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Abstract. Elemental carbon (EC) has been widely used as

a tracer to track the portion of co-emitted primary organic

carbon (OC) and, by extension, to estimate secondary OC

(SOC) from ambient observations of EC and OC. Key to this

EC tracer method is to determine an appropriate OC /EC ra-

tio that represents primary combustion emission sources (i.e.,

(OC /EC)pri) at the observation site. The conventional ap-

proaches include regressing OC against EC within a fixed

percentile of the lowest (OC /EC) ratio data (usually 5–

20 %) or relying on a subset of sampling days with low pho-

tochemical activity and dominated by local emissions. The

drawback of these approaches is rooted in its empirical na-

ture, i.e., a lack of clear quantitative criteria in the selection

of data subsets for the (OC /EC)pri determination. We exam-

ine here a method that derives (OC /EC)pri through calculat-

ing a hypothetical set of (OC /EC)pri and SOC followed by

seeking the minimum of the coefficient of correlation (R2)

between SOC and EC. The hypothetical (OC /EC)pri that

generates the minimum R2(SOC,EC) then represents the ac-

tual (OC /EC)pri ratio if variations of EC and SOC are inde-

pendent and (OC /EC)pri is relatively constant in the study

period. This Minimum R Squared (MRS) method has a clear

quantitative criterion for the (OC /EC)pri calculation. This

work uses numerically simulated data to evaluate the accu-

racy of SOC estimation by the MRS method and to com-

pare with two commonly used methods: minimum OC /EC

(OC /ECmin) and OC /EC percentile (OC /EC10 %). Log-

normally distributed EC and OC concentrations with known

proportion of SOC are numerically produced through a pseu-

dorandom number generator. Three scenarios are consid-

ered, including a single primary source, two independent

primary sources, and two correlated primary sources. The

MRS method consistently yields the most accurate SOC

estimation. Unbiased SOC estimation by OC /ECmin and

OC /EC10 % only occurs when the left tail of OC /EC dis-

tribution is aligned with the peak of the (OC /EC)pri dis-

tribution, which is fortuitous rather than norm. In contrast,

MRS provides an unbiased SOC estimation when measure-

ment uncertainty is small. MRS results are sensitive to the

magnitude of measurement uncertainty but the bias would

not exceed 23 % if the uncertainty is within 20 %.

1 Introduction

Organic carbon (OC) and elemental carbon (EC) are among

the major components of fine particular matter (PM2.5)

(Malm et al., 2004). EC is a product of carbon fuel-based

combustion processes and is exclusively associated with pri-

mary emissions whereas OC can be from both direct emis-

sions and be formed through secondary pathways. Differ-

entiation between primary organic carbon (POC) and sec-

ondary organic carbon (SOC) is indispensable for probing at-
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mospheric aging processes of organic aerosols and formulat-

ing effective emission control policies. However, direct SOC

measurement is not yet feasible, as there lacks knowledge of

its chemical composition at the molecular level. Due to its

exclusive origin in primary combustion sources, EC was first

proposed by Turpin and Huntzicker (1991) to serve as the

tracer to track POC from primary combustion sources and, by

extension, to estimate SOC as SOC is simply the difference

between OC and POC. This EC tracer method only requires

measurements of OC and EC. Due to its simplicity, the EC

tracer method has been widely adopted in studies reporting

ambient OC and EC measurements (e.g., Castro et al., 1999;

Cao et al., 2004; Yu et al., 2004). If OC and EC concen-

trations are available and primary OC from non-combustion

sources (OCnon-comb) is negligible, SOC can be estimated us-

ing EC as the tracer for combustion source POC (Turpin and

Huntzicker, 1995):

POC= (OC/EC)pri×EC (1)

SOC= OCtotal− (OC/EC)pri×EC (2)

where (OC /EC)pri is the OC /EC ratio in freshly emitted

combustion aerosols, and OCtotal and EC are available from

ambient measurements. Abbreviations used in this study are

summarized in Table 1.

The key step in the EC tracer method is to determine an ap-

propriate OC /EC ratio that represents primary combustion

emission sources (i.e., (OC /EC)pri) at the observation site.

Various approaches in deriving (OC /EC)pri reported in the

literature are either based on emission inventory (Gray et al.,

1986) or ambient observation data. Using ambient observa-

tion data, three approaches are the most common: (1) regress-

ing measured OC vs. EC data from times of low photochemi-

cal activity and dominated by local emissions; (2) regressing

measured OC vs. EC data on a fixed percentile of the low-

est OC /EC ratio (usually 5–20 %) data to represent samples

dominated by primary emissions (Lim and Turpin, 2002; Lin

et al., 2009); and (3) simply taking the minimum OC /EC

ratio during the study period to approximate (OC /EC)pri

(Castro et al., 1999). Combinations of the fixed percentile

and the minimum (OC /EC)pri approaches were also used in

order to accommodate different sample sizes available. For

example, Pio et al. (2011) suggested using the lowest 5 %

subset to obtain the (OC /EC)pri, and if the sample size of

5 % subset is less than three, the lowest three data points are

used to determine (OC /EC)pri. These approaches have the

drawback in that there is not a clear quantitative criterion in

the data selection for the (OC /EC)pri determination. Mil-

let et al. (2005) was the first to propose an algorithm that

explores the inherent independency between pollutants from

primary emissions (e.g., EC) and products of secondary for-

mation processes (e.g., SOC) to derive the primary ratios

(e.g., (OC /EC)pri) for species with multiple source types.

More specifically, for the determination of (OC /EC)pri, the

assumed (OC /EC)pri value is varied continuously. At each

hypothetical (OC /EC)pri, SOC is calculated for the data set

and a correlation coefficient value (R2) of EC vs. SOC (i.e.,

R2(EC,SOC)) is generated. The series of R2(EC,SOC) val-

ues are then plotted against the assumed (OC /EC)pri values.

If variations of EC and SOC are independent, the assumed

(OC /EC)pri corresponding to the minimum R2(EC,SOC)

would then represent the actual (OC /EC)pri ratio. Such an

approach obviates the need for an arbitrary selection crite-

rion, as the algorithm seeks the minimum point, which is

unique to the data set. However, this method has largely been

overlooked, with only one study reporting its use (Hu et al.,

2012) since its debut, which may be a result of a lack of eval-

uation of its method performance. Hereafter for the conve-

nience of discussion, we call this method the minimum R

squared (MRS) method. An example illustration of the MRS

method is shown in Fig. 1. We have developed a computer

program in Igor Pro (WaveMetrics, Inc. Lake Oswego, OR,

USA) to facilitate MRS calculation and it is available from

https://sites.google.com/site/wuchengust.

