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Abstract. Statistical plasma theory far from thermal equilib-
rium is subject to Liouville’s equation, which is at the base
of the BBGKY hierarchical approach to plasma kinetic the-
ory, from which, in the absence of collisions, Vlasov’s equa-
tion follows. It is also at the base of Klimontovich’s approach
which includes single-particle effects like spontaneous emis-
sion. All these theories have been applied to plasmas with
admirable success even though they suffer from a funda-
mental omission in their use of the electrodynamic equa-
tions in the description of the highly dynamic interactions
in many-particle conglomerations. In the following we ex-
tend this theory to taking into account that the interaction
between particles separated from each other at a distance re-
quires the transport of information. Action needs to be trans-
ported and thus, in the spirit of the direct-interaction theory
as developed by Wheeler and Feynman (1945), requires time.
This is done by reference to the retarded potentials. We de-
rive the fundamental causal Liouville equation for the phase
space density of a system composed of a very large num-
ber of charged particles. Applying the approach of Klimon-
tovich (1967), we obtain the retarded time evolution equation
of the one-particle distribution function in plasmas, which
replaces Klimontovich’s equation in cases when the direct-
interaction effects have to be taken into account. This be-
comes important in all systems where the distance between
two points |Ag| ~ ct is comparable to the product of obser-
vation time and light velocity, a situation which is typical in
cosmic physics and astrophysics.

Keywords. Space plasma physics (General or miscella-
neous)

1 Introduction

The starting point of (classical) kinetic theory is Liou-
ville’s equation. Written in terms of the N,-particle Hamilto-
nian Hy,(q,p,t) and defining the 6-D phase space density
Na(q,p,t) of species a, both functions of space ¢ and mo-
mentum p, it becomes

Na = 0Na+[Hn, . Na] =0, (1)

where it is assumed that the particle number N, of species a
is conserved (along all dynamical phase space orbits). Oth-
erwise the right-hand side would contain the difference of
number sources and losses S, — L. This equation, under the
assumptions made, is completely general, applying to any
system consisting of N, >> 1 particles in interaction with an
external as well as with their mutual fields, of which they
function as sources. These fields are contained in the Hamil-
tonian and act via the Poisson bracket [...].

In view of an application to plasmas, the relevant field
is the electromagnetic field E, B, with the particles carry-
ing electric charges e, = Fe = ae (with a = —, +) being the
sources of the field. For simplicity, in the following, we re-
strict ourselves to electrons and ions (protons) of mass m,,
and gravity can be neglected on all scales small enough
for the electromagnetic fields to dominate. We also assume
global quasi-neutrality and the absence of any external fields.
Then E,B = (E,B)™ is the set of microscopic electromag-
netic fields produced solely by the microscopic charge and
current densities of the interacting particle components a,
which serve as their sources:
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where the exact 6-D phase space density is defined through

Na
Na(prg.)=D_8(p = pui (1)) (g — qui (1)) 3)
i=1

and g, (1), p,; (t) are the spatial and momentum phase space
trajectories which the particle ai performs in the phase space
under the action of the complete microscopic electromag-
netic field (E, B)™, which it feels at its location ¢ = g, (¢) at
time ¢. Liouville’s equation for the exact phase space density
can then be written in the form

a;\/ +£ v, N, +ea|[Em(q,t)
+ 2 /\Bm(q,t)] NG ] —o. @)
my ap

This is Klimontovich’s equation for the exact microscopic
phase space density NV, (p,q, t) in 6-D phase space (Klimon-
tovich, 1967). It is a tautology because it does not say any-
thing other than that particle number is conserved along all
the dynamical orbits of the particles in phase space under
the action of their mutual electromagnetic fields. The micro-
scopic fields it contains are given by Maxwell’s equations in
differential form:

Vg AB"™ = poj" + pnoeod E™, V,-B" =0,

Vy,ANE"=—8B", V,-E" =%Z,o;". (5)

a
The solution of this set of equations is not possible as it re-
quires knowledge of all microscopic particle orbits. One can,
however introduce some coarse graining procedure and de-
fine integrated distribution functions which ultimately reduce
the system to a set of equations known as Klimontovich—
Vlasov equations for a one-particle phase space distribution
in the presence of the average electromagnetic fields. This
procedure is very efficient, and we will follow it below in a
modified version.

