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Abstract

This paper presents a GAN for generating images of handwritten lines conditioned on
arbitrary text and latent style vectors. Unlike prior work, which produce stroke points or
single-word images, this model generates entire lines of offline handwriting. The model
produces variable-sized images by using style vectors to determine character widths. A
generator network is trained with GAN and autoencoder techniques to learn style, and
uses a pre-trained handwriting recognition network to induce legibility. A study using
human evaluators demonstrates that the model produces images that appear to be written
by a human. After training, the encoder network can extract a style vector from an image,
allowing images in a similar style to be generated, but with arbitrary text.

1 Introduction

In this work, we generate images of lines of handwriting, conditioned on the desired text
and a latent style vector. Handwriting is an expressive and unique form of communication
that is often considered more intimate than typed text. Generating images that mimic an
author’s style would allow people to generate their own handwriting from typed text. While
a convenience for many, this is particularly valuable to those with physical disabilities that
hinder or prevent them from writing. Our results achieve human plausibility and begin to

approximate the style of example handwriting images, as seen in Fig. 1.

Handwritten image generation can also provide additional data to train more accurate
general handwriting recognition models [2]. Generating a large number of images in the
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Figure 1: Examples of our model mimicking two authors’ style. Top: original authors’
writing. Middle: reconstructions using our model. Bottom: novel text using the same style.

style of each user of an application (e.g., scanner) could allow us to train personalized single-
author recognition models. Personalized models tend to be more accurate for their target
author’s writing than a general recognition model.

Several previous approaches have framed handwriting generation as stroke prediction [8,
27, 29], i.e., modeling how a pen moves on paper. Training these methods often requires
online handwriting data, captured by writing on a digital device. Without post-processing,
such methods do not model ink textures that result from writing on physical media. In con-
trast, our method uses widely available offfine handwriting data, i.e., images of the physical
media. We frame handwriting generation as conditional image generation, directly learning
from and predicting pixels [2, 6, 19].

Our approach achieves realism by combining Generative Adversarial Networks (GAN) [7]
and autoencoder methods [23] with an auxiliary loss to achieve legibility [2]. Our encoder
can map an example image into a latent style space, and then the model can produce images
in a similar style, either reconstructing the original or using arbitrary text.

The width of an image of real handwriting depends on the text and writing style. Instead
of fixing our model’s output size or heuristically determining the output width from the input
text, we use a deep network to predict the horizontal layout of the characters. Our model
achieves state-of-the-art visual quality for offline handwriting generation and, unlike prior
methods [2, 19], generates entire lines of handwriting conditioned on arbitrarily long text.

It is challenging to train a network using many (sometimes competing) loss functions
that yield gradients that differ in size by orders of magnitude. To overcome this, we propose
an improvement upon the gradient balancing technique of [2].

There are potential ethical concerns due to nefarious uses of this technology, e.g., low-
skill convincing forgery. However, we believe this concern is minor as the method is not
targeted at imitating signatures and can only produce digital images, not physical documents.

Our primary contributions are: (1) a method combining GANSs and autoencoders to train
a handwriting generator on offline handwriting images to produce realistic handwritten im-
ages that mimic example image styles; (2) a model that generates variable-length handwritten
line images from arbitrary length text and style; and (3) improved multi-loss training through
gradient balancing, allowing disparate losses to be used together more easily.

2 Prior Work

Conditional image generation methods take as input a description of the desired output
image. Descriptions used in prior work include semantic layout masks [3, 14, 30, 32],
sketches [4, 14, 32], image and desired attribute [5], image classes [28], key-words [18]
and natural language descriptions [35, 36]. Many recent image generation approaches em-
ploy GANSs [7], where the generator produces samples to fool a discriminator that attempts
to classify images as real or generated. In our work, we employ a GAN and condition the
output on both a target text and a latent style vector.
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Recent GANs model the content and style of an image. StyleGAN [20] and the im-
proved StyleGAN?2 [21] learn a mapping from random noise vectors to style vectors that in-
fluence style by controlling the mean and magnitude of the generator network feature maps
via AdalN layers. MUNIT [13] translates images from one domain to another by learning
autoencoders that encode the input image as separate, latent content and style vectors. FU-
NIT [24] builds on MUNIT to allow the target class to be unseen during training and instead
be specified by a handful of images at test time. We similarly employ an autoencoder that
reconstructs images from style and content, but our encoder only needs to extract the style
vector. In contrast to both these methods, our content description is a variable-length text
string instead of a fixed-sized latent vector, and we produce variable-width images based on
the combination of the style vector and content.

