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Most maize (corn, Zea mays L.) is not sweet corn
Corn - $51.5 billion, 89 million acres, 404 million tons

Sweet corn - $860 million, 495,000 acres, 4 million tons



Barrero et al. 2013, Field Crops 
Research; Data from USDA- NASS
 

Why is a public corn breeding program in Texas needed?

Murray et al. 2019, Journal 
of Plant Registrations
 



Breeders eye

Open Pollinated
0.008 Bu/A/yr

2012
Drought

U.S. corn yield from 1866 to 2016 

Plot combines
Off-season nurseries
Seed counters
Better experimental designs

QTL mapping → GWAS
Marker assisted selection
Seed chipping
Precision planters

H. Wallace first hybrid 
seed sale 1924

Farmers eye

Doubled haploids
Genomic prediction / selection

Corn genomic 
selection

approaches
developed by 

public sector in 
2007

 Heavily adopted 
by industry by 

2013

“Hybrid vigor” Shull and 
East 1908/9

USDA-NASS
Data

“The Breeders Eye” → Objectivity
A “phophetic gift?”*(1889)
A “trained eye?”*(1917) 

*M. Timmermann. 2006. The Breeder’s Eye – Theoretical Aspects of the Breeder’s Decision-Making, pp.118-123



http://www.nnvl.noaa.gov/

Improvements other than yield are needed
Reduced input use
Human health & nutrition
Farmer profitability

Ecosystem service provision
Climate change resilience

Flavor



Importance of language

Phenotype – “…the totality of a plant’s observable characteristics”
Measured because believed to be of interest (the dependent trait) 

Phene – “…a more elemental component of phenotype”

Phenome – Totality of a plant’s measurable and estimable physical 
characteristics (measured because it can be used for prediction)

Phenomic selection is NOT the same as phenotypic selection

Multi-discipline language issues are 
not new 

* Multidimensional scaling (MDS)
* Principal Component Analyses (PCA)

* Unmanned Aerial Systems (UAS)
* Unoccupied Aerial Systems (UAS)
* Uncrewed Aerial System (UAS)
* Unmanned Aerial Vehicles (UAV)
* Drones



Three genomic methodological waves and generalizations

QTL Linkage Mapping Association Mapping (GWAS) Genomic Selection / 
Genomewide Selection (GS)

Find loci
Map based cloning → find 
genes

Find loci → find genes Select the best individual

Bi-parental families Diverse populations Varied, mostly narrow 
breeding populations

Inference to specific 
populations – epistasis issues

Alleles work across 
populations structure

Predictive across training 
germplasm

Knowledge, publications,
?crop improvement?

Knowledge, publications, 
?crop improvement?

Crop improvement, 
knowledge ?Publication?

1986 2005 2007

Discovery / Estimation Prediction

Simple trait 
measurements
(e.g. heights)

Value indicies
(yield, sustainability, 
etc.)



High throughput field phenotyping
1) Automate routine measurements

- Plant height 
- Estimate grain yield (sorghum, wheat)
- Estimate disease

2) Find new signatures of “eliteness”
- Temporal growth patterns / biomass
- Senescence and grain filling period

3) Phenomic selection

4) Deep learning and AI tools to directly use images

5) Identify stress signatures for farmers management

6) Identify new phenotypes and mechanisms of biological importance

Dr. Dale Cope Dr. Sorin Popescu Dr. John Valasek



Crop Nursery Yield trials

Corn (Murray) 10,000 plots 17,000 plots

Sorghum (Rooney) 15,000 plots total 20,000 plots + 
Wheat (Ibrahim) 5,000 plots 5,000 plots x reps

Private sector is at a much larger scale for a few major crops 
but working with less diversity to develop “mega-varieties”

𝒊 = Selection intensity = Grow more plants



High Throughput can produce better decisions than high accuracy 
when phenotyping plant populations

Holly Lane, M.S.

https://acsess.
onlinelibrary.
wiley.com/doi
/10.1002/csc2
.20514 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.20514
https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.20514
https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.20514
https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.20514
https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.20514


