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Abstract

Gholizadeh A., Borůvka L., Saberioon M.M., Kozák J., Vašát R., Němeček K. (2015): Comparing different data pre-
processing methods for monitoring soil heavy metals based on soil spectral features. Soil & Water Res., 10: 218–227.

The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Ex-
cessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their 
persistent nature and indefinite biological half-lives, potentially toxic metals can accumulate in the food chain 
and can eventually endanger human health. Monitoring and spatial information of these elements require a large 
number of samples and cumbersome and time-consuming laboratory measurements. A faster method has been 
developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with 
cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) 
region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second 
derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum 
removal (CR) were employed after smoothing with Savitzky-Golay to improve the robustness and performance of 
the calibration models. According to the criteria of maximal coefficient of determination (R2

cv) and minimal root 
mean square error of prediction in cross-validation (RMSEPcv), the SVMR algorithm with FD preprocessing was 
determined as the best method for predicting Cu, Mn, Pb, and Zn concentration, whereas the SVMR model with 
CR preprocessing was chosen as the final method for predicting Cd. Overall, this study indicated that the Vis-NIR 
reflectance spectroscopy technique combined with a continuously enriched soil spectral library as well as a suitable 
preprocessing method could be a nondestructive alternative for monitoring of the soil environment. The future 
possibilities of multivariate calibration and preprocessing with real-time remote sensing data have to be explored.
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Environmental problems caused by mining are 
considerable. Those affecting surface soils and veg-
etation are particularly substantial, because in any 
surface mining the land surface has to be removed 
to expose the mineral resource being mined, and 
in deep mining, any waste material usually has to 
be deposited at the surface. Consequently, careful 
programs of conservation and restoring of surface 
soils must be practiced (Bradshaw 2000).

Contamination of soil is by far one of the most 
significant effects of mining. Due to their persis-
tent nature and long biological half-lives, elevated 
concentrations of heavy metals in soils can lead 
to their accumulation in the food chain, and can 
eventually influence human health (Wu et al. 2005; 
N’Guessan et al. 2009; Xie et al. 2012). Heavy metal 
concentrations in soils can be measured, but their 
determination is dependent on large-scale sampling 
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and physical or conventional analysis techniques. The 
negative side to this is that they are time-consuming, 
inefficient, and expensive when applied to large scale 
contaminated lands (Ren et al. 2009). Moreover, based 
on Xie et al. (2012), conventional methods for soil 
monitoring depend on the collection of numerous 
soil samples, followed by laboratory analyses, which 
involve complex processes such as separation and 
pre-concentration. In practice, sampling density and 
analytic diversity are frequently less than sufficient 
due to significant costs of analyses.

Visible-near infrared ( Vis-NIR) ref lectance 
spectroscopy is a rapid, non-destructive, reprodu-
cible, and cost-effective analytical method (Reeves 
2010). It provides knowledge of the state of soil, giving 
results in real-time due to its portability. Furthermore, 
this method has been adjusted to analyze the spec-
trally active properties of sediment and soil samples. 
For example, many studies have shown that, under 
laboratory conditions, some soil constituents which 
have spectral features, such as Fe2O3 (Ji et al. 2002), 
carbonates (Ben-Dor & Banin 1990), organic matter 
(Dalal & Henry 1986; Reeves et al. 2002), and clay 
(Ben-Dor & Banin 1995; Kooistra et al. 2003), can 
be accurately determined by reflectance spectros-
copy. Moreover, recent studies have shown that via 
the inter-correlation between spectrally featureless 
constituents and constituents with spectral features, 
even featureless soil constituents can be predicted by 
soil reflectance spectra. Although potentially harmful 
elements in soils at low concentrations do not have 
spectral features, the increased input of these elements 
from anthropogenic sources can often be absorbed or 
bound by these spectrally active constituents such as 
soil organic matter (SOM) and clay (Song et al. 2012). 
This makes it possible to study the characteristics of 
heavy metals in soils using Vis and NIR spectroscopy 
(Wu et al. 2005). Kooistra et al. (2001) found that 
there was a positive correlation between the SOM 
content and the contents of Zn and Cd in floodplains 
along the river Rhine in the Netherlands, and based 
on this correlation the Zn and Cd contamination 
levels were predicted. Kemper and Sommer (2002) 
successfully used reflectance spectroscopy to estimate 
Hg, Pb, and Sb contents in the Aznalcollar Mine area 
in Spain. Correlation analysis revealed that the most 
important wavelengths for prediction were attributed 
to absorption features of iron (Fe) and iron oxides 
(Fe2O3) in soils.

The main challenge limiting the application of 
spectroscopy for heavy metals assessment is finding 

suitable data preprocessing and calibration strate-
gies. Choosing the most robust technique can help 
to achieve a more reliable prediction model. Spectral 
preprocessing methods are employed to remove any 
inappropriate information, which cannot be handled 
correctly by the modelling techniques (Gholiza-
deh et al. 2013). Actually, these methods aim to 
decrease the noise and enhance possible spectral 
features connected with the property studied. Some 
frequently used preprocessing methods, such as 
multiple scatter correction (MSC), standard normal 
variate (SNV), Savitzky-Golay, continuum removal 
(CR) and derivatives, which are mostly used in the 
multivariate calibration techniques for spectroscopy, 
can be carried out to determine the best data.