With ambient OC and EC samples, the accuracy of esti-

mated SOC by different (OC /EC)pri methods is difficult to

evaluate due to the lack of a direct SOC measurement. The

objective of this study is to investigate, through numerical

simulations, the bias of SOC estimates by three different im-

plementations of the EC tracer method. Hypothetic EC, OC,

and (OC /EC)pri data sets with known break-down of POC

and SOC values are numerically synthesized, then SOC is

estimated and compared with the “true” SOC as defined by

the synthetic data sets. As such, bias of SOC estimates using

the various implementations of the EC tracer method can be

quantified.

2 Evaluation of the minimum R squared method

2.1 Data generation

We first examine ambient OC and EC for the purpose of iden-

tifying distribution features that can serve as the reference

basis for parameterizing the numerical experiments. The 1-

year hourly EC and OC measurement data from three sites in

the PRD (one suburban site in Guangzhou, a general urban

site and a roadside site in Hong Kong, with more than 7000

data at each site), are plotted in Fig. S1 in the Supplement

document for the whole year data sets and Figs. S2–S4 for

the seasonal subsets using the Nancun site as the example.

A brief account of the field ECOC analyzers and their field

operation is provided in the Supplement. A detailed descrip-

tion of the measurement results and data interpretation for

the sites will be given in a separate paper. The distributions

of measured OC, EC and OC /EC are fitted by both normal

and log-normal distribution curves and then examined by the

Kolmogorov–Smirnov (K–S) test. The K–S statistic, D, in-

dicates that log-normal fits all three distributions better than

the normal distribution (D values are shown in Figs. S1–S4).
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Table 1. Abbreviations.

Abbreviation Definition

EC elemental carbon

EC1,EC2 EC from source 1 and source 2 in the two sources scenario

fEC1 fraction of EC from source 1 to the total EC

fSOC ratio of SOC to OC

MRS minimum R squared method

MRS′ a variant of MRS that use EC from individual sources as input

MT Mersenne twister pseudorandom number generator

n sample size in MT data generation

OC organic carbon

OC /EC OC to EC ratio

(OC /EC)pri primary OC /EC

OC /EC10 % OC /EC at 10 % percentile

OC /ECmin minimum OC /EC

OCnon-comb OC from non-combustion sources

PDF probability density function of a distribution

POC primary organic carbon

ROA ratio of averages

RSD relative standard deviation

RSDEC RSD of EC

RSDPOC RSD of POC

RSDSOC RSD of SOC

SOC secondary organic carbon

SOCsvP SOC formed from semi-volatile POC

γ _pri ratio of the (OC /EC)pri of source 2 to source 1

εEC, εOC measurement uncertainty of EC and OC

γunc relative measurement uncertainty

γ _RSD the ratio between the RSD values of (OC /EC)pri and EC

Therefore, log-normal distributions are adopted to define the

OC, EC and OC /EC distributions during data generation in

our numerical experiments. Statistics of these ambient OC

and EC, along with a few other measurements reported in

the literature, are summarized in Table 2 and are considered

as the reference for data generation to better represent the

real situation.

The probability density function (PDF) for the log-normal

distribution of variable x is

f (x;µ,σ)=
1

xσ
√

2π
× e
−
(ln(x)−µ)2

2σ2 . (3)

The two parameters, µ and σ , of the log-normal PDF are

related to the average and standard deviation of x through

the following equations:

µ= ln(avg)− 0.5× ln

(
1+

SD2

avg2

)
(4)

σ =

√√√√ln

(
1+

SD2

avg2

)
. (5)

First, realistic average and standard deviation values of EC,

(OC /EC)pri, and OC (e.g. Figs. S1–S5) are adopted to cal-

culate µ and σ . Then the pseudorandom number generator

uses µ and σ to synthesize EC and OC data sets.

The Mersenne twister (MT) (Matsumoto and Nishimura,

1998), a pseudorandom number generator, is used in data

generation. MT is provided as a function in Igor Pro. The

system clock is utilized as the initial condition for generation

of pseudorandom numbers. The data generated by MT have

a very long period of 219 937–1, permitting large data size

and ensuring that pseudorandom numbers are statistically in-

dependent between each data generation. The latter feature

ensures the independent relationship between EC and non-

combustion related SOC data. The case with combustion-

related SOC is briefly discussed in Sect. 3. MT also al-

lows assigning a log-normal distribution during pseudoran-

dom number generation to constrain the data. For the veri-

fication of the log-normality of MT generated data, a series

of K–S tests on the generated data for 5000 runs are con-

ducted. As shown in Fig. S6, 94.4 % of runs pass the K–

S test. Hence the performance of MT can satisfy the log-

normal distributed data generation requirement in this study.

In a previous study, Chu (2005) used a variant of sine func-

tions to simulate POC and EC, which limited the data size

to 120, and the frequency distributions of POC and EC ex-

hibited multiple peaks, a characteristic that is not realistic for

www.atmos-chem-phys.net/16/5453/2016/ Atmos. Chem. Phys., 16, 5453–5465, 2016
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Figure 1. Illustration of the minimum R squared method (MRS) to

determine OC /ECpri using 1 year of hourly OC and EC measure-

ments at a suburban site in the Pearl River Delta, China. The red

curve shows the correlation coefficient (R2) between SOC and EC

as a function of assumed OC /ECpri. The shaded area in tan repre-

sents the frequency distribution of the OC /EC ratio for the entire

OC and EC data set. The green dashed curve is the cumulative fre-

quency curve of OC /EC ratio.

ambient measurements. The key information utilized in the

EC tracer method is the correlation between EC and POC as

well as the irrelevance between EC and SOC. The time se-

ries information is not needed in EC tracer method, making

pseudorandom number generator a good fit for the evaluation

purpose.