2 Effect of retardation
The problem of the above equations is that they do not

account for the fact that the electromagnetic signal of the
presence and motion of the particles is transferred from
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the signal-emitting particles to the signal-receiving parti-
cles under consideration, i.e. the absorbers and reactors.
Their sources are the charge and current densities p))' (¢, t),
Jj™(q,t), which are assumed to be known at any instant ¢
in all space points g. Obtaining this knowledge is impossi-
ble as it requires instantaneous measurements at time ¢ of all
positions ¢ and momenta p of the particles present in real
space. Instead, the information must be synchronized among
all locations. This is taken care of in the Liénard—Wiechert
potentials, which explicitly account for the transport of infor-
mation from point ¢’ to point ¢. In this case in the Lorentz

gauge
Em = —qu)m(qa [) - 8tAm(qvt)’
B" =V, AA"(q.1), (©)

the correct scalar and vector potentials are to be expressed by
the retarded charge and current densities

m 3 / pa (q [)
‘“"’)‘462/ a—a1
AT (g.1) = uoz/ pe ,Jr;qqfl) o

taken at the retarded time
t'=t—|qg—4q'l/c, q#4 ®)

of arrival of all the signals emitted at ¢’ from all the particles
at spatial distance |q —¢q’| from the location of particle a; at q
and at time ¢. This also implies that in the expressions for the
charge and current densities N, — N, (p, q’,t) is a function
of the retarded time ¢’

Since all particles serve both as field sources and actors,
excluding their self-interaction, the use of the instantaneous
fields ignores the time-consuming signal transport and thus
cannot be correct. It is an approximation only that holds for
comparably small volumes such that, in the expression for
the retarded time, the spatial difference can be neglected.
Thus, the restriction on the distance between particles is that

|Agq| K cAt. €))

Clearly, this condition will readily be violated in large vol-
umes of cosmic and astrophysical size, where one must refer
to the above precise potentials and the fields resulting from
them in reference to the Lorentz gauge.

For single-particle—particle interactions, this problem has
been discussed in depth in seminal papers by Wheeler and
Feynman (1945, 1949). They showed that in a closed sys-
tem where no information is lost to the outside eliminating
any self-interaction of a particle with its proper electromag-
netic field implies that the fields are properly described via
retarded potentials only as done above. These potentials ac-
count for the emission of a signal by one particle and the ab-
sorption of the signal after some travel time by the target par-
ticle, causing this particle to interact. The emitted signals be-
long to advanced potentials which, when correctly included,
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subtract out, thereby restoring the required real-world causal-
ity. It is incorrect to assume that the information arrives mi-
croscopically instantaneously at the target, causing this to
act. The electromagnetic fields following from the Lorentz
gauge in the microscopic domain are

e

3 p"(q' 1 )) , 8:1’"((1’,#)]
t——— s ) @—) - —5—
clg—q'? clg—q’|
m o i"q' .ty 8 j" (g 1)
Brq= 40 [ | L) B
4r lg —q'l clg —q'|
ANg—1q'), (10)

which were first given, independently, by Panofsky and
Phillips (1962) and Jefimenko (1966). One should note that
in these expressions the charge p™ and current densities j™
are summed over all particle species a.

This explicit representation of the microscopic fields ac-
counts properly for the time delay between the signal emit-
ted from the total compound of primed particles to arrive at
the location g of the particle under consideration. Since the
microscopic charge and current densities are functionals of
the phase space density, these expressions contain the latter,
though in a more involved manner than when using the dif-
ferential forms of the electrodynamic equations, which do
not show where and whether the retardation of the signal is
taken into account. It is clear from these expressions that par-
ticles which are far away from the target do not affect it. The
main effect will always come from close neighbours.

