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Abstract

Real-world Super-Resolution (SR) is a very challenging task to reconstruct a higher
resolution image from a real-world image which generally has unexpected artifacts and
distortions. Most of the high performance SR methods rely on availability of LR-HR
paired datasets, target domain images, or degradation priors. These information, how-
ever, are usually not available in real world, thus these methods are not often practical for
real world obtained images. Recent studies related to real-world SR mainly focus on con-
structing the LR-HR paired dataset. The methods estimate the noises and the blur kernels
from real-world images to generate a new training set. However, these methods use the
degradation only for dataset construction. In this paper, we propose a novel real-world
SR method called Deep Degradation Prior-based SR (DDP-SR). Upon completion of
training, denoising network and kernel estimation network within DDP-SR becomes ca-
pable of extracting degradation representation of any given input image. Thus, the model
works regardless of whether the input image from the same or the different domain of the
source images. As such, DDP-SR achieves generalization performance on images from
different domain while it also outperforms the state-of-the-art methods qualitatively and
quantitatively.

1 Introduction
Super-Resolution (SR) is a low-level image processing task to increase resolution and to
enhance the quality of images. In general, it is assumed that Low-Resolution (LR) images
are obtained from High-Resolution (HR) images through the following degradation process:

IL = (IH ⊗ k) ↓s +n, (1)
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where IH is an HR image and IL is an LR image. k and n represent a blur kernel and additive
noise, respectively. s denotes a scale factor for downsampling. The goal of SR is to find an
inverse operator to convert IL to IH . With the development of deep learning, many studies
using LR-HR image pairs made of Eq.(1) have emerged [5, 6, 20, 24, 25, 26, 41, 45, 51, 52].
However, HR images are generally downsampled by a bicubic kernel in these methods, and
the SR models are trained by minimizing the difference between the reconstructed images
and the original images as:

argmin
SR
‖SR(IL)− IH‖. (2)

Consequently, since these SR models are optimized for the bicubic kernel, they generalize
poorly on images degraded by other causes.

Several learning-based methods have attempted to solve this problem. One of these
methods applies the idea of the domain transfer. In these efforts, LR images reside in the
source domain with unknown degradation while the target domain contains clean HR images.
Cycle-in-cycle Generative Adversarial Network (CinCGAN), applied by Yuan et al. [47],
Lugmayr et al. [27], and Kim et al. [19], sequentially applied two CycleGANs [54] with
the first CycleGAN transferring the noisy LR domain to a clean LR domain, and the second
CycleGAN transferring the clean LR domain to a clean HR domain. These SR models
need target domain images for training, but the target domain images generally could not be
acquired in real world.

Another method is to train by self-supervised learning using only test images without
any training images. Zero-Shot Super-Resolution (ZSSR) [38] is trained by the internal
recurrence of information within a single image. Therefore, ZSSR can be applied to images
degraded from a variety of kernels, including bicubic kernels. Since the ground truth kernel
of the test image is not known, ZSSR would exhibit poor performance if the predicted kernel
and the actual kernel turned out to be different. To compensate for these shortcomings, a
blur kernel corresponding to the test image is obtained by using kernel estimation methods
such as KernelGAN [2]. With the difficulty of estimating the kernel, ZSSR implemented
with KernelGAN often shows poor performance, as we have observed in our experiments.

SR methods relying on LR-HR paired dataset or prior knowledge on degradation have
progressed and now are able to deliver some impressive results. However, when the pro-
cess associated with transforming HR to LR, or the source of noise added in LR images
are not known, SR becomes much more challenging. A typical SR method based on su-
pervised learning by paired images is not possible in such cases. In New Trends in Image
Restoration and Enhancement (NTIRE) 2020 challenge [50], track 2 of real-world SR is one
of these problems without the target domain and without any prior knowledge on noise and
blur kernel in LR images. The task provides real-world images taken by smartphones, not by
high-performance cameras such as DSLRs. As such, the images are more noisy and blurry
due to the phone’s limited hardware and simpler circuitry. RealSR [16], which is trained
by creating a degradation pool composed of the noises and kernels extracted from variance
based noise cropping method and KernelGAN, won the NTIRE 2020 real-world SR com-
petition. Since the training dataset is created by reflecting the noise and blur kernel of the
source domain, the SR model trained with the generated dataset is optimized for the source
domain. However, the degradation pool is only used when constructing the training set, so
it is difficult for RealSR to reflect the prior for actual testing. If an image with domains
different from the trained source domain is tested, poor performance is achieved.

