
C H A P T E R

7

Distributed Systems
A distributed system is one in which the failure of a computer you didn’t even know existed can

render your own computer unusable.

– LESLIE LAMPORT [1125]

What’s in a name? That which we call a rose by any other namewould smell as sweet.

– WILLIAM SHAKESPEARE

7.1 Introduction

We need a lot more than authentication, access control and cryptography to
build a robust distributed system of any size. Some things need to happen
quickly, or in the right order, and matters that are trivial to deal with for a few
machines become a big deal once we have hyperscale data centres with com-
plex arrangements for resilience. Everyone must have noticed that when you
update your address book with an online service provider, the update might
appear a second later on another device, or perhaps only hours later.
Over the last 50 years, we’ve learned a lot about issues such as concurrency,

failure recovery and naming as we’ve built things ranging from phone systems
and payment networks to the Internet itself. We have solid theory, and a lot of
hard-won experience. These issues are central to the design of robust secure
systems but are often handled rather badly. I’ve already described attacks
on protocols that arise as concurrency failures. If we replicate data to make
a system fault-tolerant, then we may increase the risk of data theft. Finally,
naming can be a thorny problem. There are complex interactions of people
and objects with accounts, sessions, documents, �les, pointers, keys and other
ways of naming stuff. Many organisations are trying to build larger, �atter
namespaces – whether using identity cards to track citizens or using device ID
to track objects – but there are limits to what we can practically do. Big data

243

244 Chapter 7 ■ Distributed Systems

means dealing with lots of identi�ers, many of which are ambiguous or even
changing, and a lot of things can go wrong.

7.2 Concurrency

Processes are called concurrent if they can run at the same time, and this is
essential for performance; modern computers have many cores and run many
programs at a time, typically for many users. However, concurrency is hard to
do robustly, especially when processes can act on the same data. Processesmay
use old data; they can make inconsistent updates; the order of updates may or
may notmatter; the systemmight deadlock; the data in different systemsmight
never converge to consistent values; and when it’s important to make things
happen in the right order, or even to know the exact time, this can be trickier
than you might think. These issues go up and down the entire stack.
Systems are becoming ever more concurrent for a number of reasons. First

is scale: Google may have started off with four machines but their �eet passed
a million in 2011. Second is device complexity; a luxury car can now contain
dozens to hundreds of different processors. The sameholds for your laptop and
your mobile phone. Deep within each CPU, instructions are executed in paral-
lel, and this complexity leads to the Spectre attacks we discussed in the chapter
on access control. On top of this, virtualization technologies such as Xen are
the platforms on which modern cloud services are built, and they may turn a
handful of real CPUs in a server into hundreds or even thousands of virtual
CPUs. Then there’s interaction complexity: going up to the application layer,
an everyday transaction such as booking a rental car may call other systems to
check your credit card, your credit reference agency score, your insurance claim
history and much else, while these systems in turn may depend on others.
Programming concurrent systems is hard, and the standard textbook

examples come from the worlds of operating system internals and of perfor-
mance measurement. Computer scientists are taught Amdahl’s law: if the
proportion that can be parallelised is p and s is the speedup from the extra
resources, the overall speedup is (1 − p + p∕s)−1. Thus if three-quarters of your
program can be parallelised but the remaining quarter cannot be, then the
maximum speedup you can get is four times; and if you throw eight cores
at it, the practical speedup is not quite three times1. But concurrency control
in the real world is also a security issue. Like access control, it is needed to
prevent users interfering with each other, whether accidentally or on purpose.
And concurrency problems can occur at many levels in a system, from the
hardware right up to the business logic. In what follows, I provide a number
of concrete examples; they are by no means exhaustive.

1
(

1 − 3

4
+

3

4
.

1

8

)−1

= (0.25 + 0.09375)−1 = (0.34375)−1 = 2.909

7.2 Concurrency 245

7.2.1 Using old data versus paying to propagate state

I’ve already described two kinds of concurrency problem: replay attacks on
protocols, where an attacker manages to pass off out-of-date credentials; and
race conditions, where two programs can race to update some security state.
As an example, I mentioned the ‘mkdir’ vulnerability from Unix, in which a
privileged instruction that is executed in two phases could be attacked halfway
through by renaming the object onwhich it acts. Another example goes back to
the 1960s, where in one of the �rst multiuser operating systems, IBM’s OS/360,
an attempt to open a �le caused it to be read and its permissions checked; if
the user was authorised to access it, it was read again. The user could arrange
things so that the �le was altered in between [1131].
These are examples of a time-of-check-to-time-of-use (TOCTTOU) attack. We

have systematic ways of �nding such attacks in �le systems [252], but attacks
still crop up both at lower levels, such as system calls in virtualised environ-
ments, and at higher levels such as business logic. Preventing them isn’t always
economical, as propagating changes in security state can be expensive.
A good case study is card fraud. Since credit and debit cards became pop-

ular in the 1970s, the banking industry has had to manage lists of hot cards
(whether stolen or abused), and the problem got steadily worse in the 1980s
as card networks went international. It isn’t possible to keep a complete hot
card list in every merchant terminal, as we’d have to broadcast all loss reports
instantly to tens of millions of devices, and even if we tried to verify all trans-
actions with the bank that issued the card, we’d be unable to use cards in
places with no network (such as in remote villages and on airplanes) and we’d
impose unacceptable costs and delays elsewhere. Instead, there are multiple
levels of stand-in processing, exploiting the fact that most payments are local,
or low-value, or both.
Merchant terminals are allowed to process transactions up to a certain limit

(the �oor limit) of�ine; larger transactions need online veri�cationwith themer-
chant’s bank, which will know about all the local hot cards plus foreign cards
that are being actively abused; above another limit it might refer the trans-
action to a network such as VISA with a reasonably up-to-date international
list; while the largest transactions need a reference to the card-issuing bank. In
effect, the only transactions that are checked immediately before use are those
that are local or large.
Experience then taught that a more centralised approach can work better for

bad terminals. About half the world’s ATM transactions use a service that gets
alerts from subscribing banks when someone tries to use a stolen card at an
ATM, or guesses the PIN wrong. FICO observed that criminals take a handful
of stolen cards to a cash machine and try them out one by one; they maintain a
list of the 40 ATMsworldwide that have been usedmost recently for attempted
fraud, and banks that subscribe to their service decline all transactions at those

246 Chapter 7 ■ Distributed Systems

machines – which become unusable by those banks’ cards for maybe half an
hour. Most thieves don’t understand this and just throw them away.
Until about 2010, payment card networks had the largest systems that man-

age the global propagation of security state, and their experience taught us
that revoking compromised credentials quickly and on a global scale is expen-
sive. The lesson was learned elsewhere too; the US Department of Defense, for
example, issued 16 million certi�cates to military personnel during 1999–2005,
by which time it had to download 10 million revoked certi�cates to all security
servers every day, and some systems took half an hour to do this when they
were �red up [1301].
The costs of propagating security state can lead to centralisation. Big service

�rms such as Google, Facebook and Microsoft have to maintain credentials
for billions of users anyway, so they offer logon as a service to other web-
sites. Other �rms, such as certi�cation authorities, also provide online creden-
tials. But although centralisation can cut costs, a compromise of the central
service can be disruptive. In 2011, for example, hackers operating from Iranian
IP addresses compromised the Dutch certi�cation authority Diginotar. On July
9th, they generated fake certi�cates and didmiddleperson attacks on the gmail
of Iranian activists. Diginotar noticed on the 19th that certi�cates had been
wrongly issued butmerely called in its auditors. The hack becamepublic on the
29th, and Google reacted by removing all Diginotar certi�cates from Chrome
on September 3rd, and getting Mozilla to do likewise. This led immediately to
the failure of the company, and Dutch public services were unavailable online
for many days as ministries scrambled to get certi�cates for their web services
from other suppliers [471].