3 Retarded charge and current densities

Taking the divergence of the microscopic electric field and
the curl of the microscopic magnetic field, one readily reads
the correct microscopic charge and current densities when
comparing the expressions with the microscopic Maxwell
equations:

1 oq(q',t)
p(g,t)=—>V, -/d3q’ [(“—
47,; ! lg —q'?

0 oy (q', 1) o Jju(q',t)
—— o a—d) -5 A
clg —q'| c*lqg — 4’|
. 1 jm(q/a t/) al jm(q/s t/)
m 3 7 a a
(q,t)= — ’V /\/d [ +
I 471; a Vig—qP " clg—qP

oi(q',t")
A q _q/ _ 8 /d3q/ [( a
(4= = g —q'P

m s s m ! 4!
+8tpa (‘I v/t2)) (q_q/)_atz.]a(q 71;)]] (12)
clg —q'l clg —q'l

These are the correct forms of the charge and current
densities summed over species @ which have to be used in
Maxwell’s equations in order to account for the retarded
transfer of information between the particles in the plasma.
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These expressions are implicit for both the charge and cur-
rent densities. In order to relate them to the exact microscopic
phase space distribution A, as defined in Eq. (3), one refers
to the representations (Eq. 2) of the charge and current densi-
ties. This shows that the functional dependence of the phase
space density is itself implicit. It depends on itself, taken at
all the positions ¢’ and retarded times #’.

The proper way of dealing with this problem is to focus on
the microscopic picture for as long as possible. There, all the
charged particles can be imagined as moving in a vacuum as
long as the medium is sufficiently dilute. By progressing to
a coarse-grained picture one may afterwards advance to con-
sidering a more continuous medium in which ultimately the
propagation properties of the signals will become modified
by the collective properties of the matter.

With these results it is convenient to express the micro-
scopic electromagnetic fields through the microscopic phase
space densities of the particle species:

e [ (N.(p,q',t)
Em( ,t)= _a/d3 d3 / (a—
! ;47760 PO\ Tlg—¢P
Ny (p,q', 1 N, W
t a(P‘I/z )) ( _q,)_P tza(psq/ ):|, (13)
clg —q'l c*lg —q'l
€q L0 3 3 /_PNu(PalI/,l‘/)
Bm(q,t)= a_/dpdq —— =t
Z‘ 4 | lg—q'P

aNa ,/,/ 7

clg—q'1?

These are the expressions of the electromagnetic field which
have to be used in the microscopic Liouville Eq. (4) for the
microscopic N -particle phase space density. Not only do they
couple the different particle species, thus leading to a cou-
pling between their phase space distributions, they also make
each microscopic distribution N, a functional of the distri-
butions taken at all different phase space locations which are
causally accessible via their retarded times of signal propa-
gation ¢'. Clearly, this is a substantial complication, which is
introduced into kinetic theory by the requirement of causal-
ity.

It is quite inconvenient to deal with all microscopic phase
space densities. We would rather have separate equations for
them. This can be achieved when observing that Eq. (4) is an
equation for ;. Thus, putting @ — b in the last expressions,
which means that we sum over all particle species b including
also b = a (with self-interaction excluded by the definition of
the retarded time), we have
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€0 lg —q'P clg—q')?
p aNy(p'.q' 1) 1o
— = = = p Al (g —a)A
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(p’/\/b(p/, q.1") poaNy(p'.q, t’))
lg—q']? clg—q'?
3
]] -%Na (p,q.1) =0. (15)

Here NV, (p,q,t), while N} (p’, q’, ") depends on the dummy
coordinates of all particles b of integration and on the re-
tarded time ' =t — |q — q’|/c, q #q’. Thus, in the ¢’ in-
tegration all particles of sort a are also included, with the
exception of the particle located at ¢ = ¢’ at time ¢.

The above Eq. (15) is the causal Liouville equation act-
ing on the microscopic N,-particle phase space density
N, (p,q,1) in the presence of a large number of charged par-
ticles interacting via their self-consistently generated elec-
tromagnetic fields. It extends Klimontovich’s equation to the
correct inclusion of the retardation effect of transmission of
information between the particles via electromagnetic fields.

