parallelograms:

KðBm;nÞ ¼Km;n ¼ mþ n
n

� �
¼ mþ n

m

� �
¼ ðmþ nÞ!

m!n!
ð7Þ

The same result was obtained by Gordon and Davison136 in 1952, but it was
derived in a less formal way than by Došlić. The application of equation (7) is
shown in Figure 9.
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The same formula as (7) was also given by Yen137 in 1971. In his paper, Yen
considered the parallelogram-shaped, the symmetric-circular-shaped, the rec-
tangular-shaped and the skew-strip-shaped benzenoid hydrocarbons. Došlić
did not refer to Yen’s results.

Gordon and Davison136 initiated the path counting method. In the path
counting method the number of Kekulé structures K of a benzenoid B is equal to
the number of the mutually self-avoiding directed peak-to-valley paths:138,139

K ¼ det |P| (8)

where P is a matrix whose elements (P)ij represent counts of self-avoiding paths
in B starting at peak(s) and ending at valley(s). A peak is a vertex on the upper
perimeter of B that lies above its adjacent vertices, whilst a valley is a vertex
lying below its nearest neighbors on the lower perimeter of B. The peaks and
valleys must match if the K-number is to be non-zero. Identification of peaks

1 2 3

4 6

7 8 9

10

5

Figure 7 Kekulé structures of anthanthrene
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and valleys depends on the orientation of a benzenoid. For convenience, the
north-south orientation140 is used. The K-number is, of course, invariant to the
orientation of the benzenoid. For example, anthanthrene considered in Figures
6 and 8, has three peaks and three valleys.

The use of equation (8) depends on the enumeration of paths connecting
peaks and valleys. A very efficient and elegant enumeration method is founded
on the Pascal recurrence algorithm based on the Pascal triangle.141 As an
illustrative example, we give in Figure 10 the application of the Pascal recur-
rence algorithm and the use of equation (8).

1 3 4

5 7 8

9 10

(0,0)

(m,n)

6

2

Figure 8 Paths on the square-lattice corresponding to Kekulé structures of anthanthrene

B23

2 + 3
10

3
K2,3 = =

Figure 9 Counting Kekulé structures of anthanthrene by using equation (7)
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Therefore, both approaches, the Pascal recurrence algorithm and the ap-
proach based on counting the square-lattice paths are similar. However, the
Pascal recurrence algorithm is applicable to a wider range of benzenoids and
not only to benzenoid parallelograms.

The counting formula for the Kekulé structures of triangular benzenoids is
rather simple:135

K(Tm) ¼ Km ¼ Cm11 (9)

where Cm11 is the (mþ1) Catalan number.142,143 An illustrative example is
shown in Figure 11.

The Catalan numbers CN (rarely called Segner numbers after Johann
Andreas von Segner (1704–1777))144 can also be found in the On-Line Ency-
clopedia of Integer Sequences-see sequence A000108: 1, 1, 2, 5, 14, 42, 132, 429,
1430, . . . or they can be generated using the following formula:

CN ¼ 2N!/N! (N þ 1)! (10)

The Catalan numbers could have also been called the Euler numbers because
they were discovered by Leonhard Euler (1707–1783) for counting
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Figure 10 Counting Kekulé structures of anthanthrene by applying the Pascal recurrence

algorithm141
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triangulations. A triangulation of an N-gon is a division of its inside into
triangles. For example, a pentagon has five different triangulations. Von Segner
was also involved in counting triangulations. Nevertheless, Catalan numbers
are named after Eugene Charles Catalan (1814–1894), who rediscovered these
numbers in connection with a different problem, that is, he solved the question:
In how many ways can the product x1x2 . . . xN be parenthesized? The term
Segner number is ocassionally encountered. e.g., in the On-Line Encyclopedia of
Integer Sequences.

The Pascal recurrence algorithm is also applicable to triangular benzenoids,
see Figure 12.

Karimi et al.145 also proposed a counting method based on peaks and valleys.
These authors transformed benzenoid parallelograms into square-meshes
(tilted by 45 degrees square-lattices) and established that there is a one-to-
one correspondence between Kekulé structures and descending paths from the
top to the bottom of a square-mesh. They also generalized their counting
approach to non-parallelogram benzenoids using the idea of diminished square-
mesh which is obtained as a result of deleting one or more submeshes from a
given square-mesh. In their paper, Karimi et al.145 did not refer to the Pascal
recurrence algorithm141 which represents a simpler way of counting peak-
to-valley paths.

A variant of the path-counting method, called the reduced graph ap-
proach,146 was based on the idea of transforming the hexagonal network into
the trigonal network and counting paths connecting peaks and valleys (though
these terms were not used).147,148 This approach was neglected by both
Došlić135 and Karimi et al.145 though it preceded their reports by more than
twenty years.

Došlić135 also overlooked a more recent paper by Lukovits149 on the reso-
nance energy in graphite. In his paper, Lukovits calculated the number of
Kekulé structures Km,n in the (m,n) parallelogram-shaped graphite sheets using
the following recursive equation:

Km,n ¼ Km�1,n þ Km,n�1 (11)

K3 = C4 = 14

Figure 11 Counting Kekulé structures of dibenzo[a,i]pyrene by using equation (9)
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Lukovits has also shown that equation (11) is just another way of expressing
equation (7).

2.2.2 Algebraic Kekulé Structures. Randić115,150 introduced a novel descrip-
tion of Kekulé structures by replacing their standard representation, which he
called geometric Kekulé structures, by what he called algebraic (numerical)
representation. The algebraic Kekulé structures are constructed in the follow-
ing way: Each double bond in a geometric Kekulé structure gets weight 2 for
two p–electrons making up the double bond and if the double bond is shared by
two rings, it gets the weight of only 1. Then the numbers assigned to bonds in
each ring of a polycyclic conjugated system are added up. Hence, every
geometric Kekulé structure gives rise to a numerical Kekulé structure that
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Figure 12 Counting Kekulé structures of dibenzo[a,i]pyrene by applying the Pascal

recurrence algorithm141
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can simply be encoded by a linear sequence of numbers. The algebraic Kekulé
structure can be generated for any class of conjugated systems, i.e., conjugated
(alternant, nonalternant, coronoids, etc.) hydrocarbons or heterosystems pos-
sessing geometric Kekulé structures.151–158 As an example, the geometric
Kekulé structures and the corresponding algebraic Kekulé structures of chry-
sene are given in Figures 13 and 14.

Geometric Kekulé structures provide a linear code for Kekulé structures. For
example, we give below the codes for chrysene Kekulé structures. They are
listed in the lexicographic order:

4 6 2 6
4 6 3 5
5 3 6 4
5 4 3 6
5 4 4 5
6 2 6 4
6 3 3 6
6 3 4 5

Gutman et al.159 proved that cata-condensed benzenoids (catafusenes) have a
one-to-one correspondence between geometric and algebraic Kekulé structures
and that peri-condensed benzenoids (perifusenes) and corona-condensed ben-
zenoids (coronafusenes) do not satisfy this rule. Vukičević et al.160 proved the
theorem on the necessary and sufficient conditions for the algebraic Kekulé
structure of a perifusene or coronafusene to correspond to more than one
geometric Kekulé structure. Pyrene is the simplest example of a perifusene in
which two distinct geometric Kekulé structures correspond to the same alge-
braic Kekulé structure 5 3 3 5 (this coding of algebraic Kekulé structures of
perifusene is based on the Wiswesser coding system for benzenoids).16,153,161

2.2.3 Fullerenes. In a series of papers,129–134 Torrens used a set of structural
parameters of fullerenes reflecting the presence of contiguous pentagons to
study their periodic properties. The parameters he considered are the number of
edges common to two pentagons p, the number of vertices common to three
pentagons q, the number of pairs of nonadjacent pentagon edges shared
between two other pentagons r and ratios q/p and r/p. He correlated ln K,
ln(per A) and ln(per A)/ln K with parameters p, q, r, q/p and r/p. In doing this,
Torrens really continued earlier efforts of Cash.162,163 The values of K, per A
and ln(per A)/ln K, p, q, r, q/p and r/p for fullerenes with a given symmetry from
C20 to C44 are presented in Table 3. For obvious reasons, the IPR fullerenes
have zero values for parameters p, q, and r. For example, buckminsterfullerene
possesses the following values K¼ 12500, per A¼ 395,974,320, ln(per A)/ln K ¼
2.0986, p ¼ 0, q ¼ 0 and r ¼ 0.