The procedure of data generation for the single emission

source scenario is illustrated in Fig. 2 and implemented by

scripts written in Igor Pro. EC is first generated with the fol-

lowing parameters specified: sample size (n), average and

relative standard deviation (RSD%) of the whole data set

(see Supplement). The EC data set statistically follows a log-

normal distribution, while the sequence of each data point is

randomly assigned. POC is then calculated by multiplying

EC by (OC /EC)pri (Eq. 1). For simplicity, (OC /EC)pri is

set to be a single value, while an analysis incorporating ran-

domly generated log-normally distributed (OC /EC)pri val-

ues can be found in the Supplement, and a brief summary

is given in Sect. 2.2. SOC data are independently generated

in a similar way to that for EC. The sum of POC and SOC

then yields the synthesized OC. OC and EC data generated

in this way are used to calculate SOC by different implemen-

tations of the EC tracer method. The bias of SOC estimation

can then be evaluated by comparing the calculated SOC with

the “true” SOC values. Data generation for the scenarios with

two primary emission sources is similar to the single source

scenario and the steps are illustrated in Fig. S7.

2.2 Scenario study

Three scenarios are considered. Scenario 1 (S1) considers

one single primary emission source. Scenario 2 (S2) con-

siders two correlated primary emission sources, i.e., two

sets of EC, POC, and each source has a single but differ-

ent (OC /EC)pri value. An example of S2 is combined ve-

hicular emissions from diesel-fuel and gasoline-fuel vehi-

cles. These two sources of vehicular emissions have differ-

ent (OC /EC)pri, but often share a similar temporal variation

pattern, making them well correlated. Scenario 3 (S3) con-

siders two independent primary emission sources and sim-

ulates an ambient environment influenced by two indepen-

dent primary emission sources, e.g. local vehicular emissions

(lower (OC /EC)pri) and regional biomass burning (higher

(OC /EC)pri).

In the following numerical experiments, three

(OC /EC)pri estimation methods are examined and com-

pared, including MRS, OC /EC10 % and OC /ECmin. As

a single point, OC /ECmin, in ambient samples may be

subjected to large random uncertainties, thus data with

the lowest 1 % OC /EC are adopted instead to derive the

OC /ECmin.

2.2.1 Single primary source scenario

Both OC /EC10 % and OC /ECmin methods rely on a sub-

set of ambient OC and EC data to approximate (OC /EC)pri.

Figure 3 provides a conceptual illustration of the relation-

ships between (OC /EC)pri and the ambient OC /EC data,

both are described to exhibit a log-normal distribution. As

primary emissions move away from sources and aging pro-

cesses start in the atmosphere, SOC is added to the particle

OC fraction, elevating OC /EC above (OC /EC)pri. This in

effect broadens the OC /EC distribution curve and shifts the

distribution to the right along the OC /EC axis, and the de-

gree of broadening and shift depends on degree of aging pro-

cess. The conventional EC tracer method using OC /EC10 %

and OC /ECmin assumes that the left tail of ambient OC /EC

distribution is very close to (OC /EC)pri. This assumption,

however, is fortuitous, rather than the norm. Two parameters,

the distance between the means of the (OC /EC)pri and ambi-

ent OC /EC distributions and the relative breadth of the two

distributions, largely determines the closeness of the approx-

imation of OC /EC10 % and OC /ECmin to (OC /EC)pri. The

distance between the two distributions depends on the frac-

tion of SOC in OC (i.e., fSOC), while the width of the am-

bient OC /EC distribution is closely associated with RSD of

SOC (RSDSOC) and the width of the (OC /EC)pri distribu-

tion is reflected in RSDPOC and RSDEC. As shown in Fig. 3a,

only an appropriate combination of distance of the two distri-

bution means and variances could lead to a close approxima-

tion of the (OC /EC)pri by OC /EC10 % or OC /ECmin (i.e.,

the left tail of OC /EC distribution). If the ambient aerosol

has a significant fSOC shifting the ambient OC /EC distri-

www.atmos-chem-phys.net/16/5453/2016/ Atmos. Chem. Phys., 16, 5453–5465, 2016
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Figure 2. Schematic diagram of pseudorandom number generation for the single emission source scenario that assumes (OC /EC)pri is a

single value. The data series (EC and SOC), generated by Mersenne twister (MT) pseudorandom number generator, statistically follow a

log-normal distribution, but the sequence of each data point is randomly assigned.

bution such that its left tail is beyond (OC /EC)pri (Fig. 3b),

then the left tail would overestimate (OC /EC)pri. Underesti-

mation of (OC /EC)pri could also happen in theory as shown

in Fig. 3c if the ambient minimum OC /EC (left tail) is less

than the mean of the (OC /EC)pri distribution (i.e., under

conditions of very small fSOC).

The above analysis reveals that fSOC, RSDSOC, RSDPOC,

and RSDEC are key parameters in influencing the accuracy

of SOC estimation. As a result, they are chosen in the subse-

quent sensitivity tests in probing the SOC estimate bias under

conditions of different carbonaceous aerosol compositions.

SOC estimation bias in S1 as a function of RSDSOC and

RSDEC is shown in Fig. 4a and b. The SOC estimate by MRS

is not affected by the magnitude of RSDEC and RSDSOC,

and is in excellent agreement with the true values (Fig. 4).

In comparison, SOC by OC /EC10 % and OC /ECmin is

consistently biased lower and the degree of negative bias

becomes larger with decreasing RSDSOC or RSDEC. The

OC /EC10 % method always produces larger negative bias

than the OC /ECmin method. At RSDSOC and RSDEC at

50 %, SOC estimate has a −14 % bias by (OC /EC)min and

a −45 % bias by OC /EC10 %. These results confirm the

hypothesis illustrated in the conceptual diagram (Fig. 3)

that the validity of using the left tail of OC /EC distribu-

tion depends on the distance of its distribution mean from

(OC /EC)pri and the distribution breadth. Both OC /EC10 %

and the OC /ECmin methods underestimate SOC and the

degree of underestimation by the OC /EC10 % method is

worse.

For the representation of (OC /EC)pri in the simulated

data as lognormally distributed data, analysis is also per-

formed to evaluate SOC estimation bias as a function of

RSDEC, RSDSOC, and fSOC. Table S2 summarizes the re-

sults obtained with adopting most probable ambient condi-

tions (i.e., RSDEC: 50–100 %, fSOC: 40–60 %). SOC bias

by MRS is within 4 % when measurement uncertainty is ig-

nored. In comparison, SOC bias by OC /ECmin is more sen-

sitive to assumption of log-normally distributed (OC /EC)pri

than single value (OC /EC)pri, including the dependency on

RSDEC and RSDSOC with varied fSOC.