Graves’s well-known online handwriting generation LSTMs [8] predict future stroke
points from previous stroke points and an input text. In contrast, we directly generate an im-
age of offline handwriting that includes realistic ink textures. The authors of [1] use RNNs to
perform online generation and explicitly model content and style separately. In [15], a GAN
framework is used to train the generator of [8].

Alonso et al. [2] proposed an offline handwriting generator for isolated, fixed-size word
images. It is trained using offline handwriting images. Their generator conditions on a fixed-
size RNN-learned text embedding and random style vector. They train the generator in GAN
fashion produce word images that fool a discriminator, but also include a loss to encourage
legible text according to a jointly-trained handwriting recognition model. Specifically, the
generator is updated to minimize the CTC loss [10] between the output of the recognition
model and the input text. We similarly employ a recognition model to improve legibility, but
we instead use a pre-trained feedforward network. In contrast, we produce higher quality
handwritten line images from arbitrarily long text (instead of just words), and we can extract
styles from existing images to generate similarly styled images.

Contemporary work [19] improves upon [2] by extracting style from a set of 15 word
images from a single author. Generated images are fed to a writer classifier, and to learn
writer styles, the generator is updated to fool this classifier. The generated word images are
realistic, but don’t recreate style perfectly. Recently, ScrabbleGAN [6] improved upon [2]
by making the generated image width proportional to the input text length. In contrast, our
model learns the output width based on the provided style and the input text.

3 Method

We view the handwriting generation process as having three inputs: content, style, and noise.
Content is the desired text. Style is the unique way a writer forms characters using a par-
ticular physical medium and writing instrument. Noise is the natural variation of individual
handwriting, even when writing the same content in the same style.

We train our model with GAN, reconstruction, perceptual, and text recognition losses.
Fig. 2 shows an overview of our training process, including six networks: (1) a generator
network G to produce images from spaced text, a style vector, and noise. (2) a style extractor
network S, that produces a style vector from an image and the recognition predictions; (3) a
spacing network C, which predicts the horizontal text spacing based on the style vector;
(4) a patch-based convolutional discriminator D; (5) a pretrained handwriting recognition
network R to encourage image legibility and correct content; and (6) a pretrained encoder E,
to compute a perceptual loss.
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Figure 2: Overview of our method. To generate an image, we take input text and style vector
y. Text is spaced by spacer C using y. This spaced text and y are passed to the generator G.
We use both fully GAN training steps (top) and autoencoder based training steps (bottom).

During training the model learns to mimic style as S and G act as an encoder and decoder
in an autoencoder, with E helping supply the reconstruction loss. G requires the input text to
have spacing information (spaced text), which is extracted from the target image using R and
the ground truth text (Sec. 3.3). G and D act as a GAN, supplying the model an adversarial
loss for realism. R allows a handwriting recognition loss to supervise the legibility of gen-
erated images. Sampling a style vector and predicting spaced text using C allows the model
produce novel images. C is supervised using styles predicted by S (not pictured in Fig 2).

We now present details for each part of our model and its training. Full architectural
diagrams for G, S, C, D, E, and R are provided in supplementary material.

3.1 Generator G and Discriminator D

G is based on StyleGAN [20] but differs in architecture and receives the 1D spaced text as
input with the style vector concatenated at each spatial position. Spaced text (Sec. 3.3) is a
one-hot encoding of the target text with additional blank characters and repeated characters,
which encode the spacing information. This informs horizontal character placement and was
key to training the model successfully. The network blocks consist of a convolutional layer,
additive noise, ReLU activation, and AdaIN [20], which uses the style vector to determine
feature map statistics. To increase resolution, we use nearest-neighbor upsampling followed
by a convolution and blurring operation. Most upsampling is in only the vertical dimension
because the spaced text input is already wide.

Our discriminator D must be able handle variable sized inputs, so it is a fully convolu-
tional, multi-resolution patch-based discriminator that we train with a hinge loss.

3.2 Style Extractor S

S inputs the image and the output of R on the image to produce a style vector (Fig 3). First,
it uses a convolutional network to extract a 1D (horizontal) sequence of features. Then the
recognition result (Fig. 4) is used to roughly localize each recognized character in the feature
sequence. For each predicted character, we crop the feature sequence with a window size of
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Figure 3: Style Extractor S architecture with character-
specific heads to process feature windows from detected
character locations.

5 (roughly 40 pixels, an area slightly larger than most characters in the IAM dataset) cen-
tered on the character and then pass each window through character-specific layers to extract
character features. Features from all instances of all characters are averaged, weighted by
R’s predicted confidence for each instance, giving a final character feature vector.