Torrens also listed the numbers of Kekulé structures of some larger IPR
fullerenes with icosahedral symmetry, e.g., C80: 140,625; C180:
1,389,029,765,625; C240: 21,587,074,966,666,816.
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Torrens reported several correlations between ln K, ln(per A) and ln(per A)/ln
K and p, q, r, q/p and r/p. We selected the following:

ln K ¼ 10:2� 0:407 pþ 0:238 qþ 0:792 q=pþ 0:320 r=p
n ¼ 28 R ¼ 0:931 S ¼ 0:339 F ¼ 28:7

ð12Þ

lnðper AÞ ¼ 20:2� 0:660 pþ 0:383 q
n ¼ 29 R ¼ 0:949 S ¼ 0:757 F ¼ 118:5

ð13Þ

lnðper 2AÞ=ln K ¼1:88þ 0:0361 p� 0:0490 qþ 0:00953 rþ 0:0497 q=p

� 0:2:53 r=p
n ¼ 28 R ¼ 0:941 S ¼ 0:019 F ¼ 34:2

ð14Þ
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Figure 13 Geometric Kekulé structures of chrysene
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where n is the number of fullerenes considered, R is the correlation coefficient,
S is the standard error of estimate and F is the result of Fisher’s test. In the case
of equation (13), the parameters of C60 were included in the correlation. We
repeated the correlation between ln(per A) for C20–C44, without including C60,
and their structural parameters, using the CROMRsel procedure.164–167

CROMRsel is a multivariate procedure that has been designed to select the
best possible model among the set of models obtained for a given number of
descriptors, the criterion being the standard error of estimate. The quality of
the CROMRsel models is expressed by fitted (descriptive) statistical parame-
ters: the correlation coefficient (Rfit), the standard error of estimate (Sfit) and
Fisher’s test (F). The models are also cross(internally)-validated by a leave-one-
out procedure. Statistical parameters for the cross-validated models are sym-
bolized by Rcv and Scv, where subscript cv denotes the cross-validation. The
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Figure 14 Algebraic Kekulé structures of chrysene
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obtained regression equation is:

lnðper AÞ ¼20:9ð�1:0Þ � 0:722ð�0:089Þ pþ 0:437ð�0:091Þ q
n ¼28 Rfit ¼ 0:911 Rcv ¼ 0:880

Sfitðn� I � 1Þ ¼0:76 Scvðn� I � 1Þ ¼ 0:87 F ¼ 60:6

ð15Þ

where I is the number of descriptors used in the regression. We did this because
it is not clear why Torrens included buckminsterfullerene in getting the
regression equation (13), unless he wanted to obtain the statistical parameters

Table 3 The values of K, per(A), ln[per(A)]/ln K, p, q, and r parameters for
fullerenes from C20 to C44 of a given symmetry. These results are taken
from refs. 131–134

Fullerene Ka per (A)a
ln[per(A)]/
ln K p q r q/p r/p

C20 (Ih) 36 1392 2.0199 30 20 30 0.6667 1.0000
C24 (D6d) 54 4692 2.1192 24 12 36 0.5000 1.5000
C26 (D3h) 63 8553 2.1853 21 8 30 0.3810 1.4286
C28 (Td) 75 15705 2.2378 18 4 24 0.2222 1.3333
C28 (D2) 90 16196 2.1540 20 8 24 0.4000 1.2000
C30 (C2v) I 107 29621 2.2034 17 4 20 0.2353 1.1765
C30 (C2v) II 117 30053 2.1651 18 6 20 0.3333 1.1111
C30 (D5h) 151 31945 2.0672 20 10 20 0.5000 1.0000
C32 (D3) 144 55140 2.1968 15 2 18 0.1333 1.2000
C32 (C2) I 151 55705 2.1780 16 4 16 0.2500 1.0000
C32 (C2) II 168 57092 2.1375 17 6 16 0.3529 0.9412
C32 (D2) 184 58384 2.1045 18 8 15 0.4444 0.8333
C34 (C3v) 195 103665 2.1902 15 3 15 0.2000 1.0000
C34 (Cs) 196 104484 2.1896 15 3 16 0.2000 1.0667
C34 (C2) I 204 103544 2.1714 14 2 14 0.1429 1.0000
C34 (C2) II 212 107720 2.1632 17 6 16 0.3529 0.9412
C36 (D6h) 272 192528 2.1706 12 0 12 0.0000 1.0000
C36 (D2d) 288 192720 2.1489 12 0 12 0.0000 1.0000
C36 (C2v) 312 197340 2.1231 13 2 10 0.1538 0.7692
C36 (D3h) 364 207924 2.0764 15 6 6 0.4000 0.4000
C38 (C2v) 360 366820 2.1768 14 2 14 0.1429 1.0000
C38 (C3v) 378 363300 2.1572 12 1 9 0.0833 0.7500
C38 (D3h) 456 411768 2.1116 18 8 18 0.4444 1.0000
C40 (D5d) I 562 515781 2.0775 10 0 10 0.0000 1.0000
C40 (Td) 576 704640 2.1185 12 4 0 0.3333 0.0000
C40 (D5d) II 701 803177 2.0750 20 10 20 0.5000 1.0000
C44 (T) 864 2478744 2.1775 12 4 0 0.3333 0.0000
C44 (D3h) 960 2436480 2.1416 9 2 0 0.2222 0.0000

a Torrens, according to his e-mail to N.T. of April 19, 2005, calculated per A with programs
provided by Dr. Gordon G. Cash (Office of Pollution Prevention and Toxics Risk Assessment
Division, U.S. Environmental Protection Agency, Washington, USA) – the latest program is
described in G. Delic and G.G. Cash, Comput. Phys. Commun., 2000, 124, 315. He translated these
programs from C-language into Fortran. In the e-mail of April 25, 2005, Torrens stated that he took
the fullerene K-numbers from the literature, e.g., K. Balasubramanian, J. Chem. Inf. Comput. Sci.,
1994, 34, 421 and H.-Y. Zhu and D.J. Klein, J. Mol. Struct. (Theochem), 1995, 338, 11.
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comparable to equations (12) and (14), which appears to be the case. When we
used C60 parameters in the regression, we reproduced his results for fitted
statistical parameters (he made no cross-validation of his models): n ¼ 29, Rfit

¼ 0.948, Rcv ¼ 0.932, Sfit (n�I�1) ¼ 0.757, Scv(n�I�1) ¼ 0.873, F ¼ 118.5.
The principal component analysis of the structural parameters, supported by

the cluster analysis, classified fullerenes into five groups. The periodic table of
fullerenes was built on the structural parameters, the principal component
analysis and the cluster analysis. The conclusion reached by Torrens is that the
preriodicity of fullerene properties is not general. Torrens168–171 also studied the
periodic properties of carbon nanotubes as well.

Jiang et al.172 studied the relationship between the permanent of the vertex-
adjacency matrix of fullerenes and their structural parameters p, q and r, but
also introduced a set of additional structural parameters because, as stated
above, p, q and r are zero for the IPR fullerenes. The new structural parameters
that count contiguous hexagons are denoted by u, v and w. The u and v
enumerate, respectively, the number of edges common to two hexagons and the
number of vertices common to three hexagons. The third parameter w enu-
merates the number of pairs of nonadjacent hexagon edges shared with other
two hexagons. Using the stepwise regression, the best correlation between
ln(per A) and parameters p, q, r, u, v and w for the same set of fullerenes,
including C60 used by Torrens, is obtained as follows:

lnðper AÞ ¼ 13:28� 0:20 pþ 0:22 u
n ¼ 29 R ¼ 1:000 S ¼ 0:016 F ¼ 28300

ð16Þ

where per A was calculated with their own algorithm.173 This is a very good
correlation, which indicates that only two parameters, p and u, can give almost
full information on ln(per A). We repeated as above the correlation between
ln(per A) for C20–C44, without including C60, and the same set of structural
parameters, using the CROMRsel procedure.164–167 The obtained regression
equation is a very good one:

lnðper 2AÞ ¼13:207ð�0:054Þ � 0:1971ð�0:0027Þ pþ 0:2165ð�0:0022Þ u
n ¼28 Rfit ¼ 0:9996 Rcv ¼ 0:9994

Sfitðn� I � 1Þ ¼0:054 Scvðn� I � 1Þ ¼ 0:062 F ¼ 14255

ð17Þ

We also repeated their calculations for C20–C44 including C60 and statistical
parameters, but did not reproduce results of Jiang et al.172: n ¼ 29, Rfit ¼
0.9997, Rcv ¼ 0.9997, Sfit (n�I�1) ¼ 0.055, Scv(n�I�1) ¼ 0.062, F ¼ 24792.

2.2.4 Buckminsterfullerene. Vukičević and Randić174 examined the 12,500
Kekulé structures of buckminsterfullerene (this number was first obtained by
Klein et al.175 using the transfer-matrix method) and were able to classify them
according to the different innate degree of freedom that they possess. The
innate degree of freedom or, for short, the degree of freedom (df) of a Kekulé
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structure is the smallest possible number of carbon-carbon double bonds that,
when selected, determine the locations of all the remaining carbon-carbon
double bonds.176,177 Vukičević and Randić174 developed a computational
algorithm for finding degrees of freedom and applied it to 12,500 Kekulé
structures of buckminsterfullerene. The results they obtained are given in
Table 4.

