
Adv. Radio Sci., 6, 233–237, 2008
www.adv-radio-sci.net/6/233/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Advances in
Radio Science

Fast evaluation of nonlinear functions using FPGAs

S. Lachowicz1 and H.-J. Pfleiderer2

1Edith Cowan University, Perth, WA, Australia
2Ulm University, Ulm, Germany

Abstract. The paper presents a novel method of evaluating
the square root function in FPGA. The method uses a lin-
ear approximation subsystem with a reduced size of a look-
up table. The reduction in the size of the lookup table is
twofold. Firstly, a simple linear approximation subsystem
uses the lookup table only for the node points. Secondly, a
concept of a variable step look-up table is introduced, where
the node points are not uniformly spaced, but the spacing is
determined by how close to the linear function the approxi-
mated function is. The proposed method of evaluating non-
linear function and specifically the square root function is
practical for word lengths of up to 24 bits. The evaluation is
performed in one clock cycle.

1 Introduction

Field Programmable Gate Arrays (FPGA) are becoming
widely used in Digital Signal Processing (DSP) systems.
Modern FPGAs exhibit very high performance, very large
number of IOs and high capacity memory on the chip. The
development is rapid and risks are low since the IP can be
easily modified. For the low to medium production volume
it is not economical to develop an ASIC and, if needed, there
are companies like Altera who offer a convenient solution of
migration from FPGA to ASIC.

The evolution of FPGAs has enabled to implement more
and more sophisticated DSP subsystems in the form of ded-
icated hardware on the device. In late 1990s FPGAs usually
had just a few hardware multipliers per chip. In early 2000s,
hardwired multipliers in large numbers (up to∼500) with
clock speeds of up to 100 MHz became available. Mid 2000s
saw the DSP algorithms like full FIR filters implemented,
and currently, powerful arithmetic, such as fast square root
and divide, floating point operations and many more are be-
ing implemented.

In DSP systems nonlinear functions, such as trigonomet-
ric, square root or Bessel functions are often encountered.

Correspondence to:S. Lachowicz
(s.lachowicz@ecu.edu.au)

There are several solutions to this problem, for instance, us-
ing a CORDIC core, or look-up tables. A lot of effort is made
to reduce the size of the look-up tables because it can be-
come prohibitive for high word lengths. For some functions
an existing approach is to create hierarchical lookup tables.
In this work we present a different approach to reducing the
look-up table size. It is proposed to introduce a variable step
of the look-up table, so that the number of entries is higher
for more nonlinear segments of the curve and smaller for the
parts closer to a linear function. The step length is always a
power of 2, hence, 8, 16, 32, etc.

The remainder of the paper is organised as follows. Sec-
tion 2 presents several methods of computation of nonlin-
ear functions. In Sect. 3 the method of linear approximation
is described in more detail. Section 4 deals with the non-
uniform step lookup table generation and the associated hard-
ware, and presents the experimental results of square root
function implementation. It is followed by conclusions.

2 Nonlinear function computation

2.1 Look-up tables

In general the look-up tables are used for single preci-
sion (Hassler, 1995; Sarma, 1995; Wong, 1995; Ercegovac,
2000). For longer word lengths the size of the table becomes
prohibitively large. Sometimes the look-up tables are used
with conjunction of linear approximation system which re-
duces the size of the table considerably. When used, the
look-up table method is the fastest, and if the higher pre-
cision is required it is used as an initial approximation for
iterative methods.

2.2 CORDIC core

COordinate Rotation DIgital Computer (CORDIC) is a very
popular IP core used for various computations (Volder,
1959). It is based on the iterative rotation of a vector in Carte-
sian coordinate system (Givens rotations):

x(2)
= cosθ

(
x(1)

− y(1) tanθ
)

, (1a)

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

http://creativecommons.org/licenses/by/3.0/

234 S. Lachowicz and H.-J. Pfleiderer: Fast evaluation of nonlinear functions using FPGAs

Table 1. CORDIC functions (after DSPedia).

Table 1. CORDIC Functions (after DSPedia)

 8

Table 2. CORDIC accuracy (after DSPedia).

Predicted Simulated

n/b 8 9 10 8 9 10

3 5.09 5.31 5.43 5.32 5.71 5.80
4 6.03 6.59 6.98 6.22 6.88 7.34
5 6.28 7.13 7.88 6.52 7.56 8.27
6 6.21 7.17 8.10 6.55 7.11 8.12
7 6.06 7.05 8.04 6.42 7.29 8.29
8 5.92 6.91 7.91 6.33 7.29 8.31
9 5.78 6.78 7.78 6.00 7.00 8.00

y(2)
= cosθ

(
y(1)

− x(1) tanθ
)

. (1b)

CORDIC core is widely offered as an IP by the FPGA ven-
dors such as XILINX. Table 1 summarises the functions
which can be computed by CORDIC.

