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Abstract. Changes in global soil carbon stocks have con-
siderable potential to influence the course of future climate
change. However, a portion of soil organic carbon (SOC) has
a very long residence time (> 100 years) and may not con-
tribute significantly to terrestrial greenhouse gas emissions
during the next century. The size of this persistent SOC reser-
voir is presumed to be large. Consequently, it is a key pa-
rameter required for the initialization of SOC dynamics in
ecosystem and Earth system models, but there is consider-
able uncertainty in the methods used to quantify it. Thermal
analysis methods provide cost-effective information on SOC
thermal stability that has been shown to be qualitatively re-
lated to SOC biogeochemical stability. The objective of this
work was to build the first quantitative model of the size of
the centennially persistent SOC pool based on thermal anal-
ysis. We used a unique set of 118 archived soil samples from
four agronomic experiments in northwestern Europe with
long-term bare fallow and non-bare fallow treatments (e.g.,
manure amendment, cropland and grassland) as a sample set
for which estimating the size of the centennially persistent
SOC pool is relatively straightforward. At each experimental
site, we estimated the average concentration of centennially
persistent SOC and its uncertainty by applying a Bayesian
curve-fitting method to the observed declining SOC concen-
tration over the duration of the long-term bare fallow treat-

ment. Overall, the estimated concentrations of centennially
persistent SOC ranged from 5 to 11 g C kg−1 of soil (low-
est and highest boundaries of four 95 % confidence inter-
vals). Then, by dividing the site-specific concentrations of
persistent SOC by the total SOC concentration, we could es-
timate the proportion of centennially persistent SOC in the
118 archived soil samples and the associated uncertainty. The
proportion of centennially persistent SOC ranged from 0.14
(standard deviation of 0.01) to 1 (standard deviation of 0.15).
Samples were subjected to thermal analysis by Rock-Eval
6 that generated a series of 30 parameters reflecting their
SOC thermal stability and bulk chemistry. We trained a non-
parametric machine-learning algorithm (random forests mul-
tivariate regression model) to predict the proportion of cen-
tennially persistent SOC in new soils using Rock-Eval 6 ther-
mal parameters as predictors. We evaluated the model pre-
dictive performance with two different strategies. We first
used a calibration set (n= 88) and a validation set (n= 30)
with soils from all sites. Second, to test the sensitivity of
the model to pedoclimate, we built a calibration set with soil
samples from three out of the four sites (n= 84). The multi-
variate regression model accurately predicted the proportion
of centennially persistent SOC in the validation set composed
of soils from all sites (R2

= 0.92, RMSEP= 0.07, n= 30).
The uncertainty of the model predictions was quantified by a
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Monte Carlo approach that produced conservative 95 % pre-
diction intervals across the validation set. The predictive per-
formance of the model decreased when predicting the pro-
portion of centennially persistent SOC in soils from one fully
independent site with a different pedoclimate, yet the mean
error of prediction only slightly increased (R2

= 0.53, RM-
SEP= 0.10, n= 34). This model based on Rock-Eval 6 ther-
mal analysis can thus be used to predict the proportion of
centennially persistent SOC with known uncertainty in new
soil samples from different pedoclimates, at least for sites
that have similar Rock-Eval 6 thermal characteristics to those
included in the calibration set. Our study reinforces the ev-
idence that there is a link between the thermal and biogeo-
chemical stability of soil organic matter and demonstrates
that Rock-Eval 6 thermal analysis can be used to quantify
the size of the centennially persistent organic carbon pool in
temperate soils.

1 Introduction

Soils exert a key regulation on atmospheric greenhouse gas
concentrations on a decadal timescale through the net car-
bon source and sink status of their organic carbon reservoir
(Amundson, 2001; Eglin et al., 2010). However, a portion of
the soil organic carbon (SOC) reservoir may not contribute
significantly to the net exchange of CO2 and CH4 between
atmosphere and land during the next century because its res-
idence time exceeds 100 years and its rate of carbon input is
low (Trumbore, 1997; He et al., 2016). The size of the cen-
tennially persistent SOC pool is presumed to be large (i.e.,
between one- and two-thirds of total SOC) and dependent on
geochemical parameters such as soil texture and mineralogy
(Buyanovsky and Wagner, 1998a; Trumbore, 2009; Mills et
al., 2014; Mathieu et al., 2015). However, the amount of cen-
tennially persistent organic carbon in soils is highly uncer-
tain as it cannot be estimated accurately by current analyti-
cal methods (Post and Kwon, 2000; von Lützow et al., 2007;
Bruun et al., 2008). Physicochemical procedures attempting
to isolate SOC with a high residence time from bulk SOC
have proven unsatisfactory because of indications that such
fractions are a mixture of ancient and recent SOC (von Lüt-
zow et al., 2007; Trumbore, 2009; Lutfalla et al., 2014). Even
the well-established radiocarbon (14C) analytical technique
cannot precisely determine the size of the centennially per-
sistent SOC pool (Schrumpf and Kaiser, 2015; Menichetti et
al., 2016). The importance of better information on the size
of the centennially persistent SOC pool has been emphasized
recently (Soil Carbon Initiative, 2011; Bispo et al., 2017;
Bailey et al., 2018; Harden et al., 2018), stressing the need
for operational and standardized metrics or proxies to accu-
rately quantify SOC persistent at the centennial timescale.
The general lack of information on the size and turnover rate
of measurable SOC pools hampers the initialization of SOC

pools in dynamic models, questioning their predictions of the
evolution of the global SOC reservoir (Falloon and Smith,
2000; Luo et al., 2014; Feng et al., 2016; He et al., 2016; San-
derman et al., 2016). Luo et al. (2016) and He et al. (2016)
recently claimed that optimizing parameter estimations with
global datasets on SOC pools and fluxes was the highest pri-
ority to reduce biases among Earth system models.

In the past decade, the thermal stability of organic carbon
has been proposed as a good surrogate for its biogeochemi-
cal stability in litter and soils (e.g., Rovira et al., 2008; Plante
et al., 2009; Gregorich et al., 2015). Several studies using
thermal analysis techniques, such as thermogravimetry and
differential scanning calorimetry with ramped combustion,
have shown that the fast-cycling SOC pool determined as the
amount CO2 respired in laboratory incubation experiments
was thermally labile (Plante et al., 2011; Leifeld and von
Lützow, 2014; Campo and Merino, 2016). Recently, studies
using thermal analysis under an oxidative or inert (pyrolysis)
reaction atmosphere coupled with evolved gas analysis have
shown a high and positive correlation between the thermally
stable SOC and persistent SOC determined using 14C mea-
surements (Plante et al., 2013) and between thermally sta-
ble SOC and mineral-associated SOC isolated by a classical
SOC physical fractionation scheme (Saenger et al., 2015).
Using long-term bare fallow (LTBF) soils kept free of veg-
etation for several decades (i.e., with negligible carbon in-
puts), Barré et al. (2016) recently showed that persistent SOC
was low in energy and thermally stable. While there appear
to be strong qualitative links between the thermal and bio-
geochemical stability of SOC, there is to date no established
quantitative link between the size of the persistent SOC pool
and SOC thermal characteristics.