To solve the aforementioned problem in the SR task, we propose a novel method of
deep degradation prior to represent the degradation. We developed a novel structure of a
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deep prior generator containing a denoising network and a kernel estimation network. The
output of the deep prior generator, termed deep degradation prior, is an informative fea-
ture representation that strongly corresponds dominant components of the degradation. The
representation composed of noise and kernel estimations allow the SR model to generate re-
alistic and clean SR images by an improved understanding of the degradation in the observed
images. The novelty we stress is that once the training is done, the deep prior generator is
capable of composing representation of degradation involved in any given image. Thus, the
trained deep prior generator is capable of dealing with input image domains different from
that of the training images. Our proposed deep prior generator, therefore, would generalize
well to a variety of input domains. The deep prior generator is trained with the degrada-
tion pool to extract the deep degradation prior from the observation image. Our proposed
network is implemented for the SR task through an adaptive method based on Adaptive In-
stance Normalization (AdaIN) [12, 35, 44] and channel attention [11]. We term the overall
SR architecture proposed here "Deep Degradation Prior-based SR (DDP-SR)."

Our overall contributions can be summarized as follows:

• We propose a novel real-world SR method called DDP-SR to improve the performance
by using the deep degradation prior corresponding to noise and kernel of observation
image.

• We propose a novel deep prior generator capable of extracting degradation components
of any image on the fly once its training is completed. Our design is rooted on enabling
the model to generalize to any given input domain.

• We developed a novel learning architecture for the deep prior generator composed of
the denoising network and the kernel estimation network.

• DDP-SR achieves higher performance both quantitatively and qualitatively than the
state-of-the-art real-world SR methods in experiments using public datasets.

2 Related Work

2.1 Noise Estimation
Recently, many studies on Convolutional Neural Network (CNN)-based denoising has been
conducted. Convolutional Blind Denoising Network (CBDNet) [8] is made up of a noise es-
timation network and a non-blind denoising network. The noise estimation network is simply
composed of five layer convolutional layers without pooling layer and normalization oper-
ation and extracts noise level map from the input image. The non-blind denoising network
has residual learning [10] and U-Net [37] architecture which takes both the original noisy
image and the noise level map extracted by the noise estimation network. Consequently,
the non-blind denoising network outputs the clean image. Adaptively Tuned Denoising Net-
work (ATDNet) [21] has an overall similar architecture to the CBDNet, but the noise level
map is applied to the denoising subnetwork differently from the CBDNet. Since the noise
level map is used as input in the middle of the denoising network by gate-residual block, the
gate residual block makes the denoising network adaptive to the change of the noise level.
Adaptive Instance Normalization Denoising Network (AINDNet) [22] also has an architec-
ture similar to the the ATDNet. Instead of the gate residual block to apply the noise level
map, the AINDNet uses adaptive instance normalization residual block based on AdaIN. The
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denoising networks mentioned above have in common that they have residual learning [48].
However, these denoising models are not suitable for real-world image noise because they
learn Gaussian noise-based noise levels. Based on these previous studies, we design the deep
prior generator that learns the noise information of the real-world image and apply the deep
degradation prior to the SR model.

2.2 Blind Super-Resolution
Blind SR estimates the blur kernels from the dataset, and enhance the SR performance by
using the blur kernels. Since the blur kernel is an important factor in SR performance, there
have been some efforts focused on finding an accurate kernel. Michaeli et al. [30] first in-
troduced the concept of the blind SR. They estimate the blur kernels based on Maximum a
Posteriori (MAP). Xu et al. [46] first proposed the blind SR used deep learning. They uses
GAN for the blind SR of face image and text image without the kernel estimation. Kernel
Modeling Super-Resolution (KMSR) [53] uses blur kernel estimation algorithm based on
dark channel prior [9, 34]. But this algorithm is very computationally heavy, and target do-
main images are required to construct the LR-HR pairs. Iterative Kernel Correction (IKC)
[7] estimates the blur kernel using predictor network, and updates the estimated kernel using
corrector network. However, IKC needs a prior to predict the accurate blur kernel. Kernel-
GAN based on Internal-GAN (InGAN) [39] estimates the blur kernel. The generator simply
consists of 6 convolutional layers without a non-linear activation function. The discrimina-
tor compares the patch of the input image with the patch of the image downscaled by the
generator.