Kekulé structures of buckminsterfullerene belong to six classes. Only one
Kekulé structures of buckminsterfullerene possesses the highest degree of
freedom (df ¼ 10). This is the Kekulé structure in which the carbon-carbon
double bonds are exocyclic to pentagons.178 There are two distinct, that is
symmetry non-equivalent, Kekulé structures with df ¼ 9 – one appearing 20
times and the other 60 times. The base numbers in the last column of Table 4
indicate how often distinct Kekulé structures occur – their numbers are given as
exponents. For example, 23 over 120 (see the first base number and its exponent
in the third row of the last column) means that 23 of 47 distinct Kekulé
structures with df ¼ 7 occur 120 times. The summation of exponents gives the
total number of distinct Kekulé structures whilst the multiplication of expo-
nents by base numbers gives the total number of structures with a given degree
of freedom. The sum of the numbers in the second column in Table 4 gives 158
distinct Kekulé structures. This number agrees with earlier findings of Babić
and Trinajstić,179 who reported (in 1994) the frequency of occurrence of these
158 distinct Kekulé structures among 12,500 Kekulé structures of buck-
minsterfullerene, which is identical with the decomposition presented in the
last row and the last column of Table 4. These authors considered the combi-
natorial assembling of fullerenes from identical fragments using symmetry
arguments.

In a subsequent paper, Vukičević and Randić in collaboration with Sir
Harold W. Kroto180 catalogued all 158 distinct Kekulé structures producing
the Atlas of Kekulé Structures of Buckminsterfullerene. Everything they did with

Table 4 The degrees of freedom (df) of distinct Kekulé structures (KS) of
buckminsterfullerene, their frequence of occurrence and their partition.
These results are taken from ref. 174

df Distinct KS Total number of KS Partition of KS and their multiplicity

5 36 3170 12019 þ 6013 þ 40 þ 30 þ 202

6 39 3116 12018 þ 6013 þ 305 þ 102 þ 6
7 47 4060 12023 þ 6019 þ 402 þ 302 þ 20
8 33 2073 12010 þ 609 þ 404 þ 303 þ 202 þ 12

þ 102 þ 6 þ 5
9 2 80 60 þ 20
10 1 1 1

Total 158 12500 12070 þ 6055 þ 407 þ 3011 þ 206 þ 12
þ 104 þ 62 þ 5 þ 1
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the Kekulé structures of buckminsterfullerene, they also collected in an au-
thor’s review.181 In that review, they discussed the hidden treasures of Kekulé
structures (e.g., degrees of freedom, conjugated circuits, geometric versus
algebraic Kekulé structures), Clar structures of buckminsterfullerene, enumer-
ation of conjugated circuits, selected mathematical properties of Kekulé struc-
tures and in the Appendix they presented the computational algorithm in
pseudocode.

2.2.5 Nanotubes. Lukovits and Jane�zić182 reported the number of Kekulé
structures in polyphenanthrenes (the zigzag shaped benzenoid chains), (1,1)n
armchair-type carbon nanotubes and extended (1,1)n nanotubes. The lower
index denotes the number of hexagons layers in a nanotube. A (n,n)1 nanotube
that contains a single-hexagon-layer is called the nanoribbon. They enumerated
the Kekulé structures in polyphenanthrenes in terms of the number of hexagons
h using the Gordon-Davison method,136 which can be summarized by a simple
counting formula:183

K(h) ¼ K(h�1) þ K(h�2) (18)

with K(�2) ¼ 0 and K(�1) ¼ 1(by definition).
Lukovits and Jane�zič182 generated the number of Kekulé structures of (1,1)n

armchair-type carbon nanotubes using the following recurrence equation:184

K(1,1)n ¼ 3 K(1,1)n�1 � K(1,1)n�2 (19)

with K(1,1)�1 ¼ 1 and K(1,1)0 ¼ 2, whilst n ¼ the naphthalene unit. They also
generated the number of Kekulé structures of extended (1,1)n nanotubes by
means of:

K*(1,1)n ¼ K(1,1)n � K*(1,1)n�1 (20)

with K*(1,1)�1 ¼ 1 and K*(1,1)0 ¼ 3. The numbers of Kekulé structures in
polyphenanthrenes, (1,1)n armchair-type carbon nanotubes and extended (1,1)n
nanotubes are given in Table 5.

From Table 5, one can see that the Kekulé structures in polyphenanthrenes,
(1,1)n armchair-type carbon nanotubes and in extended (1,1)n nanotubes are
related by the following equalities:

K(2h ¼ n) ¼ K*(1,1)n�1 (21)

K(2h þ 1 ¼ n þ 1) ¼ K(1,1)n (22)

The K-numbers are used to generate the conjugated circuits (see later text)
that were used to calculate the resonance energies of nanotubes.

Equation (18) is a Fibonacci-type recurrence relationship185,186 and the K-
numbers for polyphenanthrenes are the Fibonacci numbers.142,143,187 The Fib-
onacci numbers can also be found in the On-Line Encyclopedia of Integer
Sequences – see sequence A000045: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, . . . The Fibonacci numbers were named after the Italian
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mathematician Fibonacci (c.1175–c.1250), also known as Leonardo da (of) Pisa
or Leonardo Pisano. The use of the subriquet Fibonacci, a contraction of filius
Bonacci, son of Bonaccio, for Leonardo Pisano was introduced in 1838 by the
mathematical historian Guillaume Libri. There is no evidence that Leonardo
referred to himself as Fibonacci or was ever called so by his contemporaries. He
actually called himself Leonardo Pisano Bigollo. No one has been able to trace
the origin of Bigollo in his name, but it has been speculated that he called
himself Bigollo (ignorant peasant) to differentiate himself, who never attended
university, from the pretentious ignorant academics of those days. Addition-
ally, his father’s name was not Bonaccio: His name was Guglielmo. The
problem that gave rise to the Fibonacci series was specified by Leonardo
Pisano in his book Liber Abaci (The Book of Abacus, published in 1202), there
serving as a model for breeding rabbits. The Fibonacci rabbit population model
is perhaps the first study in mathematical biology, many centuries before the
emergence of mathematical biology as a part of biological science.

Table 5 The number of Kekulé structures in polyphenanthrenes K(h) in terms of
the number of hexagons h, the number of Kekulé structures in (1,1)n
nanotubes K(1,1)n and in extended (1,1)n nanotubes K*(1,1)n in terms
of napthalene units n (n ¼ 2h). These results are taken from ref. 182

h(n) K(h) K(1,1)n K*(1,1)n

�2 (�1) 0 1 5
�1 1
0 (0) 1 2 3
1 2
2 (1) 3 5 8
3 5
4 (2) 8 13 21
5 13
6 (3) 21 34 55
7 34
8 (4) 55 49 144
9 89
10 (5) 144 233 377
11 233
12 (6) 377 324 987
13 610
14 (7) 987 1597 2584
15 1597
16 (8) 2584 4181 6785
17 4181
18 (9) 6785 10946 17711
19 10946
20 (10) 17711 28657 46368
21 28657
22 (11) 46368 75025 121393
23 75025
24 (12) 121393 196418 317811
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2.2.6 Enumeration of Kekulé and Longer Range Resonance Valence Bond
Structures. Cai et al.188 proposed a novel procedure for counting Kekulé
structures and longer range resonance valence bond (VB) structures (excited
VB structures) that find use in the VB theory. Kekulé structures and their
numbers are denoted by K, whilst two kinds of longer range resonance VB
structures and their numbers are denoted by S3 (singly-excited VB structures)
and D3,3 (doubly-excited VB structures), where the suffixes indicate the number
of bonds between two through the ring(s) connected sites. This notation is used
by Flocke and Schmalz189 and they also found, in their VB calculations on the
singlet ground states of fullerenes from C20 to C60, that the most important
excited structures in this case are S3 and D3,3. As examples, we give one Kekulé
structure and one S3 structure of benzene and one D3,3 structure of naphthalene
in Figure 15.

The procedure for counting S3 and D3,3 is based on the extended vertex-
adjacency matrix and the adjacency bonding array. The extended vertex-adja-
cency matrix of a Kekulé structure contains elements 1 or 2 depending on the
single or double bond between carbon atoms in the Kekulé structure and it is
called extended because of the added column and row in which elements are set
to 1 or 0 depending whether the carbon atom in the Kekulé structure is
connected to the hydrogen bond or not. For example, the extended vertex-
adjacency matrix for the Kekulé structure of benzene (see Figure 15) is:

j=i 1 2 3 4 5 6 7
1
2
3
4
5
6
7

0 1 0 0 0 2 1
1 0 2 0 0 0 1
0 2 0 1 0 0 1
0 0 1 0 2 0 1
0 0 0 2 0 1 1
2 0 0 0 1 0 1
1 1 1 1 1 1 0

2
666666664

3
777777775

Since this matrix is a sparse matrix, it is not economical to be explicitly used
in computer programming. In order to save computer memory, the authors
used the technique of the bond list, which encodes the position and the value of
the non-zero elements in the upper-triangle (or lower-triangle) of the matrix.
Thus, each member in the bond list is coded by (i, j, [A]ij), with i and j referring

1

2

3

4

6

5

K S3 D3,3

Figure 15 Labeled Kekulé structure K, S3 structure of benzene, and D3,3 structure of

naphthalene
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to the position and [A]ij to the value of the non-zero matrix element. The bond
list for the Kekulé structure of benzene, whose extended vertex-adjacency
matrix is given above, is (1,2,1), (1,6,2), (1,7,1), (2,3,2), (2,7,1), (3,4,1),
(3,7,1), (4,5,2), (4,7,1), (5,6,1), (5,7,1), (6,7,1).