FLY UAS to 
collect pictures
(need GPS and 

IMU tag)

Place ground 
control points 
(GCPs) in field

Download 
images

Spectral 
correction

Orthorectify

& mosaic
images

Identify
plots

Structure from motion 
(SFM) make 

DEM/DSM 3D point 
cloud

Extract 
(VI + Hgt)
data by 

plot

Export from 
GIS / import 
to statistical

software

Spectral

Structural

Statistical
analysis

Steps to obtain and analyze UAS phenotyping data

Estimate genotypic values → Determine measurements repeatability & value

Identify
ground

M. 
Lonesome

S. Popescu D. Cope
M. 

Katzfuss
K.W. Wong M. 

Bishop
A. 

Filippi

Took a huge transdisciplinary team

J.A. 
Thomasson

M. StarekJ. Jung M. Vidrine
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A)

C)
D)

“Hot spots” result in distortions and curvature in orthomosaics
Require corrections using ground control points or RTK UAVs, or obtaining oblique images

Interdisciplinary challenges posed by agricultural photogrammetry



Orthomosaic 

Shape File

Fact 4 Process

Mask Soil

Extract Vegetative Indices

Analyze Data

Evolution of our UAS phenotyping data pipeline

Aaron DeSalvio
PhD student

Dr. Alper Adak
Postdoc

Plant and place ground control points 

FLY UAS to collect pictures (need GPS and 
IMU tag, plus RTK)

Download images

Mustafa Arik
Research Assistant



Experimental 

Field Design

Plot 

Dimensions

R/UAStools::

plotshpcreate

AB-line UTM 

Coordinates

R/UASTools
https://github.com/andersst91/UAStools

Dr. Steven 
Anderson

Anderson and Murray. 2020. Frontiers in Plant Science



S. Anderson
PhD student

M. Lonesome

S. Popescu

D. Cope

Temporal plant growth curves 
segregate in a population

Correlations to grain yield: 
UAS (r = 0.36–0.48), manual (r = 0.23–0.28)



Genetic effects from individual loci change over plant growth
Tx740 x NC356 irrigated trials

Tx740 x NC356 non- irrigated trials

Ki3 x NC356 non- irrigated trials

Dr. Steven 
Anderson



1) Early study on discovering candidate gene for PHT and GY

2) KASP marker development to 
advance the NILs

3) Conduct the FHTP to get temporal PHT

4) Compare temporal PHT between NILs temporally 

UAS validated loci for plant height that terminal manual 
measures could not 

Dr. Alper Adak
Postdoc



A large phenomic dataset showing excessive 
temporal variations in plant height

>1000 hybrids

Weibull fit 

Dr. Alper Adak
Postdoc

Dr. Jacob Washburn
USDA-ARS / U of Missouri 



Data processing



Temporal phenomic data reveals patterns for 
vegetative indices (VIs) across the growing season

• Different temporal patterns for different VIs across flight times 
revealed extreme VI values at plant emergence, flowering times, 

and conclusion of reproductive stage 20



• Senescence annotated using drone images (orthomosaics) vs. 
hand-scoring in the field 21

Alper Adak
Postdoc

Novel approach to Southern Rust and 
senescence scoring

Aaron DeSalvio
PhD student



A catalyst for future studies: grain filling 
and yield

22

Grain filling period 

had highest 

correlations with 

yield versus other 

traits (0.22 in 

2020; 0.44 in 

2021)

2020 2021

Grain filling period calculated as days between DTA and days 

to senescence as estimated by linear model



Variance explained by nested design

• Flight component in nested design explained highest percent of 
experimental variation for all VIs in both years

23
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Phenomic prediction model assessment

• Prediction 
accuracies: machine 
learning models 
outperformed 
linear model when 
predicting 
performance of 
untested genotypes

Cross Validation (CV)
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Phenomic Prediction in Rust