2.3 Real-World Super-Resolution
Real-world SR is a task that makes a blurry and noisy image taken with a real camera or
smartphone into a clean HR image. Therefore, there is no LR-HR paired dataset. Fur-
thermore, super-resolution without target domain images is a very challenging task. Many
studies have been conducted to solve this problem. Super-Resolution network for Multiple
Degradations (SRMD) [49] reduces the dimension of the blur kernel and then concatenates
it with the noise level. The degradation representation is stretched and concatenated with the
input image. SRMD uses a grid search strategy to estimate the blur kernel and noise level of
the real image. However, the strategy is inefficient because it requires a lot of computation to
calculate, and it is also inaccurate because it is estimating among the pre-set blur kernel and
noise. Ren et al. [36] uses various downsampling, blur kernel, and noise to make synthetic
LR images similar to real-world LR images. However, in order to construct these LR im-
ages, the target domain dataset is required. On the other hand, RealSR composes the LR-HR
paired dataset using only the source domain dataset. However, the degradation information
is used only to compose the data set, and the information is not used as an important prior.
We proposed DDP-SR that reflects the deep degradation prior to the input real-world image
to the SR model. Section 3 describes DDP-SR in detail.

3 Proposed Method
Figure 1 displays our proposed method called DDP-SR. The method is divided into two
main parts in dealing with a situation where target domain images don’t exist. The first is
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Figure 1: Illustration of our proposed method called DDP-SR. The figure on the left shows
the process of constructing a dataset, and the figure on the right shows the process of training
DDP-SR based on the constructed data.

to construct the training dataset using only source images. The other is to train the network
based on the constructed data.

3.1 Dataset Constrcution
In the dataset construction, the LR-HR pairs are obtained by using only source images Is.
First, the HR image IH is produced by using bicubic downsampling that removes noise and
makes the source image sharper. The noise n and the kernel k of the source image can be
estimated by variance based noise cropping [16] and KernelGAN. In order to generate the LR
image IL with a similar domain to the source image, the noises and the blur kernels collected
from the source image are randomly selected, and IL is obtained by Eq.(1) The consturcted
LR-HR pairs and the degradation information estimated from source images are used to train
the SR model and the deep degradation prior generator.

3.2 Deep Degradation Prior Generator
The deep degradation prior generator consists of two modules and delivers prior information
into Residual Dense Block (RDB) [52] as shown in Figure 2. One is a deep noise prior
generator and the other is a deep kernel prior generator.

3.2.1 Deep Noise Prior

The deep noise prior generator is designed as the CNN based on residual learning. The CNN
is composed of five convolutional layers, Rectified Linear Unit (ReLU) activation function
[33], and the skip connection for the residual learning. The input of the deep noise prior
generator is the LR image, and the label Iclean = (IH ⊗ k) ↓s is the corresponding image
before applying the noise prior to the dataset construction stage. For training the deep noise
deep noise generator, we define the noise prior loss, Lnoise = ‖NG(IL)− Iclean‖2, where NG
denotes the deep noise prior generator. By applying residual structure for denoising, CNN
layers are trained to estimate residual noise. The estimated raw noise map is not adequate as
prior knowledge because it is too simple information. So we use encoded feature map which
contains noise information.

The deep noise prior Fn ∈ RWI×HI×C, where WI and HI are the width and height of the
input image, and C is the number of channels, is applied to the SR model through AdaIN
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Figure 2: Illustration of the deep prior generator and the example where the deep degradation
prior extracted from the deep prior generator is applied to the RDB.

[12, 35, 42, 44]. injecting the deep noise prior into the SR model via AdaIN can prevent
overfitting to the noise on the training set and regularize the network. For the deep noise
prior, AdaIN is composed of convolutional layers and instance normalization (IN) with h′j =
γ � IN(h j) + β where h j denotes j th-mid level features, IN means IN operation, and �
represents element-wise multiplication. Also, γ and β are obtained through the deep noise
prior and the convolutional layers as in Figure 2.