The inclusion of information transport between the inter-
acting particles substantially complicates the basic kinetic
equation. It causes a delay in response, and thus refers to a
natural measuring process in which the particles are not only
generators of the electromagnetic field but also measure its
effect over a causal distances accessible to them. The delay
must thus necessarily cause decorrelation of the response.

There is another complication with this picture which
comes into play when considering large compounds of par-
ticles rather than single particles. Single charged particles
are assumed to move in the vacuum; the signal propaga-
tion between them takes place at light speed c. Immersed in
the comparably dense environment of all the other charged
particles, any light or radiation experiences radiation trans-
port, which is dominated by scattering, reflection, transmis-
sion and absorption, processes that occur due to the active
response of the environment to the presence of radiation and
depend on the capabilities of the medium to let electromag-
netic signals pass. In these processes various proper elec-
tromagnetic modes excited in the medium become involved.
These are solutions of the dispersion properties of the matter.
Hence, correctly accounting for the signal transport becomes
rather involved. For this reason the theory even in this com-
plex version applies to sufficiently dilute media to allow the
assumption of signal propagation in a vacuum.

In the following we will proceed along the same lines as
Klimontovich (1967) but will in the end refer to the above
field equations. This means that in defining the average dis-
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tributions, we will consider Liouville’s equation without ex-
plicit reference to the fields.

4 Average distribution functions

Dealing with the causal N-particle kinetic Eq. (15) is im-
practical. One wants to reduce it to an equation for a one-
particle distribution function in 6-D phase space for indis-
tinguishable particles of sort a. This is done by integrating
out in Eq. (3) all particle coordinates i > 1. Defining phase
space coordinates X = (p,q), Xai(1) = (Pu; (). q,;(1)), the
N-particle density becomes

Na
Na(x,1) =" 8(x —x4i(1)). (16)

i=1

Following Klimontovich (1967), let us define the one-
particle distribution of sort a of indistinguishable particles
by

fa(xal,t)zVa/de6xaz...d6x2Nax

x [ [d®xp...dx5y,. (17)
b#a

The N-particle probability distribution fy depends on all
the particle coordinates in phase space which have been in-
tegrated out in the last expression, including x,1, and V is
the spatial volume of particle a1, i.e. the volume all indistin-
guishable particles occupy. With its help the averaged phase
space density yields directly

N
Vfa(qu,f)=<Na(P,q,f))- (18)

Here, the right-hand side is the ensemble-averaged one-
particle phase space density (N, (p,q,t)), which is a func-
tional only of the indistinguishable dynamics of the particles
indexed by i = 1. Accordingly, averaging the product of two
phase space densities NV, (x,?) and N} (x’, 1) yields

(Na(X, I)Nb(x/J)) =n48.p8(x —x') fu(x,1)
+nanp fap(x,x',1), 19)

where the partial densities are defined as n, = N,/ V,, np =
Np/Vp and fup(x, x’, t) is the two-particle distribution func-
tion (Klimontovich, 1967). In the same way, higher-order av-
erage products of phase space densities can be reduced to
sums of distribution functions.

This procedure must be applied to the causal N-particle
kinetic Eq. (15). This is a formidable task if using the N-
particle kinetic equation in its explicit form. As stated ear-
lier, it is more convenient to remain with the implicit ver-
sions of the Lorentz gauge (Eq. 6) and the retarded potentials
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in which we replace the charge end current densities by the
general expressions given in Eq. (2). From Eq. (7), this yields

¢(qt)—z /d3 g Nap-a 1)

lg —q’|
Am(q,t)zzz_io/dzpd
a

3 /p Na(l’aq st)

4 /
g —q'l

with the time taken as the retarded time ¢’ thus depending on

the spatial coordinate ¢, which is to be integrated out.