As the CORDIC is an iterative method, it requires many
clock cycles to achieve the required accuracy. Table 2
presents the accuracy depending onn – number of iterations
andb – the number of bits used in the computations.

Also, in terms of used resources the number of slices used
by the CORDIC in an FPGA chip is quite considerable.

2.3 Series expansion

Series expansion is an attractive option of calculating a non-
linear function (Ercegovac, 2000). Some of the more useful
functions are shown below:

1

1 − x
= 1 + x + x2

+ x3
+ ..., (2a)

Figure 1. Piecewise linear approximation of a nonlinear function.

 10

Fig. 1. Piecewise linear approximation of a nonlinear function.

Figure 2. Hardware for linear function approximation with a fixed step of a look-up table.

 11

Fig. 2. Hardware for linear function approximation with a fixed step
of a look-up table.

cosx = 1 −
1

2
x2

+
1

24
x4

−
1

720
x6

+ ..., (2b)

√
x + 1 = 1 +

1

2
x −

1

8
x2

+
1

16
x3

− (2c)

The method is not iterative, therefore, in principle, the im-
plementation does not have to be pipelined. However, usu-
ally the number of required multipliers is high, especially for
higher accuracy. Also, preprocessing is generally required to
make the argument close to 1. It is worth to be noted that

Adv. Radio Sci., 6, 233–237, 2008 www.adv-radio-sci.net/6/233/2008/

S. Lachowicz and H.-J. Pfleiderer: Fast evaluation of nonlinear functions using FPGAs 235

Figure 3. Node points of the look-up table for the cosine function.

 12

Fig. 3. Node points of the look-up table for the cosine function.

many multiplications do not need to be “large”, i.e. 53×53
for double precision. Rectangular multipliers can be used
where appropriate. After some preprocessing most of the
multiplications aren/2×n/4, wheren is the total number of
bits.

2.4 Newton-Raphson iteration

Newton-Raphson iteration is a rapid convergence method of-
ten used for functions such as 1/x and 1/sqrt(x). The general
form is:

qn+1 = qn −
f (qn)

f ′(qn)
. (3a)

The following formulae are applicable to 1/x and 1/sqrt(x),
respectively:

qn+1 = qn(2 − xqn), (3b)

qn+1 =
1

2
qn(3 − xq2

n). (3c)

The method is characterised by quadratic convergence and
the number of significant bits roughly doubles with each it-
eration.

3 Linear approximation with look-up tables

One method of reducing the size of the look-up table is to
use a linear approximation circuit. Every function can be
approximated by a piecewise linear function as presented in
Fig. 1.

Between the node points the function can be expressed us-
ing the line equation:

_

f (x) = yi +
yi+1 − yi

xi+1 − xi

(x − xi). (4)

Figure 4. Approximation error for the cosine function.

 13

Fig. 4. Approximation error for the cosine function.

Figure 5. Node points of an 11-bit look-up table for the sqrt function.

 14

Fig. 5. Node points of an 11-bit look-up table for the sqrt function.

The hardware mapping is presented in Fig. 2. Here the steps
of the look-up table are evenly distributed, so the input word
x is split into two parts: the more significant part is an ad-
dress for the look-up table and the less significant part is the
increment ofx within the current step of the look-up table.
The node valuesyi andyi+1 are read from the look-up table,
the increment1y is calculated and is subsequently multi-
plied by the increment1x. The shift replaces the division
as the differencexi+1−xi is always constant and equal to the
number being a power of two.

4 Minimum size look-up table generation

Nonlinear functions usually have a different degree of
nonlinearity throughout the range of interest. Therefore,
to achieve a particular accuracy while using the linear

www.adv-radio-sci.net/6/233/2008/ Adv. Radio Sci., 6, 233–237, 2008

236 S. Lachowicz and H.-J. Pfleiderer: Fast evaluation of nonlinear functions using FPGAs

Figure 6. Hardware for a linear function approximation with a variable step look-up table.

 15

Fig. 6. Hardware for a linear function approximation with a variable
step look-up table.

approximation, the distance between the node points in the
look-up table can be varied. Where the function is more “lin-
ear”, the distance between the node points can be increased.
In the case of the fixed step table, the step corresponding to
the most “non-linear” part of the function has to be main-
tained throughout the whole look-up table.

Figure 3 presents an example of a look-up table generated
for the cosine function, in 11-bit resolution and with the ac-
curacy of±1 bit. It can be observed that where the function
exhibits higher degree of nonlinearity, the step of the look-up
table is reduced.

The look-up table is generated as follows:

1. Each step in the look-up table must be of the length
equal to the power of 2.

2. The predetermined accuracy of the linear approxima-
tion within one step range is verified for the initial value
(large) of the step.