3.2.2 Deep Kernel Prior

The deep kernel prior generator is composed of four convolutional layers, Leaky ReLU
(LReLU) activation function [29], and a global average pooling. The size of the pooling
result is the same as Wk×Hk of the blur kernel used in the dataset construction stage. After
the pooling result is reshaped to the shape of the blur kernel, we use the kernel prior loss,
Lkernel = ‖KG(IL)− k‖2, where KG represents the deep kernel prior generator and k means
the blur kernel that used when generating the degraded image IL. For deep kernel prior
Fk ∈ R1×1×(Wk×Hk), channel attention is a similar to AdaIN in the deep noise prior. Channel
attention is used to apply the deep kernel prior to global are of features. In our case, the
kernel size set to 33×33.

3.3 Deep Degradation Prior for Super-Resolution
The deep degradation prior extracted from the deep prior generator can be applied to various
SR models. In this case, Enhanced Super-Resolution GAN (ESRGAN) [45] is used as the SR
model. The performance of ESRGAN has not only been proven in several studies [16, 36],
but also empirically showed the best in our case. The generator of ESRGAN is composed
of Residual-in-Residual Dense Block (RRDB) which combines multi-level residual network
and dense network. The deep degradation previously mentioned in Section 3.2 is applied to
each RDB in each RRDB. Based on the inverse operation of Eq.1, the deep noise prior is
applied to the beginning of the RDB and the deep kernel prior is applied to the end of RDB.
For efficient learning, the pre-trained SR generator and discriminator are used. Pixel loss,
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Figure 3: Qualitative results on the DPED dataset

perceptual loss [17], and adversarial loss are used to train the generator. The pixel loss is
the distance between IH and the output of the SR model ISR, and the perceptual loss is the
distance in the feature space of CNN. The pixel loss preserves the overall HR image content,
and the perceptual loss improves high-frequency components. In this case, both the pixel
loss and the perceptual loss use L1 distance, and VGG-19 [40] is used for perceptual loss.
The adversarial loss makes the generated image more realistic by enhancing texture details.
The final loss is defined as the weighted sum of the aforementioned losses as follows:

Ltotal = λperLper +λpixelLpixel +λnoiseLnoise +λkernelLkernel +λadvLadv, (3)

where λper and λadv are set as 1 and 0.005, and λpixel , λnoise, and λkernel are all set as 0.01.
Patch discriminator [15, 54] is used to determine whether each patch is real or fake,

instead of the original discriminator of ESRGAN. The patch discriminator makes a final
decision through average operation after determining whether it is real or fake for each patch
of the image. Consequently, it can work regardless of the size of the image. The SR generator
and the discriminator are fine-tuned for 60000 iterations by using Adam optimizer [23] with
parameters β1 = 0.9 and β2 = 0.999 without weight decay. The learning rate is initially set
to 0.0001 and halved at {5000, 10000, 20000, 30000} iterations.

4 Experiment

4.1 Datasets
The DSLR Photo Enhancement Dataset (DPED) [13] is used for real-world SR experiments.
The DPED is the dataset taken with four different cameras, but only pictures taken with
iPhone 3GS are used this time. The training set contains only 5614 source domain im-
ages. The test set includes 100 images cropped from the original images. Since there is
no Ground Truth (GT), the performance needs to be evaluated based on the no-reference
method. Therefore, Natural Image Quality Evaluator (NIQE) [32], Blind/Referenceless Im-
age Spatial QUality Evaluator (BRISQUE) [31], Perception-based Image Quality Evaluator
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Dataset Method PNSR↑ SSIM↑ NIQE↓ BRISQUE↓ PIQE↓ NRQM↑ PI↓ DISTS↓

DPED

Bicubic - - 5.5426 53.2307 84.9406 3.1220 6.2103 -
SRMD - - 5.4809 50.2295 75.7359 4.0941 5.6934 -
IKC - - 5.6268 51.2808 76.4175 4.2140 5.7064 -
ZSSR - - 6.7644 42.1918 51.3160 5.2201 5.7722 -
K-ZSSR - - 10.2671 43.8575 44.2234 4.7748 7.7462 -
RealSR - - 4.1223 23.3344 14.0526 6.5217 3.8003 -
Ours - - 3.7137 21.4566 13.6320 6.6546 3.5296 -

