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Transition-metal-free synthesis of arylboronates via thermal
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Abstract
A simple and versatile synthesis of arylboronates has been achieved by using triarylbismuthines as aryl radical sources under transi-
tion-metal-free and open-air conditions. Conventional methods required photoirradiation or electrolysis to generate aryl radicals
from triarylbismuthines. In this study, it was found that simply heating the solution of triarylbismuthines in benzotrifluoride (BTF)
in air successfully led to the generation of aryl radicals, and the subsequent reaction with bis(pinacolato)diboron afforded a variety
of arylboronates in moderate to good yields.

2577

Introduction
Arylboronates are one of the fundamental aryl compounds in
organic synthesis, especially in cross-coupling reactions [1-9],
and their applications are widespread, including dye synthesis,
pharmaceutical and agrochemical synthesis, and industrial
manufacturing [10,11]. In recent years, a variety of transition-
metal-catalyzed reactions and photoredox reactions using aryl-
boronates as aryl sources have been energetically investigated
for the construction of carbon–carbon or carbon–heteroatom
bonds [12-15].

The preparation of arylboronates often requires pre-functionali-
zed substrates with halogen or triflate groups. Recently, transi-
tion-metal-catalyzed direct borylation of arenes via C–H bond
activation has been reported, although the design of the sub-
strate and ligands is somewhat complicated [16-22]. Since the
complete removal of catalyst-derived metal residues from the
final products is generally difficult, there is concern about side
effects or adverse effects on functional expression when used in
pharmaceutical and material synthesis. In addition, many transi-
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Scheme 1: (a) Conventional methods for the generation of Ar• from Ar3Bi, (b) our previous studies, and (c) this work.

tion metal catalysts are very expensive, unstable, and difficult to
handle. For these reasons, the development of new synthetic
methods of arylboronates using stable and versatile reagents
under transition-metal-free conditions has recently attracted
much attention [23-27]. In particular, the use of radical reac-
tions has been considered as one of the effective methods, since
diborons can capture the in situ-generated carbon-centered radi-
cals [28-36].

Among the aryl sources in organic synthesis, triarylbismuthines
are shelf-stable and easy-to-handle reagents with appropriate re-
activities in transition-metal-catalyzed reactions and radical
reactions, and their derivatives can be easily synthesized by
common Grignard reactions [37-44]. Three activation methods
have been reported for their use as aryl radical sources. It has
been reported that the homolysis of Ar–Bi bonds could be
achieved by photoirradiation in the presence of photocatalysts

or UV light irradiation without metal catalysts [45-48]. Similar
homolysis by electrolysis has also been reported [49]. These
two activation methods required special equipment (i.e., light
sources or electronic devices). To achieve thermal homolysis of
the Ar–Bi bonds, the reaction conditions were harsh, requiring
heating at 260 °C for several days [50]. Thus, only two exam-
ples of the use of triarylbismuthines as aryl radical sources have
been reported for the synthesis of arylboronates, which
proceeds under light irradiation conditions (Scheme 1a) [47,48].

Our group has investigated various transition-metal-free
methods for the generation of aryl radicals from shelf-stable
aryl compounds (Scheme 1b). For example, the heating of aryl-
hydrazine hydrochlorides (ArNHNH2·HCl) in the presence of
base under open-air conditions successfully led to the genera-
tion of aryl radicals and the subsequent trapping with E–E com-
pounds (E = S, Se, Te, Br, and I) successfully formed new C–E
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Table 1: Optimization of the reaction conditions for synthesis of 3a from BiPh3 (1a) and (pinB)2 (2).