The objective of this work was to design a reliable, routine
method based on a thermal analysis technique (Rock-Eval 6;
RE6) to quantify centennially persistent SOC in a range of
temperate soil types. First, we compiled a set of reference
soil samples from four long-term agronomic experiments in
northwestern Europe with long-term bare fallow treatments.
The SOC concentration of LTBF treatments can be used to
estimate the size of the persistent SOC pool of a particular
site, as proposed by Rühlmann (1999) and Barré et al. (2010).
Here, we refined estimates of the persistent SOC concentra-
tion previously published by Barré et al. (2010) for the four
sites used in this study. We then used these values to estimate
the proportion of centennially persistent SOC in 118 archived
soil samples (time series) from LTBF and non-LTBF treat-
ments of these four sites. The last step consisted of analyz-
ing these reference samples using RE6 thermal analysis and
building a multivariate regression model to relate RE6 infor-
mation on SOC thermal stability and bulk chemistry to the
estimated proportion of centennially persistent SOC. In this
work, we aimed to deliver a model based on thermal anal-
ysis with reliable prediction intervals around the predicted
values of the size of the centennially persistent SOC pool.
We thus focused on the uncertainty in the estimated propor-
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tion of centennially persistent SOC and its propagation in the
multivariate regression model.

2 Materials and methods

2.1 Reference soil sample set with estimated size of the
centennially persistent SOC pool

The reference soil sample set was built using samples from
four long-term agronomic experimental sites in northwest-
ern Europe (Versailles and Grignon in France, Rothamsted
in the United Kingdom and Ultuna in Sweden; Supplement,
Table S1). Each of the four sites includes an LTBF treatment,
with bare fallow duration ranging from 48 years at Grignon
to 79 years at Versailles. For all experimental sites, we also
included non-LTBF treatments that have increased or main-
tained their total SOC concentrations over time or sustained
smaller losses than the LTBF treatment. The selected non-
LTBF treatments included manure amendments (Versailles),
straw or composted straw amendments (Grignon), continu-
ous grassland (Rothamsted) and continuous cropland (Ul-
tuna). Soil samples from each site and treatment have been
regularly collected and archived since the initiation of the ex-
periments. A total of 118 topsoil samples (0–20 to 0–25 cm
of depth; Table S1) were selected from the archives of LTBF
and non-LTBF treatments to build the reference sample set.
Samples were selected from two or three field replicate plots
with a decadal frequency from the initiation of the experi-
ments up to 2007 (Grignon), 2008 (Versailles, Rothamsted)
or 2009 (Ultuna) to obtain a sample set with the widest possi-
ble range of proportions of centennially persistent SOC. The
non-LTBF treatments and multiple sites also added to the
diversity of land-use, climate and parent material. For each
sample, total SOC concentration was measured by dry com-
bustion with an elemental analyzer (SOCEA, g C kg−1 of soil)
after the removal of soil carbonates when necessary accord-
ing to NF ISO 10694 (1995).

Based on the decline in total SOC concentration over the
duration of the LTBF treatment, Barré et al. (2010) estimated
the concentration of centennially persistent SOC at each site
using a Bayesian curve-fitting method applied to each LTBF
field replicate plot. Here, we refined those site-specific esti-
mates by (i) applying a similar Bayesian curve-fitting method
to combined SOC concentration data from all LTBF field
replicate plots of each site (four field replicate plots for Ul-
tuna and Rothamsted, six field replicate plots for Versailles
and Grignon) and (ii) using new SOC concentration data up
to 2014 for Rothamsted and 2015 for Ultuna, increasing their
LTBF duration to 55 years for Rothamsted and 59 years for
Ultuna.

For each site, we assumed that the temporal evolution of
LTBF SOC concentration, γ (t), followed an exponential de-
cay function:

γ (t)= ae−bt + c, (1)

where γ (t) (unit= g C kg−1 of soil) is the LTBF SOC con-
centration at time t , t (unit= year) is the time under bare
fallow, and a, b and c are fitting parameters. Parameter a
(unit= g C kg−1 of soil) corresponds to the amplitude of the
decay and b (unit= yr−1) is the characteristic decay rate.
The parameter c (unit= g C kg−1 of soil) represents a theo-
retically inert portion of SOC. We considered this parameter
as a site-specific metric of the centennially persistent SOC
concentration. In our view, the centennially persistent SOC
pool is not biogeochemically inert; it has a mean age and a
mean residence time that are both assumed to be high (e.g.,
centuries) though not precisely defined in this study. As a
result, its decline is minimal at the timescale of this study
and we thus considered the centennially persistent SOC con-
centration at each experimental site to be constant. We used
a Bayesian inference method to compute site-specific esti-
mates of centennially persistent SOC concentration and as-
sociated uncertainties (detailed in the Sect. 2.3.1).

The proportion of centennially persistent SOC (CPSOC) in
each soil sample was then calculated as the ratio of the site-
specific CPSOC concentration to the total SOC concentration
of the sample:

CPSOC proportion [sample] =
CPSOC concentration [site]

SOC concentration [sample]
, (2)

where the unit of CPSOC concentration [site] and SOC con-
centration [sample] is g C kg−1 of soil. The CPSOC propor-
tions of five samples that were slightly above 1 were set to
1. In these calculations, we assumed that at each site, the
concentration of CPSOC was the same in the LTBF and non-
LTBF treatments and was constant with time. The details re-
lated to the estimation of the uncertainty in the CPSOC pro-
portion of each sample are reported in Sect. 2.3.2.

2.2 Thermal analysis of soil samples by Rock-Eval 6

The 118 soil samples from the reference set were analyzed
with an RE6 Turbo device (Vinci Technologies) using the
basic setup for the analysis of soil organic matter (Behar
et al., 2001; Disnar et al., 2003). The RE6 technique pro-
vided measurements from the sequential pyrolysis and oxi-
dation of ca. 40 mg of finely ground (< 250 µm) soil per sam-
ple (Fig. 1). Volatile hydrocarbon effluents from pyrolysis
were detected and quantified with flame ionization detection
(FID), while the evolution of CO and CO2 gases was quanti-
fied by infrared detection during both the pyrolysis and oxi-
dation stages. Pyrolysis was carried out from 200 to 650 ◦C
in an N2 atmosphere with a heating rate of 30 ◦C min−1,
while the oxidation was carried out from 300 to 850 ◦C in
a laboratory air atmosphere (with O2) with a heating rate
of 20 ◦C min−1. The RE6 technique generated five thermo-
grams per sample (Fig. 1, i.e., volatile hydrocarbon (HC) ef-
fluents during pyrolysis, CO2 during pyrolysis, CO2 during
oxidation, CO during pyrolysis and CO during oxidation).
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Figure 1. Detail of the sequential pyrolysis and oxidation stages of Rock-Eval 6 (RE6) thermal analysis and of the five thermograms used to
derive the 30 RE6 parameters reflecting SOC thermal stability and bulk chemistry. The grey area under each RE6 thermogram represents the
portion of the signal unaffected by soil carbonates that was used to calculate RE6 temperature parameters (modified after Behar et al., 2001;
Saenger et al., 2013).