The next step was the introduction of the adjacency bonding array. The
adjacency bonding array is based on the concept of quadrivalence of carbon.
The skeleton (hydrogen atoms included) of a conjugated molecule provides 3
valences and a Kekulé structure or a higher VB structure contributes the fourth
valence. Then, a 2-dimensional array a[N][3] (in the C-language) is used to store
the atom connectivity of the molecular skeleton, which the authors call the
skeleton adjacency bonding array: a[i][k], k ¼ 0,1,2 registers adjacent atoms (0
for a hydrogen atom) of the i-th carbon atom Ci. An additional array K[N],
which is referred to as a Kekulé or a higher VB adjacency bonding array, is
required for notation of each Kekulé or higher VB structure. K[i] records the
atom paired with Ci in the Kekulé structure or higher VB structures. The
Kekulé structure of benzene from Figure 15 is denoted by:

a 6½ � 3½ � ¼

0 2 6
0 1 3
0 2 4
0 3 5
0 4 6
0 5 1

2
6666664

3
7777775

combined with K 6½ � ¼

6
3
2
5
4
1

2
6666664

3
7777775

ð23Þ

The arrays a[N][3] and K[N] are also sometimes called connection matrices
and are defined as

Cði; cÞ ¼ ic � cth site to which site i is attached; c � d; c ¼ 1; 2; 3
0 when codi � 3

�
ð24Þ

K(i) � j for {i,j} A Kekulé structure under consideration (25)

Since the skeleton adjacency array is the same for all the Kekulé and higher
resonance VB structures in one molecule, it is only needed to save a one-
dimensional array K[N] for each structure.

Based on the adjacency bonding arrays, Cai et al.188 developed very efficient
algorithms for the systematic search for K, S3 and D3,3 structures. These
authors listed in their paper K, K þ S3 and K þ S3 þ D3,3 numbers for 72
selected conjugated molecules.

In Table 6, we present the K, K þ S3 and K þ S3 þ D3,3 numbers of several
conjugated molecules taken from Table 3 from the paper by Cai et al.188

2.3 Walks. – The definitions of walks and random walks are given in a
number of mathematical texts, e.g.9,11,103,190,191 Here we briefly repeat these
definitions. A walk in a (molecular) graph G is an alternating sequence of
vertices and edges of G, such that each edge e begins and ends with the vertices
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immediately preceding and following e in the sequence. The length of a walk is
the number of edges in it. Repetition of vertices and edges is allowed in a walk.

Simple random walks probabilistically grown step by step on a graph are
distinguished from walk enumerations and associated equipoise random walks.
A random walk in a (molecular) graph is naturally designated by a probability
measure, of which there are at least two natural intrinsic ones. The first is the
probability measure that entails starting walks from each vertex with equal
probability and subsequent steps are such that each neighboring vertex is stepped
to with equal probability, so that the probability of stepping from vertex i to
vertex j is 1/di, where di is the degree of vertex i. The walks of the consequently
generated distribution are referred to192 as simple random walks. The second is
the probability measure that takes each possible walk of a given length as equally
probable. These probability measures are generally quite different, though if a
graph is regular (i.e., having all vertices of the same degree), then these two
probability measures are equivalent. The walks generated by this second prob-
ability measure are called equipoise random walks. Simple random walks are not
much used in chemical graph theory, whereas the equipoise random walks have
been used fairly frequently.193–208 Equipoise or simple random walks have often
been called just random, probably without recognition of the alternative type – or
perhaps due to confusion of the two possibilities. Simple random walks have
been used to obtain probabilistic solutions to mathematical, physical, computa-
tional or chemical problems, e.g.192,209–215

2.3.1 Enumeration of Random Walks. Counting simple random walks was
reported by Klein et al.216 In parallel to the generation of walks from the
powers of the adjacency matrix (see, for example, our Report in ref. 2) that may
be viewed as an identification of the distribution for equipoise random walks,
Klein et al.216 generated the distribution for simple random walks by powers of
a Markov matrix M with elements that are probabilities for associated

Table 6 K, S3 and D3,3 numbers for several conjugated molecules taken from Cai
et al.188

Conjugated molecule K K þ S3 K þ S3 þ D3,3

Benzene 2 5
Naphthalene 3 17 39
Pyrene 6 62 301
Triphenylene 9 84 411
Perylene 9 117 722
Chrysene 9 121 747
Anthanthrene 10 162 1209
Benzo[ghi]perylene 14 204 1449
Benzo[e]anthanthrene 19 333 2827
Coronene 20 332 2690
Dibenzo[bc,ef]coronene 30 702 7711
Ovalene 50 1210 14181
Quaterrylene 81 2241 30492
Buckminsterfullerene 1250 722300 20633840
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individual steps:

ðMÞij ¼
1=dj i 6¼ j
0 otherwise

�
ð26Þ

The (Ml)ij is the probability for an l-step random walk beginning at vertex j to
end at vertex i.

The random-walk count of the length l (rwc)l at vertex i is given by:

ðrwcÞlðiÞ ¼
XN
j¼1

ð2MlÞij ð27Þ

If we consider only diagonal elements of matrixM, (Ml)ii, the self-returning l-
step random walk (srrw)l at vertex i is:

(srrw)l (i) ¼ (Ml)ii (28)

which, of course, is the probability for a simple random walk starting at vertex i
to return to i after l steps. These vertex characteristics were earlier discussed by
Klein217 in the context of the general sum rules for resistance distances,218

though (srrw)l(i) was in his paper denoted wl(i).
Klein et al.216 have also shown that the (rwc)l and (srrw)l can be computed via

eingevalues of matrixM. However, matrixM is nonsymmetric unless the graph
is regular. But in the general case the eigenvalues of M are related to those of a
symmetric matrix, since M can be given as:

M ¼ A D�1 (29)

where A is the vertex-adjacency matrix, D is the diagonal matrix with elements
(D)ii¼ di and D�1 is its inverse. MatrixM can be related to an auxiliary matrixH:

H ¼ D�1/2 M D1/2 (30)

Matrices H and M are related by a similarity transformation, so that H has
the same eigenvalues as M and eigenvectors c0r, which are simply related to
those of cr. Hence:

c0r ¼ D�1/2 cr (31)

cr ¼ D1/2 c0r (32)

If A D�1 is substituted for M in equation (30):

H ¼ D�1/2 A D�1/2 (33)

one sees that H is symmetric, whence one can use standard symmetric-matrix
diagonalization routines to obtain the cr and associated eigenvalues l. Then:

ðrwcÞlðiÞ ¼
XN
r

ðcrid�1=2
i Þllr

XN
j¼1

crjd
�1=2
j

 !
ð34Þ
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where the cri are components of ci. For (srrw)l(i), a similar expression applies
with the j-sum eliminated and j set equal to i. Analogous formulas for equipose
walks were reported by Rücker and Rücker198,202–204,206,208 and have been
reviewed by us in our last Report.2 The H matrix is also related to the
connectivity index of Randić.219,220 The connectivity index w is given as the
half-sum of the off-diagonal elements of H:

w ¼ ð1=2Þ
X
i 6¼j

ð2HÞij ð35Þ

Klein et al.216 have also shown that the combinatorial Laplacian matrix L
(often called just the Laplacian matrix221,222) is related to matrix H:

L ¼ D�A ¼ D�1/2 (I�H) D1/2 (36)

The eigenvalues l of L give the Wiener index W of acyclic structures:223,224

W ¼ N
XN
l¼2

1=l ð37Þ

When the above formula is extended to cycle-containing structures, a variant
of the Wiener index225 is obtained, which is named the quasi-Wiener index or
Kirchhoff index and is usually denoted by W*.223,226–229

The difference matrix I – H is called the normalized Laplacian matrix Lnorm

(also sometimes called just the Laplacian matrix) of G and there is much theory
about it.230 The matrix Lnorm is clearly also related to the connectivity index:

w ¼ ð1=2Þ
X
i 6¼j

ðLÞnorm ð38Þ

2.3.2 Walks on Plerographs and Kenographs. In his paper on the mathematical
theory of isomers (published in 1847), Arthur Cayley (1821–1895), a distin-
guished 19th century English mathematician, considered two types of molec-
ular graphs, which he named plerograms and kenograms.231 In modern
chemical graph theory, plerograms (P) are molecular graphs in which all atoms
are represented by vertices whilst kenograms (K) are referred to as hydrogen-
suppressed or hydrogen-depleted molecular graphs.232 In their book Mathemat-
ical Concepts in Organic Chemistry, Gutman and Polansky101 used the terms
complete molecular graphs and skeleton graphs for plerograms and kenograms,
respectively. The term thorn or thorny graps for plerograms is also found in the
literature.233,234

Vukičević et al.235 introduced the terms plerographs and kenographs for
plerograms and kenograms, respectively, because plerograms and kenograms
are graphs rather than types of diagrams, and these authors also wanted to
preserve the roots of Cayley’s terms: plero (from the Greek word pleres ¼ full)
and keno (from the Greek word kenos ¼ empty). Therefore, Vukičević et al.235

substituted grams in Cayley’s terms by graphs. Cayley could not do this because
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the name graph was not yet adopted in 1847. Introduction of the term graph
happened later, when one-page paper by Sylvester236 appeared inNature (in 1877),
in which he introduced this term, stimulated as he stated by chemicographs in
Lectures notes for chemical students (London, 1866) by Edward Frankland (1825–
1899). Frankland used in his Notes the term graphic-like symbolic formulae. If
plerographs and kenographs are used to represent hydrocarbons, then one may
think of them as CH-graphs and C-graphs, respectively. In Figure 16, we give as
an illustration the plerograph and the kenograph representing 2,3-dimethylhexane.