RealSR-V3

Bicubic 27.2291 0.8206 6.0751 56.2801 91.5781 2.7174 6.6789 0.1372
SRMD 27.5849 0.8303 6.1688 51.5007 90.2800 3.0248 6.5720 0.1287
IKC 27.1788 0.8331 5.0329 48.7129 83.7245 3.8288 5.6021 0.1117
ZSSR 25.5300 0.6603 7.2244 43.4438 60.3120 4.7165 6.2540 0.1285
K-ZSSR 23.1509 0.6262 7.2699 43.4680 56.2521 4.8461 6.2119 0.1385
RealSR 24.0146 0.7618 3.3585 30.4957 23.5409 6.4980 3.4303 0.1218
Ours 24.2664 0.7595 3.0353 28.2168 21.9210 6.6330 3.2012 0.1192

DIV2K

Bicubic 25.7313 0.7932 6.0341 58.5037 93.0483 2.6416 6.6963 0.0917
SRMD 26.0145 0.8014 6.0426 56.9209 89.9418 2.8700 6.5863 0.0825
IKC 27.6948 0.8535 5.2750 46.9631 81.5228 4.2163 5.5294 0.0286
ZSSR 24.1092 0.6718 6.5096 42.0896 60.5725 4.9242 5.7927 0.0822
K-ZSSR 24.8064 0.7090 5.9446 43.2806 55.6396 5.1476 5.3989 0.0345
RealSR 26.4570 0.8181 3.3536 24.5535 21.0390 6.4448 3.4544 0.0293
Ours 26.2967 0.8112 3.1636 22.9385 19.9166 6.5047 3.3295 0.0289

CelebA-HQ

Bicubic 34.1167 0.9550 5.8163 56.2974 97.9132 2.2373 6.7895 0.0815
SRMD 34.4920 0.9571 5.7378 57.3826 95.6500 2.4405 6.6487 0.0777
IKC 36.7090 0.9691 5.0668 49.2875 80.0878 3.5369 5.7650 0.0305
ZSSR 27.6223 0.7142 7.3876 42.8626 66.6122 5.2340 6.0768 0.0756
K-ZSSR 27.8847 0.7239 6.1327 44.1258 61.1679 5.3011 5.4158 0.0678
RealSR 33.2764 0.9413 3.3758 13.1447 12.1853 6.8005 3.2877 0.0402
Ours 33.8797 0.9450 3.1111 10.4859 12.1332 6.7738 3.1687 0.0346

Table 1: Quantitative results on the DPED dataset, RealSR-V3 dataset, DIV2K dataset, and
CelebA-HQ dataset.

(PIQE) [43], No-Reference Quality Metric (NRQM) [28], and Perceptual Index (PI) [14] are
used in our experiments on the DPED.

Additionally, in order to verify the generalization performance of DDP-SR, the DPED-
trained models are evaluated through RealSR-V3 [3], DIV2K [1], and CelebA-HQ [18]. The
RealSR-V3 provides a 100 LR-HR paired test set taken with cameras different from the one
used in the DPED. The images collected on different scales by zooming the lens of the cam-
era are made of the LR-HR paired dataset by distortion correction, central region crop, and
iterative pixel-wise registration algorithm considering luminance adjustment. DIV2K and
CelebA-HQ are used to evaluate generalization performance on datasets with different do-
main and high quality images. In DIV2K, 100 images from the validation set are used, and
in CelebA-HQ, 100 images are randomly selected and tested. Both datasets are tested by ap-
plying blur kernel and noise. Consequently, Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Map (SSIM), and Deep Image Structure and Texture Similarity (DISTS)
[4], which is a recently proposed perceptual similarity evaluation metric, can be used for the
performance evaluation while comparing the reconstructed image and GT.