Entry 2 (mmol) Additive (equiv) Solvent (mL) Temp (°C) Yield
3a (%)a

Recovery
1a (%)a

1 2.0 – BTF (0.4) 80 68 (53) trace
2 0.5 NaOMe (1.2) BTF (0.2) 80 N. D. 62
3 3.0 – BTF (0.4) 80 62 trace
4 0.5 – BTF (0.4) 80 36 30
5b 2.0 – BTF (0.4) 80 58 trace
6 2.0 – BTF (0.4) 60 59 trace
7 2.0 – BTF (0.4) 100 61 trace
8 2.0 (PhS)2 (0.01) BTF (0.4) 80 63 trace
9 2.0 – CHCl3 (0.4) 80 36 17

10 2.0 – CH3CN (0.4) 80 51 17
11 2.0 – DMF (0.4) 80 38 48
12 2.0 – DMSO (0.4) 80 18 80
13 2.0 – EtOH (0.4) 80 45 16

aYields were determined by 1H NMR spectroscopy based on 1a as three transferable aryl groups (internal standard: 1,3,5-trioxane). Isolated yield
was shown in parentheses. bUnder O2 (0.1 MPa).

bonds (Scheme 1b) [51-58]. We also demonstrated that the
photoirradiation (λ > 300 nm) of the triarylbismuthines in air
successfully allowed the generation of the corresponding aryl
radicals without photocatalysts, and the trapping with dise-
lenides afforded a variety of diaryl selenides [59]. Based on
these backgrounds of our studies and the fundamental property,
i.e., the weak bond dissociation energy of the Ph–Bi bond
(46 kcal/mol) [60], we hypothesized that aryl radicals gener-
ated from triarylbismuthines by our developed methods would
be successfully trapped by diboron to form a new C–B bond.

In this study, we report a facile and versatile synthesis of aryl-
boronates using triarylbismuthines as aryl radical sources under
transition-metal-free and open-air conditions (Scheme 1c). This
method could be carried out without any special apparatus, and
the mild conditions led to the wide range of applications.

Results and Discussion
Initially, we used triphenylbismuthine (1a) and bis(pina-
colato)diboron (2) as the model substrates to optimize the reac-
tion conditions (Table 1). We first investigated the solubility of
1 and 2 in various solvents. It was found that both 1 and 2
showed excellent solubility towards benzotrifluoride (BTF) [61]

(for diboron 2: 637 mg/mL (BTF); 567 mg/mL (AcOEt)).
Therefore, BTF is chosen as the solvent.

Surprisingly, heating the mixture of 1 and 2 in BTF (0.4 mL) at
80 °C in air successfully afforded phenylboronic acid pinacol
ester 3a in 68% yield (Table 1, entry 1). In the presence of
NaOMe as a base, the reaction did not proceed (Table 1, entry
2). Increasing or decreasing the amount of diboron 2 did not
improve the yield of 3a (Table 1, entry 2 vs entries 3 and 4).
Under atmospheric oxygen, the yield of 3a decreased slightly
(Table 1, entry 5). The reaction was investigated at 60 °C and
100 °C, and it was found that the reaction was most efficient at
80 °C (Table 1, entry 2 vs entries 6 and 7). We have previously
succeeded in generating a boron radical (pinB•) by photoirradia-
tion of (Bpin)2 and found that the addition of (PhS)2 was effec-
tive in generating the boron radical [30]. We therefore investi-
gated this reaction by adding (PhS)2 as a Lewis base, but the
yield of 3a was not improved and (PhS)2 was recovered almost
quantitatively (Table 1, entry 8). Furthermore, instead of BTF,
the reaction was carried out with similarly polar CHCl3, polar
and aprotic CH3CN, DMF, DMSO, and protic EtOH, and it was
found that BTF was the optimal solvent for the synthesis of 3a
(Table 1, entry 2 vs entries 9–13).
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Scheme 2: Scope for transition-metal-free synthesis of arylboronates 3 using triaylbismuthines 1 and diboron 2. Yields were determined by 1H NMR
spectroscopy based on 1 as three transferable aryl groups (internal standard: 1,3,5-trioxane). Isolated yield was shown in parentheses. aCHCl3
(0.4 mL) was used as the solvent.