Various molecular descriptors have been computed for plerographs usually
in terms of the corresponding descriptors for kenographs.237–239 Vukičević
et al.235 calculated walks for plerographs and kenographs representing alkanes.
In the case of alkanes, all vertices in the related kenographs correspond to
carbon atoms, while in plerographs the mono-valent vertices correspond to
hydrogen atoms while four-valent vertices correspond to carbon atoms.

Vukičević et al.235 obtained the number of walks by the matrix multiplica-
tion, since it is well-established that the number of walks of length l beginning
at vertex i and ending at vertex j is given by the element (Al)ij, the ij-element, in
the l-th power of the vertex-adjacency matrix A (see details in our previous
Report2). They calculated walks with up to length 7 on plerographs and
kenographs for octanes using a Cþþ program. The obtained relationship
between the number of walks in octane-plerographs w(P) and the number of
walks in octane-kenographs w(K) is approximately linear:

w(P) ¼ 26678.9 þ 2.1 w(K) (39)

with the correlation coefficient R ¼ 0.995. Therefore, if the walks are used, for
example, in the structure-property-activity modeling121 of acyclic structures,
then it will be sufficient in most cases to use kenographs for representing the
molecules under study. The use of plerographs would be justified only in case
they provide new insights, though their use will be more time-consuming since
they are more complex structures than kenographs as can be seen in Figure 16.
It should also be pointed out that plerographs correspond more closely to
molecular structures than kenographs.

2.3.3 Walk Counts and Zagreb Indices. Zagreb indices M1 and M2 have been
introduced more than 30 years ago.240 They are simply defined in terms of
vertex-degrees:

M1 ¼
X

vertices

di di ð40Þ

M2 ¼
X
edges

di dj ð41Þ

In recent years these indices have been modified241 and their mathematical
properties investigated.242–248 Although they have initially been used to study
the molecular branching,249 they soon afterwards found application in the
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structure-property-activity modeling, e.g.121 A few years ago Gutman et al.250

established the relationship between the two-step walks over all vertices in a
molecular graph G, denoted bymwc2 (mwc stands formolecular walk count) and
the sum of the squares of the vertex-degrees (that is, the first Zagreb index M1):

mwc2 ¼
X

vertices

di di ¼ M1 ð42Þ

P

K

C

C

C

C

C

C

H
H

H

H

H

H
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H
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H

Figure 16 Two graph-teoretical representation of 2,3-dimethylhexane: plerograph P and

kenograph K
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Now Braun et al.251 established the equivalence of molecular walk count of
length 3 mwc3 and the second Zagreb index M2 and also confirmed the above
result of Gutman et al.250 Using the definition of molecular walk count252,253

(see also our second Report2), Braun et al.251 derived the following formula:

mwc3 ¼ 2
X
edges

di dj ¼ 2M2 ð43Þ

Thus, equations (42) and (43) show that both Zagreb indices may be
regarded as combinatorial quantities related to simple walks on molecular
graphs.

2.4 Structural Complexity. – Several papers reporting studies on the com-
plexity of Platonic solids, Archimedean solids, fullerenes and nanotubes have
appeared in the last couple of years. These are attractive structures and are of
current chemical interest.

2.4.1 Platonic Solids. Because of their high symmetry-based beauty, Platonic
solids attract attention not only of scientists, but also of artists.254,255 Platonic
solids are regular convex polyhedra and there are five of them: tetrahedron (T),
cube (C), octahedron (O), icosahedron (I) and dodecahedron (D) (see their
shapes in Figure 17). Note that a convex polyhedron is regular if all of its faces
are regular polygons. A polyhedron is convex if every dihedral angle is less than
1801. The dihedral angle is the angle formed by two polygons joined along a
common edge.

Tetrahedron (T) Cube (C) Octahedron (O)

Icosahedron (I) Dodecahedron (D)

Figure 17 The shapes of Platonic solids
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Regular convex polyhedra are called Platonic solids because they play an
important role in Plato’s philosophy. Plato (ca. 428–347), however, was not the
first to write about regular polyhedra – the mathematician Theatetus (ca. 380
B.C.), a friend of Plato’s and pupil of Socrates (ca. 470–399), discovered the
octahedron and the icosahedron and was also the first to write about the five
regular polyhedra.256

In chemistry, Platonic solids serve as versatile models for molecular
shapes.257–259 Among them, the tetrahedron is especially important in organic
chemistry since more than 130 year ago Le Bel260 and van’t Hoff261 used it
independently to model the 3-dimensional structure of carbon compounds. The
tetrahedron, the cube and the dodecahedrane are used to model three strained
organic molecules: tetrahedrane C4H4 (some of its derivatives are known262),
cubane C8H8 (prepared in 1964 by Eaton and Cole263) and dodecahedrane
C20H20 (prepared in 1982 by Paquette et al.264). The C20 fullerene (still unpre-
pared) is the unsaturated analogue of dodecahedrane.22 Hydrocarbons mode-
led by the octahedron and icosahedron are not known. However, they model
well inorganic compounds.265 Thus, there are known octahedral molecules,
e.g., SF6, octahedral complexes, e.g., Co(NH3)6

13IrCl6
�3, whilst the icosahe-

dron models boron compounds, e.g., B12H12
2�.266,267

Bonchev268 discussed the global, relative and local complexity of Schlegel
graphs269 representing Platonic solids by using several combinatorial measures
of complexity: the total subgraph count,270,271 overall connectivity,272,273 over-
all Wiener indices274 and total walk count.275 We also discussed these com-
plexity measures in our second Report.2 Bonchev derived equations for the first
several orders of global, relative and local complexity indices as functions of the
number of vertices and vertex-degrees and used them to assess the complexity
of the Platonic solids. The relative complexity index was defined as the ratio of
the complexity index selected and its value for the complete graph having the
same number of vertices as the respective Platonic solid. A simple graph is
called a complete graph if each pair of its vertices is adjacent.9–11 The global
complexity index measures the complexity of the whole structure and the local
complexity index is defined per vertex or per edge.

Bonchev268 obtained the following relative complexity order of the Platonic
solids in their Schlegel representation: T > O > I > C > D. Judging by this
order the larger Schlegel graphs of a Platonic solid, the lesser chance for it to be
close to the related complete graph. This is violated only by icosahedron,
presumably because of its high local symmetry. Both kinds of local complexity
indices (per vertex and per edge) produced the following order: I > O > D Z

C Z T. The order obtained by the global complexity indices is: I > D > O >
C > T, indicating the icosahedron as the most complex Platonic solid. This
global ordering concides with orderings produced276 by using the Bertz index277

and the Estrada second-order edge-connectivity index.278 The cyclomatic
number also gives the same complexity order.279 The cyclomatic number (or
the circuit rank) m of a polycyclic graph G10,11 is the minimum number of edges
that have to be removed from G in order to convert it into an acyclic graph. It is
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given by the expression: m¼ E� V� 1, where E is the number of edges and V is
the number of vertices of G.

In a related paper, Balaban and Bonchev280 produced a complexity order of
Platonic solids according to their sphericity expressed in terms of the solid
angles of their vertices. Sphericity determines how closely a polyhedron, viewed
as a geometrical object, approaches a sphere. One measure of sphericity is
provided by the solid angle (usually given in steradians or in degrees).281 The
solid angle y of Platonic solids may be computed as follows:

sin (d/2) ¼ cos (p/a)/cos (a/2) (44)

y ¼ a d�(a�2)p (45)

where d is the dihedral angle and a is the number of edges belonging to n-gons
meeting at a vertex forming equal planar angles a. For example, y for the
icosahedron (a ¼ 5, a ¼ 601, d ¼ 1381 570) is 2.635 steradians or 1501 570. The
obtained complexity order based on the solid angle is D 4 I 4 C 4 O 4 T.
This order is in agreement with complexity orders of Platonic solids based on
the indices derived from the resistance-distance matrix.276,279,282

2.4.2 Archimedean Solids. Archimedean solids283 (also known as Archime-
dean bodies284 and Archimedean polyhedra255) were until recently much less
studied than the Platonic solids. They came into the focus of research interest
after the discovery of buckminsterfullerene, a pure carbon molecule consisting
of 60 atoms, and assignment of its structure as that of the truncated icosahe-
dron.32 As far as we know, buckminsterfullerene is the only real molecule
whose structure is modeled by an Archimedean solid. Nevertheless, the Ar-
chimedean solids are occasionally studied, usually in conjunction with the
Platonic solids and other polyhedra, e.g.285–287

Archimedean solids are semiregular convex polyhedra.269 A semiregular
polyhedron is a polyhedron whose faces are regular polygons, although not
all the same, and each of whose vertices is symmetrically equivalent to every
other vertex (thus, they are vertex-transitive structures). There are 13 Archime-
dean solids: truncated tetrahedron (TT), truncated cube (TC), truncated octa-
hedron (TO), truncated icosahedron (TI), truncated dodecahedron (TD),
cuboctahedron (CO), truncated cuboctahedron (TCO), snub cuboctahedron
(SCO), rhombicuboctahedron (RCO), icosidodecahedron (ID), truncated icosi-
dodecahedron (TID), snub icosidodecahedron (SID) and rhombicosidodeca-
hedron (RID). Their shapes are shown in Figure 18.