500 Bootstraps

Used cross 
validation
500 
prediction 
accuracies 
for each 
model



Variable Importance Scores

• Early, mid, and 
late-season 
phenotypic 
indicators revealed 
by variable 
importance scores

• Brighter red 
indicates VI was 
more important for 
model accuracy 
(had more 
predictive power)

25

May enable early predictions of senescence times for 
different genetic backgrounds; early warning for rust



Calculation of the days to senescence and grain filling 
period using the temporal senescence progression data

A) Plot based senescence scores

B) Mechanistic growth model

C) Days to senescence (DTSE)

D) Grain filling period

Dr. Alper Adak
Postdoc



Deep learning for senescence scoring 22,000 plots! 
TX1, TX2, TX3, WI1, WI2, WI3, MO

Aaron DeSalvio
PhD student

50 train  - 50 test
3 classes

Cody Kettler
PhD student

Nick Shephard
PhD student

Luke Gray
Undergraduate



alperadak@tamu.edu for further questions

Correlation between VI’s and Agronomics

In late (stress) planting, the best predictors of 
yield were BEFORE flowering, possibly 
because this is where unselected variation is? 

Alper Adak

mailto:alperadak@tamu.edu


Basics of Near Infrared Reflectance Spectroscopy (NIRS)

Scan whole 
kernel corn www.udyone.com 

Grind and scan 
ground corn

Send for 
chemical 
analysis

Partial least squares (PLS) to 
calibrate between reflectance 

and wet-chemistry

Find predictive equation using independent validation samples

Smpl. 1 … n

Strch.

Oil

Prtn.

Phos.

Oleic.

Crude 
Protein

Phosph
phorus

𝝈𝑮
𝟐 36 % 35 %

𝝈𝑬
𝟐 17 % 21 %

𝝈𝑹𝒐𝒘
𝟐 4 % 5 %

𝝈𝒆𝒓𝒓𝒐𝒓
𝟐 43 % 38 %

PhosphorusCrude Protein

Apply to breeding or genetics research



Phenomic selection
(Rincent et al. 2018 G3)

• Used NIRS to predict complex 
traits in wheat and poplar

• PS was as accurate as genomic 
selection but cheaper

GWAS study data
(Barerro et al. 2014 PLOS One)

• 346 Hybrids ( x Tx714)
• 4000 samples total

• 1700 Ground  and 2300 Whole

• Dryland and irrigate

+



NIRS results: whole kernel spectral yield 
train & predict with 2011 & 2012

Partial Least Squares Results:
Yield (NIRS vs. actual)
 R2 = 0.19 to 0.84
 RMSEP < 26 bu/ac
Protein (vs. actual yield)
 R2 = 0.58 
Protein + starch + oil
 R2 = 0.64

Functional Regression Results:
Yield (NIRS vs. actual)
 R2 = 0.13 to 0.75

Global PLSR
Model trained on 1573 samples
Tested on remaining 848 samples

r = 0.84

RMSEP = 163 g m^2

Holly Lane, M.S. Dr. José Crossa



Fig. 3 shows the prediction accuracy results of yield belonging to the three models. GP represents the prediction accuracy of genomic 

prediction, TPP_Multi represents the prediction accuracy of phenomic prediction using the VIs derived from the multispectral images 

with low resolution, TPP_RGB represents the prediction accuracy of phenomic prediction using the VIs derived from the RGB images 

with high resolution. Four cross validation schemes were used: predicting tested genotypes in tested environments (CV1), predicting 

untested genotypes in tested environments (CV2), tested genotypes in untested environments (CV3), and untested genotypes in untested 

environments (CV4).

Alper Adak
PhD Student

UAS temporal phenomic prediction ≈ genomic prediction 

Genomes to Fields population: 1188 plots, 280 hybrids, 2 TX environments 

Only 158 hybrids with genomic data: 70% training, 30% testing 

GP = 153,252 markers for genomic prediction

TPP_Multi = 1068 phenomic features (89 VI’s x 12 time points)

TPP_RGB = 525 phenomic features (35 VI’s x 15 time points)
Adak, A., Murray, S. C., & Anderson, S. L. (2021). Temporal phenomic predictions from unoccupied aerial systems can 

outperform genomic predictions. bioRxiv.