3. If the accuracy is not met then the step is reduced by
half and the verification is repeated.

4. If the accuracy criterion is met, the algorithm moves to
the next step.

5. The next step can be the same length, shorter or longer,
however the longer step can only be made if the remain-
ing part of the range is divisible by the new value of the
step length. This ensures that thex value can be split
into the look-up table address part and the increment
part.

As an example of accuracy of the proposed method of a look-
up table generation, let us consider a cosine function from
Fig. 3. The number of entries in the look-up table is 45. The
accuracy of the approximation has been compared with the
full look-up table of 2048 entries. The RMS error in respect
to the “accurate” (floating point) curve is 0.35 LSB compared
with the RMS error of the full look-up table of 0.28 LSB.
Figure 4 shows the actual approximation error throughout the
input range.

Square root is an important function often encountered in
DSP. Figure 5 presents the look-up table for 11-bits resolu-
tion with ±1 bit accuracy. The look-up table has 21 entries,
and for 10-bits the linear approximation circuit generates an

Figure 7: The address decoder for the circuit from Fig. 6.

 16

Fig. 7. The address decoder for the circuit from Fig. 6.

exact result. Similar table for a 16-bit accuracy has 262 en-
tries. The full look-up tables would require 1024 and 65 536
entries respectively.

The hardware implementing the variable step look-up ta-
ble linear approximation differs from the fixed-step as it has
to split the input wordx into variable length address part
and the increment1x and the fixed shift is replaced by pro-
grammable shift dependent on the step of the look-up table.
The hardware is shown in Fig. 6.

Figure 7 presents the details of the address decoder in the
circuit from Fig. 6. An array of comparators determines the
current step of the look-up table and splits the input wordx

into the address part and the increment part. It also controls
the number of positions for the shift. The number of com-
parators in the array is equal to the number of step changes
in the look-up table.

Before the input word is presented to the linear approxima-
tion circuit the number has to be normalised. For the square
root the input number should be within the range{1. . . 4} for
the output within the range{1. . . 2}. This operation could be
referred to as an internally floating-point operation.

As an example of application of the linear approxima-
tion circuit with variable step look-up table, a 16-bit square
root

√
x2+y2+z2has been implemented in Spartan 3/1000.

The resources used are 242 slices (3%), 1 block RAM (4%)
and 4 hardware multipliers (16%). Three of the multipli-
ers are used to calculate the squares and one in the lin-
ear approximation circuit. The on-chip hardware multipli-
ers are 18×18, and for the linear approximation circuit a
9×9 multiplier would be sufficient. Therefore, if the vari-
able word length multiplier was available (Pfaender, 2007),
the resources could be further reduced. The same circuit was
also implemented in Virtex 2 FPGA and the operation was
verified using ChipScope. The circuit exhibits latency of ap-
proximately 11 ns.

Adv. Radio Sci., 6, 233–237, 2008 www.adv-radio-sci.net/6/233/2008/

S. Lachowicz and H.-J. Pfleiderer: Fast evaluation of nonlinear functions using FPGAs 237

5 Conclusions

A novel method of nonlinear function computation in FPGA
has been developed. The standard linear approximation cir-
cuit has been modified in order to use a look-up table with
variable step. This allows to minimise the size of the look-up
table and therefore the resources needed for the implementa-
tion. The method can be used directly for word lengths up
to about 24 bits, and can also be used as an initial value gen-
erator for Newton-Raphson iterations if a higher accuracy is
required.

Acknowledgements.The support of the German Academic Ex-
change Office (DAAD) and Ulm University is gratefully acknowl-
edged.

References

Ercegovac, M. D., Lang, T., Muller, J.-M., and Tisserand, A.: Re-
ciprocation, Square Root, Inverse Square Root, and Some Ele-
mentary Functions Using Small Multipliers, IEEE Trans. Com-
puters, 49(7), 628–637, 2000.

Hassler, H. and Takagi, N.: Function Evaluation by Table Look-Up
and Addition, in: Proc. 12th IEEE Symp. Computer Arithmetic,
edited by: Knowles, S. and McAllister, W., 10–16, July 1995.

Pfaender, O. A., Nopper, R., Pfleiderer, H.-J., Zhou, S., and
Bermak, A.: Comparison of reconfigurable structures for flexi-
ble word-length multiplication, Adv. Radio Sci., 6, 2008.

Sarma, D. D. and Matula, D. W.: Faithful Bipartite ROM Reciprocal
Tables, in: Proc. 12th IEEE Symp. Computer Arithmetic, edited
by: Knowles, S. and McAllister, W., 17–28, July 1995.

Volder, J.: The cordic trigonometric computing technique, IRE
Trans. Electron. Comput., 3, 330–334, 1959.

Wong, W. F. and Goto, E.: Fast Evaluation of the Elementary Func-
tions in Single Precision, IEEE Trans. Computers, 44(3), 453–
457, March 1995.

www.adv-radio-sci.net/6/233/2008/ Adv. Radio Sci., 6, 233–237, 2008