The first surviving description of the Archimedean solids is that of the Greek
geometer Pappus of Alexandria who lived in the fourth century (around
320).288,289 Pappus of Alexandria attributed the invention of semiregular
convex polyhedra to Archimedes (287–212 B.C.); hence, the name Archimedean
solids. The painter-mathematicians of the Renaissance were interested in the
Golden Cut and in its appearance in the Platonic solids and Archimedean
solids.254 In 1492, the Archimedean solids were rediscovered by the painter and
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mathematician Piero della Francesca.290 In his masterpiece De Divina Pro-
portione (1509, reproduced in 1956), Luca Pacioli examined, besides the Pla-
tonic solids, some of the Archimedean solids, in particular the cubooctahedron.
But the Renaissance author who was perhaps most interested in the Archime-
dean solids was Daniel Barbaro, as can be seen in his book Prattica de la
Perspectiva (1569). It was, however, Johannes Keppler (1571–1630) who cat-
alogued the 13 Archimedean solids in 1619 and gave them their now generally
accepted names.

Figure 18 The shapes of Archimedean solids
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Rajtmajer et al.291 considered the complexity of the Archimedean solids by
means of four complexity indices: the index based on the concept of the
augmented vertex-degree, and three indices based on the total number of
walks, the total number of paths and the total number of trails. Note, a
walk is a trail if all the edges are distinct and a path if all vertices are
distinct.9,11 The complexity index, based on the concept of the augmented
vertex-degree, was recently introduced by Randić and Plavšić292–294 and
reviewed by us in our second Report on combinatorial enumeration2 and
by several other groups.206,295 This concept is based on the notion of partial
additivity of vertex-degrees. The augmented degree of a given vertex is
obtained by adding to its degree, the degrees of vertices with the weight
that depends on their distances from this vertex. The complexity index is then
given as the sum of augmented degrees of all vertices in a structure not
equivalent by symmetry. The greater value of the index, the greater is the
complexity of the structure. Since the Archimedean solids are vertex-transi-
tive structures, the complexity index x for them is identical with the aug-
mented degree of a single vertex:

x ¼ ðAVDÞi ¼
Xlmax

i¼1

di=2
lðijÞ ð46Þ

where di is the degree of vertex i, l(ij) is the shortest distance in terms of the
number of edges between vertices i and j, and lmax is the value of the
maximal shortest distance.

All the Schlegel graphs representing Archimedean solids are regular graphs,
that is, all vertices have the same degree d. The number of walks of length q,
w(q), in these graphs is equal to V dq. Note that the first vertex can be chosen in
V ways and its each successor in the walk in d ways. Total walk counts, twc(q),
were calculated by summing up all walks up to a certain length q, w(q):

twcðqÞ ¼
X
q

wðqÞ ð47Þ

Rajtmajer et al.291 calculated the total numbers of paths and trails using their
own computer program. They obtained the following ordering of the Archime-
dean solids by the four complexity indices:

(i) The augmented vertex-degree
TT o TC o TO o TD o TCO o TID o TI o CO o RCO o ID o

RID o SCO o SID
(ii) The total number of walks with up to the length of 8

TT o TC ¼ TO o TCO o TI ¼ TD o CO o TID o RCO o ID o
RID o SCO o SID

(iii) The total number of paths with up to the length of 8
TT o TC o TO o TD o TCO o CO o TI o TID o RCO o ID o

RID o SCO o SID
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(iv) The total number of trails with up to the length of 8
TT o TC o TO o TDo TCO o TI o TID o CO o RCO o ID o

RID o SCO o SID

All four indices predict the truncated tetrahedron (TT), the truncated cube
(TC) and the truncated octahedron (TO) as the least complex structures,
and the rhombicuboctahedron (RCO), the icosidodecahedron (ID), the rhom-
bicosidodecahedron (RID), the snub cuboctahedron (SCO) and the snub
icosidodecahedron (SID) as the most complex structures among the Archime-
dean solids. The ordering of TI, TD, CO, TCO and TID differs from index
to index. The above can be visualized by the Hasse diagram based on the
partial order of the four complexity indices (see Figure 19). It should be
noted that some authors consider the complexity as a partially-ordered quan-
tity.296–300 The Hasse diagram reflecting the partial order of indices appears to
be a very useful device for appraising the structural complexity of molecules
and graphs.

The diagram in Figure 19 is such that in going downward along a path from
structure X to structure Y, all four indices have a smaller value for X than for
Y. Furthermore, the two structures X and Y are directly linked by an edge
downward from X to Y if and only if no third structure is placed by this partial
ordering between X and Y.

The complexity order of Archimedean solids in terms of the solid angle of
their vertices is280 TT o CO o TC o TO o RCO o ID o TCO o TD o
TCO o RID o TID. The two chiral Archimedean solids (snub octahedron,
snub icosidodecahedron) were not considered. This order disagree with all four
complexity given above, except in the case of the truncated tetrahedron which is
predicted to be the least complex of all Archimedean solids. This discrepancy is
perhaps due to different bases of the compared complexity orders; the above
orders being the result of 2D representation and the Balaban-Bonchev order of
3D structure of Archimedean solids.

2.4.3 Fullerenes and Nanotubes. Randić et al.301 considered the problem of
evaluating the complexities of 19 lower fullerenes having from 20 to 50 carbon
atoms and of buckminsterfullerene C60. They selected this set of fullerenes
because they had been already studied by Laidboeur et al.302 who depicted all
these fullerenes by means of their Schlegel graphs and denoted their symme-
tries. Schlegel graphs, named after the 19th century German mathematician
Victor Schlegel,303 are convenient graph-theoretical representations of fuller-
enes � they are planar 3-connected graphs.269,304 In Figure 20, we give, as an
example, the Schlegel graph representing buckminsterfullerene.

Randić et al.301 studied the complexity of lower fullerenes by using the
distance degree sequences DDSs for all symmetry non-equivalent vertices, the
multiplicity m of the DDSs, which are defined as the cardinality of each
equivalence class, the augmented degrees for all vertices of different equivalence
class x (see text above),292–294 which represent a measure of the local
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complexity, the average value of the augmented vertex-degrees xav and the sum
of all augmented vertex-degrees as the overall complexity index Vxav. For
illustration, we give below the values of these complexity measures for buck-
minsterfullerene (since we gave in Figure 20 the Schlegel graph of C60, these

TT 

CO

SCO

TCO

RCO

ID 

TID 

RID

SID

TC TO 

TI 

TD 

Figure 19 The partial order by means of the Hasse diagram for Archimedean solids based

on the four complexity indices
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measures can be checked easily):

DDS : 3; 9; 18; 24; 30; 30; 24; 9; 3
m : 60
x ¼ x 18:5098
Vxav 1110:5880

Both xav and Vxav increase with the size of the fullerene. However, the
authors considered two isomers of C38 (D3h and C3v), three isomers of C40 (Td,
C3v and D5d) and two isomers of C44 (T and D3h) Since the augmented vertex-
degree depends on the symmetry characteristics of a structure, it is expected
that the indices xav and Vxav would have higher values for a less symmetric
structure. Thus, C38 (C3v) and C44 (D3h) are predicted to be more complex than
C38 (D3h) and C44 (T). However, in the case of three C40 isomers, two isomers
possessing different symmetries (Td and C3v) have identical values of xav and
Vxav. This is probably a coincidence, possibly as a result of the average DDS
being the same for both fullerenes: 3.00, 9.00, 18.00, 22.50, 25.50, 22.50, 12.00,
5.40.

In the same article, Randić et al.301 also considered the complexity of single-
wall carbon nanotubes. These nanotubes can be constructed by rolling a long
strip of a planar graphene sheet. Their properties depend on how the ends of
the strip become connected. In this paper, the authors used the concept
introduced by Klein et al.305: The geometry of a nanotube if defined in terms
of two parameters – the twist t1 and the countertwist t� under the condition
that t1 must be an integer higher than, or equal to, 3, whilst t� can have any
integer value between 0 and t1, that is, t� r t1. The numbers t� and t1 indicate
how many linearly condensed hexagons in two direction diverging from one
hexagon by 1201 in the nanotube are involved in the repeating pattern on the
nanotube until they overlap when rolling the strip. When t� ¼ 0, the nanotube
is achiral and is called a zigzag nanotube whose diameter in Ångströms is
approximately 0.78t1. When t1 ¼ t�, the nanotube is also achiral and is called

C60 Schlegel graph of C60

Figure 20 The truncated icosahedron structural model of buckminsterfullerene C60 and

the corresponding Schlegel graph
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an armchair nanotube with the diameter 0:78tþ
ffiffiffi
3

p
. When t1 a t�, the

nanotube is chiral with the diameter 0.78(t�
2 þ t1

2 þ t�t1)
1/2. The twist t1

and the countertwist t� parameters determine the helicity of nanotubes by
sin(1 � t�/t1)p.

