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Abstract. The assimilation of satellite-derived soil moisture
estimates (soil moisture–data assimilation, SM–DA) into hy-
drological models has the potential to reduce the uncertainty
of streamflow simulations. The improved capacity to moni-
tor the closeness to saturation of small catchments, such as
those characterizing the Mediterranean region, can be ex-
ploited to enhance flash flood predictions. When compared
to other microwave sensors that have been exploited for SM–
DA in recent years (e.g. the Advanced SCATterometer – AS-
CAT), characterized by low spatial/high temporal resolution,
the Sentinel 1 (S1) mission provides an excellent opportu-
nity to monitor systematically soil moisture (SM) at high
spatial resolution and moderate temporal resolution. The aim
of this research was thus to evaluate the impact of S1-based
SM–DA for enhancing flash flood predictions of a hydro-
logical model (Continuum) that is currently exploited for
civil protection applications in Italy. The analysis was car-
ried out in a representative Mediterranean catchment prone
to flash floods, located in north-western Italy, during the time
period October 2014–February 2015. It provided some im-
portant findings: (i) revealing the potential provided by S1-
based SM–DA for improving discharge predictions, espe-
cially for higher flows; (ii) suggesting a more appropriate
pre-processing technique to be applied to S1 data before the
assimilation; and (iii) highlighting that even though high spa-
tial resolution does provide an important contribution in a
SM–DA system, the temporal resolution has the most crucial
role. S1-derived SM maps are still a relatively new product

and, to our knowledge, this is the first work published in an
international journal dealing with their assimilation within a
hydrological model to improve continuous streamflow simu-
lations and flash flood predictions. Even though the reported
results were obtained by analysing a relatively short time pe-
riod, and thus should be supported by further research activ-
ities, we believe this research is timely in order to enhance
our understanding of the potential contribution of the S1 data
within the SM–DA framework for flash flood risk mitigation.

1 Introduction

In small catchments, such as those characterizing the
Mediterranean region, flash flood risk can be very high.
In these basins, antecedent soil moisture (SM) conditions
largely determine whether a given amount of rainfall pro-
duces conditions for a flash flood alert or not. Therefore, ac-
curate and reliable SM estimates are of fundamental impor-
tance for reducing uncertainties of flash flood early warning
systems (Borga et al., 2011; Massari et al., 2015a). Within
this framework, microwave (MW) remote sensing offers an
excellent opportunity for synoptical SM monitoring.

In recent decades, satellite-derived SM maps obtained
from MW sensors characterized by low spatial/high tem-
poral resolution (e.g. radiometers and scatterometers) have
been exploited to improve discharge predictions of hydro-
logical models via data assimilation (DA) techniques (SM–
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DA) (e.g. Brocca et al., 2010; Matgen et al., 2012a; Laiolo
et al., 2015a, b, Massari et al., 2015a, b; Cenci et al., 2016a).
DA allows for combination of optimally different sources of
information that may be characterized by different spatio-
temporal resolution and accuracy. Via DA techniques, SM es-
timates obtained from satellite acquisitions and hydrological
modelling can be merged to obtain more reliable state esti-
mates and reduce the uncertainty of model forecasts (Walker
and Houser, 2005; Liu et al., 2012). These techniques can
thus be applied in an operational context to enhance, for ex-
ample, flash flood predictions. However, SM–DA is a com-
plex task and its performances are greatly influenced by sev-
eral factors, such as the characteristics of the hydrological
catchment, the properties of the satellite sensor (or of the
satellite mission), the type of SM retrieval algorithm and the
pre-processing techniques that are applied to allow for a cor-
rect assimilation of the satellite-derived SM maps (i.e. the ob-
servations). In fact, most of the time observed and modelled
data have different spatial resolutions. Additionally, their SM
estimates may refer to different soil layers (satellite: near-
surface; model: root zone – RZ). Furthermore, systematic
biases between the observing and the modelling system are
usually present and an accurate characterization of their er-
rors is generally difficult to achieve. These problems must be
carefully accounted for and tackled before the assimilation
is carried out (Drusch, 2005; Wagner et al., 2007; Massari et
al., 2015a), and these tasks are usually achieved during the
pre-processing step.