To obtain global style features, we pass the entire feature sequence through 1D convolu-
tional layers and perform global average pooling. This is appended to the character feature
vector, from which fully connected layers predict the final style vector of dimension 128.

3.3 Spaced Text and Spacing Network C

We found spaced text essential for training with a reconstruction loss. Without it, G has
difficulty achieving horizontal alignment with the input image and fails to train. Spaced text
can be derived for a particular image from the output of R or predicted directly by C for a
novel style.

Width and spacing are encoded using repeated characters and blank symbols <b> (Fig. 4).
Dataset spaced text is obtained by taking the predicted character at each horizontal position
from the output of R on a dataset image (Fig. 4), keeping blanks and repeated characters
(artifacts typically removed when decoding the output of a CTC trained model). We correct
recognition errors in the dataset spaced text using the ground truth text.

C is a 1D convolutional network that consumes one-hot encoded target text with the style
vector concatenated to each position. For each character ¢;, C predicts how many blanks
precedes c¢; and how many times c; is repeated in the spaced text. Multiple blanks are then
appended to the output. C is trained to imitate the dataset spaced text using a MSE loss.

3.4 Handwriting Recognition Network R

R is a pretrained handwriting recognition network that encourages generated images to (leg-
ibly) contain the specified text by applying the CTC loss [10]. R’s weights are frozen so the
gradient merely flows through R to supervise G.

While state-of-the-art handwriting recognition methods [9, 31, 34] use CNN-RNNs, we
obtained better results with R as a fully convolutional network based on [34]. RNNs have
arbitrarily large context windows and may predict characters based on linguistic context
instead of visual character shapes. In contrast, R only uses local visual features for character
predictions and therefore provides better feedback for generating characters.
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R is pretrained with CTC loss and warp grid data augmentation [33], which results in
overall better generated images, but training the model on warped images causes some arti-
facts in the absence of the reconstruction loss (e.g., the first ablated model in Fig. 9).

3.5 Encoder Network E

E provides features for our perceptual loss [17]. Traditional methods for computing percep-
tual loss use features from pretrained image classification networks [16]. However, images
of handwriting are different from natural images, so we choose a different approach. E is
a fully convolutional network that collapses the image to a one-dimensional feature series
capturing visual and semantic features. E is trained both as an autoencoder with a decoder
and L1 reconstruction loss, and as a handwriting recognizing network with CTC loss.

3.6 Training/Losses

Our generation has three objectives: legible handwriting matching the target text, realistic
handwriting that appears to be a human’s, and handwriting style that mimics an example
image. Each of these is achieved primarily through the respective losses: CTC loss back-
propagating through R, adversarial loss, and reconstruction losses (pixel and perceptual).
Additionally, MSE is used to train the spacing network C, and hinge loss is used to train D.

When using multiple loss terms, balancing them is crucial. We do so by improving the
gradient-balancing method of [2]. Without balancing, training failed due to exploding gra-
dients or failed to converge. Stable hyper-parameters possibly exist, but gradient balancing
easily solved the problem. We balance gradients from CTC, adversarial, and reconstruction
losses. The two reconstruction losses have equal weight and are summed.

In [2] the CTC loss gradient is normalized to have the same mean and standard deviation
as the adversarial loss gradient. However, this does not preserve the sign of the CTC gradient,
so we instead normalize the gradients to have the same mean magnitude (per layer). This
additionally allows balancing multiple gradients. Totally equal contributions may not be
desirable and can be adjusted by multiplicative weights on each gradient after normalization.
We always use the gradient magnitude of the reconstruction loss for gradient normalization.

To reduce memory requirements, some training steps store only gradients (for later bal-
ancing) and others update the parameters. Our curriculum uses the following steps:

1. Spacing: This is skipped on every other round through the curriculum. A style is

extracted from two dataset images by the same author and C predicts the spacing. The
MSE loss between the prediction and dataset spaced text updates both C and S.

2. Discriminator: To update D we sample novel styles by interpolating/extrapolating
styles sampled from a running window history of the 100 most recently extracted
styles (during Spacing or Autoencoder steps). Extrapolation is kept within 0.5 of the
distance between the two styles and is sampled uniformly from that range.

3. GAN-only: This follows standard GAN training while including the handwriting
recognition supervision. It does not update the model but saves the gradient infor-
mation. It samples styles like the Discriminator step. See top of Fig. 2.