7.2.2 Locking to prevent inconsistent updates

Whenpeoplework concurrently on a document, theymayuse a version control
system to ensure that only one person has write access at any one time to any
given part of it, or at least to warn of contention and �ag up any inconsistent
edits. Locking is one general way to manage contention for resources such as
�lesystems and to make con�icting updates less likely. Another approach is
callback; a server may keep a list of all those clients which rely on it for security
state and notify them when the state changes.
Credit cards again provide an example of how this applies to security. If I

own a hotel and a customer presents a credit card on check-in, I ask the card
company for a pre-authorisation, which records that I will want to make a debit
in the near future; I might register a claim on ‘up to $500’. This is implemented
by separating the authorisation and settlement systems. Handling the failure
modes can be tricky. If the card is cancelled the following day, my bank can

7.2 Concurrency 247

call me and ask me to contact the police, or to get her to pay cash2. This is an
example of the publish-register-notify model of how to do robust authorisation
in distributed systems (of which there’s a more general description in [153]).
Callback mechanisms don’t provide a universal solution, though. The cre-

dential issuermight not want to run a callback service, and the customermight
object on privacy grounds to the issuer being told all her comings and goings.
Consider passports as another example. In many countries, government ID is
required for many transactions, but governments won’t provide any guaran-
tee, and most citizens would object if the government kept a record of every
time an ID document was presented. Indeed, one of the frequent objections to
the Indian government’s requirement that the Aadhar biometric ID system be
used in more and more transactions is that checking citizens’ �ngerprints or
iris codes at all signi�cant transactions creates an audit trail of all the places
where they have done business, which is available to of�cials and to anyone
who cares to bribe them.
There is a general distinction between those credentials whose use gives rise

to some obligation on the issuer, such as credit cards, and the others, such
as passports. Among the differences is whether the credential’s use changes
important state, beyond possibly adding to a log �le or other surveillance
system. This is linked with whether the order in which updates are made is
important.

7.2.3 The order of updates

If two transactions arrive at the government’s bank account – say a credit of
$500,000 and a debit of $400,000 – then the order in which they are applied
may notmatter much. But if they’re arriving at my bank account, the order will
have a huge effect on the outcome! In fact, the problem of deciding the order
in which transactions are applied has no clean solution. It’s closely related to
the problem of how to parallelise a computation, and much of the art of build-
ing ef�cient distributed systems lies in arranging matters so that processes are
either simply sequential or completely parallel.
The traditional bank algorithm was to batch the transactions overnight and

apply all the credits for each account before applying all the debits. Inputs
from devices such as ATMs and check sorters were �rst batched up into
journals before the overnight reconciliation. Payments which bounce then

2My bank might or might not have guaranteed me the money; it all depends on what sort of
contract I’ve got with it. There were also attacks for a while when crooks �gured out how to
impersonate a store and cancel an authorisation so that a card could be used to make multiple
big purchases. And it might take a day or three for the card-issuing bank to propagate an alarm
to the merchant’s bank. A deep dive into all this would be a book chapter in itself!

248 Chapter 7 ■ Distributed Systems

have to be reversed out – and in the case of ATM and debit transactions where
the cash has already gone, you can end up with customers borrowing money
without authorisation. In practice, chains of failed payments terminate. In
recent years, one country after another has introduced real-time gross settlement
(RTGS) systems in which transactions are booked in order of arrival. There
are several subtle downsides. First, at many institutions, the real-time system
for retail customers is an overlay on a platform that still works by overnight
updates. Second, the outcome can depend on the order of transactions, which
can depend on human, system and network vagaries, which can be an issue
when many very large payments are made between �nancial institutions.
Credit cards operate a hybrid strategy, with credit limits run in real time while
settlement is run just as in an old-fashioned checking account.
In the late 2010s, the wave of interest in cryptocurrency led some

entrepreneurs to believe that a blockchain might solve the problems of
inconsistent update, simplifying applications such as supply-chain manage-
ment. The energy costs rule out a blockchain based on proof-of-work for most
applications; but might some other kind of append-only public ledger �nd
a killer app? We will have to wait and see. Meanwhile, the cryptocurrency
community makes extensive use of off-chain mechanisms that are often very
reminiscent of the checking-account approach: disconnected applications
propose tentative updates that are later reconciled and applied to the main
chain. Experience suggests that there is no magic solution that works in the
general case, short perhaps of having a small number of very large banks that
are very competent at technology. We’ll discuss this further in the chapter on
banking.
In other systems, the order in which transactions arrive is much less impor-

tant. Passports are a good example. Passport issuers only worry about their
creation and expiration dates, not the order in which visas are stamped on
them3.

7.2.4 Deadlock

Another problem is deadlock,where two systems are eachwaiting for the other
tomove �rst. EdsgerDijkstra famously explained this problem, and its possible
solutions, via the dining philosophers’ problem. A number of philosophers are
seated round a table, with a chopstick between each of them; and a philosopher
can only eat when they can pick up the two chopsticks on either side. So if all
of them try to eat at once and each picks up the chopstick on their right, they
get stuck [560].

3Many Arab countries won’t let you in with an Israeli stamp on your passport, but most pure
identi�cation systems are essentially stateless.

7.2 Concurrency 249

This can get really complex when you have multiple hierarchies of locks dis-
tributed across systems, some of which fail (and where failures can mean that
the locks aren’t reliable) [152]. And deadlock is not just about technology; the
phrase ‘Catch-22’ has become popular to describe deadlocks in bureaucratic
processes 4. Where a process is manual, some fudgemay be found to get round
the catch, but when everything becomes software, this option may no longer
be available.
In a well known business problem – the battle of the forms – one company

issues an order with its own contract terms attached, another company accepts
it subject to its own terms, and trading proceeds without any further agree-
ment. In the old days, the matter might only be resolved if something went
wrong and the companies ended up in court; even so, one company’s terms
might specify an American court while the other’s specify one in England. As
trading has become more electronic, the winner is often the company that can
compel the loser to trade using its website and thus accept its terms and con-
ditions. Firms increasingly try to make sure that things fail in their favour. The
resulting liability games can have rather negative outcomes for both security
and safety; we’ll discuss them further in the chapter on economics.

7.2.5 Non-convergent state

When designing protocols that update the state of a distributed system, the
‘motherhood and apple pie’ is ACID – that transactions should be atomic, con-
sistent, isolated and durable. A transaction is atomic if you ‘do it all or not at
all’ – which makes it easier to recover after a failure. It is consistent if some
invariant is preserved, such as that the booksmust still balance. This is common
in banking systems, and is achieved by insisting that the sum total of credits
and debitsmade by each transaction is zero (I’ll discuss thismore in the chapter
on banking and bookkeeping). Transactions are isolated if they are serialisable,
and they are durable if once done they can’t be undone.
These properties can be too much, or not enough, or both. On the one hand,

each of them can fail or be attacked in numerous obscure ways; on the other,
it’s often suf�cient to design the system to be convergent. This means that, if
the transaction volume were to tail off, then eventually there would be consis-
tent state throughout [1355]. Convergence is usually achieved using semantic
tricks such as timestamps andversion numbers; this can often be enoughwhere
transactions get appended to �les rather than overwritten.
In real life, you also need ways to survive things that go wrong and are

not completely recoverable. The life of a security or audit manager can be a
constant battle against entropy: apparent de�cits (and surpluses) are always

4Joseph Heller’s 1961 novel of that name described multiple instances of inconsistent and crazy
rules in the World War 2 military bureaucracy.

250 Chapter 7 ■ Distributed Systems

turning up, and sometimes simply can’t be explained. For example, different
national systems have different ideas of which �elds in bank transaction
records are mandatory or optional, so payment gateways often have to guess
data in order to make things work. Sometimes they guess wrong; and some-
times people see and exploit vulnerabilities which aren’t understood until
much later (if ever). In the end, things may get fudged by adding a correction
factor and setting a target for keeping it below a certain annual threshold.
Durability is a subject of debate in transaction processing. The advent of

phishing and keylogging attacks has meant that some small proportion of
bank accounts will at any time be under the control of criminals; money gets
moved both from them and through them. When an account compromise is
detected, the bank moves to freeze it and perhaps to reverse payments that
have recently been made from it. The phishermen naturally try to move funds
through institutions, or jurisdictions, that don’t do transaction reversal, or
do it at best slowly and grudgingly [76]. This sets up a tension between the
recoverability and thus the resilience of the payment system on the one hand
and transaction durability and �nality on the other5.

7.2.6 Secure time

The �nal concurrency problem of special interest to the security engineer is the
provision of accurate time. As authentication protocols such as Kerberos can
be attacked by inducing clock error, it’s not enough to simply trust a random
external time source. One possibility is a Cinderella attack: if a security critical
program such as a �rewall has a licencewith a timelock, an attackermightwind
your clock forward “and cause your �rewall to turn into a pumpkin”. Given
the spread of IoT devices that may be safety-critical and use time in ways that
are poorly understood, there is now some concern about possible large-scale
service denial attacks. Time is a lot harder than it looks: even if you have an
atomic clock, leap seconds cannot be predicted but need to be broadcast some-
how; some minutes have 61 and even 62 seconds; odd time effects can be a
security issue6; and much of the world is not using the Gregorian calendar.
Anyway, there are several possible approaches to the provision of secure

time. You can give every computer a radio clock, and indeed your smartphone

5This problem goes back centuries, with a thicket of laws around whether someone acting in
good faith can acquire good title to stolen goods or stolen funds. The Bills of Exchange Act 1882
gave good title to people who bought bills of exchange in good faith, even if they were stolen.
Something similar used to hold for stolen goods bought in an open market, but that was even-
tually repealed. In the case of electronic payments, the banks acted as a cartel to make payments
�nal more quickly, both via card network rules and by lobbying European institutions over the
Payment Services Directives. As for the case of bitcoin, it’s still in �ux; see section 20.7.5.
6Some ATMs didn’t check customer balances for a few days after Y2K, leading to unauthorised
overdrafts once the word got round.