On average, the organic carbon yield of the RE6 analysis was
greater than 96.5 % of SOCEA for the soils of the reference
sample set (SOCRE6= 0.966×SOCEA+ 0.403, R2

= 0.97,
n= 118).

For each RE6 thermogram, we determined the tempera-
tures corresponding to each incremental proportion of the
amount of gases evolved during the pyrolysis and oxidation
stages. Upper temperatures of 850 ◦C (CO oxidation ther-
mogram), 650 ◦C (HC pyrolysis thermogram), 611 ◦C (CO2
oxidation thermogram) and 560 ◦C (CO and CO2 pyrolysis
thermograms) were chosen for signal integration (Fig. 1),
thereby excluding any interference of soil carbonates (Behar
et al., 2001). The thermal decomposition of carbonates was
indeed observed beyond 560 ◦C (CO and CO2 pyrolysis ther-
mograms) and 611 ◦C (CO2 oxidation thermogram) for the
site of Grignon (data not shown). For each RE6 thermogram,
signal integration was performed on the offset-corrected ther-
mogram using sample-specific offset values estimated by
the RE6 Turbo device. For the three pyrolysis thermograms,
signal integration started after an isotherm step of 200 s at
200 ◦C. Finally, we retained five of these temperature pa-
rameters per thermogram: T10, T30, T50, T70 and T90, which
respectively represent the temperatures corresponding to the
evolution of 10, 30, 50, 70 and 90 % of the amount of evolved
gases for each sample and for each of the five different ther-
mograms (HC, CO2 pyrolysis, CO2 oxidation, CO pyrolysis,
CO oxidation).

For the HC pyrolysis thermogram we also determined
three parameters reflecting a proportion of thermally resis-
tant or labile hydrocarbons: a parameter representing the pro-

portion of hydrocarbons evolved between 200 and 450 ◦C
(thermo-labile hydrocarbons, TLHC index; modified from
Saenger et al., 2015), with the I index representing the
preservation of thermally labile immature hydrocarbons (af-
ter Sebag et al., 2016) and the R index representing the pro-
portion of hydrocarbons thermally stable at 400 ◦C (after Se-
bag et al., 2016). Those three RE6 parameters were calcu-
lated as follows:

TLHC index=
Area of HC pyrolysis thermogram [200–450◦C]

Total area of HC pyrolysis thermogram
, (3)

I index=

log10

 proportion of HC pyrolysis
thermogram [200–400◦C]

proportion of HC pyrolysis
thermogram [400–460◦C]

 , (4)

R index=
Area of HC pyrolysis thermogram [400–650◦C]

Total area of HC pyrolysis thermogram
. (5)

Using the HC pyrolysis thermogram, we determined a pa-
rameter reflecting SOC bulk chemistry, the hydrogen index
(HI, mg HC g−1C) that corresponds to the quantity of py-
rolyzed hydrocarbons relative to SOCRE6. Using the CO and
CO2 pyrolysis thermograms, we determined another parame-
ter reflecting SOC bulk chemistry, the oxygen index (OIRE6,
mgO2 g−1C) corresponding to the oxygen yield as CO and
CO2 during the thermal pyrolysis of soil organic matter di-
vided by the total SOC (SOCRE6) of the sample. The HI
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correlates with the elemental H : C atomic ratio of SOC and
the OIRE6 correlates with the elemental O : C atomic ratio of
SOC (Espitalié et al., 1977).

Overall, we thus calculated for each soil sample a series of
30 RE6 parameters reflecting SOC thermal stability and bulk
chemistry to be used in subsequent statistical and modeling
analyses.

The signal integration of the RE6 thermograms and the
calculation of the RE6 temperature parameters were per-
formed with R v.3.4.3 (R Core Team, 2017) and the hyper-
Spec (Beleites and Sergo, 2014), pracma (Borchers, 2015)
and stringr (Wickham, 2015) packages.

2.3 Statistical analysis

2.3.1 Bayesian inference of site-specific CPSOC
concentrations and uncertainties

At each site, the CPSOC concentration was estimated as the
model parameter c of the exponential decay function de-
scribed in Eq. (1). To estimate the value of this parameter
and assess its uncertainty, we sampled the posterior prob-
ability density function (PDF) of the model parameters in
Eq. (1), which is given by Bayes’ theorem as a function of
the prior PDF (i.e., what we know before collecting data) and
the likelihood (i.e., how likely is it to predict the data given a
set of parameters). The posterior PDF is the combination of
our prior knowledge and the information carried by the data,
including measurement uncertainties. For a model vector m

(containing the parameters a, b and c) and a data vector d

of all the measurements of SOC concentrations, the poste-
rior PDF, P(d|m), is P(d|m)∝ P(m)P (m|d), with P(m)
the prior PDF on the model parameters and P(m|d) the like-
lihood.

We chose uniform PDFs for the model parameters a, b
and c to be as uninformative as possible. We use the Gaus-
sian form of the likelihood function, such as P(m|d)∝
e−

1
2 (d−γ (t))

TC−1
d (d−γ (t)), where t is the vector of all obser-

vation times and Cd is the data covariance matrix describing
the uncertainties in the SOC measurements. We consider a
conservative standard deviation for SOC concentration data
(0.75 g C kg−1 of soil) estimated by Barré et al. (2010) for the
same soils. We use a Metropolis algorithm to draw 3× 104

samples from the posterior PDF with a burning phase of
3.7× 105 steps. We can then derive the mean and standard
deviation for the parameter c from the posterior PDF.

2.3.2 Estimating the uncertainty of CPSOC proportion
in each sample

Based on our assessment of the uncertainties in SOC con-
centration data and site-specific CPSOC concentrations (see
above), we propagated these errors to estimate the uncer-
tainty in the CPSOC proportion in each soil sample. This was
estimated by calculating the standard deviation (SD) of the

CPSOC proportion for each sample as follows:

SD (CPSOC proportion [sample])=
CPSOC proportion [sample]

×

√(
SD(CPSOC concentration [site])

CPSOC concentration [site]

)2

+

(
SD(SOC concentration [sample])

SOC concentration [sample]

)2

. (6)

2.3.3 Statistical relationships between RE6 parameters
and CPSOC proportion

The reference sample set was randomly split into a calibra-
tion set (n= 88 samples) and a validation set (n= 30 sam-
ples), each one containing soils from all sites. The correla-
tions between the 30 RE6 parameters and the CPSOC propor-
tion were assessed with a nonparametric Spearman’s rank
correlation test on the calibration set (n= 88). A principal
component analysis (PCA) of the 30 centered and scaled
RE6 parameters was performed for the calibration set to
(i) summarize the variance of SOC thermal stability and bulk
chemistry on a single factorial map and (ii) illustrate the
correlations among RE6 parameters. Correlations between
the CPSOC proportion in calibration soils and their principal
component scores were determined using Spearman’s rank
correlation tests, and its relationships with the 30 RE6 param-
eters were further illustrated by projecting the CPSOC propor-
tion variable in the PCA correlation plot. The RE6 data of the
soils from the validation set were projected on the same PCA
factorial map to check that the validation set was representa-
tive of the calibration set.