4. Autoencoder: Pairs of images by the same author are concatenated width-wise, and
a single style vector is extracted for both of them. Then each image is individually
reconstructed using that style. We compute the reconstruction, adversarial and hand-
writing recognition losses with the reconstructed images. The gradients from this step
and the GAN-only step are balanced. Both S and G are updated. See bottom of Fig. 2.
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We now define the loss functions used in training our model and formalize the gradient
balancing. Let I be a dataset image, #; its corresponding text, and c; its corresponding dataset
spaced text. Let I’ be the concatenation of I and another image by the same author. Let y, be
a sampled style, obtained by sampling two stored style vectors from the running window his-
tory and interpolating/extrapolating a point on the line between them. Let #; be text sampled
from a text corpus. MSE and L1 are mean squared error and L1 loss. CTC is connectionist
temporal classification loss [10]. S, G, R, E,C, and D are the networks described in Sec. 3.

Spacing network loss I, = MSE(C(t;,S(I')),cr) (1)

Discriminator loss I; = max(1 — D(I),0) + max(1 + D(G(C(ty,5),Ys)),0) (2)
Generated image adversarial 10ss ly4,,, = —D(G(C(t5,ys),¥s)) 3)

Generated image recognition 10ss /e = CTC(R(G(C(ts,ys),¥s),ts) (4)
Reconstructed image adversarial 10ss lygy,, = —D(G(c7,S(I'))) 5)

Reconstructed image recognition 10ss lyec» = CTC(R(G(c,S(I')),t1)) ~ (6)
Combined reconstruction 10ss lyo, = L1(G(c,S(I')), 1) + L1(E(G(cr,S(I'))),E(I))  (7)

VI, is used to updated C and S, and VI, is used to update D. The remaining gradients
are balanced. Let my, be the mean absolute gradient of loss /, for layer i in the model. The
gradient of each loss [y € {laav wg>brec,g > Ladvyrs brec, -} is normalized by multiplying each layer i’s
gradient by mV loutor / mV L After normalization, the weighted sum Vi, +0.5(Viggy, g) +

0.6(Vlyee,g) +0.4(Vigay,) +0.75(Viec,) is used to updated G and S. The weights were
chosen heuristically to emphasize the parts we found the model struggled with.

We use a batch size of four, being two pairs of images by the same author for Autoen-
coder and Spacing steps. We train our model for 175,000 steps of the curriculum. The
stopping point was based on subjective evaluation of the validation set. We use two Adam
optimizers in training; one for the discriminator, and one for the rest of the model (except the
pretrained R and E). Both optimizers use a learning rate of 0.0002 and betas of (0.5,0.999).

4 Experiments

We first discuss the data used. Then we compare to prior methods. We then show exploration
into our method with an ablation study (Sec. 4.1) and an examination of the style space
(Sec. 4.2). We finally discuss a user study we performed (Sec. 4.3).

We use the IAM handwriting dataset [25] and the RIMES dataset [11], which contain
segmented images of handwriting words and lines with accompanying transcriptions. We
developed our method exclusively with the IAM training (6,161 lines) and validation (1,840
lines) sets, and reserved the test sets for experiments (FID/GS scores use training images).
Note that IAM consists of many authors, but authors are disjoint across train/val/test splits.
We resize all images to a fixed height of 64 pixels, maintaining aspect ratio. We apply a
random affine slant transformation to each image in training (-45°, 45° uniform).

Fig. 5 compares our results to those from Alonso et al. [2] and ScrabbleGAN [6]. Our
results appear to have similar quality as [6]. It can be seen in Fig. 6 that [6] (left) lacks
diversity in horizontal spacing; despite the style changing, the images are always the same
length. This is due to their architectural choice to have the length dependant on content, not
style. Our method takes both content and style into consideration for spacing, leading to
variable length images for the same text. We report Fréchet Inception Distance (FID) [12]
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Dataset FID GS
Alonso et al. [2] RIMES words 23.94 8.58x 1074
ScrabbleGAN [6] RIMES words  23.78 7.60x 10~4
Ours (trained on RIMES lines) RIMES words  37.60  1.70 x 10!
Ours (trained on RIMES lines) RIMES lines 2372 8.29x 107!
Ours (trained on IAM lines) TIAM lines 20.65 1.10x 1072

Table 1: FID and GS scores in comparison to prior methods.
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Figure 5: Comparing to prior methods on the RIMES dataset. Left: Alonso et al. [2], middle:
ScrabbleGAN [6], right: ours. Our model was trained using full lines, whereas the other two
used word images. Segmentation differences caused our model to produce smaller text.
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Figure 6: Contrasting variability of image length for ScrabbleGAN [6] (left) and our method
(right) using a fixed word. ScrabbleGAN’s horizontal spacing is mostly style agnostic,
whereas the spacing in our model is style sensitive.
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Figure 7: Three sets of interpolations between different styles.

and Geometry Score (GS) [22] in Table | using a setup similar to [6]. There exist some
intricacies to the FID and GS calculation which are included in the Supplementary Materials.