7.3 Fault tolerance and failure recovery 251

has GPS – but that can be jammed by a passing truck driver. You can aban-
don absolute time and instead use Lamport time, in which all you care about is
whether event A happened before event B rather than what date it is [1124].
For robustness reasons, Google doesn’t use time in its internal certi�cates, but
uses ranges of serial numbers coupled to a revocation mechanism [23].
In many applications, you may end up using the network time protocol (NTP).

This has a moderate amount of protection, with clock voting and authenti-
cation of time servers, and is dependable enough for many purposes. How-
ever, you still need to take care. For example, Netgear hardwired their home
routers to use an NTP server at the University of Wisconsin-Madison, which
was swampedwith hundreds of thousands of packets a second;Netgear ended
up having to pay them $375,000 to maintain the time service for three years.
Shortly afterwards, D-Link repeated the samemistake [447]. Second, from 2016
there have been denial-of-service attacks using NTP servers as force multipli-
ers; millions of servers turned out to be abusable, so many ISPs and even IXPs
started blocking them. So if you’re planning to deploy lots of devices outside
your corporate network that will rely on NTP, you’d better think hard about
which servers you want to trust and pay attention to the latest guidance from
CERT [1801].

7.3 Fault tolerance and failure recovery

Failure recovery is often the most important aspect of security engineering, yet
it is one of the most neglected. For many years, most of the research papers
on computer security have dealt with con�dentiality, and most of the rest with
authenticity and integrity; availability has almost been ignored. Yet the actual
expenditures of a modern information business – whether a bank or a search
engine – are the other way round. Far more is spent on availability and recov-
ery mechanisms, such as multiple processing sites and redundant networks,
than on integrity mechanisms such as code review and internal audit, and this
in turn iswaymore than is spent on encryption. As you read through this book,
you’ll see thatmany other applications, from burglar alarms through electronic
warfare to protecting a company from DDoS attacks, are fundamentally about
availability. Fault tolerance and failure recovery are often the core of the secu-
rity engineer’s job.
Classical fault tolerance is usually based on redundancy, forti�ed using

mechanisms such as logs and locking, and is greatly complicated when it must
withstand malicious attacks on these mechanisms. Fault tolerance interacts
with security in a number of ways: the failure model, the nature of resilience,
the location of redundancy used to provide it, and defence against service
denial attacks. I’ll use the following de�nitions: a fault may cause an error,
which is an incorrect state; this may lead to a failure, which is a deviation from

252 Chapter 7 ■ Distributed Systems

the system’s speci�ed behavior. The resilience which we build into a system
to tolerate faults and recover from failures will have a number of components,
such as fault detection, error recovery and if necessary failure recovery. The
meaning of mean-time-before-failure (MTBF) and mean-time-to-repair (MTTR)
should be obvious.

7.3.1 Failure models

In order to decide what sort of resilience we need, we must know what sort of
attacks to expect. Much of this will come from an analysis of threats speci�c to
our system’s operating environment, but some general issues bearmentioning.

7.3.1.1 Byzantine failure

First, the failures with which we are concerned may be normal or malicious,
and we often model the latter as Byzantine. Byzantine failures are inspired by
the idea that there are n generals defending Byzantium, t of whom have been
bribed by the attacking Turks to cause as much confusion as possible. The gen-
erals can pass oral messages by courier, and the couriers are trustworthy, so
each general can exchange con�dential and authentic communications with
each other general (we could imagine them encrypting and computing a MAC
on each message). What is the maximum number t of traitors that can be toler-
ated?
The key observation is that if we have only three generals, say Anthony, Basil

andCharalampos, andAnthony is the traitor, then he can tell Basil “let’s attack”
and Charalampos “let’s retreat”. Basil can now say to Charalampos “Anthony
says let’s attack”, but this doesn’t let Charalampos conclude that Anthony’s the
traitor. It could just as easily have been Basil; Anthony could have said “let’s
retreat” to both of them, but Basil liedwhen he said “Anthony says let’s attack”.
This beautiful insight is due to Leslie Lamport, Robert Shostak and

Marshall Pease, who proved that the problem has a solution if and only if
n ≥ 3t + 1 [1126]. Of course, if the generals are able to sign their messages,
then no general dare say different things to two different colleagues. This
illustrates the power of digital signatures in particular and of end-to-end
security mechanisms in general. There is now a substantial literature on
Byzantine fault tolerance – the detailed design of systems able to withstand
this kind of failure; see for example the algorithm by Miguel Castro and
Barbara Liskov [396].
Another lesson is that if a component which fails (or can be induced to fail

by an opponent) gives the wrong answer rather than just no answer, then it’s
much harder to use it to build a resilient system. It can be useful if components
that fail just stop, or if they can at least be quickly identi�ed and blacklisted.

7.3 Fault tolerance and failure recovery 253

7.3.1.2 Interaction with fault tolerance

So we can constrain the failure rate in a number of ways. The two most
obvious are by using redundancy and fail-stop processes. The latter process
error-correction information along with data, and stop when an inconsistency
is detected; for example, bank transaction processing will typically stop if
an out-of-balance condition is detected after a processing task. The two may
be combined; the processors used in some safety-critical functions in cars
and aircraft typically have two or more cores. There was pioneering work
on a fault-tolerant multiprocessor (FTMP) in the 1970s, driven by the Space
Shuttle project; this explored which components should be redundant and
the associated design trade-offs around where the error detection takes place
and how closely everything is synchronised [922]. Such research ended up
driving the design of fault-tolerant processors used in various submarines
and spacecraft, as well as architectures used by Boeing and Airbus. The FTMP
idea was also commercialised by Tandem and then by Stratus, which sold
machines for payment processing. The Stratus had two disks, two buses and
even two CPUs, each of which would stop if it detected errors; the fail-stop
CPUs were built by having two CPU chips on the same card and comparing
their outputs. If they disagreed the output went open-circuit. A replacement
card would arrive in the post; you’d take it down to the machine room, notice
that card 5 had a �ashing red light, pull it out and replace it with the new
one – all while the machine was processing dozens of transactions per second.
Nowadays, the data centres of large service �rms have much more elaborate
protocols to ensure that if a machine fails, another machine takes over; if a
rack fails, another rack takes over; and even if a data centre fails, its workload
is quickly recovered on others. Google was a leader in developing the relevant
software stack, having discovered in the early 2000s that it was much cheaper
to build large-scale systems with commodity PCs and smart software than to
buy ever-larger servers from specialist vendors.
While redundancy can make a system more resilient, it has costs. First, we

have to deal with a more complex software stack and toolchain. Banks eventu-
ally moved away from Stratus because they found it was less reliable overall
than traditional mainframes: although there was less downtime due to hard-
ware failure, this didn’t compensate for the extra software failure caused by
an unfamiliar development environment. Second, if I have multiple sites with
backup data, then con�dentiality could fail if any of them gets compromised7;
and if I have some data that I have a duty to destroy, then purging it frommul-
tiple backup tapes can be a headache. The modern-day issue with developing
software in containers on top of redundant cloud services is not so much the

7Or the communications between your data centres get tapped; we discussed in section 2.2.1.3
how GCHQ did that to Google.

254 Chapter 7 ■ Distributed Systems

programming languages, or compromise via data centres; it’s that developers
are unfamiliar with the cloud service providers’ access control tools and all too
often leave sensitive data world-readable.
There are other traps for the unwary. In one case in which I was called as

an expert, my client was arrested while using a credit card in a store, accused
of having a forged card, and beaten up by the police. He was adamant that
the card was genuine. Much later, we got the card examined by VISA, who
con�rmed that it was indeed genuine.What happened, aswell aswe can recon-
struct it, was this. Credit cards have two types of redundancy on the magnetic
strip – a simple checksum obtained by combining together all the bytes on the
track using exclusive-or, and a cryptographic checksum which we’ll describe
in detail later in section 12.5.1. The former is there to detect errors, and the lat-
ter to detect forgery. It appears that in this particular case, the merchant’s card
reader was out of alignment in such a way as to cause an even number of bit
errors which cancelled each other out by chance in the simple checksum, while
causing the crypto checksum to fail. The result was a false alarm, and a major
disruption in my client’s life.
Redundancy is hard enough to deal with in mechanical systems. For

example, training pilots to handle multi-engine aircraft involves drilling them
on engine failure procedures, �rst in the simulator and then in real aircraft
with an instructor. Novice pilots are in fact more likely to be killed by an
engine failure in a multi-engine plane than in a single; landing in the nearest
�eld is less hazardous for them than coping with sudden asymmetric thrust.
The same goes for instrument failures; it doesn’t help to have three arti�cial
horizons in the cockpit if, under stress, you rely on the one that’s broken.
Aircraft are much simpler than many modern information systems – yet there
are still air crashes when pilots fail to manage the redundancy that’s supposed
to keep them safe. There are also complex failures, as when two Boeing 737
Max aircraft crashed because of failures in a single sensor, when the plane
had two but the software failed to read them both, and the pilots hadn’t been
trained how to diagnose the problem and manage the consequences. All too
often, system designers put in multiple protection mechanisms and don’t
think through the consequences carefully enough. Many other safety failures
are failures of usability, and the same applies to security, as we discussed in
Chapter 3; redundancy isn’t an antidote to poor design.