2.3.4 Random forests regression model to predict
CPSOC proportion from RE6 parameters

A multivariate regression model was built to relate the CPSOC
proportion in the reference samples from the calibration set
with soils from all sites (response vector or dependent vari-
able y, n= 88) to their SOC thermal stability and bulk chem-
istry, summarized by a matrix of predictor variables (X)
made up of the 30 centered and scaled RE6 parameters. The
nonparametric and nonlinear machine-learning technique of
random forests (RF, Breiman, 2001; Strobl et al., 2009) was
used to build this model. The random forests regression
model was based on a forest of 1000 diverse regression trees
made of splits and nodes. A random forests learning algo-
rithm combines bootstrap resampling and random variable
selection. Each of the 1000 regression trees was thus grown
on a bootstrapped subset of the calibration set (i.e., contain-
ing about two-thirds of “in-bag” calibration samples) by ran-
domly sampling 10 out of the 30 RE6 parameters as candi-
dates at each split of the tree and using a minimum size of
terminal tree nodes of five soil samples. The random forests
regression model was then used to predict the proportion
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of CPSOC in the validation set (n= 30), a prediction corre-
sponding to the mean of the predicted values across the 1000
regression trees.

The performance of the random forests regression model
for predicting CPSOC proportion was assessed by statistics
comparing the RF-predicted vs. reference (estimated) values
of the sample set. The performance statistics were calculated
on (i) the “out-of-bag” soil samples of the calibration set and
(ii) the soil samples of the validation set. Out-of-bag sam-
ples are observations from the calibration set not included in
the learning sample set for a specific tree that can be used
as a “built-in” test set for calculating its prediction accuracy
(Strobl et al., 2009). The performance statistics included the
coefficient of determination (pseudo-R2 for the calibration
set or R2 for the validation set) and the root mean square er-
ror of calibration or prediction (RMSEC for the calibration
set or RMSEP for the validation set). The ratio of perfor-
mance to deviation (RPD) and the bias of the random forests
regression model were additionally calculated for the vali-
dation set. The relative importance (i.e., ranking) of each of
the 30 RE6 parameters for the prediction of the proportion
of CPSOC in the RF regression model was computed as the
unscaled permutation accuracy (Strobl et al., 2009).

Additionally, the sensitivity of the RF regression model to
pedoclimate was assessed by examining its predictive per-
formance for a calibration set based on soils from three sites
(Versailles, Grignon, Rothamsted, n= 84) and a fully inde-
pendent validation set based on soils from a different pedo-
climate (Ultuna, n= 34) but with similar RE6 thermal char-
acteristics to those of the calibration set (see Sect. 3.2). Soils
from Ultuna indeed have a higher clay content (from 11 to
20 % more clays) and experience a lower mean annual tem-
perature (from 4 to 5.2 ◦C lower temperature) and a lower
mean annual precipitation (from 116 to 179 mm lower pre-
cipitation) than the soils of the three other sites (Table S1).

2.3.5 Error propagation in the random forests
regression model

Since our objective was to deliver a model based on ther-
mal analysis with reliable prediction intervals around the
predicted values of the CPSOC proportion, we estimated the
prediction uncertainty of the random forests model for new
soil samples. We used a methodology recently published by
Coulston et al. (2016) to approximate prediction uncertainty
for random forests regression models and adapted it to ex-
plicitly take into account the uncertainty in the reference val-
ues of the CPSOC proportion (Eq. 6) that were used to build
the model (Supplement, Fig. S1).

Briefly, we sampled with replacement (i.e., bootstrapped)
the calibration set (y,X) 2000 times to obtain 2000 bootstrap
samples (y∗b, X∗b) that were used to parameterize 2000 ran-
dom forest models (RF∗b). To incorporate the uncertainty in
the reference values of the CPSOC proportion, each of the
2000 bootstrapped vectors (y∗b) contained values of CPSOC

proportion that were randomly sampled from normal distri-
butions with means and standard deviations of the CPSOC
proportion of the corresponding soil samples from the cal-
ibration set (Eq. 6). For each bootstrap sample of the calibra-
tion set, resampling discarded approximatively 37 % of the
data (y∗−b, X∗−b) that were used for prediction. We obtained
an error assessment dataset made up of 2000 vectors of ob-
served (reference) values y∗−b, predicted values ¯̂y∗−b (mean
of the predictions across 1000 regression trees for each ob-
servation) and var(ŷ)∗−b (variance of the predictions across
1000 regression trees for each observation). For each obser-
vation of the 2000 bootstrap samples, we calculated a metric
τ allowing us to scale between var(ŷ), which can be calcu-
lated for any soil sample by the random forests regression
model, and the squared prediction error (y− ¯̂y)2, which is
only available for the reference sample set. The metric τ was
calculated as follows (Coulston et al., 2016):

τ =

√
(y− ¯̂y)2

var(ŷ)
. (7)

A Monte Carlo approach was used to estimate τ̂ , the 95th
percentile of all calculated τ values for all out-of-bag obser-
vations of the 2000 bootstraps (Fig. S1). This τ̂ value was
such that 95 % of the predictions of the CPSOC proportion lie
within τ̂ ×SD(ŷ) of the true value of the CPSOC proportion
(i.e., 95 % prediction intervals). As SD(ŷ), the standard devi-
ation of the predictions of the CPSOC proportion across 1000
regression trees can be calculated by the random forests re-
gression model for any soil sample; this approach allows for
the calculation of 95 % prediction intervals on new soil sam-
ples for which only X data (30 RE6 parameters) are available.
We calculated the 95 % prediction intervals ( ¯̂y± τ̂ ×SD(ŷ))
for the validation set (n= 30) to examine whether those inter-
vals included the true (estimated) values of the CPSOC pro-
portion. More details on the procedure to approximate pre-
diction uncertainty for random forests regression models are
provided in Coulston et al. (2016). We finally checked how
the error in the CPSOC proportion propagated into the ran-
dom forests regression model by (i) comparing the value of
τ̂ with or without incorporating the uncertainty in the ref-
erence values of the CPSOC proportion in the algorithm and
(ii) by comparing the sizes of the 95 % prediction intervals
calculated for the validation soil samples with their respec-
tive 95 % confidence intervals (determined by multiplying
their standard deviation calculated in Eq. 6 by 1.96).