2.2.2 Scenarios assuming two primary sources

In the real atmosphere, multiple combustion sources impact-

ing a site is normal. We next evaluate the performance of the

MRS method in scenarios of two primary sources and arbi-

trarily dictate that the (OC /EC)pri of source 1 is lower than

source 2. By varying fEC1 (proportion of source 1 EC to total

EC) from test to test, the effect of different mixing ratios of

the two sources can be examined. Common configurations in

S2 and S3 include the following: ECtotal = 2± 0.4 µgC m−3;

fEC1 varies from 0 to 100 %; ratio of the two OC /ECpri val-

ues (γ _pri) vary in the range of 2–8.

In Scenario 2 (i.e., two correlated primary sources), three

factors are examined, including fEC1, γ _pri and fSOC, to

probe their effects on SOC estimation. By varying fEC1,

the effect of different mixing ratios of two sources can

be examined, as fEC1 is expected to vary within the same

ambient data set as a result of spatiotemporal dynamics
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Figure 3. Conceptual diagram illustrating three scenarios of the relationship between (OC /EC)pri and ambient OC /EC measurements. Both

are assumed to be log-normally distributed. (a) Ambient minimum (left tail) is equal to the peak of (OC /EC)pri. (b) Ambient minimum

OC /EC (left tail) is larger than the mean of (OC /EC)pri. (c) Ambient minimum OC /EC (left tail) is less than the peak of (OC /EC)pri.
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Figure 4. Bias of SOC determination as a function of (a) RSDEC;

(b) RSDSOC. Different representation of (OC /EC)pri include

MRS, OC /ECmin and OC /EC10 %. Fixed input parameters:

n= 8000, EC= 2± 1 µgC m−3, (OC /EC)pri = 0.5, POC= 1±

0.5 µgC m−3, fSOC = 40 %, and SOC= 0.67± 0.34 µgC m−3.

of air masses. MRS reports unbiased SOC, irrespective of

different fEC1 and fSOC or γ _pri (Fig. 5). In compari-

son, SOC by OC /EC10 % and OC /ECmin are underesti-

mated. The degree of underestimation depends on fSOC, e.g.,

−12 % at fSOC = 25 % versus −20 % at fSOC = 40 % in the

OC /ECmin method while the magnitude of underestimation

has a very weak dependence on fSOC in the OC /EC10 %

method, staying around −40 % as fSOC is doubled from

20 to 40 %. The degree of SOC bias by OC /EC10 % and

OC /ECmin are independent of fEC1 and γ _pri, as SOC bias

is associated with RSDEC, RSDSOC and fSOC. Since two pri-

mary sources are well correlated, RSDEC is equivalent be-

tween the two sources. As a result, the overall RSDEC is con-

stant when fEC1 and γ _pri vary, and the SOC bias is inde-

pendent of fEC1 and γ _pri.

In summary, in scenarios of two well-correlated primary

combustion sources, MRS always produces unbiased SOC

estimates while OC /ECmin and OC /EC10 % consistently

underestimate SOC, with OC /EC10 % producing larger neg-

ative bias.

As for Scenario 3 in which two independent primary

sources co-exist, SOC estimates by MRS could be biased and

the degree and direction of bias depends on fEC1. Figure 6a

shows the variation of SOC bias with fEC1 when fSOC is

fixed at 40 %. The variation of SOC bias by MRS with fEC1

follows a pseudo-sine curve, exhibiting negative bias when

fEC1< 50 % (i.e., EC is dominated by source 2, the higher

(OC /EC)pri source) and positive bias when fEC1> 50 % and

the range of bias are confined to −20 to −40 % under the

condition of fSOC = 40 %. In comparison, the OC /ECmin

and OC /EC10 % methods again consistently underestimate

SOC by more than −50 %, with the bias worsened in the

OC /EC10 % method.

The bias variation range becomes narrower with increas-

ing fSOC in the MRS method, as shown by the boxplots for

four fSOC conditions (20, 40, 60, and 80 %) in Fig. 6b. The

MRS-derived SOC bias range is reduced from−20 to+40 %

at fSOC = 40 % to −10 to +20 % at fSOC = 60%, further

to −6 to +10 % at fSOC = 80 %. In the other two methods,

the SOC bias does not improve with increasing fSOC. De-

pendence of the SOC estimation bias on γ _pri is examined

in Fig. 6c showing the higher γ _pri induces a higher am-

plitude of the SOC bias. If OC is dominated by SOC (e.g.,

fSOC = 80 %), SOC bias by MRS is within 10 %.

A variant of MRS implementation (denoted as MRS′) is

examined, with the important difference that EC1 and EC2,

attributed to source 1 and source 2, respectively, are used

as inputs instead of total EC. With the knowledge of EC

breakdown between the two primary sources, (OC /EC)pri1

can be determined by MRS from EC1 and OCtotal. Simi-

larly (OC /EC)pri2 can be calculated by MRS from EC2 and

OCtotal. SOC is then calculated with the following equation:

SOC= OCtotal− (OC/EC)pri1×EC1

− (OC/EC)pri2×EC2. (6)

MRS′ produces unbiased SOC, irrespective of the different

carbonaceous compositions (Fig. 6). However, we note that
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Figure 5. SOC bias in Scenario 2 (two correlated primary emission sources of different (OC /EC)pri) as estimated by four different EC

tracer methods denoted in red, blue and yellow. (a) SOC bias as a function of fEC1. Results shown here are calculated using fSOC = 40 %

as an example. (b) Range of SOC bias shown in boxplots for four fSOC conditions (20, 25, 30 and 40 %). (c) Range of SOC bias shown

in boxplots for four γ _pri conditions (2, 4, 6 and 8). The symbols in the boxplots are empty circles for average, the line inside the box for

median, the box boundaries representing the 75th and the 25th percentile, and the whiskers representing the 95th and 5th percentile.
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Figure 6. SOC bias in Scenario 3 (two independent primary emission sources of different (OC /EC)pri) as estimated by four different EC

tracer methods denoted in red, purple, yellow and blue. MRS′ differs from MRS in that EC1 and EC2 instead of total EC are used as inputs.