’

; (20)

5 Causal one-particle kinetic equation

These expressions are to be used in the Lorentz gauge (Eq. 6)
when expressing the electromagnetic fields in the N-particle
kinetic Eq. (4). Formally, this is the same as if we used
Eq. (15) directly in deriving the corresponding causal equa-
tion for the one-particle distribution function of indistin-
guishable particles of sort a. It is only the electromagnetic
fields in Eq. (4) which depend on the retarded time. There-
fore, one can formally calculate the average to obtain

oMNa)  p
o +m_a Vg(Na)
+ea<[Em(q n+-L AB"(q, z)] aj\;“>=o. Q1)

The last term in this equation contains particles of kind a and
b as well as the retarded time coordinate. Nevertheless, by
carefully ordering the different contributions and variables
of integration one can bring it into a more convenient form.
For this we indicate all integration variables by primes ' and
rename the retarded time variable by a superscript R. Then
t' — tR =t—|q—q’|/c. After expressing the last term in an-
gular brackets for the average phase space density, this yields

a(Na> p €alb 3 743
R Z,,:4n60/d pd q<
p 0 1 ,
<vq+m;,c2 &) B mbczvq/\p }
((N «(p.q.ONp(p'.q', fR))) 0
op lg —q'| '

(22)

In this version of the phase space (ensemble) averaged equa-
tion for the time and one-particle phase space evolution of
the (ensemble) averaged one-particle phase space density
(NMa(p,q,1)), the retarded time appears only in the averaged
product. This equation is the master equation for construct-
ing the kinetic equation for the particle distribution func-
tion. Defining the fluctuation of particle number density as
SNa(x,1) = Ng(x,1) — (N (x, 1)) and referring to the corre-
lation function g,»(x,x’,t) defined through the average of
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the product of the fluctuations (Klimontovich, 1967)

(SNa(x. )N (X 1)) = nanpgap (x, X' 1)
+1a8ap8(x —x") fu, (23)

we finally arrive at the desired causal kinetic equation:
"bEaeb /d3 "By
47‘[6

1
———V,Ap
( mb02 a;) mpc? 1 P ]

! 1 +R
__(fa<p,q,r>fb(1/uq,f >) = Ca(p.q.1). (24)
ap lg —q'|

3fa P
Jt +ma afa=

The interaction term on the right-hand side arises from the
various interparticle collisions which are mediated by the
electromagnetic field. From the above definition of the fluc-
tuations and correlations, it is given by

1 nbeaeb/ Po'dda
Cu(p,q,t) = — p'd’q
«(p,q.1) - Eb Trc

Vo 4+ — pd : V/\
T 2 9t)  mpe? 4

((5/\/ a(p.q.1) SNp(p'.q', tR)))
dp lg —q'| '

(25)

Formally, these expressions, as claimed in the previous
sections, are rather similar to those which, for the non-
retarded interactions, had already been obtained by Klimon-
tovich (1967), with the main difference being that here they
are written in terms of the full electromagnetic field and con-
tain the spatial integration over all the remote particle space.
Referring to the full electromagnetic fields is necessary be-
cause of their role in the information transport and mainte-
nance of causality in absorber theory. The expressions above
are, however, very different from Klimontovich’s because
they account for the necessary causal relation between the
interacting particles, which is contained in their dependence
on the retarded time ¢®, by which the particles respond to the
transport of information. As a result of this response, the spa-
tial integral appearing in these expressions contains an inte-
gration over ¢® and thus also the primed space coordinate q’.
This complicates the calculation substantially and in an ana-
Iytical treatment possibly requires the introduction of further
approximations. Nevertheless, the above final equation with
the implicitly given collision term extends Klimontovich’s
theory to the explicit reference to causality.

Referring to Eq. (22) the collision term can also be ex-
pressed via the fluctuations of the phase space density SN, =
N — (M) and the fluctuations of the electromagnetic fields
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(8E,8B) = (E,B)"™ — ((E,B)™). This yields
€a 3 743 7 0

Colx,t) === [ &q'd’p'| —(8ESN,)
ng ap

-2 iA(chs/\c,)),
myg Op
where the average refers to the integration over all particle
space i > 1, and all quantities still depend on the retarded
time & which requires integration with respect to ¢’. It is,
however, more convenient to make use of the representation
via the correlation function, in which case, from Egs. (23)
and (25) we have

npeaeh [ 3 ;3 p 9
Cilx,t) = — [ d°p'd V, —_
a(x.1) ;47‘[60 / P q[( q+mbczat)
igl/lb(xvx/7tR)

1
mpc? 1 ip lg—q

(26)

This is the general causal collision integral term including the
interactions between particles indexed by i = 1 and i = 2.