Based on the optimized conditions (entry 2 in Table 1), we next
investigated the scope and limitations of the transition-metal-
free synthesis of arylboronates 3 using functionalized triarylbis-
muthines 1 (Scheme 2). As shown in Scheme 2, a variety of
triarylbismuthines could be used for the transition-metal-free
synthesis of arylboronates. For example, the use of triarylbis-
muthines with o-methyl, m-methyl, p-methyl, p-methoxy, and
p-chloro groups successfully afforded the corresponding aryl-
boronates 3a–e and 3g in 62–73% yields, respectively. The low
solubility of tri(p-fluorophenyl) and tri(1-naphthyl)bismuthines
1h and 1k in BTF resulted in the low conversion. This system
could be applied to the unstable dimethyl acetal-substituted
triphenylbismuthine 1f, and 3f was obtained in 51% yield. Inter-
estingly, the use of triarylbismuthines 1i and 1j with strong
electron-withdrawing groups such as trifluoromethyl and formyl
groups was also tolerable, and the corresponding products 3i
and 3j were selectively obtained in moderate yields. Notably,
the bulky 2,4,6-trimethylphenyl group of bisumuthine 1l did not

inhibit the transformation, and the boronate 3l was obtained in
78% yield. The isolation of arylboronates 3c, 3i, and 3j was
somewhat difficult due to strong adsorption or decomposition
on silica gel. Since some arylboronates are somewhat unstable,
it is desirable to synthesize such compounds and then use them
in a one-pot manner for the following reactions without isola-
tion.

To gain insight into the reaction pathways, several control ex-
periments were investigated. When the reaction was carried out
in an argon atmosphere using the strict Schlenk technique, the
desired product 3a was not obtained at all and 93% of 1a was
recovered (Scheme 3).

Figure 1 shows the comparison of the crude mixture of the reac-
tions under argon atmosphere and in the open-air. In the
absence of oxygen, the color of the reaction mixture changed
only slightly. In contrast, the reaction in air resulted in the for-
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Scheme 3: Control experiment of the metal-free borylation under an argon atmosphere.

Figure 1: Comparison of the crude mixture of the reactions under (a) argon atmosphere or (b) open-air.

Scheme 4: Radical-trapping experiments using TEMPO as a radical scavenger.

mation of black and a small amount of white insoluble solid
(probably metallic bismuth or bismuth oxide) [55], and 3a was
successfully obtained with almost complete consumption of 1a.
The results clearly indicate that air can play an important role in
the thermal activation of triarylbismuthines to generate aryl
radicals.

Furthermore, the yield of 3a was dramatically reduced in the
presence of 2,2,6,6-tetramethylpiperidine 1-oxyl free radical
(TEMPO) as a radical scavenger, strongly suggesting that a
radical pathway is involved in the key step of the arylboronate
synthesis (Scheme 4a). In addition, the reaction of triphenylbis-
muthine 1a (0.07 mmol) and TEMPO (0.4 mmol) under air
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Scheme 5: A proposed reaction pathway for the synthesis of arylboronates.

resulted in the formation of 4 in 10% yield, which was con-
firmed and characterized by the 1H NMR measurement of the
crude reaction mixture (Scheme 4b) [48]. These results clearly
showed that the thermal generation of aryl radicals from triaryl-
bismuthines is one of the key factors for the transition-metal-
free synthesis of arylboronates, and oxygen (air) would play a
role as a radical initiator for the thermal activation of triarylbis-
muthines.

In this system, an excess amount of diboron 2 was required for
the reaction to proceed efficiently. To clarify the transformat-
ion of diboron 2 under the reaction conditions, the crude reac-
tion mixture (entry 2 in Table 1) was analyzed by 11B NMR
measurement. It was noteworthy that diboron 2 was reactive
with air under the reaction conditions, and the decomposition of
2 to form pinB–O–Bpin and pinB–OH was confirmed. The de-
composition was also occurred by heating the solution of
diboron 2 in BTF in air; however, in the presence of TEMPO,
the decomposition of 2 was sightly occurred, and almost all
of 2 was recovered (see Supporting Information File 1).
Based on the results, diboron 2 could also be activated via the
thermal homolysis of the B–B bond in the presence of oxygen
(air).