Calibration refers to relating a set of spectral param-
eters that are derived from the spectral information to 
the materials in question. Several common methods 
have been adopted to use multivariate calibration 
methods to extract the relevant part of the informa-
tion for a very large dataset in soil applications. These 
methods include stepwise multiple linear regression 
(SMLR) (Vasques et al. 2008), principle component 
regression (PCR) (Nocita et al. 2013), partial least 
squares regression (PLSR) (Stevens et al. 2010), 
random forests (RF) (Viscarra Rossel & Behrens 
2010; Ji et al. 2012), artificial neural networks (ANN) 
(Hidaka et al. 2011), and support vector machine 
regression (SVMR) (Stevens et al. 2010; Chen et al. 
2012). According to some researchers, using SVMR can 
overcome the problems of other calibration methods, 
as the above-mentioned calibration methods require 
the creation of robust and generalized models due to 
their potential tendency to over-fit the data (Vapnik 
1995; Gholizadeh et al. 2013). Based on work by 
Vapnik (1995) and Gholizadeh et al. (2015), SVMR 
is a supervised non-parametric statistical learning 
technique; thus, it represents a different method class 
compared with the previous techniques.

To the best of our knowledge, comparison of dif-
ferent preprocessing methods has not yet been co-
mmonly used to analyze heavy metals, in the spectra 
domain. Therefore, the objective of this study was to 
evaluate the feasibility of Vis-NIR spectroscopy in 
the rapid concentration prediction of selected heavy 
metals, including Mn, Cu, Cd, Zn, and Pb, and to 
compare the performance of different preprocessing 
algorithms and the SVMR method for multivariate 
calibrations, in the vicinity of anthropogenic soils 
on brown coal mining dumpsites of the Czech Re-
public. It is envisaged that this rapid and inexpensive 
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method for obtaining accurate information on heavy 
metals concentrations would be valued for providing 
reference data for monitoring the soil environment 
by proximal and remote sensing.

MATERIAL AND METHODS

Study area and soil sampling. Six dumpsites locat-
ed in mines Bílina and Tušimice (Figure 1), the Czech 
Republic, were selected: Pokrok (50°60'N; 13°71'E), 
Radovesice (50°54'N; 13°83'E), Březno (50°39'N; 
13°36'E), Merkur (50°41'N; 13°30'E), Prunéřov 
(50°42'N; 13°28'E), and Tumerity (50°37'N; 13°31'E).

All the dumpsites are formed by clays. On a part 
of each dumpsite, a cover with natural topsoil was 
spread in an amount of approximately 2500 to 3000 t 
per ha one year before sampling (Borůvka et al. 
2012). The topsoil material originated from humic 
horizons of natural soils of the region, particularly 
Vertisols, and partly also Chernozems (clayic and 
haplic). The topsoil was not mixed with the dumpsite 
material. Individual soil properties differed slightly 
between the six dumpsites. Some characteristics of 
the soils, including pH, SOM, and texture were mea-
sured using the bulk control subsamples, since they 
are important environmental indicators. Specifically, 
the soil pH range for the whole area was 5.3–8.5. The 
SOM content range was 0.4–3.8%. Texture analysis, 
which was performed by the pipette method, showed 
that soil of the area had 37.30% clay, 33.10% sand, 
and 29.60% silt on average.

Disturbed and undisturbed soil samples were col-
lected at all dumpsites randomly, as follows: Pokrok 
(103), Radovesice (40), Březno (25), Merkur (38), 
Prunéřov (48), Tumerity (10). Samples were taken 
from the depth of 0–30 cm (Song et al. 2012; Xie 

et al. 2012) corresponding to the common depth of 
a ploughing soil layer, as these soils will be used as 
arable land in the future. The depth of the topsoil 
cover, where it was applied, was also at least 30 cm.

Soil analysis. All samples were placed into plastic 
bags, stored in cool dark containers, and brought to the 
laboratory for conventional analyses of heavy metals 
(including Mn, Cu, Cd, Zn, and Pb) and reflectance 
measurements. Small quantities of dried soil samples 
were ground to 2 mm mesh. Total concentrations of 
heavy metals were then determined by digesting soil 
samples (< 0.149 mm fraction) with a mixture of con-
centrated hydrochloric and nitric acids (4:1, v:v) (Mc-
Grath & Cunliffe 1985; Xie et al. 2012), and then 
analyzed by inductively coupled plasma optical emission 
spectrometry (ICP-OES). Samples and standards were 
matrix matched and all analyses were performed in trip-
licates. Moreover, organic carbon (OC) was measured 
by combusting samples from which carbonates were 
removed using 1 N HCl in a NCS Analyzer Flash 2000 
(Thermo Scientific, Massachusetts, USA) and the clay 
content was determined with the hydrometer method 
(Buurman et al. 1997; Kooistra et al. 2001).