G G+E+error G+E+GxE
+error

Pure
Additive

Biotech / 
Gene 

Editing

Mapping and Marker 
Assisted Selection

Genomic 
Prediction / 

Selection
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Environment
Modeling
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Genetic Heritability

Here
reality
equals
theory

Here
reality

is 
messy

Approaches based on complexity for genetics



Share a 
common 
parent

NGRDI temporal-series: Mean plant NGRDI index versus 
days after sowing (DAS) by genotype.

Commercial 
checks

Dale Cope

Spectral (NGRDI) time series shows genetic patterns
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Other sources of NGRDI variation
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Tassels drying out
Weeds

Nathália Cruzato
PhD student



Genetics
Environment

G x E
Error

Appearance
Phenotype

Humans recognize resemblances 
but hard to describe the 
quantitative similarities

Specific 
resemblance 

features
change 

over 
time but
maintain 

resemblance

Humans recognize resemblances in parents and siblings 
appearances and expect similarities in other traits



Cartoon of mechanism for why and how phenomics 
approaches could be more predictive than genomics

DNA

Env.

GxE

microbes

Lengauer and Hartmann 2007 https://doi.org/10.1016/B0-08-045044-X/00088-2

Müller-Linow, Hilgetag,and Hütt. 2008 https://doi.org/10.1371/journal.pcbi.1000190

Easy to measure 
phene - 1

Easy to measure 
phene - 2

Easy to measure 
phene - 3

Easy to measure 
phene - 4

Easy to measure 
phene - 5

Easy to measure 
phene - 6

Easy to measure 
phene - 7

Easy to measure 
phene - 8

Easy to measure 
phene - 9

Easy to measure 
phene – N=xxxx

…

ML
Models

Difficult 
phenotype we 
care about

The more and 
diverse phenomic 
features we use as 

predictors the 
better our 

predictions can be
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https://doi.org/10.1016/B0-08-045044-X/00088-2
https://doi.org/10.1371/journal.pcbi.1000190


Science has saturated the genome…

http://www.gramene.org/ne
wsletters/gramnews/julyaug
ust07.html

Can we saturate the phenome? 

“…681,257 single-nucleotide polymorphism 
(SNP) markers…” – Romay et al. 2013

“…Ames panel of ∼1,500 inbred lines scored 
with 12.2 million single-nucleotide 
polymorphisms…”

https://www.genome.gov/about-
genomics/fact-sheets/DNA-Sequencing-Costs-
Data



Maize genomes to fields (G2F) project
https://www.genomes2fields.org/

Plant morphology Agronomic

Plant height
Ear height

Stand count
Lodging
Days to silk
Days to anthesis

Productivity Weather station

Grain yield
Test weight
Grain moisture

Humidity
Temperature
Solar radiation
Soil moisture
Wind

G + E + M+ GxE + GxExM

2023 = 9th year! 

180,000 Field Plots
2500+ corn varieties

162 unique environments
Some flew drones

https://www.genomes2fields.org/
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Year Environment
Number of 
flights for 

plant height 

RGB 
Vegetation 

Indices

Multispectral 
Vegetation 

Indices

Plant Height 
Elevation 
Models

File size: 
Orthomosaics and 
plant height point 

cloud files

File size: All files (including 
raw image and Agisoft 

Files)