The Bayesian inference method was performed with
Python 2.7 and the PyMC library (Patil et al., 2010). All other
statistical analyses were performed with R v.3.4.3 (R Core
Team, 2017) and the factoextra package for running PCA
(Kassambara, 2015), the randomForest package for running
the random forests regression models (Liaw and Wiener,
2002) and the boot package for bootstrapping (Davison and
Hinkley, 1997; Canty and Ripley, 2015).
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Table 1. Measured total SOC concentrations, estimated site-specific CPSOC concentrations and resulting CPSOC proportions in four long-
term agronomic experimental sites used to generate calibration and validation soil sample sets. Abbreviations: LTBF, long-term bare fallow;
min, minimum; max, maximum; SD, standard deviation; CI, confidence interval.

Site Treatments SOC concentration CPSOC concentration CPSOC proportion
(number of samples) (g C kg−1 of soil) (g C kg−1 of soil) mean (min, max, SD)

mean (min, max, SD) mean (95 % CI)

Versailles Manure (n= 20) 27.9 (17.1, 45.5, 8.2) 6.22 (5.62–6.82) 0.24 (0.14, 0.36, 0.07)
LTBF (n= 20) 10.5 (5.4, 19.7, 4.4) 0.67 (0.32, 1.00, 0.24)

Rothamsted Grassland (n= 8) 36.8 (31.8, 42.6, 4.8) 10.46 (9.93–10.99) 0.29 (0.25, 0.33, 0.04)
LTBF (n= 12) 17.7 (9.7, 30.5, 7.5) 0.68 (0.34, 1.00, 0.25)

Ultuna Cropland (n= 23) 15.8 (12.4, 20.3, 2.2) 6.95 (5.22–8.68) 0.45 (0.34, 0.56, 0.06)
LTBF (n= 11) 12.0 (9.1, 16.3, 2.4) 0.60 (0.43, 0.76, 0.12)

Grignon Straw or composted straw (n= 12) 12.9 (11.7, 14.2, 0.8) 7.12 (5.16–9.08) 0.55 (0.50, 0.60, 0.03)
LTBF (n= 12) 11.8 (8.4, 14.7, 1.9) 0.62 (0.48, 0.85, 0.11)

Calibration set with soils from all sites (n= 88) 18.0 (5.5, 45.5, 9.5) 0.50 (0.14, 1.00, 0.21)
Validation set with soils from all sites (n= 30) 16.1 (5.4, 38.8, 7.9) 0.53 (0.16, 1.00, 0.23)
All samples (n= 118) 17.5 (5.4, 45.5, 9.1) 0.51 (0.14, 1.00, 0.21)

3 Results

3.1 CPSOC concentration at each site and CPSOC
proportion in reference soil samples

The Bayesian inference of the parameter c of the exponen-
tial decay function (Eq. 1) yielded site-specific estimates
of the CPSOC concentration with 95 % confidence inter-
vals (Eq. 1, Table 1, Fig. 2). Estimated CPSOC concen-
trations ranged from 6.22 g C kg−1 of soil at Versailles to
10.46 g C kg−1 of soil at Rothamsted. The uncertainty in
CPSOC concentration was lower at Rothamsted (standard de-
viation of 0.27 g C kg−1 of soil) and Versailles (standard de-
viation of 0.31 g C kg−1 of soil) than at Ultuna (standard de-
viation of 0.88 g C kg−1 of soil) and Grignon (standard devi-
ation of 1.00 g C kg−1 of soil).

Overall, the wide range in total SOC concentrations within
and across sites (from 5 to 46 g C kg−1 of soil; Table 1), com-
bined with an assumed constant CPSOC concentration within
each site, resulted in a reference sample set with a wide spec-
trum of CPSOC proportions ranging from 0.14 to 1 (Eq. 2,
Table 1). The uncertainty (standard deviation) in the values
of CPSOC proportion ranged from 0.01 to 0.15 for the ref-
erence sample set (Eq. 6, Fig. S2). High uncertainties were
found for high values of CPSOC proportion (i.e., samples
with longer time periods under bare fallow treatment), with
a modulation by the site-specific CPSOC concentration un-
certainty (Grignon>Ultuna>Versailles>Rothamsted; Ta-
ble 1), as expected from Eq. (6) (Fig. S2).

The random splitting of the reference sample set generated
calibration and validation sample sets with similar mean val-
ues, range of values and standard deviations for both total
SOC concentration and CPSOC proportion (Table 1).

3.2 Relationships between RE6 parameters
and CPSOC proportion

The 30 RE6 parameters showed very different and even con-
trasting correlations with the CPSOC proportion in the cal-
ibration set with soils from all sites (Table 2). Most RE6
temperature parameters showed positive correlations with
the CPSOC proportion, with Spearman’s ρ above 0.8 for
four of them (the RE6 temperature parameter correspond-
ing to 50 % of CO2 gas evolution during the pyrolysis stage,
T50_CO2_PYR, and the RE6 temperature parameters corre-
sponding to 30, 50 and 70 % of CO2 gas evolution during
the oxidation stages T30_CO2_OX, T50_CO2_OX, T70_CO2_OX;
Table 2).

Conversely, five RE6 temperature parameters showed
significant negative correlations with the CPSOC propor-
tion (T10_HC_PYR, T10_CO_PYR, T30_CO_PYR, T50_CO_PYR,
T70_CO_PYR; Table 2). The three RE6 parameters reflecting
a proportion of thermally resistant or labile hydrocarbons
(TLHC index, I index and the R index) showed no correla-
tions with the CPSOC proportion (Table 2). The two RE6 pa-
rameters reflecting SOC bulk chemistry showed highly sig-
nificant correlations with the CPSOC proportion (Table 2), the
HI being negatively correlated and the OIRE6 being positively
correlated.

The PCA of the centered and scaled RE6 parameters illus-
trates the correlations among those 30 variables in the cali-
bration set with soils from all sites (Fig. 3). A continuum of
CPSOC proportion values was observed in the reference sam-
ples along the first two principal components (Fig. 3a), and
projecting the CPSOC proportion in the PCA correlation cir-
cle further highlighted the relationships between this variable
and the 30 RE6 parameters (Fig. 3b). The CPSOC proportion
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Table 2. Spearman’s rank correlation coefficient test between the 30 RE6 parameters and the CPSOC proportion and variable importance
(ranking) of the 30 RE6 parameters to predict CPSOC proportion in the random forests model based on Rock-Eval 6 thermal analysis (RE6-
RF, calibration sample set with soils from all sites, n= 88). Symbols for p values: ∗∗∗ p< 0.001; ∗∗ p< 0.01; ∗ p< 0.05; NS p> 0.05= not
significant.