(a) SOC bias as a function of fEC1. Results shown here are calculated using fSOC = 40 % and γ _pri= 4 as an example. (b) Range of SOC

bias shown in boxplots for four fSOC conditions (20, 40, 60 and 80 %). (c) Range of SOC bias shown in boxplots for four γ _pri conditions

(2, 4, 6 and 8). The symbols in the boxplots are empty circles as average, the line inside the box as median, upper and lower boundaries of

the box representing the 75th and the 25th percentile, and the whiskers above and below each box representing the 95th and 5th percentile.

there is a great challenge in meeting the data needs of MRS′

as EC1 and EC2 are not available.

In scenario 3, the simulation results imply that three fac-

tors are associated with the SOC bias by MRS, including:

fEC1, γ _pri and fSOC. The first factor controls whether SOC

bias by MRS is positive or negative. The latter two affect

the degree of SOC bias. For high fSOC conditions, the bias

could be acceptable. If EC1 and EC2 can be differentiated for

calculating individual (OC /EC)pri of each source, unbiased

SOC estimation is achievable regardless of what values fEC1,

γ _pri and fSOC take.

2.3 Impact of measurement uncertainty

In the preceding numerical analysis, the simulated EC and

OC are not assigned any measurement uncertainty; however,

in reality, every EC and OC measurement is associated with

a certain degree of measurement uncertainty. We next ex-

amine the influence of OC and EC measurement uncertainty

on SOC estimation accuracy by different EC tracer methods.

Two uncertainty types are tested, i.e., constant relative uncer-

tainty (Case A); constant absolute uncertainty (Case B). This

section mainly focuses on sensitivity tests assuming differ-

ent degrees of Case A uncertainties. Results assuming Case B

uncertainties are discussed in the next section. The uncertain-

ties are assumed to follow a uniform distribution and gener-

ated separately by MT. It is also assumed that the uncertainty

(εEC or εOC) is proportional to the concentration of EC and

OC through the multiplier γunc (i.e., relative measurement

uncertainty).

Atmos. Chem. Phys., 16, 5453–5465, 2016 www.atmos-chem-phys.net/16/5453/2016/
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Figure 7. Bias of SOC determination as a function of relative measurement uncertainty (γunc) and SOC /OC ratio (fSOC) by different

approaches of estimating (OC /EC)pri, including ratio of averages (ROA), minimum R squared (MRS), OC /EC10 %, and OC /ECmin.

Fixed input parameters: n= 8000, EC= 2± 1 µgC m−3, (OC /EC)pri = 0.5. Variable input parameters: (a) fSOC = 20 %, SOC= 0.25±

0.13 µgC m−3, (b) fSOC = 40 %, SOC= 0.67± 0.33 µgC m−3, (c) fSOC = 60 %, SOC= 1.5± 0.75 µgC m−3, and (d) fSOC = 80 %,

SOC= 4± 2 µgC m−3.

− γuncEC≤ εEC ≤ γuncEC (7)

− γuncOC≤ εOC ≤ γuncOC (8)

In order to compare the estimated SOC with simulated SOC

with εSOC, the measurement uncertainties of POC and SOC

are then back-calculated following the uncertainty propaga-

tion formula and assuming the same relative measurement

uncertainty for POC and SOC (Harris, 2010)

γ ′unc = γunc

√
OC2

POC2
+SOC2

(9)

− γ ′uncPOC≤ εPOC ≤ γ
′
uncPOC (10)

− γ ′uncSOC≤ εSOC ≤ γ
′
uncSOC. (11)

The simulated EC, POC and SOC with measurement un-

certainties (abbreviated as ECsimulated, POCsimulated and

SOCsimulated respectively) are determined as

ECsimulated = ECtrue+ εEC (12)

POCsimulated = POCtrue+ εPOC (13)

SOCsimulated = SOCtrue+ εSOC. (14)

Sensitivity tests of SOC estimation as a function of rel-

ative measurement uncertainty (γunc) and fSOC is per-

formed as shown in Fig. 7 by comparing the estimated

SOC with SOCsimulated. Fixed input parameters include n=

8000; EC= 2± 1 µgC m−3; (OC /EC)pri = 0.5. Studies by

Chu (2005) and Saylor et al. (2006) suggest that ratio of av-

erage POC to average EC (ROA, see Supplement for details)

is the best estimator of the expected primary OC /EC ratio

because it is mathematically equivalent to the true regres-

sion slope when the data contain no intercept. ROA is con-

firmed as the best representation of (OC /EC)pri for SOC es-

timation, which shows no bias towards γunc or fSOC change.

MRS overestimates SOC and the positive bias increases with

γunc while decreasing with fSOC (Fig. 7). The SOC esti-

mates by OC /ECmin and OC /EC10 % exhibit larger bias

than those by MRS. For example, as shown in Fig. 7a,
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when fSOC = 20 % and γunc = 10 %, the bias of SOC by

MRS, OC /EC10 % and OC /ECmin is 8, −28 and 36 %,

respectively. With increasing fSOC, the bias of SOC by

OC /ECmin decreases while the bias of SOC by OC /EC10 %

increases when γunc = 10–20 %. MRS always demonstrates

the best performance in SOC determination amongst the

three (OC /EC)pri estimation methods. When γunc could be

controlled within 20 %, the SOC bias by MRS does not ex-

ceed 23 % when fSOC = 20 % (Fig. 7a). If the fSOC ratio falls

in the range of 60–80 % and γunc is < 20 %, the OC /ECmin

has a similar performance as MRS, but SOC by OC /EC10 %

still shows a large bias (∼ 41 %) (Fig. 7c and d).

Sensitivity studies of SOC estimation as a function of γunc

and (OC /EC)pri are performed and the results are shown in

Fig. S8. In all the three (OC /EC)pri representations, SOC es-

timates are sensitive to γunc but insensitive to the magnitude

of (OC /EC)pri. In the single primary source scenario (S1),

it is proved that the performance of MRS regarding SOC es-

timation is mainly affected by γunc and to a lesser degree by

fSOC. Other variables such as (OC /EC)pri and EC concen-

tration do not affect the accuracy of SOC estimation.