7.3.2 What is resilience for?

When introducing redundancy or other resilience mechanisms into a system,
we need to understand what they’re for and the incentives facing the various
actors. It therefore matters whether the resilience is local or crosses geograph-
ical or organisational boundaries.

7.3 Fault tolerance and failure recovery 255

In the �rst case, replication can be an internal feature of the server to make it
more trustworthy. I already mentioned 1980s systems such as Stratus and Tan-
dem; then we had replication of standard hardware at the component level,
such as redundant arrays of inexpensive disks (RAID). Since the late 1990s there
has been massive investment in developing rack-scale systems that let multi-
ple cheap PCs do the work of expensive servers, with mechanisms to ensure
a single server that fails will have its workload taken over rapidly by another,
and indeed a rack that fails can also be recovered on a hot spare. These are now
a standard component of cloud service architecture: any �rm operating hun-
dreds of thousands of servers will have so many failures that recovery must be
largely automated.
But often things are much more complicated. A service may have to assume

that some of its clients are trying to cheat it andmay also have to rely on a num-
ber of services, none of which is completely accurate. When opening a bank
account, or issuing a passport, we might want to check against services from
voter rolls through credit reference agencies to a database of driver’s licences,
and the results may often be inconsistent. Trust decisionsmay involve complex
logic, not entirely unlike the systems used in electronic warfare to try to work
out which of your inputs are being jammed. (I’ll discuss these further in the
chapter on electronic and information warfare.)
The direction ofmistrust has an effect on protocol design. A server facedwith

multiple untrustworthy clients and a client relying on multiple servers that
may be incompetent, unavailable or malicious will both wish to control the
�ow of messages in a protocol in order to contain the effects of service denial.
It’s hard to design systems for the real world in which everyone is unreliable
and all are mutually suspicious.
Sometimes the emphasis is on security renewability. The obvious example here

is bank cards: a bank can upgrade security from time to time by mailing out
newer versions of its cards, whether upgrading frommag strip to chip or from
cheap chips to more sophisticated ones; and it can recover from a compromise
by mailing out cards out of cycle to affected customers. Pay TV and mobile
phones are somewhat similar.

7.3.3 At what level is the redundancy?

Systems may be made resilient against errors, attacks and equipment failures
at a number of levels. As with access control, these become progressively more
complex and less reliable as we go up to higher layers in the system.
Some computers have been built with redundancy at the hardware level,

such as Stratus systems and RAID discs I mentioned earlier. But simple
replication cannot provide a defense against malicious software, or against an
intruder who exploits faulty software.

256 Chapter 7 ■ Distributed Systems

At the next level up, there is process group redundancy. Here, wemay runmul-
tiple copies of a system on multiple servers in different locations and compare
their outputs. This can stop the kind of attack inwhich the opponent gets phys-
ical access to a machine and subverts it, whether by mechanical destruction or
by inserting unauthorised software. It can’t defend against attacks by autho-
rised users or damage by bad authorised software, which could simply order
the deletion of a critical �le.
The next level is backup, where we typically take a copy of the system (a

checkpoint) at regular intervals. The copies are usually kept on media that can’t
be overwritten such as write-protected tapes or discs with special software.
We may also keep journals of all the transactions applied between checkpoints.
Whatever the detail, backup and recovery mechanisms not only enable us
to recover from physical asset destruction, they also ensure that if we do get
an attack at the logical level, we have some hope of recovering. The classic
example in the 1980s would have been a time bomb that deletes the customer
database on a speci�c date; since the arrival of cryptocurrency, the fashion has
been for ransomware.
Businesses with critical service requirements, such as banks and retailers,

have had backup data centres for many years. The idea is that if the main cen-
tre goes down, the service will failover to a second facility. Maintaining such
facilities absorbed most of a typical bank’s information security budget.
Backup is not the same as fallback. A fallback system is typically a less capa-

ble system to which processing reverts when the main system is unavailable.
One example was the use of manual imprinting machines to capture credit
card transactions from the card embossing when electronic terminals failed.
Fallback systems are an example of redundancy in the application layer – the
highest layer we can put it.
It is important to realise that these are different mechanisms, which do dif-

ferent things. Redundant disks won’t protect against a malicious programmer
who deletes all your account �les, and backups won’t stop him if rather than
just deleting �les he writes code that slowly inserts more and more errors8.
Neither will give much protection against attacks on data con�dentiality. On
the other hand, the best encryption in the world won’t help you if your data
processing center burns down. Real-world recovery plans and mechanisms
involve a mixture of all of the above.
The remarks that I made earlier about the dif�culty of redundancy, and the

absolute need to plan and train for it properly, apply in spades to system
backup. When I was working in banking in the 1980s, we reckoned that we
could probably get our backup system working within an hour or so of our

8Nowadays the really serious ransomware operators will hack your system, add �le encryption
surreptitiously and wait before they pounce – so they hold hostage not just your current data but
several weeks’ backups too

7.3 Fault tolerance and failure recovery 257

main processing centre being destroyed, but the tests were limited by the
fact that we didn’t want to risk processing during business hours: we would
recover the main production systems on our backup data centre one Saturday
a year. By the early 1990s, Tesco, a UK supermarket, had gotten as far as
live drills: they’d pull the plug on the main processing centre once a year
without warning the operators, to make sure the backup came up within
40 seconds. By 2011, Net�ix had developed ‘chaos monkeys’ – systems that
would randomly knock out a machine, or a rack, or even a whole data centre,
to test resilience constantly. By 2019, large service �rms have gotten to such
a scale that they don’t need this. If you have three million machines across
thirty data centres, then you’ll lose machines constantly, racks frequently, and
whole data centres often enough that you have to engineer things to keep
going. So nowadays, you can simply pay money and a cloud service provider
will worry about a lot of the detail for you. But you need to really understand
what sort of failures Amazon or Google or Microsoft can handle for you and
what you have to deal with yourself. The standard service level agreements of
the major providers allow them to interrupt your service for quite a few hours
per month, and if you use a smaller cloud service (even a government cloud),
it will have capacity limits about which you have to think carefully.
It’s worth trying to work out which services you depend on that are outside

your direct supply chain. For example, Britain suffered a fuel tanker drivers’
strike in 2001, and some hospitals had to close because of staff shortages, which
was supposed to not happen. The government had allocated petrol rations to
doctors and nurses, but not to schoolteachers. So the schools closed, and the
nurses had to stay home to look after their kids, and this closed hospitals too.
This helped the strikers defeat Prime Minister Tony Blair: he abandoned his
signature environmental policy of steadily increasing fuel duty. As we become
increasingly dependent on each other, contingency planning gets ever harder.

7.3.4 Service-denial attacks

One of the reasons we want security services to be fault-tolerant is to make
service-denial attacks less attractive, less effective, or both. Such attacks are
often used as part of a larger plan. For example, onemight take down a security
server to force other servers to use cached copies of credentials, or swamp a
web server to take it temporarily of�ine and then get another machine to serve
the pages that victims try to download.
A powerful defense against service denial is to prevent the opponent from

mounting a selective attack. If principals are anonymous – say there are several
equivalent services behind a load balancer, and the opponent has no ideawhich
one to attack – then he may be ineffective. I’ll discuss this further in the context
of burglar alarms and electronic warfare.