Reflectance spectroscopy measurement. Reflec-
tance was measured in the 350–2500 nm wavelength 
range by a FieldSpec 3 spectroradiometer (Analytical 
Spectral Devices Inc., Colorado, USA) with a contact 
probe. The spectral resolution of the spectroradiometer 
was 3 nm for the region 350–1000 nm and 10 nm for 
the region 1000–2500 nm. Furthermore, the radiom-
eter bandwidth from 350–1000 nm was 1.4 nm, while 
from 1000–2500 nm it was 2 nm. Samples were illu-
minated using a stable direct current powered 50 W 
tungsten-quartz-halogen lamp, which was mounted 
on a tripod. The angle of incident illumination was 
15°, and the distance between the illumination source 
and the sample was 30 cm. A fibre-optic probe with 
8° field of view was used to collect reflected light from 
the sample. The probe was mounted on a tripod and 
positioned about 10 cm vertically above the sample. 
The sample dish was over-filled with soil sample and 
then levelled off using a blade to ensure a flat surface 
flush with the top of the dish. The final spectrum was 
an average based on 20 iterations from 4 directions 
with 5 iterations per direction to increase the signal-
to-noise ratio. Each sample spectrum was corrected 
for background absorption by division of the refer-
ence spectrum of a standardized white BaSO4 panel.

Preprocessing methods and validation. Outliers 
are commonly defined as observations that are not 
consistent with the majority of the data (Pearson 2002; 

Figure 1. Map of the sampling locations in the Czech Re-
public; A − area of open cast mining Tušimice, B − area of 
open cast mining Bílina
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Chiang et al. 2003), such as observations that devi-
ate significantly from normal values. An outlier can 
be defined as (i) a spectral outlier when the sample 
is spectrally different from the rest of the samples, 
and (ii) a concentration outlier when the predicted 
value has a residual difference significantly greater 
than the mean of the predicted values (> 2.5 times). 
For all samples, outliers were detected and eliminated 
before establishing the regression model (Wu et al. 
2005). Murray (1988) noted that removing outliers 
may increase prediction accuracy; hence the outliers 
were left out.

In order to calibrate a model that provides accurate 
predictive performance about the quantity of heavy 
metals contained in each soil sample, the captured 
soil spectra together with laboratory data of heavy 
metals were imported into R software (R Develop-
ment Core Team 2011) to be processed. From a 
total of 264 samples taken for laboratory analysis, 
mostly subsets were used to determine the content 
of heavy metals. The number of samples subjected 
to individual analysis was then as follows: the entire 
data were tested for Mn; 148 samples were tested 
for Pb; 115 for Cu and Zn, and 104 samples for Cd.

The first step in spectroscopy analysis often consists 
of preprocessing to assess and possibly improve data 
quality. This step may take more time than the analy-
sis itself. Spectral preprocessing techniques consist 
of a variety of mathematical methods for correcting 
light scattering in reflectance measurements and data 
enhancement before the data is used in calibration 
models. Usually, preprocessing techniques can be 
divided into four categories, namely smoothing, 
baseline removal, scaling, and normalization (Xie 
et al. 2012). The first category is smoothing, which 
is used for noise (random measurement error) re-
duction. Savitzky-Golay smoothing as one of the 
popular choices is an averaging algorithm that fits 
a least squares polynomial to the data points, and 
then the value to be averaged is predicted from the 
polynomial (Savitzky & Golay 1964). In some 
forms of spectroscopy, one can encounter a baseline, 
or “background signal” that is far away from the zero 
level. Since this influences measurements like peak 
height and peak area, it is of utmost importance 
to correct for such phenomena; thus, the second 
category of preprocessing is the baseline removal. 
There are several baseline removal methods available 
such as spectral derivative transformation, which is 
one of the best methods for removing baseline ef-
fects (Duckworth 2004): the first derivative (FD) 

is very effective for removing baseline offset; the 
second derivative (SD) is very effective for both the 
baseline offset and linear trend from a spectrum 
(Duckworth 2004; Rinnan et al. 2009). Another 
way to remove scatter effects in spectroscopy is MSC, 
which is a transformation method used to compensate 
for multiplicative and/or additive scatter effects in 
the data (Chu et al. 2004). Another preprocess is 
range scaling. This method is applicable when the 
total intensity in the spectra is sample-dependent, 
and samples need to be scaled in such a way that 
intensities can be compared. Among different range 
scaling methods, SNV is a widely used technique, 
especially in NIR applications, which corrects the 
multiplicative interferences of light scatter and par-
ticle size by centering and scaling each individual 
spectrum (Duckworth 2004). In other words, after 
scaling, every spectrum will have a mean of zero and 
a standard derivation of 1. Another method for pre-
processing is normalization which is normally used 
for absorption feature enhancement and identifica-
tion. This study used continuum removal (CR) as a 
normalization method, which generates new spectral 
data by dividing the envelope curve of a continuum 
on raw reflectance spectra (Clark & Roush 1984). 
CR is effective at isolating specific absorption fea-
tures, and removing the effects of changing slopes 
and overall reflectance levels (Kokaly et al. 2003).