2.4 Impact of sample size

MRS relies on correlations of input variables and it is ex-

pected that MRS performance is sensitive to the sample size

of input data set. This section examines the sensitivity on

sample size by the three (OC /EC)pri representations and

aims to provide suggestions for an appropriate sample size

when applying MRS on ambient OCEC data. Sample sizes

ranging from 20 to 8000 are tested and for each sample size

500 repeat runs are conducted to obtain statistically signif-

icant results. Both Case A (i.e., a constant relative uncer-

tainty of 10 %) and Case B (i.e., a constant absolute uncer-

tainty of±0.2 µgC m−3 for both OC and EC) are considered.

The measurement uncertainties in case B are generated sep-

arately by MT following a uniform distribution within the

range of ±0.2 µgC m−3. The measurement uncertainties of

POC and SOC are then back-calculated following the uncer-

tainty propagation formula (Harris, 2010) and assuming the

ratio of εPOC / εSOC is the same as POC /SOC ratio (con-

trolled by fSOC).

The mean SOC bias by MRS is very small (< 3 %) for all

sample sizes while the standard deviation of SOC bias de-

creases with sample size (Fig. 8). The standard deviation of

SOC bias is∼±30 % at the lowest test sample size (n= 20),

and decreases to less than ±15 % at n= 60 (the sample size

of 1-year sampling from an every-6-day sampling program)

and to less than ±10 % at n= 200. Similar patterns are ob-

served between Case A (Fig. 8a) and Case B (Fig. 8b) for

MRS and OC /EC10 %. For OC /ECmin, a larger bias is ob-

served in Case B than Case A for all sample sizes, as SOC

bias by OC /ECmin is more sensitive to measurement uncer-

tainty in the range of 0–10 % as shown in Fig. 7b. The stan-

dard deviation of SOC bias by OC /ECmin and OC /EC10 %
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Figure 8. SOC estimation bias as a function of sample size by

different approaches of estimating (OC /EC)pri, including mini-

mum R squared (MRS), OC /EC10 %, and OC /ECmin, (a) as-

suming a fixed relative measurement uncertainty of 10 % for OC

and EC; (b) assuming a fixed absolute measurement uncertainty

for OC and EC (0.2 µg m−3). For each sample size, 500 repeat

runs were conducted. The empty circles represent mean of 500

repeat runs, the whiskers represent 1 standard deviation. Parame-

ters used for testing: repeat runs= 500, n= 20–8000, EC= 8±

4 µgC m−3, (OC /EC)pri= 0.5, POC= 4± 2 µgC m−3, fSOC =

40 %, and SOC= 2.67± 1.33 µgC m−3.

both decrease with sample size as shown in Fig. 8. The mean

SOC bias of OC /ECmin decrease with increased sample size

while OC /EC10 % is insensitive to sample size. The sample

size dependency of all three (OC /EC)pri representations is

not sensitive to fSOC as shown in Fig. S16. Other scenar-

ios considering (OC /EC)pri with a distribution and different

fSOC are discussed in the Supplement.

2.5 Impact of sampling time resolution

Besides hourly measurements of OC and EC by online

aerosol carbon analyzers, the MRS method could also be ap-

plied to offline measurements of OC and EC based on fil-

ters collected over longer durations (i.e., 24 h), which are

more readily available around the world. To explore the im-

pact of sampling duration (e.g., hourly vs. daily), we here

use 1-year hourly data at the suburban site of Guangzhou to

average them into longer intervals of 2–24 h. The 24 h aver-

aged samples yield a (OC /EC)pri of 2.53, 12 % higher than

Atmos. Chem. Phys., 16, 5453–5465, 2016 www.atmos-chem-phys.net/16/5453/2016/



C. Wu and J. Z. Yu: Determination of primary combustion source OC /EC ratio 5463

Table 3. Summary of numerical study results under different scenariosa.

Tested parameter SOC bias

MRSb MRS′c OC /ECmin OC /EC10 %

Scenario 1 RSDEC ±4 % −13 to −7 % −43 to −36 %

Single source RSDSOC ±4 % −11 to −4 % −42 to −22 %

γunc +10 % −12 to 20 % −43 to −32 %

Scenario 2 fEC1 ±4 % −20 % −40 %

Two correlated γ _pri ±4 % −20 % −40 %

sources fSOC ±4 % −20 % −40 %

Scenario 3 fEC1 −20 to 40 % ±10 % −50 % −60 %

Two independent γ _pri −20 to 40 % ±10 % −50 % −60 %

sources fSOC −20 to 40 % ±10 % −50 % −60 %

a Results shown here are obtained assuming the following ambient conditions: RSDEC 50–100 %; fSOC 40–60 %; γunc 20 %;
b “+” represents SOC overestimation and “−” represents underestimation; c MRS′: in S3, EC1 and EC2 are used for SOC

calculation.

the (OC /EC)pri derived from hourly data (2.26). This comes

as a result of that OC /EC distributions are narrowed when

the averaging interval lengthens (Fig. 9), leading to elevation

of the MRS-derived (OC /EC)pri. As many PM2.5 speciation

networks adopt a sampling schedule of one 24 h sample every

6 days, we further extract the every-6-day samples to do the

MRS calculation. The 1-year data yield six subsets of daily

samples, corresponding to six possible schedules of sampling

days with the every-6-day sampling frequency. The MRS cal-

culation produces the OC /ECpri in the range of 2.37–2.75

(5–22 % higher than the OC /ECpri from the hourly data).

This example illustrates that if 24 h sample ECOC data are

used, SOC would be biased slightly lower in comparison

with those derived from the hourly data.

3 Caveats of the MRS method in its applications to

ambient data

Table 3 summarizes the performance in terms of SOC esti-

mation bias by the different implementations of the EC tracer

method, assuming typical variation characteristics for ambi-

ent ECOC data. When employing the EC tracer method on

ambient samples, it is clear that MRS is preferred since it

can provide more accurate SOC estimation.

If the sampling site is dominated by a single primary

source (similar to Scenario 1), MRS can perform much bet-

ter than the traditional OC /EC percentile and minimum ap-

proaches. Two issues should be paid attention to when ap-

plying MRS: (1) MRS relies on the independence of EC and

SOC. This assumption could be invalid if a fraction of SOC

is formed from semi-volatile POC (here referred as SOCsvP)

(Robinson et al., 2007). Since POC is well correlated with

EC, this SOCsvP would be attributed to POC by MRS, caus-

ing SOC underestimation. The interference of SOCsvP will

be discussed in a separate paper. (2) OCnon-comb will be at-
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Figure 9. OC /EC distributions assuming different average inter-

vals from 2 to 24 h and the corresponding MRS-derived OC /ECpri.