From all these expressions one can again obtain an equa-
tion for the fluctuation of phase space density SN, as well as
for the fluctuating fields expressed through the space charge
density and current fluctuations.

With knowledge of the collision term on the right or some
of its approximations, Eq. (24) provides the basis for a lin-
earized kinetic theory to any order, including particle and
time-retarded interaction effects. For this, one defines the
fluctuations of the one-particle distribution function in the
usual way as

8fa= fa— far 27

where f, is the one-particle “equilibrium” distribution
around which the fluctuations occur. The distribution is ei-
ther an equilibrium solution of the stationary kinetic Eq. (24)
or some of its large-scale solutions with scales exceeding
those of the fluctuations such that the average of the fluc-
tuation taken over these scales Af, =0 vanishes. Neglect-
ing the collision term by putting C, = 0 and subtracting the
fluctuation averaged kinetic equation, the causal collisionless
kinetic equation for the fluctuations then becomes

08fa . P npeaey 3,3,
+m—a-vq5fa—27/dpdq

ot Z dmey

NI A N ] G
X( ’1+mbc2$)_mbc2 ! p}la(
. B b, 1R =5 f.8 fy
Sfae,0) fox't )+|J;a(_x‘,;|) 8 fp(x', tR) 5fu5fb):0. (28)

This equation contains the correlations of the fluctuations
8 f46 fp, which are neglected in a linearized theory.

Clearly, the above equations resemble the well-known
approach to plasma kinetic theory. It should, however, be
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pointed out that even when dropping the collision term on
the right in a Klimontovich—Vlasov approach in linear the-
ory, the retardation effect remains in the third term on the
left-hand side in Eq. (24), which is the lowest-order electro-
magnetic field-charged particle interaction term.

6 Discussion
6.1 Remarks

The one-particle kinetic equation (Eq. 24) obtained here
is fundamental to all electromagnetic plasma interactions.
Since these are electromagnetic, the purely electrostatic ap-
proximation when applied must be justified separately. This
is not easy because in a strictly electrostatic approach the
field response is instantaneous, which contradicts electrody-
namics and relativity, on which it is based. It can be upheld if
the information transport occurs by electrostatic waves only
but still requires some assumption about the brevity of time
delay. This assumption is that the electrostatic fluctuations
occur on a vastly longer timescale than the travel time of
light from the remotest position of particles. Thus, one re-
stricts oneself to sufficiently small plasma volumes in which
the information transport may occur without some remark-
able delay.

Under such conditions Klimontovich—Vlasov theory ap-
plies, and the complications introduced by reference to the
retarded time can be neglected. On the other hand, in very
large volumes like in cosmical and astrophysical applications
transport of information is provided by radiation transport
and becomes rather slow. Hence, remote volumes will not
respond immediately and not even within light-propagation
time, which can then be treated again in the simplified the-
ory.

However, the current investigation is necessary as a clar-
ification of two points: Firstly, that the interaction among
different volumes in plasma in principle cannot be consid-
ered to occur instantaneously. Secondly, the inclusion of re-
tarded times gives a clue to the direction of time — as briefly
discussed below — which in many-particle systems has only
one direction, forward. Events are delayed by information
transport and thus decorrelate even though they become rel-
ativistically synchronized by accounting for the information
transport. This should necessarily contribute to dissipation
because information becomes diffused by passing across the
plasma from one particle to another.