In this study, prior to all further spectra treatments, 
the noisy part of the spectra range (350–399 and 
2450–2500 nm) was cut out in order to remove the 
artificial noise caused by the spectroradiometer 
instrument. Then, 7 forms of spectra preprocessing 
methods were used to remove the non-constituent-
related effects in spectra data and to develop optimal 
models by SVMR for estimating soil properties. 
The six forms were raw reflectance (R), SNV, MSC, 
Savitzky-Golay smoothing with a second-order poly-
nomial fit and 11 smoothing points, the FD and the 
SD transformation, and CR. For SVMR prediction 
we used radial basis function kernel contained in 
e1071 R package (Meyer et al. 2012). All spectral 
preprocessing transformations were also carried out 
using R package.

Accuracy assessment of techniques. Assessment 
of the methods accuracy was carried out using a 
leave-one-out cross-validation approach (R2

cv and 
RMSEPcv). The RMSEPcv was computed as follows:
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where:
y'i	 – predicted value
yi	 – observed value
N	 − number of samples

The smallest RMSEPcv value was related to the 
optimal calibration model.

In fact, R2 indicates the percentage of the variance 
in the Y variable that is accounted for by the X vari-
ables. An R2 value between 0.50 and 0.65 indicates 
that more than 50% of the variance in Y is accounted 
for by variable X, so that discrimination between high 
and low concentrations can be made. An R2 value 

in the range of 0.66–0.81 indicates approximate 
quantitative predictions, whereas R2 of 0.82– 0.90 
reveals a good prediction. Calibration models hav-
ing an R2 value above 0.91 are considered excellent 
(Williams 2003).

RESULTS AND DISCUSSION

Soil samples descriptive statistics and correla-
tions. Descriptive statistical results of soil parameters 
in the six dumpsites are shown in Table 1. The com-
parison of coefficients of variation (CV) of different 

Table 1. Descriptive statistics of measured soil parameters in the studied sample set according to location

Item
Cu Mn Cd Pb Zn Clay SOM

(mg/kg) (%)
Pokrok (n = 103)
Min   5.50 198.3 0.01   7.60   8.30   7.50 0.41
Max 35.70 869.1 0.73 42.40 127.10 53.26 3.83
Mean 13.76 599.4 0.27 18.43 25.26 36.72 1.62
SD   3.58 118.6 0.11   5.32 15.77   8.65 0.47
CV (%) 26 20 40 29 62 24 29
Radovesice (n = 40)
Min   6.42 254.1 0.03   4.70   9.38 18.12 0.89
Max 22.10 844.1 0.30 49.60 66.85 52.92 2.05
Mean 14.20 541.3 0.17 13.70 21.98 41.91 1.35
SD   3.45 125.1 0.05 6.40 11.15   7.75 0.24
CV (%) 24 23 30 47 51 19 18
Březno (n = 25)
Min   9.01 473.3 0.00 10.90 11.49 28.93 1.18
Max 38.81 885.8 0.37 21.60 200.27 61.41 1.78
Mean 14.37 680.9 0.16 14.17 41.50 39.98 1.53
SD   5.95 105.9 0.11   2.97 41.62   5.97 0.18
CV (%) 41 16 64 21 100 15 12
Merkur (n = 38)
Min   7.29 318.0 0.04   9.30   6.95 17.69 0.98
Max 16.76 787.3 0.27 55.90 32.22 59.87 2.16
Mean 12.22 590.0 0.16 17.53 13.56 47.45 1.59
SD   1.77 100.7 0.06   7.23   4.19   6.54 0.26
CV (%) 14 17 39 41 31 14 16
Prunéřov (n = 48)
Min   8.40   41.6 0.00   0.90   6.60   6.09 0.95
Max 92.24 984.0 0.24 24.80 213.11 60.67 3.58
Mean 15.81 552.6 0.11 14.38 26.83 40.49 1.84
SD 14.36 224.4 0.06   4.82 39.32 12.58 0.49
CV (%) 91 41 55 34 147 31 27
Tumerity (n = 10)
Min 12.29 496.8 0.00   9.50 15.50 31.63 0.76
Max 20.34 1027.6 0.20 14.50 48.56 68.40 1.68
Mean 15.03 753.1 0.12 12.25 25.61 50.74 1.28
SD   2.40 192.3 0.05   1.38 10.32 11.53 0.36
CV (%) 16 26 44 11 40 23 28

SD – standard deviation; CV – coefficient of variation
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contaminants showed that among all parameters 
Zn had the highest CV, especially in the Prunéřov 
area (147%). However, in Merkur and Tumerity, the 
highest CV that shows the most variety belongs to 
Cd, as compared to other measured parameters. In 
contrast, Pb in Tumerity had the lowest CV (11%), 
which shows it is more homogeneous than the other 
properties. CV of clay and SOM were lower than CV 
of all contaminants (12% < CV < 31%) except those 
in Pokrok and Tumerity, which had rather low CV.

In the study area, the estimated mean concentra-
tion of Cd (0.27 mg/kg) and Pb (18.43 mg/kg) in 
Pokrok was higher than at the other locations. Nev-
ertheless, most values are under current limit values 
(1 and 70 mg/kg for Cd and Pb, respectively) given 
by Czech legislation for agricultural soils (Ministry 
of Environment 1993). An exception can be values of 
Zn in some soil samples that exceed the limit values 
(100 mg/kg) significantly, suggesting strong anthro-
pogenic contamination from the mining industries 
nearby. The long history of metal manufacturing and 
processing resulted in both point and diffuse pollu-
tion of heavy metals, especially Zn in the study area.