RE6 parameter Spearman’s ρ p value Variable importance to predict
with CPSOC CPSOC proportion in the RE6-RF

proportion regression model (rank)

T10_HC_PYR −0.36 *** 20
T30_HC_PYR −0.12 NS 30
T50_HC_PYR 0.00 NS 29
T70_HC_PYR 0.09 NS 21
T90_HC_PYR 0.55 *** 18
T10_CO_PYR −0.21 * 7
T30_CO_PYR −0.39 *** 12
T50_CO_PYR −0.33 ** 14
T70_CO_PYR −0.23 * 23
T90_CO_PYR −0.09 NS 22
T10_CO2_PYR 0.07 NS 13
T30_CO2_PYR 0.71 *** 4
T50_CO2_PYR 0.80 *** 1
T70_CO2_PYR 0.78 *** 2
T90_CO2_PYR 0.66 *** 17
T10_CO_OX 0.50 *** 5
T30_CO_OX 0.71 *** 16
T50_CO_OX 0.64 *** 28
T70_CO_OX 0.42 *** 27
T90_CO_OX 0.14 NS 25
T10_CO2_OX 0.72 *** 10
T30_CO2_OX 0.83 *** 3
T50_CO2_OX 0.82 *** 6
T70_CO2_OX 0.80 *** 8
T90_CO2_OX 0.54 *** 19
I index 0.04 NS 26
R index −0.01 NS 24
TLHC index −0.02 NS 15
HI −0.78 *** 9
OIRE6 0.42 *** 11

variable had a strongly negative projected loading score on
PC1 (Fig. 3b), as well as negative projected loadings on PC2
(Fig. 3b) and PC3 (data not shown). The scores of the calibra-
tion soils on the first three principal components were indeed
significantly and negatively correlated with the CPSOC pro-
portion (ρ=−0.61, p value< 0.001 for PC1, ρ=−0.49, p
value< 0.001 for PC2, ρ=−0.25, p value< 0.05 for PC3)
such that a large part (82 %) of the variance in the 30 RE6
parameters was linked to the CPSOC proportion in the cali-
bration set.

The random splitting of the reference sample set generated
calibration and validation sample sets with similar RE6 ther-
mal characteristics as illustrated by their similar distribution
on the factorial map of the first two principal components of
the PCA (Fig. 3a). Soils from the site of Grignon (with car-
bonates) showed RE6 thermal characteristics different from
the other sites (Fig. 3a). Some soils from the sites of Rotham-

sted and Versailles with high CPSOC proportions also showed
specific RE6 thermal signatures (Fig. 3a). Conversely, all
soils from the site of Ultuna showed similarities regarding
their RE6 thermal characteristics with certain soil samples
from other sites (Versailles and Rothamsted; Fig. 3a).

3.3 Performance of the regression model using RE6
parameters to predict CPSOC proportion

The random forests regression model performed very well
in predicting the CPSOC proportion in the reference sample
set using the 30 RE6 parameters as predictors (Fig. 4). Both
performance statistics on the calibration set with soils from
all sites (pseudo-R2

= 0.89, RMSEC= 0.07, n= 88) and on
the validation set with soils from all sites (R2

= 0.92, RM-
SEP= 0.07, n= 30) demonstrated the good predictive power
of the regression model based on RE6 thermal analysis. The
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Figure 2. Evolution of SOC concentration (g C kg−1 of soil) with
time for the bare fallow plots of each experimental site and represen-
tation of the 3× 104 fitted exponential decay functions (Bayesian
curve-fitting method) from which a site-specific CPSOC concentra-
tion (model parameter c) and its 95 % confidence interval were de-
termined (histogram in the upper right corner of each scatter plot).
At each site, the 95 % confidence interval around the CPSOC con-
centration was determined as c± 1.96 SD(c), where c is the model
parameter c in Eq. (1) and SD(c) is its standard deviation.

predictive performance of the random forests model based
on RE6 thermal analysis (RE6-RF) was altered when soil
samples from a pedoclimate different (site of Ultuna, n= 34)
from the calibration set (Versailles, Rothamsted, Grignon),
but with similar RE6 thermal characteristics (see Sect. 3.2),
were used for validation (Fig. 5). The coefficient of determi-

nation of the model decreased (R2
= 0.53), yet its mean er-

ror of prediction did not increase strongly (RMSEP= 0.10;
Fig. 5).

Propagating the estimated uncertainties in the values of
CPSOC proportion increased the size of the prediction inter-
vals of the RE6-RF regression model. Indeed, the value of τ̂
increased from 1.83 to 2.12 when the uncertainty in CPSOC
proportion was integrated into the algorithm described in
Sect. 2.3.5. The horizontal and vertical error bars in Fig. 4
illustrate the global error propagation of the CPSOC propor-
tion estimates in the RE6-RF regression model for the valida-
tion soil sample set. The values of the total width of the 95 %
confidence interval (reference estimations of CPSOC propor-
tion; horizontal error bars in Fig. 4) were 0.03 (minimum to-
tal width), 0.58 (maximum total width) and 0.24 (mean total
width) for the soil samples of the validation set (n= 30). For
the 95 % prediction intervals (RE6-RF predictions of CPSOC
proportion; vertical error bars in Fig. 4), the uncertainties in-
creased to 0.11 (minimum total width), 0.66 (maximum total
width) and 0.37 (mean total width). The 30 total 95 % pre-
diction intervals for RE6-RF predictions of the CPSOC pro-
portion in the validation set all included their respective ref-
erence estimation of the CPSOC proportion (Fig. 4).

Out of the 30 RE6 parameters tested by the random forests
model as possible predictor variables of the CPSOC propor-
tion in the calibration set with soils from all sites, the RE6
temperature parameters corresponding to 50 and 70 % of
CO2 gas evolution during the pyrolysis stage (T50_CO2_PYR,
T70_CO2_PYR) and to 30 % of CO2 gas evolution during the
oxidation stage (T30_CO2_OX) showed the highest importance
scores (based on permutation accuracy importance calcula-
tions; Table 2). The eight most important RE6 parameters for
predicting the CPSOC proportion were temperature parame-
ters calculated on the five different RE6 thermograms (Ta-
ble 2). The two RE6 parameters reflecting SOC bulk chem-
istry (OIRE6 and HI) were of medium importance to predict
the CPSOC proportion, while the RE6 parameters reflecting
a proportion of thermally resistant or labile hydrocarbons (I
index, R index and TLHC index) were of weak importance
(Table 2).

4 Discussion

4.1 A unique soil sample set with accurate and
contrasting values of CPSOC

Adding new SOC concentration data for Rothamsted (up to
2014) and Ultuna (up to 2015) and combining SOC con-
centration data from all LTBF field replicate plots of each
site decreased the uncertainty in the site-specific estimates
of the CPSOC concentration (Fig. 2) compared with the pre-
vious estimations published by Barré et al. (2010). Indeed,
the total width of the 95 % confidence interval around the
estimation of the site-specific CPSOC concentration slightly
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Figure 3. Principal component analysis (PCA) of the 30 RE6 parameters of the calibration sample set with soils from all sites (n= 88).
(a) The scores of the calibration samples on the first two principal components are represented in the factorial map, as are the projected
principal component scores of the validation samples (n= 30; with soils from all sites). A color scale is used to represent the CPSOC
proportion (determined using Eq. 2) in all samples. (b) PCA loadings of the 30 RE6 parameters and projection of the CPSOC proportion
variable in the PCA correlation circle. Note that despite some of the 30 RE6 parameters being significantly correlated, all parameters are
included in the analysis.

decreased from 1.4 to 1.2 g C kg−1 of soil at Versailles and
from 4.96 to 3.92 g C kg−1 of soil at Grignon; it also strongly
decreased from 7.24 to 3.46 g C kg−1 of soil at Ultuna and
from 5.98 to 1.06 g C kg−1 of soil at Rothamsted (Table 1,
Fig. 2; Barré et al., 2010). The mean estimated values of
the CPSOC concentration were marginally changed at Ver-
sailles (6.22 vs. 6.12 g C kg−1 of soil in Barré et al., 2010)
and Grignon (7.12 vs. 6.80 g C kg−1 of soil in Barré et al.,
2010), but strongly modified (increased) at Ultuna (6.95 vs.
3.90 g C kg−1 of soil in Barré et al., 2010) and Rothamsted
(10.46 vs. 2.72 g C kg−1 of soil in Barré et al., 2010; Table 1).