The complexity of a nanotube depends on its length, diameter and helicity.
The values of the ratio t�/t1 range from zero for the zigzag nanotubes through
0.5 for the skew nanotubes to 1 for the armchair nanotubes. Therefore, the
helicity of nanotubes ranges from 0 for the zigzag and armchair nanotubes to 1
for the skew nanotubes. Hence, the skew nanotubes are more complex than
either zigzag or armchair nanotubes. The key parameters for studying com-
plexity of nanotubes are the twist t1 and the countertwist t� since they
determine the diameter and helicity of nanotubes.

2.5 Other Enumerations. – In this section, we present combinatorial enume-
rations that do not fit in any of the above sections, though some are related to
discussions above or in our previous Reports.1,2

2.5.1 The Number of Spanning Trees. Kirby et al.306 put forward a theorem
for counting spanning trees in general molecular graphs (that is, non-planar
graphs with loops and multiple edges) with particular application to toroidal
fullerenes. A spanning tree is a connected subgraph of graph G containing all
vertices of G.11 The problem of counting spanning trees goes back to the work
by Kirchhoff307 and subsequent mathematical formulations.190 Spanning trees
are used to study the complexity of reaction mechanisms,308 of molecular
graphs,206,309,310 in calculating the magnetic properties of conjugated polycyclic
molecules by means of the ring-current model within the framework of the p-
electron molecular orbital theory.311–313

An important contribution to the enumeration of spanning trees of molec-
ular planar graphs was the theorem by Gutman et al:314

t(G) ¼ det D (48)

where t(G) is the number of spanning trees and D is the difference matrix
defined as follows:

D ¼ D* � A* (49)

where A* is the vertex-adjacency matrix of an inner dual G* of G and D* is a
diagonal matrix of G* with elements l*(k), where l*(k) is the size of cycle k
(called the patch cycle by Kirby et al.306) in G. Matrix D may also be regarded
as a Laplacian matrix315–317 of the vertex-weighted inner dual G*, the weights of
vertices in G* being equal to the sizes of cycles in the parent graph G.

An inner dual G* of a planar polycyclic graph G is obtained by placing a
vertex in each cycle of G and pairs of vertices in G* are connected if the
corresponding rings in G have common edges. Examples of a graph and its
inner dual are given in Figure 21.
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The difference matrix D belonging to the inner dual G* from Figure 21 and
the corresponding number of spanning trees are given below.

1 0 0 0 0 0 0
0 4 �1 �1 0 0 0
0 �1 4 �1 �1 0 0
0 �1 �1 4 0 0 0
0 0 �1 0 4 �1 �1
0 0 0 0 �1 3 0
0 0 0 0 �1 0 2

t(G) ¼ 860

The theorem stated as equation (48) is a special case of the theorem derived
by Kirby et al.:306

t(G) ¼ det V/(det U)2 (50)

where the V-matrix is defined as:

V ¼ ZZT (51)

and the U-matrix is a non-singular matrix to be chosen in such a way that its
determinant is 1 or some small integer. The Z-matrix is the cycle-edge incidence
matrix.317,318

The cycle-edge incidence matrix Z is a c � e matrix (c and e being the
numbers of cycles and edges, respectively), which is determined by the inci-
dences of cycles and edges in G:

½Z�ij ¼
1 if a cycle i is incident with an edge j
0 otherwise

�
ð52Þ

Kirby et al.306 considered three kinds of cycles: independent cycles, funda-
mental cycles and patch cycles and showed that they all produce the same

1

2

4

5

6

7

G G*

3

Figure 21 Graph G and its labelled disconnected inner dual G*
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number of spanning trees. However, det U is equal to 1 only for the
fundamental set of cycles of any graph and for patch cycles of any planargraph.

If equations (49) and (51) are applied to planar graphs and use is made of
patch cycles, then:

V ¼ ZZT ¼ D*�A* ¼ D (53)

and consequently:

t(G) ¼ det V/(det U)2 ¼ det D (54)

2.5.2 The Number of Conjugated Circuits in Graphite. Lukovits149 calculated
the number of conjugated circuits in (m,n) parallelogram-shaped graphite
sheets and used them to obtain the resonance energies per electron (REPE)
of graphite sheets. He computed the benzene-like, the naphthalene-like and the
anthracene-like conjugated circuits [6]m,n, [10]m,n and [14]m,n for several values
of m and n (m,n r 6) using the following equations:

(i) The benzene-like conjugated circuits

[6]m,n ¼ 2(m þ n � 1)!/(m � 1)! (n � 1)! (55)

or

[6]m,n ¼ [6]m,n�1 þ [6]m�1,n þ [6]m�1,n/(m�1) (56)

(ii) The naphthalene-like conjugated circuits

[10]m,n ¼ [6]m�1,n þ [6]m,n�1 (57)

From equations (56) and (57) it follows that if m and n are sufficiently large,
then [6]m,n ¼ [10]m,n in (m,n) parallelogram-shaped graphite sheets. By setting m
¼ n, from equations (55), (56) and (57), Lukovits149 obtained:

[10]n,n ¼ 2{(2n � 2)! (2n � 2)/[(n � 1)!]2} (58)

(ii) The anthracene-like conjugated circuits

[14]m,n ¼ [6]m�2,n þ [6]m,n�2 (59)

In any conjugated hydrocarbon G made up of hexagons subunits, the REPE is
given by:200,319,320

REPEG ¼ {[6]G R6 þ [10]G R10 þ [14]G R14 þ . . . }/V KG (60)

where V is the number of carbon atoms in G. For (n,n) parallelogram-shaped
graphite sheets, V is equal to:

V ¼ 2(n2 þ 2n) (61)

Randić,114,115 who introduced the concept of conjugated circuits, used R4n 1 2

to denote the energy contributions of the (4n þ 2)-membered conjugated
circuits to the resonance energy.
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Lukovits149 calculated the resonance energy per electron (REPE) of graphite
sheets using the expression that he obtained from equations (11), (55), (58), (60)
and (61):

[REPE]n,n ¼ [n R6/(2n
2 þ 4n)] þ {[n2 � n)R10/[(2n � 1) (n2 � 2n)]} (62)

Lukovits has taken the values of the parameters R6 ¼ 0.8220 eV and R10 ¼
0.3355 eV from Randić et al.321 The value of parameter R14 is rather small
(0.0580 eV) and its inclusion in the REPE expression depends on the number of
the anthracene-like conjugated circuits. Since Lukovits established that the
number of [14]m,n circuits is much smaller than the number of [10]m,n circuits, he
did not include them in the REPE calculation of graphite sheets.

2.5.3 The Number of Conjugated Circuits in Nanotubes. Lukovits and
Jane�zič182 calculated the number of conjugated circuits in armchair (1,1)n
carbon nanotubes and (n,n)1 nanoribbons and used them to obtain the reso-
nance energies per electron (REPE) of these structures. For any (1,1)n, nano-
tube, they derived the following formulae for 6- and 10-membered circuits in
terms of the corresponding Kekulé structures:

½6�ð1; 1Þn ¼4ðK�ð1; 1Þn�2Kð1; 1Þ�1 þ K�ð1; 1Þn�3Kð1; 1Þ0
þ K�ð1; 1Þn�4Kð1; 1Þ1 þ . . .þ K�ð1; 1Þ�1Kð1; 1Þn�2þ

ð63Þ

[10](1,1)n ¼ [6](1,1)n�1 (64)

Using data from Table 5, one can easily obtain the number of two smallest
conjugated circuits of (1,1)n nanotubes.

For nanoribbons, the counting formulas for 6- and 10-membered circuits are
given in terms of theK-numbers of polyphenanthrenes (note thatK(2h)¼ K(n)ph)

[6](n,n)1 ¼ 4n K(2n�3)ph (65)

[10](n,n)1 ¼ 4n K(2n�4)ph (66)

Lukovits and Jane�zič182 calculated the resonance energies of armchair (1,1)n
carbon nanotubes and (n,n)1 nanoribbons for a given n using equation (64) and
found for n very large REPE of (1,1)n nanotubes is 0.160 eV and for nanorib-
bons 0.142 eV. Since these values are a bit larger than REPE for buck-
minsterfullerene (0.12 eV),303 Lukovits and Jane�zič182 concluded that carbon
nanotubes belong to the most aromatic structures.

2.5.4 Combinatorial Matrices. There are a number of combinatorial matrices
available in the literature, usually used to generate graph invariants.120,121,317

We have already mentioned some of these matrices, such as the random-walk
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Markov matrix (section 2.3.1), the Laplacian or difference matrix (sections
2.3.1 and 2.5.1) and the incidence matrix (section 2.5.1).