258 Chapter 7 ■ Distributed Systems

Where this isn’t possible, and the opponent knowswhere to attack, then there
are some types of service-denial attacks that can be stopped by redundancy and
resilience mechanisms and others that can’t. For example, the TCP/IP protocol
has few effective mechanisms for hosts to protect themselves against network
�ooding, which comes in a wide variety of �avours. Defense against this kind
of attack tends to involve moving your site to a bee�er hosting service with
specialist packet-washing hardware – or tracing and arresting the perpetrator.
Distributed denial-of-service (DDoS) attacks came to public noticewhen they

were used to bring down Panix, a New York ISP, for several days in 1996. Dur-
ing the late 1990s they were occasionally used by script kiddies to take down
chat servers. In 2001 I mentioned them in passing in the �rst edition of this
book. Over the following three years, extortionists started using them; they’d
assemble a botnet, a network of compromised PCs, which would �ood a target
webserver with packet traf�c until its owner paid them to desist. Typical tar-
gets were online bookmakers, and amounts of $10,000 – $50,000 were typically
demanded to leave themalone, and the typical bookie paid up the �rst time this
happened. When the attacks persisted, the �rst solution was replication: oper-
ators moved their websites to hosting services such as Akamai whose servers
are so numerous (and so close to customers) that they can shrug off anything
the average botnet could throw at them. In the end, the blackmail problem
was solved when the bookmakers met and agreed not to pay any more black-
mail money, and the Ukrainian police were prodded into arresting the gang
responsible.
By 2018, we had come full circle, and about �fty bad people were operating

DDoS-as-a-service, mostly for gamers who wanted to take down their oppo-
nents’ teamspeak servers. The services were sold online as ‘booters’ that would
boot your opponents out of the game; a few dollars would get a �ood of per-
haps 100Gbit/sec. Service operators also called them, more euphemistically,
‘stressors’ – with the line that you could use them to test the robustness of
your own website. This didn’t fool anyone, and just before Christmas 2018
the FBI took down �fteen of these sites, arresting a number of their opera-
tors and causing the volumes of DDoS traf�c to drop noticeably for several
months [1447].
Finally, where amore vulnerable fallback system exists, a common technique

is to use a service-denial attack to force victims into fallback mode. The classic
example is in payment cards. Smartcards are generally harder to forge than
magnetic strip cards, but perhaps 1% of them fail every year, thanks to static
electricity andworn contacts. Also, some tourists still use magnetic strip cards.
Somost card payment systems still have a fallbackmode that uses themagnetic
strip. A simple attack is to use a false terminal, or a bug inserted into the cable to
a genuine terminal, to capture card details and thenwrite them to themagnetic
strip of a card with a dead chip.

7.4 Naming 259

7.4 Naming

Naming is a minor if troublesome aspect of ordinary distributed systems, but
it becomes surprisingly hard in security engineering. During the dotcom boom
in the 1990s, when SSL was invented and we started building public-key cer-
ti�cation authorities, we hit the problem of what names to put on certi�cates.
A certi�cate that says simply “the person named Ross Anderson is allowed to
administer machine X” is little use. I used to be the only Ross Anderson I knew
of; but as soon as the �rst search engines came along, I found dozens of us. I am
also known by different names to dozens of different systems. Names exist in
contexts, and naming the principals in secure systems is becoming ever more
important and dif�cult.
Conceptually, namespaces can be hierarchical or �at. You can identify me as

‘The Ross Anderson who teaches computer science at Cambridge, England’ or
as ‘The Ross Anderson who’s rossjanderson@gmail.com’ or even as ‘the Ross
Anderson with such-and-such a passport number’. But these are not the same
kind of thing, and linking them causes all sorts of problems.
In general, using more names increases complexity. A public-key certi�cate

that simply says “this is the key to administer machine X” is a bearer token,
just like a metal door key; whoever controls the private key for that certi�cate
is the admin, just as if the root password were in an envelope in a bank vault.
But once my name is involved, and I have to present some kind of passport or
ID card to prove who I am, the system acquires a further dependency. If my
passport is compromised the consequences could be far-reaching, and I really
don’t want to give the government an incentive to issue a false passport in my
name to one of its agents.
After 9/11, governments started to force businesses to demand government-

issue photo ID in places where this was not previously thought necessary. In
the UK, for example, you can no longer board a domestic �ight using just the
credit card with which you bought the ticket; you have to produce a passport
or driving license – which you also need to order a bank transfer in a branch
for more than £1000, to rent an apartment, to hire a lawyer or even to get a job.
Suchmeasures are not only inconvenient but introduce new failure modes into
all sorts of systems.
There is a second reason that theworld ismoving towards larger, �atter name

spaces: the growing dominance of the large service �rms in online authen-
tication. Your name is increasingly a global one; it’s your Gmail or Hotmail
address, your Twitter handle, or your Facebook account. These �rms have not
merely bene�ted from the technical externalities, which we discussed in the
chapter on authentication, and business externalities, which we’ll discuss in
the chapter on economics, they have sort-of solved some of the problems of
naming. But we can’t be complacent as many other problems remain. So it’s

mailto:rossjanderson@gmail.com%E2%80%99

260 Chapter 7 ■ Distributed Systems

useful to canter through what a generation of computer science researchers
have learned about naming in distributed systems.

7.4.1 The Needham naming principles

During the last quarter of the twentieth century, engineers building distributed
systems ran up against many naming problems. The basic algorithm used to
bind names to addresses is known as rendezvous: the principal exporting a
name advertises it somewhere, and the principal seeking to import and use it
searches for it. Obvious examples include phone books and �le system direc-
tories.
People building distributed systems soon realised that naming gets complex

quickly, and the lessons are set out in a classic article by Needham [1426]. Here
are his ten principles.

1. The function of names is to facilitate sharing. This continues to hold:
my bank account number exists in order to share the information
that I deposited money last week with the teller from whom I
am trying to withdraw money this week. In general, names are
needed when the data to be shared is changeable. If I only ever
wished to withdraw exactly the same sum as I’d deposited, a
bearer deposit certi�cate would be �ne. Conversely, names need
not be shared – or linked – where data will not be; there is no
need to link my bank account number to my telephone number
unless I am going to pay my phone bill from the account.

2. The naming information may not all be in one place, and so resolving names
brings all the general problems of a distributed system. This holds with
a vengeance. A link between a bank account and a phone number
assumes both of them will remain stable. So each system relies on
the other, and an attack on one can affect the other. Many banks
use two-channel authorisation to combat phishing – if you order
a payment online, you get a text message on your mobile phone
saying ‘if you want to pay $X to account Y, please enter the following
four-digit code into your browser’. The standard attack is for the
crook to claim to be you to the phone company and report the loss of
your phone. So they give him a new SIM that works for your phone
number, and he makes off with your money. The phone company
could stop that, but it doesn’t care too much about authentication,
as all it stands to lose is some airtime, whose marginal cost is zero.
And the latest attack is to use Android malware to steal authenti-
cation codes. Google could stop that by locking down the Android
platform as tightly as Apple – but it lacks the incentive to do so.

7.4 Naming 261

3. It is bad to assume that only so many names will be needed. The shortage
of IP addresses, which motivated the development of IP version 6
(IPv6), is well enough discussed. What is less well known is that the
most expensive upgrade the credit card industry ever had to make was
the move from thirteen-digit credit card numbers to sixteen. Issuers
originally assumed that thirteen digits would be enough, but the
system ended up with tens of thousands of banks – many with dozens
of products – so a six-digit bank identi�cation number was needed.
Some issuers have millions of customers, so a nine-digit account
number is the norm. And there’s also a check digit to detect errors.

4. Global names buy you less than you think. For example, the 128-bit
address in IPv6 can in theory enable every object in the universe to
have a unique name. However, for us to do business, a local name
at my end must be resolved into this unique name and back into
a local name at your end. Invoking a unique name in the middle
may not buy us anything; it may even get in the way if the unique
naming service takes time, costs money, or occasionally fails (as it
surely will). In fact, the name service itself will usually have to be
a distributed system, of the same scale (and security level) as the
system we’re trying to protect. So we can expect no silver bullets from
this quarter. Adding an extra name, or adopting a more complicated
one, has the potential to add extra costs and failure modes.

5. Names imply commitments, so keep the scheme �exible enough to cope
with organisational changes. This sound principle was ignored
in the design of the UK government’s key management sys-
tem for secure email [116]. There, principals’ private keys are
generated from their email addresses. So the frequent reorgan-
isations meant that the security infrastructure had to be rebuilt
each time – and that more money had to be spent solving sec-
ondary problems such as how people access old material.

6. Names may double as access tickets, or capabilities. We have already
seen a number of examples of this in Chapters 2 and 3. In general,
it’s a bad idea to assume that today’s name won’t be tomorrow’s
password or capability – remember the Utrecht fraud we discussed
in section 4.5. Norway, for example, used to consider the citizen’s
ID number to be public, but it ended up being used as a sort of
password in so many applications that they had to relent and make
it private. There are similar issues around the US Social Security
Number (SSN). So the Department of Defense created a surrogate
number called the EDIPI, which was supposed to be not sensitive; but,
sure enough, people started using it as an authenticator instead of as
an identi�er.