Based on the results of the control experiments and our previous
studies, a proposed reaction pathway is shown in Scheme 5.
First, thermal activation of triarylbismuthines in air forms aryl
radicals together with the bismuth residues (i.e., metal bismuth
and bismuth oxide). Alternatively, oxygen in air and/or boron-
centered radicals thermally generated from (pinB)2 in air would
react with triarylbismuthines to form the aryl radicals. The
generated aryl radicals were then captured with (pinB)2 and the
corresponding arylboronates were formed. Recombination of si-
multaneously formed pinB• could regenerate (pinB)2, and some
of the pinB• would react with air to form pinB–O–Bpin and

pinB–OH (path A). The corresponding arylboronates could also
be formed via aryl radical trapping with pinB• generated by
heating (pinB)2 in air (path B).

Conclusion
In this study, we have developed a novel method for the transi-
tion-metal-free synthesis of arylboronates using triarylbis-
muthines. Most of the previous methods to generate aryl radical
species from triarylbismuthines required a special apparatus. In
contrast, our method was very simple, and the corresponding
aryl radicals were easily accessible by simply heating the solu-
tion of triarylbismuthines in air under mild conditions. There-
fore, many triarylbismuthines could be used to form a variety of
useful arylboronates in moderate to good yields with excellent
product selectivity. We hope that this new approach to the gen-
eration of aryl radicals from triarylbismuthines will lead to an
increased use of organobismuth compounds in synthetic organic
chemistry. Further applications of organobismuth compounds as
aryl radical precursors are currently under investigation.

Experimental
General comments: Unless otherwise stated, all starting mate-
rials were purchased from commercial sources and used with-
out further purification. All solvents were used without distilla-
tion. Triarylbismuthines 1 were synthesized according to the
previously reported procedures [62]. 1H, 13C{1H}, and
11B NMR spectra were recorded in CDCl3 using a Bruker
AVANCE III HD 500 spectrometer at 500, 126, and 160 MHz,
respectively. 1H chemical shifts are reported in ppm relative to
Me4Si using the solvent residual as the internal standard (δ =
7.26 ppm for chloroform). 13C chemical shifts are reported in
ppm relative to Me4Si, referenced to the resonances of CDCl3
(δ = 77.2 ppm). 11B chemical shifts are reported in ppm re-
corded in CDCl3 using BF3·Et2O (δ = 0.0 ppm) as the internal
standard.



Beilstein J. Org. Chem. 2024, 20, 2577–2584.

2583

General procedure for transition-metal-free synthesis of
arylboronates with triarylbismuthines 1 and diboron 2
(Scheme 2): To a 10 mL two-neck flask were added triarylbis-
muthine 1 (0.07 mmol), bis(pinacolato)diboron 2 (2.0 mmol),
and benzotrifluoride (BTF, 0.4 mL). The mixture was heated at
80 °C for 24 h in air. After the reaction was completed, the mix-
ture was filtered through a short Celite pad with AcOEt
(20 mL). The filtrate was concentrated under reduced pressure.
Finally, the residue was purified by preparative thin-layer chro-
matography (eluent: AcOEt/hexane) to give the pure product 3.
Assuming that three aryl radicals are formed from triarylbis-
muthine 1, the yield of 3 was determined from the weight of the
isolated product based on three times the moles of triarylbis-
muthine 1. Further details of the experimental procedures and
characterization data are provided in Supporting Information
File 1.

Supporting Information
Supporting Information File 1
Investigation of the boron residue in the crude mixture by
11B NMR measurement, characterization data of the
compounds, and copies of 1H NMR and 13C{1H} NMR
spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-216-S1.pdf]
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