2020
College 

Station, TX 12 Yes na Yes 566 GB 1.08 TB

2020 Arlington, WI na Yes na na 56.7 GB 481 GB

2020 Hancock, WI na Yes na na 38.2 GB 231 GB

2020 Madison, WI na Yes na na 63 GB 433 GB

2020 Missouri 87 Yes na Yes 707 GB 1.74 GB

2020 Michigan 12 Yes Yes Yes 73.9 GB 404 GB

2020 New York na Yes Yes na 39.4 GB 39.4 GB

2020 Minnesota 11 Yes na Yes 94 GB 451 GB

2020 Delaware 13 Yes Yes Yes 88.2 GB 465 GB

2020 Iowa na Yes na na 583 GB 722 GB

2020 Colorado na TBD na na 93.3 GB 564 GB

2021
College 

Station, TX na Yes Yes na 47.9 GB na

2021 Hancock, WI na Yes na na 110 GB ~1 TB +

2021 Madison, WI na Yes na na 139 GB ~1 TB +

2021 Arlington, WI na Yes na na 80.6 GB ~1 TB +

2021 Minnesota 10 Yes na Yes 39.5 307 GB

2021 Nebraska 8 Yes na Yes 18.1 GB 41.2

2021 Iowa na Yes na na 92 GB 686 GB



Tested environments used in Genome to Field project (G2F)  

Population structure of Hybrid population

Precision of temporal plant height data

Temporal plant height is heritable across locations but requires 
advanced statistical methods to integrate



CERCA Crop Science Team

USDA-ARS

University 

Partners
Messina

Emmett, Scott

Castellano, 

Hufford

Lippman

Holland

Rellan-Alvarez

Basso

Buckler, Pineros

Costich, Gore, Hau, 

Raboy, Romay
Springer

Murray

Chen

de Leon, 

Kaeppler

Flint-Garcia, 

Washburn

Roston

Ainswort

h

Guan

Busch, 

Michael, 

Noel

CERCA
Circular Economy that Reimagines Corn Agriculture 

Drone analysis
Grow outs
Phosphorus phenotyping
Perennial germplasm

PI Dr. Edward Buckler
USDA-ARS / Cornell



Nutrient Recycling

• Grain N diver. 

• Grain P diver.

• N remobilization

• Decomposition

Extended Season

• Germination

• Cold Tolerance

• Cold Establish.

Modeling 

(Plant, Soil, Farm, 

Landscape)

Testing at Agro-

ecosystem Scale

Modeling

Profiling

Trait Discovery

Germplasm 

Screens

Evolutionary 

Mining

Breeding

Transgenics/Editing

Trait Development

PhysiologyP
ri

o
ri

ti
ze

   
   

   
 T

ra
it

s

Candidate Traits

CERCA
Circular Economy that Reimagines Corn Agriculture 

FFAR (50%), Industry (50%), USDA-ARS
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Study

Field
UAV Imaging 

& Sensing

Satellite 
Remote 
Sensing

Gap Filling &  
Signature 
candidate 
discovery
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ze

GlobalLandscapePlantMolecular

2

3

6

Species

2&3

3, 5, 6

3, 4, 5

3, 5, 6

Inoculate

FS2: Reactome knowledge graph to phenomes of major 
staple crops for food system threat detection

Aart VerhoefPankaj Jaiswal

Alper Adak

Sushma Naithani



2023 greenhouse plantings
• Planted April 25 in College Station, TX
• ~27 hybrids, 10 inbreds, 
• 2 treatments (inoculated vs. uninoculated) x 4 reps, 

(rep = 3 seeds / 1 plant per pot)

https://precisiongreenhouse.tamu.edu/ 

https://precisiongreenhouse.tamu.edu/


Dicamba Methanol Kaemferol (in methanol, Raman 

spectrum of CH3OH subtracted)

Methyl jasmonate Ethanol Jasmonate (in ethanol, Raman 
spectrum of C2H5OH subtracted)

Salicylate Methyl salicylate

Corn leaf

Naringenin chalcone  Aapigenin Dihydrokaemferol    
Serotonin

Triptamine (powder) Isopropyl alcohol triptamine (in 
iso  Raman spectrum of C3H7OH subtracted)

Limonene Naringenin

Raman spectra of compounds nominated from reactome
Pure compounds possible to measure in planta if sufficient quantities present

Aart Verhoef



PhotosynQ traits



Dimensionality to increase phenome data 
Sp

e
ct

ra
l

Benchtop
NIRS

Hyperspectral 
drone

Multispectral   
drone

RGB
drone



Aaron DeSalvio
PhD student



What does the future look like in plant breeding?