Table 2 highlights the linear correlation coefficients 
between all the examined elements for 264 samples.

The relationships between clay, SOM, and heavy 
metals exhibited different features, which reflected 
different metal-affinity in different circumstances 
(Xie et al. 2012). Based on all samples, the correla-
tion between clay and SOM for the total data set was 
moderate (r = 0.71). However, SOM were positively 
correlated with all heavy metals except Mn concentra-
tion (0.20 < r < 0.71), for the clay content, moderate 
to low correlations were found with Zn (r = 0.46) 
and Cd (r = 0.43). These results give evidence to 
earlier observations (Kooistra et al. 2001) that the 
amounts of metals contained in river floodplains 
was determined by the contents of clay and SOM. 
Actually, Zn and Cd had significant correlations with 

both clay and SOM, whereas Cu and Pb only showed 
a significant correlation with SOM. Interestingly, Mn 
showed no dependence to clay and SOM.

Spectral response of soil samples. Selected rep-
resentative soil sample spectra are illustrated in 
Figure 2, and it can be seen that the soil samples had 
similar Vis-NIR reflectance spectra. The Vis-NIR 
reflectance spectra of soil had weak absorption peaks 
overlapping at around 430, 500, 530, and 650 nm in 
the Vis region. Fe2O3 can absorb or bond with other 
metal cations or hydroxyl groups, and this has a 
spectral activity in the Vis region (Wu et al. 2005). 
Therefore, the peaks in the Vis region were mainly 
related to electronic transitions of the Fe3+ in the 
goethite or hematite component of the Fe2O3 (Ji et 
al. 2002; Wu et al. 2005).

In the NIR region, O-H bonds in the SOM and clay 
minerals would have a general impact on the reflectance 
spectra (Kooistra et al. 2003; Ren et al. 2009; Song 
et al. 2012). The 1400 nm peak is related to O-H bonds 
in the hydroxyl or clay minerals, such as smectite and 
illite (White 1971; Xie et al. 2012) and the 1900 nm 
peak is mainly related to the absorption peak of the 
O-H bond in water (Clark et al. 1990). The 2200 nm 
peak is a combined result of the O-H bonds found 
in clay minerals such as kaolinite, illite, and smectite 

Table 2. Pearson’s correlation coefficients between measured soil properties

Cu Mn Cd Pb Zn Clay SOM
Cu 1
Mn 0.15* 1
Cd 0.24* 0.56 1
Pb 0.43** 0.27** 0.40** 1
Zn 0.85** 0.23** 0.23* 0.44** 1
Clay –0.30 0.23 0.43* –0.26 0.46* 1
SOM 0.31** 0.14 0.45** 0.20** 0.23** 0.71** 1

SOM – soil organic matter; significant at *P = 0.05 and **P = 0.01, respectively (two-tailed)

Figure 2. Representative Vis-NIR spectra of soil samples
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(Madejova & Komadel 2001; Nayak & Singh 2007). 
Additionally, there were some weak peaks between 
2250 and 2450 nm, which were associated with the 
C-H bonds in SOM, including lignin and humic acid 
(Ben-Dor et al. 1997; Song et al. 2012), as well as 
carbonates (White 1971; Ben-Dor & Banin 1990).

Data preprocessing and optimal SVMR algorithm. 
In order to establish a robust prediction model and 
explore the influence of spectral sampling interval on 
the prediction accuracy, different spectral preprocess-
ing techniques were performed. A visual inspection of 
the spectra allowed detection of some spectral readings 

possibly affected by measurement errors. These were 
removed, and the final spectral library had a total of 
264 soil spectra. Smoothed spectra by Savitzky-Golay, 
and all preprocessed spectra of all selected soil samples 
with different preprocessing techniques in the location 
that had the most samples (Pokrok) are shown in Fig-
ure 3. Other locations also showed the same pattern.

Support vector machine regression (SVMR) was 
applied for constructing optimal models. Accord-
ingly, the SVMR method with the FD preprocessing 
was determined as the final technique for predict-
ing Cu, Mn, Pb, and Zn concentration, whereas the 

Figure 3. Spectra of soil samples from Pokrok dumpsite preprocessed using different methods
SNV − standard normal variate; MSC − multiplicative scatter correction; CR − continuum removal
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SVMR with the CR preprocessing was chosen as 
the best algorithm for predicting Cd. Table 3 shows 
cross-validation results of the SVMR for the heavy 
metals concentration using different preprocessing 
methods on the spectra.