Notwithstanding the reported evidence on the utility
of SM–DA for operational hydrology, further research is
needed before an actual implementation in flash flood early
warning systems can be envisaged (Wagner et al., 2007;
Cenci et al., 2016a). In particular, it has been pointed out
that operational agencies need to focus on the assimilation of
new observations acquired by different sensors with different
spatio-temporal resolutions (Liu et al., 2012). In this general
context, it is worth understanding the added value of “new
generation” high spatial resolution SM maps obtained using
synthetic aperture radar (SAR) systems, e.g. Sentinel 1 (S1)
(Wagner et al., 2007; Laiolo et al., 2015a; Cenci, 2016; Cenci
et al., 2016a), characterized by a comparatively higher spa-
tial and lower temporal resolution with respect to traditional
MW sensors exploited for such purposes (e.g. the Advanced
SCATterometer, ASCAT; the Soil Moisture and Ocean Salin-
ity, SMOS; and Soil Moisture Active Passive, SMAP). Re-
cent analyses were carried out by assimilating S1 SAR and
SMAP radiometer observations within the NASA Catchment
Land Surface Model to improve the accuracy of SM esti-
mates (Lievens et al., 2017) and by exploiting a S1-based SM
map as input data for an event-based rainfall–runoff model
for improving its hydrological simulation (Alexakis et al.,
2017). However, to our knowledge, there is a lack of stud-
ies dealing with the assimilation of S1-derived SM prod-
ucts within hydrological modelling to improve continuous
streamflow simulations and flash flood predictions (prelim-

inary analyses – preparatory to this study – can be found in
Cenci, 2016, Cenci et al., 2016b, c, and Cenci et al., 2017a,
b).

In order to investigate this research topic, a SM–DA sys-
tem was set up to assimilate different S1-derived SM prod-
ucts (S1 SM–DA) within a hydrological model that is cur-
rently implemented in Italy for flash flood forecasting, both
at regional and national scale (Continuum; Silvestro et al.,
2013). All the S1 SM maps (spatial resolution: ∼ 500×
500 m2; temporal resolution 12 days) were produced by us-
ing the same SM retrieval algorithm but with different cor-
rections of the vegetation effect on the radar backscattering
(σ 0). The analysis was carried out in the Orba River catch-
ment, an Italian basin prone to flash floods, during the time
period October 2014–February 2015. The Nudging assimila-
tion scheme (Walker and Houser, 2005) was chosen for its
computational efficiency. The latter is of particular impor-
tance when dealing with operational applications. Since in
situ SM monitoring stations were not available, the impact of
the assimilation was evaluated by comparing the model dis-
charge predictions (obtained with and without the assimila-
tion) with observed discharge data, with a particular empha-
sis placed on the impact on high flow forecasts. Results were
compared against those obtained by assimilating a more con-
ventional high spatial (and temporal) resolution SM product
derived from ASCAT acquisitions: H08 (SM-OBS-2: spatial
resolution 1×1 km2, temporal resolution 36 h; Wagner et al.,
2013). The purpose of the comparison was to have a bet-
ter understanding of the impact of the spatial and temporal
resolutions of the observations in a SM–DA system. As the
exploitation of S1-derived SM products for DA applications
is a new research topic, the analysis was also aimed at defin-
ing the best pre-processing steps to be applied before their
assimilation.

2 Study area, hydrological model and satellite data

2.1 Study area: the Orba River catchment

The Orba River catchment (Fig. 1) is located in the
north-western (NW) Italian Apennines. Because of its
small/medium dimension, its particular relief-driven organi-
zation in land cover distribution and its climatic and hydro-
logical characteristics, it can be considered a representative
catchment of the NW Mediterranean area. Its surface area is
circa 800 km2 and the river length is approximately 75 km.
Its land cover is characterized by a forested, mountainous
upper-slope area and a final alluvial part in which agricul-
tural activities are present. Urban areas cover only a small
percentage of the basin. As with most of the NW Mediter-
ranean basin, the Orba catchment is characterized by a high
annual variability of climatic characteristics, resulting in a
marked seasonality of the hydrological regimes. The runoff
is strongly influenced by the seasonal distribution of precipi-
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Figure 1. Study area: the Orba River catchment.

tation. Lower flows generally occur during the dry summers.
The rainy season that generates higher flows and occasion-
ally flash floods usually occurs in autumn and early winter,
but late summer and spring rainfall/runoff can at times be rel-
evant as well. Runoff generation strongly depends on rain-
fall intensity and land surface properties (e.g. geomorphol-
ogy of slopes/topography, channel systems/hydrography and
land cover) (Thornes et al., 2009; Cenci et al., 2016a; Merheb
et al., 2016).