Fig. 7 shows interpolation between three sets of two styles taken from test set images.
These images look realistic, even on the interpolated styles. Notice the model even predicts
faint background textures similar to dataset images. We note that while styles vary, it mostly
varies in terms of global style elements (e.g., slant, ink thickness); the variation rarely comes
from character shapes. Figs. 7 and 6 were generated with text not present in the training set;
We notice no difference when generating with text from the dataset compared to other text.
Fig. 8 shows reconstruction results of our model. The model mimics aspects of global style,
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but often fails to copy character shape styles (e.g., whether the author loops the letter ‘I’).
Additional results are provided as supplementary material.

4.1 Ablation Study

We conducted an ablation study (see Fig. 9) by removing several key components of our
model: the adversarial loss, the handwriting recognition loss, the autoencoding reconstruc-
tion losses, and the character specific heads in the style extractor. Without the reconstruction
loss, the model still generates plausible images and has variety. However, the character
shapes are not as well formed. Without the adversarial loss, the model produces blurry re-
sults. Curiously, the model produces legible images without the handwriting recognition
loss, but with decreased realism. The reconstruction loss is likely responsible for legibility,
but we are unsure why realism would suffer. Without the character specific components of
S the model loses some ability to mimic styles. The pixel reconstruction loss only slightly
improves image quality, and without the perceptual loss, the model was unable to converge.

We also were unable produce good results without using spaced text. We attempted
a model without reconstruction and used 1D convolutions to allow the model to learn the
spacing on its own. It failed to produce legible results. We attempted to train our model
with the gradient balancing of [2], however the model failed to train. Earlier versions of our
model successfully trained with that gradient balancing, but with decreased quality.

4.2 Latent Style Space

We are able to show evidence that S extracts styles meaningful at the author level. In Fig. 10
we show a UMAP [26] projection of style vectors extracted from the test set images. Styles
extracted from the same author tend to be near each other. There is no specific loss to
encourage this behavior; this clustering is learned as the model learns to reconstruct images.
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Guessed:  Guessed:
Actually: | Human Computer
Human | 34.2% 15.8%
Generated | 31.9% 18.0%
Poorly
generated | 10.5% 89.5%

Figure 10: UMAP projection of the styles ex-

tracted from the test set images. Shape and Table 2: Top two rows are a confusion ma-
color indicate author. Most styles from the trix of the human study results. Bottom row
same author cluster together, even though the shows results on deliberately poor generated
model was not explicitly trained to do this. images as a measure of participant attention.

Taking the L2 distances between style vectors, the mean distance between styles taken from
the same author is 0.916 with a standard deviation of 0.658, and the mean distance between
styles taken from different authors is 2.264 with a standard deviation of 1.367.

4.3 Human Evaluation

We evaluated the realism of our generated images using Amazon Mechanical Turk. Partici-
pants viewed a single image at a time and were asked if the image was written by a human
or a computer. Real images were sampled from the test set. Generated images used the
same text. Styles were interpolated between styles extracted from the test set. After con-
trol measures to ensure participant reliability (described in supplementary material), 14,875
responses contributed to the final evaluation. Overall, the participants had an accuracy of
52.2% at determining whether an image was human or computer generated, indicating that
our generated images are generally convincing. A confusion matrix of the results is presented
in Table 2; there is a strong bias towards predicting the images to be human generated.

We also included deliberately poorly generated images for which we expected close to
100% accuracy for attentive participants. Our participants had 89.5% accuracy on these
poorly generated images, indicating that the lack of distinguishability between real and gen-
erated images was not simply due to inattention. While our generated images fooled most
participants, we note that the best performing participants (top 10%) had an average accuracy
of 84.9%, indicating a wide range of participant performance. See Supplementary Materials
for details about this experiment.

5 Conclusion

We have presented a system capable of directly generating the pixels of a handwriting image
of arbitrary length. Our generation is conditioned both on text and style and relies on an
spacing network to predict the space needed between text, enabling the generation of arbi-
trary length images. Our model is capable of extracting a style from example images and
then generating handwriting in that style, but with arbitrary text. Our method does well at
capturing the variations of global style in handwriting, such as slant and size.
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