The bottom x axis represents averaging interval (e.g. 1 h is the orig-

inal data time resolution, 2 h referring average 1 h data into 2 h

interval data, etc.). The top x axis represents the number of data

point corresponding to the respective data averaging interval. Dis-

tributions of OC /EC ratio at various averaging intervals are shown

as box plots (empty circles: average, the line inside the box: me-

dian, the box boundaries: 75th and the 25th percentile, and the

whiskers: 95th and 5th percentile). The red dots represent calcu-

lated (OC /EC)pri by MRS.

tributed to SOC if only EC is used as a tracer. If OCnon-comb

is small compared to SOC, such approximation is accept-

able. Otherwise quantification of its contribution is needed.

If a stable tracer for OCnon-comb is available, determination of

OCnon-comb contribution by MRS is possible, since this sce-

nario is mathematically equivalent to S3 (e.g., relabel EC2 to

tracer of OCnon-comb and POC to OCnon-comb).
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If the sampling site is influenced by two correlated primary

sources with distinct (OC /EC)pri (Scenario 2, e.g. urban

areas that have vehicular emission from both gasoline and

diesel), MRS is still much more reliable than the traditional

OC /EC percentile and minimum approaches. If the sam-

pling site is influenced by two independent primary sources

with distinct (OC /EC)pri (Scenario 3, e.g. vehicular emis-

sion and biomass burning), SOC estimation by MRS is bet-

ter than the other two conventional methods. But it should be

noted that possible bias may exist and the magnitude of bias

depends on the relative abundance between the two sources.

If tracers are available to demarcate the EC contributions by

the different primary sources, unbiased SOC estimation is

possible by employing these tracers in MRS.

4 Conclusions

In this study, the accuracy of SOC estimation by EC tracer

method is evaluated by comparing three (OC /EC)pri de-

termination approaches using numerically simulated data.

The MRS method has a clear quantitative criterion for the

(OC /EC)pri calculation, while the other two commonly

used methods, namely minimum OC /EC (OC /ECmin) and

OC /EC percentile (e.g. OC /EC10 %), are empirical in na-

ture. Three scenarios are considered in the numerical simu-

lations to evaluate the SOC estimation bias by the different

EC tracer methods assuming typical variation characteristics

for ambient ECOC data. In the scenarios of a single primary

source and two well-correlated primary combustion sources,

SOC estimates by MRS are unbiased while OC /ECmin and

OC /EC10 % consistently underestimate SOC when mea-

surement uncertainty is neglected. When measurement un-

certainty is considered, all three approaches produce biased

SOC estimates, with MRS producing the smallest bias. The

bias by MRS does not exceed 23 % when measurement un-

certainty is within 20 % and fSOC is not lower than 20 %.

In the scenario of two independent primary sources, SOC by

MRS exhibit bias but still perform better than OC /ECmin

and OC /EC10 %. If EC from each independent source can be

differentiated to allow calculation of individual (OC /EC)pri

for each source, unbiased SOC estimation is achievable. Sen-

sitivity tests of OC and EC measurement uncertainty on SOC

estimation demonstrate the superior accuracy of MRS over

the other two approaches.

Sensitivity tests show that MRS produces mean SOC val-

ues with a very small bias for all sample sizes while the preci-

sion worsens as the sample size decreases. For a data set with

a sample size of 60, SOC bias by MRS is 2± 15 %. When the

sample is 200, the results by MRS are improved to 2± 8 %.

It is clear that when employing the EC tracer method to es-

timate SOC, MRS is preferred over the two conventional

methods (OC /EC10 % and OC /ECmin) since it can provide

more accurate SOC estimation. We also evaluated the im-

pact of longer sampling duration on derived (OC /EC)pri and

found that if 24 h sample ECOC data are used, SOC would be

biased slightly lower in comparison with those derived from

the hourly data.

The Supplement related to this article is available online

at doi:10.5194/acp-16-5453-2016-supplement.

Acknowledgements. This work is supported by the National

Science Foundation of China (21177031), and the Fok Ying Tung

Graduate School (NRC06/07.SC01). The authors thank Hong

Kong Environmental Protection Department for making available

the ECOC data at Tsuen Wan and Dui Wu of Institute of Tropical

and Marine Meteorology, China Meteorological Administration

for providing logistic support of OC EC measurements in Nancun.

The authors are also grateful to Stephen M. Griffith for the helpful

comments.

Edited by: A. Sorooshian

References

Batmunkh, T., Kim, Y. J., Lee, K. Y., Cayetano, M. G., Jung, J. S.,

Kim, S. Y., Kim, K. C., Lee, S. J., Kim, J. S., Chang, L. S., and

An, J. Y.: Time-Resolved Measurements of PM2.5 Carbonaceous

Aerosols at Gosan, Korea, J. Air Waste Manage., 61, 1174–1182,

2011.

Cao, J. J., Lee, S. C., Ho, K. F., Zou, S. C., Fung, K., Li, Y.,

Watson, J. G., and Chow, J. C.: Spatial and seasonal variations

of atmospheric organic carbon and elemental carbon in Pearl

River Delta Region, China, Atmos. Environ., 38, 4447–4456,

doi:10.1016/j.atmosenv.2004.05.016, 2004.

Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D. J. T.:

Carbonaceous aerosol in urban and rural European atmospheres:

estimation of secondary organic carbon concentrations, Atmos.

Environ., 33, 2771–2781, 1999.

Chu, S. H.: Stable estimate of primary OC /EC ratios in the EC

tracer method, Atmos. Environ., 39, 1383–1392, 2005.

Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and

Rau, J. A.: Characteristics of atmospheric organic and elemen-

tal carbon particle concentrations in Los Angeles, Environ. Sci.

Technol., 20, 580–589, doi:10.1021/es00148a006, 1986.

Harris, D. C.: Quantitative chemical analysis, 8th Edn., W.H. Free-

man and Co., New York, 2010.

Hu, D., Bian, Q. J., Lau, A. K. H., and Yu, J. Z.: Source apportion-

ing of primary and secondary organic carbon in summer PM2.5

in Hong Kong using positive matrix factorization of secondary

and primary organic tracer data, J. Geophys. Res.-Atmos., 115,

D16204, doi:10.1029/2009jd012498, 2010.