262 Chapter 7 ■ Distributed Systems

I’ve given a number of examples of how things go wrong when a
name starts being used as a password. But sometimes the roles of
name and password are ambiguous. In order to get entry to a car
park I used to use at the university, I had to speak my surname
and parking badge number into a microphone at the barrier. So if I
say, “Anderson, 123”, which of these is the password? In fact it was
“Anderson”, as anyone can walk through the car park and note down
valid badge numbers from the parking permits on the car windscreens.

7. Things are made much simpler if an incorrect name is obvious. In standard
distributed systems, this enables us to take a liberal attitude to caching.
In payment systems, credit card numbers used to be accepted while the
terminal was of�ine so long as the credit card number appears valid
(i.e., the last digit is a proper check digit of the �rst �fteen) and it is
not on the hot card list. The certi�cates on modern chip cards provide
a higher-quality implementation of the same basic concept; authenti-
cation mechanisms such as crypto and security printing can give the
added bene�t of making names resilient to spoo�ng. As an example
of what can still go wrong, the Irish police created over 50 dockets
for Mr ‘Prawo Jazdy’, wanted for failing to pay over �fty traf�c tick-
ets – until they realised that this is Polish for ‘Driving licence’ [193].

8. Consistency is hard, and is often fudged. If directories are replicated, then
you may �nd yourself unable to read, or to write, depending on whether
too many or too few directories are available. Naming consistency causes
problems for business in a number of ways, of which perhaps the
most notorious is the bar code system. Although this is simple enough
in theory – with a unique numerical code for each product – in
practice different manufacturers, distributors and retailers attach
quite different descriptions to the bar codes in their databases. Thus
a search for products by ‘Kellogg’s’ will throw up quite different
results depending on whether or not an apostrophe is inserted, and
this can cause confusion in the supply chain. Proposals to �x this
problem can be surprisingly complicated [916]. There are also the
issues of convergence discussed above; data might not be consis-
tent across a system, even in theory. There are also the problems
of timeliness, such as whether a product has been recalled.

9. Don’t get too smart. Phone numbers are much more robust than computer
addresses. Early secure messaging systems – from PGP to government
systems – tried to link keys to email addresses, but these change
when people’s jobs do. More modern systems such as Signal and
WhatsApp use mobile phone numbers instead. In the same way,
early attempts to replace bank account numbers and credit card

7.4 Naming 263

numbers with public-key certi�cates in protocols like SET failed,
though in some mobile payment systems, such as Kenya’s M-Pesa,
they’ve been replaced by phone numbers. (I’ll discuss further
speci�c problems of public key infrastructures in section 21.6.)

10. Some names are bound early, others not; and in general it is a bad thing
to bind early if you can avoid it. A prudent programmer will normally
avoid coding absolute addresses or �lenames as that would make
it hard to upgrade or replace a machine. It’s usually better to leave
this to a con�guration �le or an external service such as DNS. Yet
secure systems often want stable and accountable names as any
third-party service used for last-minute resolution could be a point
of attack. Designers therefore need to pay attention to where the
naming information goes, how devices get personalised with it,
and how they get upgraded – including the names of services on
which the security may depend, such as the NTP service discussed in
section 7.2.6 above.

7.4.2 What else goes wrong

The Needham principles were crafted for the world of the early 1990s in which
naming systems could be imposed at the systemowner’s convenience.Oncewe
moved to the reality of modernweb-based (and interlinked) service industries,
operating at global scale, we found that there is more to add.
By the early 2000s, we had learned that no naming system can be globally

unique, decentralised and human-meaningful. In fact, it’s a classic trilemma:
you can only have two of those attributes (Zooko’s triangle) [38]. In the
past, engineers went for naming systems that were unique and meaningful,
like URLs, or unique and decentralised, as with public keys in PGP or the
self-signed certi�cates that function as app names in Android. Human names
aremeaningful and local but don’t scale to the Internet. I mentioned above that
as soon as the �rst search engines came along, I could instantly �nd dozens
of other people called Ross Anderson, but it’s even worse than that; half a
dozen worked in �elds I’ve also worked in, such as software engineering and
electricity distribution.
The innovation from sites like Facebook is to show on a really large scale that

names don’t have to be unique. We can use social context to build systems that
are both decentralised andmeaningful – which is just what our brains evolved
to cope with. Every Ross Anderson has a different set of friends and you can
tell us apart that way.
How can we make sense of all this, and stop it being used to trip people up?

It is sometimes helpful to analyse the properties of names in detail.

264 Chapter 7 ■ Distributed Systems

7.4.2.1 Naming and identity

First, the principals in security protocols are usually known by many different
kinds of name – a bank account number, a company registration number, a
personal name plus a date of birth or a postal address, a telephone number, a
passport number, a health service patient number, or a userid on a computer
system.
A common mistake is to confuse naming with identity. Identity is when two

different names (or instances of the same name) correspond to the same prin-
cipal (this is known to computer scientists as an indirect name or symbolic link).
One classic example comes from the registration of title to real estate. Someone
whowishes to sell a house often uses a different name than they did at the time
it was purchased: theymight have changed their name onmarriage, or on gen-
der transition, or started using their middle name instead. A land-registration
system must cope with a lot of identity issues like this.
There are two types of identity failure leading to compromise: where I’m

happy to impersonate anybody, and where I want to impersonate a speci�c
individual. The former case includes setting up accounts to launder cybercrime
proceeds, while an example of the latter is SIM replacement (I want to clone a
CEO’s phone so I can loot a company bank account). If banks (or phone com-
panies) just ask people for two proofs of address, such as utility bills, that’s
easy. Demanding government-issue photo ID may require us to analyse state-
ments such as “TheAaron Bell who owns bank account number 12345678 is the
Aaron James Bell with passport number 98765432 and date of birth 3/4/56”.
This may be seen as a symbolic link between two separate systems – the bank’s
and the passport of�ce’s. Note that the latter part of this ‘identity’ encapsulates
a further statement, which might be something like “The US passport of�ce’s
�le number 98765432 corresponds to the entry in the New York birth register
for 3/4/56 of one Aaron James Bell.” If Aaron is commonly known as Jim, it
gets messier still.
In general, namesmay involve several steps of recursion, which gives attack-

ers a choice of targets. For example, a lot of passport fraud is pre-issue fraud:
the bad guys apply for passports in the names of genuine citizens who haven’t
applied for a passport already and forwhom copies of birth certi�cates are easy
to obtain. Postmortem applications are also common. Linden Labs, the opera-
tors of Second Life, introduced a scheme whereby you prove you’re over 18 by
providing the driver’s license number or social security number of someone
who is. Now a web search quickly pulls up such data for many people, such as
the rapper Tupac Amaru Shakur; and yes, Linden Labs did accept Mr Shakur’s
license number – even through the license had expired and he’s dead.
There can also be institutional failure. For example, the UnitedArab Emirates

started taking iris scans of all visitors after women who had been deported
to Pakistan for prostitution offences would turn up a few weeks later with a

7.4 Naming 265

genuine Pakistani passport in a different name and accompanied by a different
‘husband’. Similar problems ledmany countries to issue biometric visas so they
don’t have to depend on passport issuers in countries they don’t want to have
to trust.
In addition to corruption, a pervasive failure is the loss of original records.

In countries where registers of births, marriages and deaths are kept locally
and on paper, some are lost, and smart impersonators exploit these. You might
think that digitisation is �xing this problem, but the long-term preservation
of digital records is a hard problem even for rich countries; document formats
change, software and hardware become obsolete, and you either have to emu-
late old machines or translate old data, neither of which is ideal. Various states
have run pilot projects on electronic documents that must be kept forever, such
as civil registration, but we still lack credible standards. Sensible developed
countries still keep paper originals as the long-term document of record. In
less developed countries, you may have to steer between the Scylla of �aky
government IT and the Charybdis of natural disasters – while listening to the
siren song of development consultants saying ‘put it on the blockchain!