Randić et al.322 proposed a novel type of combinatorial matrices, which they
called graphical matrices. They used these matrices to generate the distance-
based molecular descriptors. Graphical matrices are combinatorial matrices
whose elements are subgraphs of the graph rather than numbers – hence their
name. Thus far, very little work has been reported on these matrices.323

However, many combinatorial matrices,120 such as the Wiener matrices324–326

and the Hosoya matrices,327 may be regarded as the numerical realizations of
the corresponding graphical matrices.317

The advantage of a graphical matrix lies in the fact that it allows for a
great many possibilities of numerical realizations. In order to obtain a
numerical form of a graphical matrix, one needs to select a graph invariant
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(i) Edge-graphical matrix eG
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Figure 22 Four types of graphical matrices for a tree representing the carbon skeleton of

2,3,4-trimethylpentane
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and replace all the graphical elements (subgraphs of some form) by the
corresponding numerical values of the selected invariant. In this way, the
numerical form of the graphical matrix is established and one can select
another or the same type of invariant � this time an invariant of the
numerical matrix. Graph invariants generated in this way are double invar-
iants323 in view of the fact that two invariants are used in constructing a
given molecular descriptor.

Nikolić et al.328 classified graphical matrices G into four types-two being
sparse matrices: (i) the edge-graphical matrices eG, (ii) the vertex-graphical
matrices sijG, and two being dense matrices: (iii) the path-graphical matrices pG
and (iv) the vertex-graphical matrices dijG. The elements of the edge-graphical
matrix eG are obtained by consecutive removal of edges connecting vertices i
and j from graph G. The elements of the sparse vertex-graphical matrix sijG are
obtained by the consecutive removal of adjacent vertices i and j, and the
incident edges from G. The elements of the path-graphical matrices pG are
obtained by consecutive removal of the paths joining vertices i and j from G.
The elements of the dense vertex-graphical matrices dijG are obtained by

(ii) Sparse vertex-graphical matrix sijG 
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Figure 22 (continued)
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removing pairs of vertices i and j at increasing distances from G. In their paper,
Randić et al.322 discussed only the dense vertex-graphical matrix dijG. In Figure
22, we give all four types of graphical matrices for 2,3,4-trimethylpentane. Since
the graphical matrices are square symmetrical matrices, we give only their
upper triangles.

The next step is to replace (sub)graphs with the invariants of choice. For this
purpose, Randić et al.322 used the Wiener index225,329,330 and Nikolić et al.328

used the Wiener index and the Hosoya index.122 The numbers that replace the
subgraphs in the graphical matrices are obtained by summing up their Wiener
indices or their Hosoya indices. The numerical forms of four graphical matrices
presented in Figure 22, obtained using the Wiener number, are given in Table 7.
The summation of the matrix-elements in each matrix-triangle gives the
following descriptors of 2,3,4-trimethylpentane: the edge-Wiener-Wiener index
eWW, the sparse vertex-Wiener-Wiener index suvWW, the path-Wiener-Wiener
number pWW and the dense vertex-Wiener-Wiener index duvWW. These num-
bers are also given in Table 7.

(iii) Path-graphical matrix pG 
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Figure 22 (continued)
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It should be noted that if we replace subgraphs in the edge-Wiener matrix by
products of the number of vertices in each subgraph, the obtained numerical
matrix, called the Wiener matrix W,324–326 also called the edge-Wiener matrix
eW,120,317 gives the standard Wiener index W. Similarly, if we replace each non-
zero element in the edge-Wiener matrix with its inverse value, the obtained
modified edge-Wiener matrix mW gives the modifiedWiener index mW.331 Finally,
if we replace subgraphs in the path-Wiener matrix by products of the numbers of
vertices in each subgraph, the obtained numerical matrix hW gives the hyper-
Wiener index.317,324,325,332 All the three results are valid only for acyclic graphs.
Examples of the edge-Wiener matrix, the modified edge-Wiener matrix and the
hyper-Wiener matrix and the corresponding indices are presented in Table 8.

3 Conclusion

In the last six years we reported on a number of novel results achieved in the
combinatorial enumeration in chemistry. In the period of 1999–2001, we

(iv) Dense vertex-graphical matrix dijG 
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considered 96 papers published during these two years that were concerned
with combinatorial enumerations. The next two years (2001–2003), there has
been even a greater output – we considered 100 papers that have been reporting
topics from the area of combinatorial enumerations in chemistry. Finally, in the
last two years (2003–2005), there were 89 papers that we included in our report.
But for the each period mentioned, we included in our reports a much greater
number of references, since we have mentioned older results and related results

Table 7 Four Wiener-like matrices (only upper triangles are shown) of 2,3,4-
trimethylpentane and their corresponding Wiener-Wiener indices

(i) Edge-Wiener matrix eW (ii) Sparse vertex-Wiener matrix sijW

0 46 0 0 0 0 0 0
0 22 0 0 46 0 0

0 22 0 0 0 48
0 46 0 0 46

0 0 0 0
0 0 0

0 0
0

0 18 0 0 0 0 0 0
0 4 0 0 18 0 0

0 4 0 0 8 0
0 18 0 0 18

0 0 0 0
0 0 0

0 0
0

eWW ¼ 276 sijWW ¼ 88

(iii) Path-Wiener matrix pW (iv) Dense vertex-Wiener matrix dijW

0 46 18 4 0 0 0 0
0 22 8 4 46 8 4

0 22 18 18 48 18
0 46 4 4 46

0 0 0 0
0 0 0

0 0
0

0 18 4 10 31 29 32 21
0 4 1 10 18 9 31

0 4 4 5 8 5
0 18 10 9 18

0 31 32 29
0 32 31

0 32
0

pWW ¼ 384 dijWW ¼ 496

Table 8 The edge-Wiener matrix eW, the modified edge-Wiener matrix mW and
the hyper-Wiener matrix hW and the corresponding indices W, mW and
hW of 2,3,4-trimethylpentane

0 7 0 0 0 0 0 0
0 15 0 0 7 0 0

0 15 0 0 0 7
0 7 0 0 7

0 0 0 0
0 0 0

0 0
0

0 1=7 0 0 0 0 0 0
0 1=15 0 0 1=7 0 0

0 1=15 0 0 0 1=7
0 1=7 0 0 1=7

0 0 0 0
0 0 0

0 0
0

0 7 5 3 1 1 1 1
0 15 9 3 7 6 3

0 15 5 5 7 5
0 7 3 3 7

0 1 1 1
0 1 1

0 0
0

W ¼ 65 mW ¼ 0.848 hW ¼ 122
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from other areas of chemistry that find useful chemical enumerations. We also
considered journals that published most of combinatorial results in each
period. In all three periods (1999–2001, 2001–2003, 2003–2005), the first
medium for publishing combinatorial enumerations in chemistry was the
Journal of Chemical Information and Computer Sciences (JCICS), published
by the American Chemical Society. This journal since the beginning of 2005 has
split into two journals – the Journal of Chemical Information and Modeling and
the Journal of Chemical Theory and Computation. It is expected that the first of
these two journals will inherit the tradition of JCICS and will continue to
publish papers about chemical combinatorial enumerations. The next impor-
tant journals for chemical combinatorics appear to be the Journal of Mathe-
matical Chemistry and MATCH Communications in Mathematical and
Computer Chemistry. Additionally, two more journals with frequent contribu-
tion to chemical enumerations were Chemical Physics Letters and Croatica
Chemica Acta, published by the Croatian Chemical Society. In the period 1999–
2001, a number of chemical combinatorial papers appeared in the Bulletin of
Chemical Society of Japan and in the period just reviewed in this report (2003–
2005), in the Internet Electronic Journal of Molecular Design (www.biochem-
press.com). Important contribution over the years appeared in Nature, the
Journal of the American Chemical Society, the Journal of Organic Chemistry,
International Journal of Quantum Chemistry and Theretical Chemistry Accounts
(formerly Theoretica Chimica Acta).
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156. D. Vukičević and D.J. Klein, J. Math. Chem., 2005, 37, 163.
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167. A. Miličević and S. Nikolić, Croat. Chem. Acta, 2004, 77, 97.

168. F. Torrens, Internet Electronic J. Mol. Design, 2004, 3, 514. http://www.

biochempress.com.

169. F. Torrens, Internet Electronic J. Mol. Design, 2005, 4, 59. http://www.

biochempress.com.

170. F. Torrens, Nanotechnology, 2005, 16, S181–S189.

171. F. Torrens, Frontiers in Drug Design & Discovery, 2005, 1, 231–266.

172. S. Jiang, H. Liang and F. Bai, New Structural Parameters and Permanents of

Adjacency Matrices of Fullerenes, to be published.

173. H. Liang and F. Bai, Comput. Phys. Commun., 2004, 163, 79.
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Introduction and Fundamentals, eds. D. Bonchev and D.H. Rouvray, Taylor &

Francis, London, 2003, pp. 29–89.
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219. M. Randić, J. Am. Chem. Soc., 1975, 97, 6609.
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298. D.J. Klein and D. Babić, J. Chem. Inf. Comput. Sci., 1997, 37, 656.

299. D.J. Klein and J. Brickmann (eds.), Partial Orderings in Chemistry, MATCH

Commun. Math-. Comput. Chem., 2000, 42, 7–290.

300. See footnote 27 by D.J. Klein in S. Nikolić, I.M. Tolić, N. Trinajstić and I. Baučić,
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326. M. Randić, X. Guo, T. Oxley, H. Krishnapryan and L. Naylor, J. Chem. Inf.

Comput. Sci., 1994, 34, 361.
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