According to the criteria of minimal RMSEPcv 
and maximal R2

cv, the SVMR method with the FD 
pretreatment (RMSEPcv = 4.02, 97.18, 2.97, 13.67 
and R2

cv = 0.78, 0.60, 0.68, 0.77) were considered as 
the foremost techniques for predicting Cu, Mn, Pb, 
and Zn, respectively. However, the CR preprocess-
ing method was chosen as the best algorithm for Cd 
(RMSEPcv = 0.24, R2

cv = 0.04).
Furthermore, MSC and SNV spectral preprocessing 

gave the lowest values for all heavy metals, while com-
pared to that of the methods with no preprocessing, 
the prediction ability with the preprocessing of FD, 
SD, and CR was improved. In fact, the application of 
most of the preprocessing methods for these heavy 
metals increased the accuracy of prediction, which 
was similar to the conclusion drawn by Ren et al. 
(2009). These results show that for all heavy metals 
several techniques can give a robust prediction on the 
basis of spectra from soil samples. Earlier research 
has shown that calibration models, in which spectra 
are not preprocessed, are more sensitive to changes in 
operating or environmental conditions compared to 
models for which preprocessing is applied (Moros et 
al. 2009). Although Kooistra et al. (2001) obtained 
good results in a study where no preprocessing was 
used for all parameters; one could still decide to use 
a preprocessing method to avoid this problem, as the 
differences in cross-validation error are relatively small.

In this study, spectra measured in the laboratory were 
used for predicting metal concentration levels using dif-

ferent data preprocessing methods. The research infor-
mation provided an alternative tool for the investigation 
of contaminated soils by remote sensing. Reflectance 
spectra collected in the laboratory after preprocessing 
were suitable for developing future prediction models 
of the measured heavy metals, especially using the FD 
preprocessing technique. However, the results should 
be validated and explored by further investigations on 
different geographical scales, because conditions in 
the laboratory might be more convenient than those 
in the field, and reflectance spectra collected under 
field conditions are affected by natural soil surface 
conditions (e.g. roughness, humidity, vegetation cover, 
etc.), atmosphere, and illumination (Leone & Sommer 
2000). For the applications where we have to deal with 
relatively noisy spectra, the application of wavelength 
selection could be a promising preprocessing method. 
These techniques will be further studied on the basis of 
spectral data collected directly in the field. Moreover, 
soil type is also a major factor in constructing models, 
especially for the applications of remote sensing in a 
large-scale soil contamination survey.

CONCLUSION

The present research provided an alternative tool for 
the prediction of soil heavy metal contaminations and 
contaminated soil ecosystems using laboratory spectral 
reflectance and remote sensing. The study showed that 
high resolution spectra of soil samples taken from 
the Czech dumpsites can be used for predicting Cu, 
Mn, Cd, Pb, and Zn contamination levels. Cu and Pb 
only displayed significant correlation with SOM, but 
Zn and Cd had significant correlations with clay and 
SOM. The inter-correlation between heavy metals 

Table 3. Prediction results of the preprocessing models and support vector machine regression (SVMR) for the heavy 
metals concentration (in mg/kg)

Preprocessing
Cu Mn Cd Pb Zn

R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

No preprocessing 55 6.37 30 122.43 72 0.05 28 4.00 40 17.87
FD 78 4.02 60   97.18 80 0.04 68 2.97 77 13.67
SD 72 6.70 59   98.10 79 0.04 65 3.01 60 15.82
SNV 23 9.14 19 131.76 32 0.09 29 3.99 26 20.63
MSC 21 9.58 19 131.76 25 0.09 23 4.22 24 21.32
CR 58 6.16 47 108.73 82 0.04 60 3.30 68 14.33

FD – first derivative; SD – second derivative; SNV – standard normal variate; MSC – multiplicative scatter correction; CR – con-
tinuum removal; R2

cv – coefficient of determination; RMSEPcv – root mean square error of prediction in cross-validation
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and the spectrally active constituents of soils is the 
major mechanism by which the spectrally featureless 
toxic metals can be predicted. Soil spectroscopy in 
the Vis-NIR region with SVMR technique was shown 
to be a very promising method for the determination 
of metal concentrations in anthropogenic soils on 
brown coal mining dumpsites of the Czech Republic. 
The FD preprocessing method gave the best validation 
results for Cu, Mn, Pb, and Zn. However, MSC and SNV 
spectral preprocessing showed weak prediction for all 
the measured heavy metals. The future possibilities of 
these methods in remote sensing have to be explored.

Acknowledgements. The authors acknowledge the financial 
support of the EC Operational Program (Project No. ESF/
MEYS CZ.1.07/2.3.00/30.0040) and of the Czech University 
of Life Sciences Prague. The assistance of Mr. Ch. Ash for 
English revision is also acknowledged.

R e f e r e n c e s

Ben-Dor E., Banin A. (1990): Near-infrared reflectance 
analysis of carbonate concentration in soils. Applied 
Spectroscopy, 44: 1064–1069.

Ben-Dor E., Banin A. (1995): Near infrared analysis (NIRA) 
as a rapid method to simultaneously evaluate several soil 
properties. Soil Science Society of American Journal, 59: 
364–372. 

Ben-Dor E., Inbar Y., Chen Y. (1997): The reflectance spectra 
of organic matter in the visible near-infrared and short wave 
infrared region (400–2500 nm) during a controlled decom-
position process. Remote Sensing of Environment, 61: 1–15. 