7.4.2.2 Cultural assumptions

The assumptions that underlie names change from one country to another. In
the English-speaking world, people may generally use as many names as they
please; a name is simply what you are known by. But some countries forbid
the use of aliases, and others require them to be registered. The civil regis-
tration of births, marriages, civil partnerships, gender transitions and deaths
is an extremely complex one, often politicised, tied up with religion in many
countries and with the issue of ID documents as well. And incompatible rules
between countries cause real problems for migrants, for tourists and indeed
for companies with overseas customers.
In earlier editions of this book, I gave as an example that writers who change

their legal name on marriage often keep publishing using their former name.
So my lab colleague, the late Professor Karen Spärck Jones, got a letter from
the university every year asking why she hadn’t published anything (she was
down on the payroll as Karen Needham). The publication-tracking system just
could not cope with everything the personnel system knew. And as software
gets in everything and systems get linked up, con�icts can have unexpected
remote effects. For example, Karen was also a trustee of the British Library and
was not impressed when it started to issue its own admission tickets using
the name on the holder’s home university library card. Such issues caused
even more friction when the university introduced an ID card system keyed
to payroll names to give uni�ed access to buildings, libraries and canteens.
These issues with multiple names are nowmainstream; it’s not just professors,

266 Chapter 7 ■ Distributed Systems

musicians and novelists who use more than one name. Trans people who want
to stop �rms using names from a previous gender; women who want to stop
using a married name when they separate or divorce, and who perhaps need
to if they’re �eeing an abusive partner; people who’ve assumed new names
following religious conversion – there’s no end of sources of con�ict. If you’re
building a system that you hope will scale up globally, you’ll eventually have
to deal with them all.
Human naming conventions also vary by culture. Chinese may have both

English and Chinese given names if they’re fromHong Kong, with the English
one coming before and the Chinese one coming after the family name. Many
people in South India, Indonesia and Mongolia have only a single name – a
mononym. The Indian convention is to add two initials – for your place of
birth and your father’s name. So ‘BK Rajan’ may mean Rajan, son of Kumar,
from Bangalore. A common tactic among South Indian migrants to the USA
is to use the patronymic (here, Kumar) as a surname; but when western com-
puter systems misinterpret Rajan as a surname, confusion can arise. Russians
are known by a forename, a patronymic and a surname. Icelanders have no
surname; their given name is followed by a patronymic if they are male and
a matronymic if they are female. In the old days, when ‘Maria Trosttadóttir’
arrived at US immigration and the of�cer learned that ‘Trosttadóttir’ isn’t a
surname or even a patronymic, their standard practice was to compel her to
adopt as a surname a patronymic (say, ‘Carlsson’ if her father was called Carl).
Many Indians in the USA have had similar problems, all of which cause unnec-
essary offence. And then there are cultures where your name changes after you
have children.
Another cultural divide is often thought to be that between the English-

speaking countries, where identity cards were unacceptable on privacy
grounds9, and the countries conquered by Napoleon or by the Soviets, where
identity cards are the norm. What’s less well known is that the British Empire
happily imposed ID on many of its subject populations, so the real divide is
perhaps whether a country was ever conquered.
The local history of ID conditions all sorts of assumptions. I know Germans

who have refused to believe that a country could function at all without a
proper system of population registration and ID cards yet admit they are asked
for their ID card only rarely (for example, to open a bank account or get mar-
ried). Their card number can’t be used as a name because it is a document
number and changes every time a new card is issued. The Icelandic ID card
number, however, is static; it’s just the citizen’s date of birth plus two further
digits. What’s more, the law requires that bank account numbers contain the
account holder’s ID number. These are perhaps the extremes of private and
public ID numbering.

9unless they’re called drivers’ licences or health service cards!

7.4 Naming 267

Finally, in many less developed countries, the act of registering citizens and
issuing them with ID is not just inef�cient but political [89]. The ruling tribe
may seek to disenfranchise the others by making it hard to register births in
their territory or by making it inconvenient to get an ID card. Sometimes cards
are reissued in the run-up to an election in order to refresh or reinforce the
discrimination. Cards can be tied to business permits and welfare payments;
delays can be used to extract bribes. Some countries (such as Brazil) have
separate registration systems at the state and federal level, while others (such
as Malawi) have left most of their population unregistered. There are many
excluded groups, such as refugee children born outside the country of their
parents’ nationality, and groups made stateless for religious or ideological
reasons. Target 16.9 of the United Nations’ Sustainable Development Goals is
to ‘provide legal identity for all, including birth registration’; and a number of
companies sell ID systems and voting systems �nanced by development aid.
These interact with governments in all sorts of complex ways, and there’s a
whole research community that studies this [89]. Oh, and if you think this is
a third-world problem, there are several US states using onerous registration
procedures to make it harder for Black people to vote; and in the Windrush
scandal, it emerged that the UK government had deported a number of
foreign-born UK residents who were automatically entitled to citizenship as
they had not maintained a good enough paper trail of their citizenship to
satisfy increasingly xenophobic ministers.
In short, the hidden assumptions about the relationship between govern-

ments and people’s names vary in ways that constrain system design and
cause unexpected failures when assumptions are carried across borders. The
engineer must always be alert to the fact that a service-oriented ID is one thing
and a legal identity or certi�cate of citizenship is another. Governments are
forever trying to entangle the two, but this leads to all sorts of pain.

7.4.2.3 Semantic content of names

Changing from one type of name to another can be hazardous. A bank got sued
after they moved from storing customer data by account number to storing it
by name and address. They wrote a program to link up all the accounts oper-
ated by each of their customers, in the hope that it would help them target
junk mail more accurately. The effect on one customer was serious: the bank
statement for the account he kept for his mistress got sent to his wife, who
divorced him.
The semantics of names can change over time. In many transport systems,

tickets and toll tags can be bought for cash,which defuses privacy concerns, but
it’s more convenient to link them to bank accounts, and these links accumulate
over time. The card thatUKpensioners use to get free bus travel also started out

268 Chapter 7 ■ Distributed Systems

anonymous, but in practice the bus companies try to link up the card numbers
to other passenger identi�ers. In fact, I once got a hardware store loyalty card
with a random account number (and no credit checks). I was offered the chance
to change this into a bank card after the store was taken over by a supermarket
and the supermarket started a bank.

7.4.2.4 Uniqueness of names

Human names evolved when we lived in small communities. We started
off with just forenames, but by the late Middle Ages the growth of travel
led governments to bully people into adopting surnames. That process
took a century or so and was linked with the introduction of paper into
Europe as a lower-cost and more tamper-resistant replacement for parchment;
paper enabled the badges, seals and other bearer tokens, which people had
previously used for road tolls and the like, to be replaced with letters that
mentioned their names.
The mass movement of people, business and administration to the Inter-

net has been too fast for social adaptation. There are now way more people
(and systems) online than we’re used to dealing with. So how can we make
human-memorable names unique? As we discussed above, Facebook tells one
John Smith from another the way humans do, by clustering each one with his
set of friends and adding a photo.
Perhaps the other extreme is cryptographic names. Names are hashes either

of public keys or of other stable attributes of the object being named. All sorts
of mechanisms have been proposed to map real-world names, addresses and
even document content indelibly and eternally on to the bitstring outputs
of hash functions (see, for example, [846]). You can even use hashes of
biometrics or the surface microstructure of objects, coupled with a suitable
error-correction code. The world of cryptocurrency and blockchains makes
much use of hash-based identi�ers. Such mechanisms can make it impossible
to reuse names; as expired domain names are often bought by bad people and
exploited, this is sometimes important.
This isn’t entirely new, as it has long been common in transaction process-

ing to just give everything and everyone a number. This can lead to failures,
though, if you don’t put enough uniqueness in the right place. For example, a
UK bank assigned unique sequence numbers to transactions by printing them
on the stationery used to capture the deal. Once, when they wanted to send
£20m overseas, the operator typed in £10m by mistake. A second payment
of £10m was ordered – but this acquired the same transaction sequence num-
ber from the paperwork. So two payments were sent to SWIFT with the same
date, payee, amount and sequence number – and the second was discarded as
a duplicate [310].

7.4 Naming 269

7.4.2.5 Stability of names and addresses

Many names include some kind of address, yet addresses change. While we
still had a phone book in Cambridge, about a quarter of the addresses changed
every year; with work email, the turnover is probably higher. When we tried
in the late 1990s to develop a directory of people who use encrypted email,
together with their keys, we found that the main cause of changed entries
was changes of email address [104]. (Some people had assumed it would
be the loss or theft of keys; the contribution from this source was precisely
zero.) Things are perhaps more stable now. Most people try to keep their
personal mobile phone numbers, so they tend to be long-lived, and the same
goes increasingly for personal email addresses. The big service providers like
Google and Microsoft generally don’t issue the same email address twice, but
other �rms still do.
Distributed systems pioneers considered it a bad thing to put addresses in

names [1355]. But hierarchical naming systems can involve multiple layers
of abstraction with some of the address information at each layer forming
part of the name at the layer above. Also, whether a namespace is better
�at depends on the application. Often people end up with different names
at the departmental and organisational level (such as rja14@cam.ac.uk and
ross.anderson@cl.cam.ac.uk in my own case). So a clean demarcation
between names and addresses is not always possible.
Authorisations have many (but not all) of the properties of addresses. Kent’s

Law tells designers that if a credential contains a list of what it may be used for,
then the more things there are on this list the shorter its period of usefulness.
A similar problem besets systems where names are composite. For example,
some online businesses recognize me by the combination of email address and
credit card number. This is clearly bad practice. Quite apart from the fact that
I have several email addresses, I have several credit cards.
There are good reasons to use pseudonyms. Until Facebook came along, peo-

ple considered it sensible for children and young people to use online names
that weren’t easily linkable to their real names and addresses. When you go
for your �rst job on leaving college aged 22, or for a CEO’s job at 45, you don’t
want a search to turn up all your teenage rants. Many people also change email
addresses from time to time to escape spam; I used to give a different email
address to every website where I shop. On the other hand, some police and
other agencies would prefer people not to use pseudonyms, which takes us
into the whole question of traceability online – which I’ll discuss in Part 2.