6.2 Direction of time

Reference to the retarded potentials and the effect of emis-
sion and absorption implies a distinction between advanced
and retarded effects. This in itself unexpectedly brings up the
problem of direction of time, this time not in electrodynam-
ics like in absorber theory, but also and directly in the mi-
croscopic theory of phase space evolution. The delayed and
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integrated response of the charge and current densities at lo-
cation ¢ and time ¢ to the variation in the corresponding den-
sities at all locations ¢’ and ¢’ takes account of causality and
thus of the direction of time. Ignoring the effect of time retar-
dation, the original Liouville equation is clearly symmetric in
time. It does not distinguish between processes proceeding
forward and backward in time. This is one of the big prob-
lems in physics, which possibly only resolves on a macro-
scopic level. When making reference to signal retardation in
absorber theory, this symmetry might be broken from the re-
tarded time Eq. (8) as suggested. By replacing t — —t, one
has

'=—(t+lg—q'l/c). (29)

and thus, with constant velocity of light ¢, the negative re-
tarded time " — —t’ becomes advanced. In order to restore
retardation as required by the Wheeler—Feynman absorber
theory, one needs to redefine the velocity of light as ¢ — —c.
In a time-symmetric many-particle theory, the negative time
direction would come into accord with absorber theory only
under the requirement that time velocity c is negative there,
i.e. one has to take the negative root ¢ = —1/,/€oto. There
is no obvious reason why this should be imposed, and it thus
becomes a philosophical question. Should ¢ be considered
the inverse positive or negative root of the product of suscep-
tibilities of the vacuum, or should ¢ be interpreted as a pos-
itive speed, the speed of light, with reference to a distance
travelled by time in either positive or negative time?

This question cannot be answered a priori. Absorber the-
ory is restored in the second case in the causal many-particle
theory. When considering the vacuum as a medium in which
the dispersion of electromagnetic waves is described by a
dispersion relation w? = k*/equo, interpreting this as the
relation between photon energy and momentum, one has
hw = £hk/./1to€0. Since photon energies should be real and
positive, a negative sign of the root implies negative wave
numbers or negative photon momenta and thus also spatial
inversion.

6.3 Conclusions

The present investigation extends Klimontovich’s approach
to kinetic plasma theory to the inclusion of signal retarda-
tion effects. It applies to systems of indistinguishable charged
particles interacting via their self-consistent electromagnetic
fields. One can trivially extend it to the presence of external
fields like stationary or variable magnetic fields caused by
external sources.

A number of points may be worth mentioning. First, the re-
sult looks simple as it seems that simple replacement of time
with retarded time would have been sufficient to obtain it.
This is true, but it is not proof for the result’s correctness. For
this reason we have chosen to follow the derivation step by
step, which is the usual way of confirming a hypothesis. This
required using the basic equations derived by Klimontovich
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(1967) in his fundamental approach; it also required refer-
ence to the famous absorber theory (Wheeler and Feynman,
1945, 1949) and the Liénard—Wiechert potentials on which it
was based. The result is, however, substantially more compli-
cated than Klimontovich’s by the fact that the retarded time
itself depends on the primed space coordinate ¢’, which is
an integration variable, and on space itself. This complicates
any calculation. The main physical consequence is, however,
that the retardation effect restricts applications to the domain
which in observation time can be accessed by the propaga-
tion of light. For example, the observation of plasma waves
in the Earth’s foreshock at a frequency of w/2mw ~ 30kHz
implies that the observed source of emission must have been
located in a region of distance Ax < 10km. Though this is
not a severe restriction for Langmuir waves, which are lo-
cally excited, application to astrophysical conditions is more
interesting. The mechanism of the modulation of solar ra-
dio emissions at, say, 300 MHz with a frequency of 10 Hz is
restricted to a region substantially smaller than 30 000 km,
which in any theory of such a mechanism must be taken
into account in the calculation. In galactic astrophysics, typ-
ical scales are several parsecs, referring to times of a few
lightyears, which sets bounds on plasma mechanisms which
could be evoked to participate in a causal relation.

The same procedure may also be applied to other classi-
cal fields since in all interactions the transport of information
from the agent to the absorber takes time. This is the case in
gases where sound waves or gravity waves can be excited and
these transport the information from one fluid element to an-
other place to affect the dynamics of other elements. In these
cases it is not the photons but phonons that transport energy
and information. Application to these systems lies outside the
intention of the present work.
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