Borůvka L., Kozák J., Mühlhanselová M., Donátová H., 
Nikodem A., Němeček K., Drábek O. (2012): Effect of 
covering with natural topsoil as a reclamation measure 
on brown-coal mining dumpsites. Journal of Geochemical 
Exploration, 113: 118–123.

Bradshaw A. (2000): The use of natural processes in recla-
mation – Advantages and difficulties. Landscape Urban 
Planning, 51: 89–100. 

Buurman P., Pape Th., Muggler C.C. (1997): Laser grain-
size determination in soil genetic studies. Soil Science, 
162: 211–218.

Chen Q., Guo Z., Zhao J., Ouyang Q. (2012): Comparisons of 
different regressions tools in measurement of antioxidant 
activity in green tea using near infrared spectroscopy. 
Journal of Pharmaceutical and Biomedical Analysis, 60: 
92–97.

Chiang L.H., Pell R.J., Seasholtz M.B. (2003): Exploring 
process data with the use of robust outlier detection 
algorithms. Journal of Process Control, 13: 437–449. 

Chu X.L., Yuan H.F., Lu W.Z. (2004): Progress and ap-
plication of spectral data pretreatment and wavelength 

selection methods in NIR analytical technique. Progress 
in Chemistry, 16: 528–542.

Clark R.N., Roush T.L. (1984): Reflectance spectroscopy: 
quantitative analysis techniques for remote sensing appli-
cation. Journal of Geophysical Research, 89: 6329–6340. 

Clark R.N., King T.V.V., Klejwa M., Swayze G.A., Vergo N. 
(1990): High spectral resolution reflectance spectroscopy of 
minerals. Journal of Geophysical Research, 95 (B8): 12653.

Dalal R.C., Henry R.J. (1986): Simultaneous determination 
of moisture, organic carbon, and total nitrogen by near 
infrared reflectance spectrophotometry. Soil Science 
Society of American Journal, 50: 120–123. 

Duckworth J. (2004): Mathematical data preprocessing. 
In: Roberts C.A., Workman J.,Jr., Reeves III, J.B. (eds): 
Near-Infrared Spectroscopy in Agriculture. Madison, 
ASA-CSSA-SSSA: 115–132.

Gholizadeh A., Borůvka L., Saberioon M.M., Vašát R. 
(2013): Visible, near-infrared, and mid-infrared spec-
troscopy applications for soil assessment with emphasis 
on soil organic matter content and quality: State-of-the-
art and key issues. Applied Spectroscopy, 67: 1349–1362. 

Gholizadeh A., Borůvka L., Vašát R., Saberioon M.M., 
Klement A., Kratina J., Tejnecký V, Drábek O. (2015): 
Estimation of potentially toxic elements contamination 
in anthropogenic soils on a brown coal mining dumpsite 
using reflectance spectroscopy: A case study. Plos One, 
10: e0117457. 

Hidaka Y., Kurihara E., Hayashi K. (2011): Near infrared 
spectrometer for a head feeding combine for measuring 
rice protein content. Japan Agricultural Research Quar-
terly, 45: 63–68.

Ji J.F., Balsam W., Chen J., Liu L.W. (2002): Rapid and quan-
titative measurement of hematite and goethite in the 
Chinese loess-paleosol sequence by diffuse reflectance 
spectroscopy. Clays and Clay Minerals, 50: 208–216.

Ji W.J., Li X., Li C.X., Zhou Y., Shi Z. (2012): Using differ-
ent data mining algorithms to predict soil organic matter 
based on visible near infrared spectroscopy. Spectroscopy 
and Spectral Analysis, 32: 2393–2398.

Kemper T., Sommer S. (2002): Estimate of heavy metal 
contamination in soils after a mining accident using 
reflectance spectroscopy. Environmental Science and 
Technology, 36: 2742–2747.

Kokaly R.F., Despain D.G., Clark R.N., Livo K.E. (2003): 
Mapping vegetation in Yellowstone National Park using 
spectral feature analysis of AVIRIS data. Remote Sensing 
of Environment, 84: 437–456. 

Kooistra L., Wehren R., Leuven R.S.E., Buydens L.M.C. 
(2001): Possibilities of visible-near-infrared spectroscopy 
for the assessment of soil contamination in river flood 
plains, Analytica Chimica Acta, 446: 97–105.

Kooistra L., Wanders J., Epema G.F., Leuven R., Wehrens R., 
Buydens L.M.C. (2003): The potential of field spectros-



227

Soil & Water Res., 10, 2015 (4): 218–227 Original Paper

doi: 10.17221/113/2015-SWR

copy for the assessment of sediment properties in river 
floodplains. Analytica Chimica Acta, 484: 189–200.

Leone P.L., Sommer S. (2000): Multivariate analysis of 
laboratory spectra for the assessment of soil development 
and soil degradation in the Southern Apennines (Italy). 
Remote Sensing of Environment, 72: 346–359. 

Madejova J., Komadel P. (2001): Baseline studies of the clay 
minerals society source clays: infrared methods. Clays 
and Clay Minerals, 49: 410.

McGrath S.P., Cunliffe C.H. (1985): A simplified method 
for the extraction of metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, 
Co and Mn from soils and sewage sludges. Journal of the 
Science of Food and Agriculture, 36: 794–798. 