Hu, W. W., Hu, M., Deng, Z. Q., Xiao, R., Kondo, Y., Takegawa, N.,

Zhao, Y. J., Guo, S., and Zhang, Y. H.: The characteristics and

origins of carbonaceous aerosol at a rural site of PRD in summer

of 2006, Atmos. Chem. Phys., 12, 1811–1822, doi:10.5194/acp-

12-1811-2012, 2012.

Atmos. Chem. Phys., 16, 5453–5465, 2016 www.atmos-chem-phys.net/16/5453/2016/

http://dx.doi.org/10.5194/acp-16-5453-2016-supplement
http://dx.doi.org/10.1016/j.atmosenv.2004.05.016
http://dx.doi.org/10.1021/es00148a006
http://dx.doi.org/10.1029/2009jd012498
http://dx.doi.org/10.5194/acp-12-1811-2012
http://dx.doi.org/10.5194/acp-12-1811-2012


C. Wu and J. Z. Yu: Determination of primary combustion source OC /EC ratio 5465

Huang, X. H. H., Bian, Q. J., Louie, P. K. K., and Yu, J. Z.: Contri-

butions of vehicular carbonaceous aerosols to PM2.5 in a road-

side environment in Hong Kong, Atmos. Chem. Phys., 14, 9279–

9293, doi:10.5194/acp-14-9279-2014, 2014.

Lim, H. J. and Turpin, B. J.: Origins of primary and secondary or-

ganic aerosol in Atlanta: Results’ of time-resolved measurements

during the Atlanta supersite experiment, Environ. Sci. Technol.,

36, 4489–4496, 2002.

Lin, P., Hu, M., Deng, Z., Slanina, J., Han, S., Kondo, Y., Takegawa,

N., Miyazaki, Y., Zhao, Y., and Sugimoto, N.: Seasonal and diur-

nal variations of organic carbon in PM2.5 in Beijing and the es-

timation of secondary organic carbon, J. Geophys. Res.-Atmos.,

114, D00G11, doi:10.1029/2008JD010902, 2009.

Malm, W. C., Schichtel, B. A., Pitchford, M. L., Ashbaugh, L. L.,

and Eldred, R. A.: Spatial and monthly trends in speciated fine

particle concentration in the United States, J. Geophys. Res.-

Atmos., 109, D03306, doi:10.1029/2003jd003739, 2004.

Matsumoto, M. and Nishimura, T.: Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random num-

ber generator, ACM Trans. Model. Comput. Simul., 8, 3–30,

doi:10.1145/272991.272995, 1998.

Millet, D. B., Donahue, N. M., Pandis, S. N., Polidori, A., Stanier,

C. O., Turpin, B. J., and Goldstein, A. H.: Atmospheric volatile

organic compound measurements during the Pittsburgh Air

Quality Study: Results, interpretation, and quantification of pri-

mary and secondary contributions, J. Geophys. Res.-Atmos.,

110, D07S07, doi:10.1029/2004jd004601, 2005.

Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F.,

Alves, C., Oliveira, C., de la Campa, A. S., Artinano, B.,

and Matos, M.: OC /EC ratio observations in Europe: Re-

thinking the approach for apportionment between primary and

secondary organic carbon, Atmos. Environ., 45, 6121–6132,

doi:10.1016/j.atmosenv.2011.08.045, 2011.

Polidori, A., Turpin, B. J., Lim, H. J., Cabada, J. C., Subramanian,

R., Pandis, S. N., and Robinson, A. L.: Local and regional sec-

ondary organic aerosol: Insights from a year of semi-continuous

carbon measurements at Pittsburgh, Aerosol Sci. Tech., 40, 861–

872, 2006.

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp,

E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R.,

and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile

Emissions and Photochemical Aging, Science, 315, 1259–1262,

doi:10.1126/science.1133061, 2007.

Saylor, R. D., Edgerton, E. S., and Hartsell, B. E.: Linear regres-

sion techniques for use in the EC tracer method of secondary

organic aerosol estimation, Atmos. Environ., 40, 7546–7556,

doi:10.1016/j.atmosenv.2006.07.018, 2006.

Turpin, B. J. and Huntzicker, J. J.: Secondary Formation of Organic

Aerosol in the Los-Angeles Basin – a Descriptive Analysis of

Organic and Elemental Carbon Concentrations, Atmos. Environ.

A-Gen., 25, 207–215, 1991.

Turpin, B. J. and Huntzicker, J. J.: Identification of Secondary Or-

ganic Aerosol Episodes and Quantitation of Primary and Sec-

ondary Organic Aerosol Concentrations during Scaqs, Atmos.

Environ., 29, 3527–3544, 1995.

Wang, Z., Wang, T., Guo, J., Gao, R., Xue, L. K., Zhang, J. M.,

Zhou, Y., Zhou, X. H., Zhang, Q. Z., and Wang, W. X.: Formation

of secondary organic carbon and cloud impact on carbonaceous

aerosols at Mount Tai, North China, Atmos. Environ., 46, 516–

527, 2012.

Yu, S. C., Dennis, R. L., Bhave, P. V., and Eder, B. K.: Primary and

secondary organic aerosols over the United States: estimates on

the basis of observed organic carbon (OC) and elemental carbon

(EC), and air quality modeled primary OC /EC ratios, Atmos.

Environ., 38, 5257–5268, doi:10.1016/j.atmosenv.2004.02.064,

2004.

www.atmos-chem-phys.net/16/5453/2016/ Atmos. Chem. Phys., 16, 5453–5465, 2016

http://dx.doi.org/10.5194/acp-14-9279-2014
http://dx.doi.org/10.1029/2008JD010902
http://dx.doi.org/10.1029/2003jd003739
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1029/2004jd004601
http://dx.doi.org/10.1016/j.atmosenv.2011.08.045
http://dx.doi.org/10.1126/science.1133061
http://dx.doi.org/10.1016/j.atmosenv.2006.07.018
http://dx.doi.org/10.1016/j.atmosenv.2004.02.064

	Abstract
	Introduction
	Evaluation of the minimum R squared method
	Data generation
	Scenario study
	Single primary source scenario
	Scenarios assuming two primary sources

	Impact of measurement uncertainty
	Impact of sample size
	Impact of sampling time resolution

	Caveats of the MRS method in its applications to ambient data
	Conclusions
	Acknowledgements
	References