Hybrid 1 Hybrid 2 Hybrid 3 Hybrid 4 Hybrid 5 Hybrid 6 Hybrid 7 Hybrid 8 Hybrid 9 Hybrid 10

Hybrid 1 ~1 0.906 0.331 0.02 0.864 0.373 0.715 0.416 0.248 0.836

Hybrid 2 0.906 ~1 0.276 0.323 0.008 0.608 0.364 0.941 0.106 0.009

Hybrid 3 0.331 0.276 ~1 0.24 0.163 0.339 0.47 0.172 0.315 0.832

Hybrid 4 0.02 0.323 0.24 ~1 0.532 0.647 0.423 0.406 0.73 0.348

Hybrid 5 0.864 0.008 0.163 0.532 ~1 0.173 0.363 0.715 0.334 0.397

Hybrid 6 0.373 0.608 0.339 0.647 0.173 ~1 0.991 0.127 0.409 0.774

Hybrid 7 0.715 0.364 0.47 0.423 0.363 0.991 ~1 0.231 0.219 0.008

Hybrid 8 0.416 0.941 0.172 0.406 0.715 0.127 0.231 ~1 0.995 0.13

Hybrid 9 0.248 0.106 0.315 0.73 0.334 0.409 0.219 0.995 ~1 0.613

Hybrid 10 0.836 0.009 0.832 0.348 0.397 0.774 0.008 0.13 0.613 ~1

Relationship matrices

*Hammer et. Al. 2019 in silico Plants

Growth models
(w/ weather data)

Predict best 
untested hybrids 

for untested 
environments

Statistical analysis
(e.g. Functional 

Regression)

Yield Nutrition Ecosystem Flower Leaf angle Leaf # Hgt 30 day Hgt 60 day Hgt 90  day Phene X Phene Y Phene Z SNP 1 SNP 2 SNP 3 SNP 4

Hybrid 1 100 9 3 70 35 16 0.02 0.30 0.61 0.542 0.179 0.449 AA CC CT AG

Hybrid 2 150 10 9 65 32 15 0.04 0.30 0.62 0.068 0.505 0.744 AA GG TT AA

Hybrid 3 125 2 9 68 30 17 0.05 0.33 0.63 0.523 0.949 0.271 AC CC CC AA

Hybrid 4 175 3 2 66 37 16 0.07 0.40 0.70 0.823 0.814 0.537 CC GG TT AA

Hybrid 5 180 7 3 73 40 16 0.10 0.42 0.72 0.637 0.815 0.703 CC CG TT GG

Hybrid 6 75 6 10 67 32 13 0.11 0.54 0.75 0.874 0.368 0.785 CC GG TT AA

Hybrid 7 90 3 10 66 33 19 0.12 0.55 0.81 0.984 0.406 0.867 CC CC TT GG

Hybrid 8 170 5 6 65 32 19 0.16 0.56 0.84 0.491 0.418 0.176 AA GG TT GG

Hybrid 9 160 10 5 70 31 17 0.24 0.58 0.85 0.693 0.287 0.013 CC CC TT GG

Hybrid 10 155 9 7 72 39 15 0.26 0.59 0.99 0.130 0.624 0.566 AA GG CC GG

na na na na

na na na na

Heritability 0.4 0.2 0.3 0.6 0.3 0.8 0.2 0.6 0.8 0.4 0.01 0.7 1 1 0.98 1

Genomic Measures
Temporal Phenomic 

"Trait" Measures

Physiological  

Measures

Segregating Remote 

Sensing Measures

Multiple Replicates Multiple Replicates Multiple Replicates

Multiple Environments

Multiple Replicates

Multiple Environments

Dependent "Traits" of 

interest

Multiple Environments Multiple Environments



ODD-PIGG

D2P

Livestock? 

Multiple groups cover UAS phenotyping
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