Meyer D., Dimitriadou E., Hornik K., Weingessel A., Leisch F. 
(2012): e1071: Misc Functions of the Department of Sta-
tistics (e1071), R Package Version 1.6-1. Wien, TU Wien.

Moros J., de Vallejuelo S.F.O., Gredilla A., de Diego A., 
Madariaga J.M., Garrigues S., de la Guardia M. (2009): 
Use of reflectance infrared spectroscopy for monitor-
ing the metal content of the estuarine sediments of the 
Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of 
Biscay, Basque Country). Environmental Science and 
Technology 43: 9314–9320. 

Murray I. (1988): Aspects of interpretation of NIR spec-
tra. In: Creaser C.S., Davies A.M.C. (eds): Analytical 
Application of Spectroscopy. London, Royal Society of 
Chemistry: 9–21.

Nayak P., Singh B. (2007): Instrumental characterization of 
clay by XRF, XRD and FTIR. Bulletin of Materials Sci-
ence, 30: 235–238.

N’Guessan Y.M., Probst J.L., Bur T., Probst A. (2009): Trace 
elements in stream bed sediments from agricultural 
catchments (Gascogne region, S-W France): where do 
they come from? Science of the Total Environment, 407: 
2939–2952.

Nocita M., Stevens A., Noon C., Van Wesemael B. (2013): 
Prediction of soil organic carbon for different levels of 
soil moisture using Vis-NIR spectroscopy. Geoderma, 
199: 37–42. 

Pearson R.K. (2002): Outliers in process modeling and 
identification. IEEE Transactions on Control Systems 
Technology, 10: 55–63. 

R Development Core Team. (2011): R: A language and envi-
ronment for statistical computing. R foundation for Sta-
tistical Computing. Available at http://www.R-project.org

Reeves J.B. III (2010): Near versus mid infrared diffuse 
reflectance spectroscopy for soil analysis emphasizing 

carbon and laboratory versus on-site analysis: Where are 
we and what needs to be done? Geoderma, 158: 3–14.

Reeves III J.B., McCarty G.W., Mimmo T.V., Reeves V.B., Fol-
let R.F., Kimble J.M., Galletti G.C. (2002): Spectroscopic 
calibrations for the determination of C in soils. Transac-
tions of the 17th World Congress of Soil Science, 10: 1–9.

Ren H.Y., Zhuang D.F., Singh A.N., Pan J.J., Qid D.S., Shi 
R.H. (2009): Estimation of As and Cu contamination in 
agricultural soils around a mining area by reflectance 
spectroscopy: A case study. Pedosphere, 19: 719–726. 

Rinnan A., van den Berg F., Engelsen S.B. (2009): Review of the 
most common pre-processing techniques for near-infrared 
spectra. Trends in Analytical Chemistry, 28: 1201–1222.

Savitzky A., Golay M.J.E. (1964): Smoothing and differen-
tiation of data by simplified least squares procedures. 
Analytical Chemistry, 36: 1627–1639. 

Song Y., Li F., Yang Z., Ayoko G.A., Frost R.L., Ji J. (2012): 
Diffuse reflectance spectroscopy for monitoring poten-
tially toxic elements in the agricultural soils of Changjiang 
River Delta, China. Applied Clay Science, 64: 75–83.

Stevens A., Udelhoven T., Denis A., Tychon B., Lioy R., 
Hoffmann L., Van Wesemael B. (2010): Measuring soil 
organic carbon in croplands at regional scale using air-
borne imaging spectroscopy. Geoderma, 158: 32–45.

Vapnik V. (1995): The Nature of Statistical Learning Theory. 
New York, Springer-Verlag.

Vasques G.M., Grunwald S., Sickman J.O. (2008): Compari-
son of multivariate methods for inferential modeling of 
soil carbon using visible near infrared spectra. Geoderma, 
146: 14–25.

Viscarra Rossel R.A., Behrens T. (2010): Using data mining 
to model and interpret soil diffuse reflectance spectra. 
Geoderma, 158: 46–54.

White W. (1971): Infrared characterization of water and 
hydroxyl ion in the basic magnesium carbonate minerals. 
American Mineralogist, 56: 46–53.

Williams P. (2003): Near-infrared Technology − Getting the 
Best out of Light. Nanaimo, PDK Projects.

Wu Y., Chen J., Wu X., Tian Q., Ji J., Qin Z. (2005): Pos-
sibilities of reflectance spectroscopy for the assessment 
of contaminant elements in suburban soils. Applied Geo-
chemistry, 20: 1051–1059.

Xie X., Pan X.Z., Sun B. (2012): Visible and near-infrared dif-
fuse reflectance spectroscopy for prediction of soil prop-
erties near a Copper smelter. Pedosphere, 22: 351–366. 

Received for publication June 12, 2015
Accepted after corrections September 2, 2015

Corresponding author:

Dr. Asa Gholizadeh, Česká zemědělská univerzita v Praze, Fakulta agrobiologie, potravinových a přírodních zdrojů, 
katedra pedologie a ochrany půd, Kamýcká 129, 165 21 Praha 6-Suchdol, Česká republika; e-mail: gholizadeh@af.czu.cz