4.2 Experimental Results
To compare DDP-SR performance, we perform baseline experiments such as bicubic, SRMD,
IKC, ZSSR, K-ZSSR which means a combination of KernelGAN and ZSSR, and RealSR
that is the state-of-the-art method for real-world SR. As shown in Table 1, DDP-SR achieves
the best performance in all evaluation metrics. Except for RealSR, the baseline performance
is quantitatively very poor. Especially, NIQE values of ZSSR, K-ZSSR, and IKC are worse
than the bicubic method. Figure 3 displays the outputs of DPP-SR and the baseline methods.
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Figure 4: Qualitative results on other dataset different from the training dataset domain: (a)
RealSR-V3 dataset, (b) DIV2K dataset

ZSSR produces the LR-HR pairs without considering the source domain, so the blurred out-
puts are generated. Also, K-ZSSR makes unwanted textures that look like artifacts. Real-SR
shows good performance compared to other baselines, but over-sharpening occurs at edges
such as letters or digits. On the other hand, DPP-SR produces relatively clean and sharp-
edged results. In particular, DPP-SR creates brighter results that are similar to the original
brightness and expresses a pattern such as a tree branch well. Consequently, it can be seen
that DDP-SR shows higher performance than the state-of-the-art real-world SR methods.

To demonstrate generalization performance of our proposed method, we use the RealSR-
V3 dataset, DIV2K datatset, and CelebA-HQ dataset with the networks trained with the
DPED dataset. In Table 1, the quantitative results are summarized. DDP-SR shows higher
performance than other methods in the no-reference evaluation metrics. On the other hand,
since the degraded images were generated synthetically, IKC which is supervised learning
based method shows higher performance than DDP-SR in all reference evaluation metrics.
However, it can be seen that the results of IKC are more blurry than DDP-SR in Figure
4. It can be seen that distortion has occurred in the results of RealSR. In contrast, DDP-SR
produces the high-quality images without distortion. Figure 5 shows the experimental results
for CelebA-HQ. DDP-SR converts degraded LR face images into clear high-resolution face
images. As a result, the experimental results demonstrate that our proposed method shows
high generalization performance qualitatively and quantitatively.
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Figure 5: Qualitative results on the CelebA-HQ dataset

Type Noise Kernel Front Back Reverse Conv1 Conv5 Ours
NIQE↓ 3.9824 3.9854 3.8445 4.1088 3.8427 3.8302 3.8436 3.7137
BRISQUE↓ 22.1859 22.8842 21.9890 22.4550 22.2226 21.3545 20.6951 21.4566
PIQE↓ 12.7949 14.0710 13.7051 12.6076 13.7598 13.1032 12.9753 13.6320
NRQM↑ 6.5898 6.5737 6.5434 6.5698 6.6268 6.6155 6.6954 6.6546
PI↓ 3.6963 3.7059 3.6506 3.7695 3.6080 3.6074 3.5741 3.5296

Table 2: Quantitative results of the ablation study.

4.3 Ablation Study

Several experiments are additionally conducted to analyze how deep degradation prior af-
fects SR performance. In Table 2, the results of the ablation study are summarized. First,
we compare when only the deep noise prior is used, when only the deep kernel prior is used,
and when both are used. Table 2 shows better NIQE, BRISQUE, NRQM, and PI when using
both than when using only one, but PIQE is highest when using only deep noise prior. Next,
there is the experiment according to the position where the deep noise prior and the deep
kernel prior are applied. In Table 2, front is when both priors are in front, back is when they
are in the back, and reverse is when the two positions are swapped. Our proposed position
achieves the best NIQE, BRISQUE, NRQM and PI, but PIQE is best at back. The last ex-
periment is the performance evaluation according to the position where the deep noise prior
is extracted from the deep noise prior generator. BRISQUE, PIQE, and NQRM are the best
when extracted from Conv5. However, the result of Conv3 shows the best NIQE, PI, and vi-
sually the best results. As a result, the deep noise prior extracted from Conv3 has the highest
performance both in terms of NIQE and PI, and qualitatively. The qualitative results about
the ablation study are displayed in the supplementary material.

5 Conclusion

In this paper, a novel real-world SR method called DDP-SR was proposed. In DDP-SR, the
deep degradation prior extracted from the deep prior generators is applied to the SR model.
The SR model delivered high performance by reflecting the degradation prior. To evaluate
the performance of DDP-SR, we compared with state-of-the-art methods. As a result, DDP-
SR outperformed the state-of-the-art methods. Additionally, when testing with the datasets
different from the domain of DPED used for the training, the DDP-SR outperformed the
baseline qualitatively and quantitatively.
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