7.4.2.6 Restrictions on the use of names

The interaction between naming and society brings us to a further problem:
some names may be used only in restricted circumstances. This may be laid

mailto:rja14@cam.ac.uk
mailto:ross.anderson@cl.cam.ac.uk

270 Chapter 7 ■ Distributed Systems

down by law, aswith theUS social security number and its equivalents in some
other countries. Sometimes it is a matter of marketing: a signi�cant minority
of customers avoid websites that demand too much information.
Restricted naming systems interact in unexpected ways. For example, it’s

fairly common for hospitals to use a patient number as an index to medical
record databases, as this may allow researchers to use pseudonymous records
for some purposes. This causes problems when a merger of health main-
tenance organisations, or a policy change, forces the hospital to introduce
uniform names. There have long been tussles in Britain’s health service, for
example, about which pseudonyms can be used for which purposes.
Finally, when we come to law and policy, the de�nition of a name throws

up new and unexpected gotchas. For example, regulations that allow police
to collect communications data – that is, a record of who called whom and
when – are usually much more lax than the regulations governing phone
tapping; in many countries, police can get communications data just by
asking the phone company. This led to tussles over the status of URLs, which
contain data such as the parameters passed to search engines. Clearly some
policemen would like a list of everyone who hit a URL like http://www

.google.com/search?q=cannabis+cultivation; just as clearly, many peo-
ple would consider such large-scale trawling to be an unacceptable invasion
of privacy. The resolution in UK law was to de�ne traf�c data as that which
was suf�cient to identify the machine being communicated with, or in lay
language ‘Everything up to the �rst slash.’ I discuss this in much more detail
later, in the chapter ‘Surveillance or Privacy?’

7.4.3 Types of name

Not only is naming complex at all levels – from the technical up through the
organisational to the political – but some of the really wicked issues go across
levels. I noted in the introduction that names can refer not just to persons (and
machines acting on their behalf), but also to organisations, roles (‘the of�cer of
the watch’), groups, and compound constructions: principal in role – Alice as
manager; delegation – Alice for Bob; conjunction – Alice and Bob. Conjunction
often expresses implicit access rules: ‘Alice acting as branch manager plus Bob
as a member of the group of branch accountants’.
That’s only the beginning. Names also apply to services (such as NFS, or a

public-key infrastructure) and channels (which might mean wires, ports or
crypto keys). The same namemight refer to different roles: ‘Alice as a computer
gameplayer’ ought to have less privilege than ‘Alice the systemadministrator’.
The usual abstraction used in the security literature is to treat them as different
principals. So there’s no easy mapping between names and principals, espe-
ciallywhen people bring their owndevices towork or takework devices home,
and therefore may have multiple con�icting names or roles on the same plat-
form. Many organisations are starting to distinguish carefully between ‘Alice

http://www.google.com/search?q=cannabis+cultivation
http://www.google.com/search?q=cannabis+cultivation

7.5 Summary 271

in person’, ‘Alice as a program running onAlice’s home laptop’ and ‘a program
running on Alice’s behalf on the corporate cloud’, and we discussed some of
the possible mechanisms in the chapter on access control.
Functional tensions are often easier to analyse if you work out how they’re

driven by the underlying business processes. Businesses mainly want to get
paid, while governments want to identify people uniquely. In effect, business
wants your credit card number while government wants your passport num-
ber. An analysis based on incentives can sometimes indicate whether a naming
systemmight be better open or closed, local or global, stateful or stateless – and
whether the people whomaintain it are the same people whowill pay the costs
of failure (economics is one of the key issues for dependability,and is the subject
of the next chapter).
Finally, although I’ve illustrated many of the problems of naming with

respect to people – as that makes the problems more immediate and com-
pelling –many of the same problems pop up in variousways for cryptographic
keys, unique product codes, document IDs, �le names, URLs and much more.
When we dive into the internals of a modern corporate network we may �nd
DNS Round Robin to multiple machines, each on its own IP addresses, behind
a single name; or Anycast to multiple machines, each on the same IP address,
behind a single name; or Cisco’s HSRP protocol, where the IP address and the
Ethernet MAC address move from one router to another router. (I’ll discuss
more technical aspects of network security in Part 2.) Anyway, as systems
scale, it becomes less realistic to rely on names that are simple, interchangeable
and immutable. You need to scope naming carefully, understand who controls
the names on which you rely, work out how slippery they are, and design
your system to be dependable despite their limitations.

7.5 Summary

Many secure distributed systems have incurred large costs, or developed seri-
ous vulnerabilities, because their designers ignored the basics of how to build
(and how not to build) distributed systems. Most of these basics have been in
computer science textbooks for a generation.
Many security breaches are concurrency failures of one kind or another;

systems use old data, make updates inconsistently or in the wrong order, or
assume that data are consistent when they aren’t or even can’t be. Using time
to order transactions may help, but knowing the right time is harder than
it seems.
Fault tolerance and failure recovery are critical. Providing the ability to

recover from security failures, as well as from random physical and software
failures, is the main purpose of the protection budget for many organisations.
At a more technical level, there are signi�cant interactions between protection

272 Chapter 7 ■ Distributed Systems

and resilience mechanisms. Byzantine failure – where defective processes
conspire rather than failing randomly – is an issue, and it interacts with our
choice of cryptographic tools.
There are many different �avors of redundancy, and we have to use the right

combination.We need to protect not just against failures and attemptedmanip-
ulation, but also against deliberate attempts to deny service that may be part
of larger attack plans.
Many problems also arise from trying to make a name do too much, or

making assumptions about it which don’t hold outside of one particular
system, culture or jurisdiction. For example, it should be possible to revoke a
user’s access to a system by cancelling their user name without getting sued
on account of other functions being revoked. The simplest solution is often
to assign each principal a unique identi�er used for no other purpose, such
as a bank account number or a system logon name. But many problems arise
when merging two systems that use naming schemes that are incompatible.
Sometimes this can even happen by accident.

Research problems

I’ve touched on many technical issues in this chapter, from secure time
protocols to the complexities of naming. But perhaps the most important
research problem is to work out how to design systems that are resilient in the
face of malice, that degrade gracefully, and whose security can be recovered
simply once the attack is past. All sorts of remedies have been pushed in
the past, from getting governments to issue everyone with ID to putting it
all on the blockchain. However these magic bullets don’t seem to kill any of
the goblins.
It’s always a good idea for engineers to study failures; we learn more from

the one bridge that falls down than from the thousand that don’t. We now have
a growing number of failed ID systems, such as the UK government’s Verify
scheme – an attempt to create a federated logon system for public service that
was abandoned in 2019 [1394]. There is a research community that studies fail-
ures of ID systems in less developed countries [89]. And then there’s the failure
of blockchains to live up to their initial promise, which I’ll discuss in Part 2 of
this book.
Perhaps we need to study more carefully the conditions under which we

can recover neatly from corrupt security state. Malware and phishing attacks
mean that at any given time a small (but nonzero) proportion of customer bank
accounts are under criminal control. Yet the banking system carries on. The pro-
portion of infected laptops, and phones, varies quitewidely by country, and the
effects might be worth more careful study.

Further reading 273

Classical computer science theory saw convergence in distributed systems as
an essentially technical problem, whose solution depended on technical prop-
erties (at one level, atomicity, consistency, isolation and durability; at another,
digital signatures, dual control and audit). Perhapsweneed a higher-level view
in which we ask how we obtain suf�cient agreement about the state of the
world and incorporate not just technical resilience mechanisms and protection
technologies, but also the mechanisms whereby people who have been victims
of fraud obtain redress. Purely technical mechanisms that try to obviate the
need for robust redress may actually make things worse.

Further reading

If the material in this chapter is unfamiliar to you, you may be coming to
the subject from a maths/crypto background or chips/engineering or even
law/policy. Computer science students get many lectures on distributed
systems; to catch up, I’d suggest Saltzer and Kaashoek [1643]. Other books
we’ve recommended to our students over the years include Tanenbaum and
van Steen [1863] and Mullender [1355]. A 2003 report from the US National
Research Council, ‘Who Goes There? Authentication Through the Lens of Privacy’,
discusses the tradeoffs between authentication and privacy and how they
tend to scale poorly [1041]. Finally, there’s a recent discussion of naming by
Pat Helland [882].