Our results obtained under four contrasting pedocli-
mates of northwestern Europe indicate a minimum value
of 5 g C kg−1 of soil (the lowest boundary of the four
95 % confidence intervals; Table 1) and a maximum value
of 11 g C kg−1 of soil (the highest boundary of the four
95 % confidence intervals; Table 1) for CPSOC concentra-
tion in topsoils (0–20 to 0–25 cm of depth). These esti-
mates are close, yet below the CPSOC concentration value
of 12 g C kg−1 of soil estimated by Buyanovsky and Wag-
ner (1998b) for the topsoil (0–20 cm of depth) of the Sanborn
long-term (100 years) agronomic experiment (Columbia,
Missouri, USA). Our estimates of topsoil CPSOC concentra-
tion are also well below the value of 16 g C kg−1 of soil esti-
mated by Franko and Merbach (2017) in the topsoil (0–30 cm
of depth) of the long-term (28 years) bare fallow experiment
of Bad Lauchstädt (central Germany). The soil type in Bad
Lauchstädt (Haplic Chernozem) and its high concentration of

slow-cycling black carbon (estimated at 2.5 g C kg−1 of soil;
Brodowski et al., 2007) may explain this difference, as well
as the relatively short time period under bare fallow (higher
uncertainty in the inferred CPSOC concentration).

Among the wide range of CPSOC proportions (0.14 to 1)
of our reference sample set, high values of CPSOC propor-
tions (> 0.6) were obtained only for soils that had been under
bare fallow for a long period of time: after several years or
decades with negligible C inputs and sustained SOC decom-
position (Table 1). Similarly, the low values of CPSOC pro-
portions (< 0.25) of our reference sample set were obtained
for soils without vegetation but receiving high amounts of
manure amendments at Versailles (Table 1). It could be ar-
gued that the CPSOC proportion values obtained for bare soils
with or without organic matter amendments may not be rep-
resentative of the CPSOC proportions of soils under conven-
tional management practices. However, it is interesting to
note that the soils of the reference sample set with vegetation
and experiencing classical management practices (grassland
at Rothamsted, cropland at Ultuna) also showed a wide range
of CPSOC proportions, from 0.25 to 0.56 (Table 1). More-
over, other studies have shown the high variability of CPSOC
proportions in soils. For instance, Falloon et al. (1998) listed
a series of published values of CPSOC proportions ranging
from 0.13 to 0.59. More recently, Mills et al. (2014) pub-
lished a large dataset of CPSOC proportions in uncultivated
topsoils (ca. 15 cm of depth). They estimated CPSOC propor-
tions using a global dataset of topsoil radiocarbon (14C) data
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Figure 4. Performance of the random forests regression model
based on Rock-Eval 6 thermal analysis (RE6-RF) for predicting
the CPSOC proportion. The performance statistics on the calibra-
tion set with soils from all sites (n= 88) and on the validation set
with soils from all sites (n= 30) of the RE6-RF multivariate re-
gression model are shown. Horizontal bars represent the estimated
uncertainty (95 % confidence intervals) in the reference CPSOC pro-
portion values of the validation set calculated as CPSOC proportion
[sample]± 1.96×SD(CPSOC proportion [sample]). Vertical bars
represent the propagated errors (95 % prediction intervals) in the
RE6-RF-predicted CPSOC proportion values of the validation sam-
ple set calculated as ¯̂y± τ̂ ×SD(ŷ) (see Sect. 2.3.5), with a τ̂ value
of 2.12 (Fig. S1). Abbreviations: RMSEC, root mean square error
of calibration; RMSEP, root mean square error of prediction; RPD,
ratio of performance to deviation; SD, standard deviation.

and a steady-state SOC turnover model with a fixed mean
residence time of 1000 years for persistent SOC. Their esti-
mates of CPSOC proportions varied greatly from 0.03 to 0.98
(mean= 0.48, standard deviation= 0.22, n= 232; soils with
inconsistent negative modeled SOC pools values were re-
moved), with significantly higher CPSOC proportions in non-
forest than in forest uncultivated ecosystems (Mills et al.,
2014).

Overall, those combined results illustrate the wide range of
CPSOC concentrations and proportions in topsoils that may
depend upon pedoclimate, land-use and management prac-
tices.

Figure 5. Performance of the random forests regression model
based on Rock-Eval 6 thermal analysis (RE6-RF) for predicting the
CPSOC proportion for a calibration set based on soils from three
sites (Versailles, Rothamsted, Grignon; n= 84) and a validation set
based on soils from a different pedoclimate but with similar RE6
thermal characteristics than those of the calibration set (Ultuna;
n= 34).

4.2 A quantitative link between the long-term
biogeochemical stability of SOC and its thermal
stability and bulk chemistry

This work reinforces the evidence that there is a link be-
tween SOC persistence in ecosystems and its thermal stabil-
ity, providing evidence of the first quantitative link between
thermal and in situ long-term (> 100 years) biogeochemical
SOC stability (Fig. 4). The regression model yields accurate
RE6-RF predictions of CPSOC proportions with 95 % pre-
diction intervals that fully propagate the uncertainties orig-
inating from the calibration set that was used to build the
model. Predictions on the validation set illustrate that the er-
ror propagation scheme provides highly conservative 95 %
prediction intervals of the CPSOC proportion in new samples
at all intervals including their respective reference estimate
of CPSOC proportion (Fig. 4). Despite rather large prediction
intervals, the RE6-RF regression model clearly discriminates
soils with small CPSOC proportions from samples with large
CPSOC proportions (Fig. 4). This model based on RE6 ther-
mal analysis can thus be used to predict the size of the CPSOC
pool with known uncertainty in new soil samples from sim-
ilar pedoclimates and with thermal characteristics (i.e., RE6
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predictor variables) similar to those of the reference sample
set.

Our results also highlight the sensitivity of the RE6-RF re-
gression model to pedoclimate. Decreased predictive perfor-
mance of the model (as assessed by the coefficient of deter-
mination) was indeed observed when predicting the CPSOC
proportion in new soils with similar RE6 thermal character-
istics but from a different pedoclimate (Fig. 5). However, the
mean error of prediction of the model only slightly increased
when predicting the CPSOC proportion in soils from the fully
independent site of Ultuna (Fig. 5). Overall, those results
illustrate the potential of the model based on RE6 thermal
analysis to predict the proportion of CPSOC in new soil sam-
ples from different pedoclimates, at least for sites that have
similar RE6 thermal characteristics to those of the calibration
set.

Our results also illustrate the complex relationships be-
tween thermal-analysis-based parameters of SOC stability
and the CPSOC proportion. The hypothesis behind the use
of SOC thermal stability as a proxy for its biogeochemical
stability implies positive correlations between the size of the
CPSOC pool and temperature parameters derived from ther-
mal analysis such as the 25 RE6 temperature parameters cal-
culated in this study. Significant positive correlations with
the CPSOC proportions were indeed found for the majority
(14 out of 25) of RE6 temperature parameters, with very
high and positive Spearman’s ρ values for some of them (Ta-
ble 2). This was notably the case of the RE6 temperature pa-
rameter corresponding to 50 % of CO2 gas evolution during
the oxidation stage, T50_CO2_OX, which had been previously
shown to systematically increase with bare fallow duration
in the same soils by Barré et al. (2016). This study extends
the results of Barré et al. (2016) towards a quantitative link
between RE6 temperature parameters and SOC persistence
(direct correlations and predictions of the size of the CPSOC
pool rather than time under bare fallow treatment). It also ex-
tends those results to non-bare fallow soils: bare soils receiv-
ing organic amendments (at Grignon and Versailles), crop-
land soils (Ultuna) and grassland soils (Rothamsted). Con-
versely, 11 RE6 temperature parameters showed no signifi-
cant correlation or significant negative correlations with the
CPSOC proportion. Weak or negative correlations occurred
principally for temperature parameters calculated on thermo-
grams of the pyrolysis stage of the RE6 analysis: for param-
eters of the HC and CO thermograms (except T90_HC_PYR)
and the lowest temperature parameter of the CO2 thermo-
gram (Table 2). Negative correlations contradict the above-
mentioned hypothesis, with the evolution of a similar propor-
tion of the total amount of gases (HC pyrolysis effluents or
CO) occurring at lower temperatures for samples with high
CPSOC proportions than for soils with low CPSOC propor-
tions. A possible explanation for this unexpected observa-
tion could be that the pyrolysis of SOC in samples with a
high proportion of CPSOC may undergo an enhanced pyroly-
sis catalyst effect by soil minerals (Auber, 2009), which are

relatively more abundant in those samples generally charac-
terized by low total SOC concentrations.

Despite the fact that the TLHC index, the I index and
the R index had originally been proposed as useful quali-
tative metrics of soil carbon dynamics, reflecting a propor-
tion of thermally resistant or labile hydrocarbons (Disnar
et al., 2003; Sebag et al., 2006, 2016; Saenger et al., 2013,
2015), those parameters were not correlated with the CPSOC
proportion. Furthermore, they also had a weak importance
in the random forests model predictions of the CPSOC pro-
portion (Table 2). The poor link between those three RE6
parameters and the CPSOC proportion may be explained by
the high residence time of CPSOC (> 100 years). Indeed, so
far those parameters have been related to the proportion of
SOC present in the particulate organic matter fraction (size
> 50 µm, density < 1–1.6), an SOC pool characterized by a
residence time in soils generally below 20 years (Saenger et
al., 2015; Soucémarianadin et al., 2018).

The two RE6 parameters reflecting SOC bulk chemistry
showed highly significant correlations with the CPSOC pro-
portion. This confirms, and extends to vegetated soils, the
observed decreasing trend for HI and increasing trend for
OIRE6 (except at Versailles where soils have a high pyrogenic
C content) with bare fallow duration observed by Barré et
al. (2016) in the bare fallow treatments of the same experi-
mental sites. Soils with high proportions of CPSOC are thus
characterized by an oxidized and H-depleted organic matter.

4.3 Perspectives to improve and foster RE6
thermal-analysis-based predictions of the size
of the CPSOC pool

Future developments of this work must extend the Rock-Eval
6 thermal analysis regression model to a wider range of pe-
doclimates and to other biomes. As sites with LTBF treat-
ments are not widespread, complementing the reference sam-
ple set may be achieved by using soils that have different soil
forming factors (e.g., climate, parent material) and (i) which
are sampled from long-term (> 50 to 100 years) experiments
with contrasting SOC inputs, enabling the estimation of their
CPSOC concentration (Buyanovsky and Wagner, 1998a, b), or
(ii) for which the mean SOC age is known from radiocarbon
data, enabling the estimation of the size of their persistent
SOC pool (Trumbore, 2009; Mills et al., 2014).

Another development of this work will involve elucidat-
ing the fundamental mechanisms linking the biogeochemical
stability of SOC with its thermal stability (e.g., Leifeld and
von Lützow, 2014). This was beyond the scope of this work,
yet it constitutes an exciting field of research that should be
addressed in the future, as highlighted by the unexpected ob-
servations discussed in Sect. 4.2 and by other recent works
that found no relationships between the thermal oxidation of
SOC between 200 and 400 ◦C and the size of SOC pools with
shorter residence times in soils (below or above ca. 18 years;
Schiedung et al., 2017).
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Overall, this work demonstrates the value of Rock-Eval 6
as a routine method for quantifying the size of the centen-
nially persistent SOC pool with known uncertainty in tem-
perate soils. The relatively low cost of the Rock-Eval 6 tech-
nique and the robustness of the thermal analysis regression
model make it possible to apply it to soil monitoring net-
works across a continuum of scales as a reliable proxy for
SOC persistence. This may be part of the framework pro-
posed by O’Rourke et al. (2015) to better understand SOC
processes at the biosphere to biome scale and should be
added to the soil carbon cycling proxies recently listed by
Bailey et al. (2018). Mapping persistent SOC at large scales
may allow for the identification of regional hotspots of cen-
tennially persistent SOC that may contribute little to cli-
mate change by 2100. It may also provide information on
the sustainability of additional SOC storage from soil car-
bon sequestration strategies such as those promoted by the
international 4 per 1000 initiative in agriculture and forestry
(https://www.4p1000.org/, last access: 6 May 2018; Dignac
et al., 2017; Minasny et al., 2017; Soussana et al., 2018). A
global map of centennially persistent SOC based on this em-
pirical RE6 thermal analysis model could also be useful for
improving the parameterization of SOC dynamics in Earth
system models (Falloon and Smith, 2000; Luo et al., 2014;
He et al., 2016). Indeed, this model based on RE6 thermal
analysis appears as a robust and operational alternative to ex-
isting techniques used to initialize the size of the CPSOC pool
in models of SOC dynamics (such as the methods of Falloon
et al. (1998) or Zimmermann et al. (2007) that estimate the
size of the inert SOC pool in the RothC model). The integra-
tion of large-scale information on the size of SOC kinetic
pools may provide an adequate complement to the global
datasets on SOC fluxes that are currently under development
and restructuring (Hashimoto et al., 2015; Luo et al., 2016;
Harden et al., 2018).
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