2.2 Hydrological model: Continuum

The hydrological model used in the experiment was Contin-
uum, which is a time-continuous, spatially distributed, phys-
ically based model. It relies on a morphological approach
based on the identification of drainage network components.
The basin is represented using a regular square mesh based
on a digital elevation model (DEM). Flow directions are
identified on the basis of the directions of maximum slope
derived by the DEM. Mass and energy balance equations are
solved on each pixel of the domain. In this experiment, the
spatial resolution of the model (i.e. of the DEM) was set
to 100× 100 m2. Continuum needs five meteorological in-
put datasets, namely precipitation, air temperature, air hu-
midity, shortwave radiation and wind speed. In the experi-
ment, the corresponding maps were obtained by interpolat-
ing to the model grid data recorded by the Italian Civil Pro-
tection Department network of in situ stations present in the

catchment: 19 pluviometers, 19 thermometers, 10 hygrom-
eters, 7 radiometers (shortwave radiation), and 8 anemome-
ters. Interpolation algorithms were Kriging for precipitation,
altitude relationship for air temperature and inverse distance
weighting for the other parameters. The temporal resolution
of the meteorological input was 1 h. The model requires six
calibration parameters: two for the surface flow (which is
distinguished between channel and hillslope flows), two for
the subsurface flow and two for deep flow and the water
table. Concerning the infiltration (process of major interest
for the purpose of this work), the sub-surface flow compo-
nent follows the drainage network direction, and it is mod-
elled using a semi-empirical approach based on a modified
Horton algorithm. Each model cell is represented as a tank
with a maximum soil storage capacity (Vmax [L], whose av-
erage value at catchment scale is 184 mm) and the water
contained within it is modelled as the actual water volume
(V (t) [L]). Consequently, the SM can be estimated, for each
cell, at each time step, as the RZ saturation degree (SD):
SDMOD(t)= V (t)/Vmax. Instead, the deep-flow component
follows the hydraulic head gradient, obtained by modelling
the water table. The energy balance is solved explicitly at
cell scale by means of the force–restore equation, which al-
lows the land surface temperature (LST) to be a distributed
state variable. The model was calibrated by minimizing the
differences between model streamflow simulations and time
series of observed discharge data. For any further informa-
tion on the model structure and its calibration over the se-
lected study, please refer to the detailed description provided
by Silvestro et al. (2013).

2.3 Satellite data: Sentinel 1 and ASCAT-derived soil
moisture products

The S1 constellation is composed of two satellites, S1 A and
S1 B, each of them carrying a C-band SAR sensor. It has a
spatial resolution of 5×20 m2 (single look) in interferometric
wide (IW) swath mode (250 km swath width) and a tempo-
ral resolution of 12 days if a single orbit of a single satellite
is considered (6 days if the same orbit is taken into account
by considering both satellites; Sentinel-ESA, 2017). The S1-
derived surface SM maps that were utilized in this research
were produced through the application of a multi-temporal
SM retrieval algorithm based on a maximum likelihood ap-
proach developed by Pulvirenti et al. (2017). Level-1 ground
range detected (GRD) images were exploited to achieve this
task. Only S1-A acquisitions were used because S1-B had
not been launched at the time of the analysis. S1 images
were available starting from 10 October 2014, for a total of
12 images. Orbit 66 was selected because the Orba catch-
ment is entirely contained within one single-image frame.
Images were acquired in the early morning (at 05:35 UTC)
to avoid daytime decoupling between surface and RZ soil
layers (Jackson, 1980). Having considered a period where
the soil can be assumed to be only slightly vegetated, a S1-
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based SM product without the correction of the vegetation
effect on σ 0 was produced (hereinafter defined as S1 No-
CorVeg). Two additional products, in which the correction
of the vegetation effect was accounted for, were generated
as well. The correction was performed using both optical
(Landsat 8) and X-band SAR (Cosmo SkyMed® – CSK®)
images. These products will hereinafter respectively be de-
fined as S1 CorVegOPTICAL and S1 CorVegCSK. In order
to discriminate the contribution from soil and vegetation to
σ 0, the semi-empirical water cloud model (WCM) was ap-
plied (Attema and Ulaby, 1978). WCM uses one parameter,
i.e. the plant water content, to describe vegetation. This pa-
rameter was estimated through empirical relationships from
both the Normalized Difference Vegetation Index (NDVI)
obtained from Landsat 8 (Pierdicca et al., 2013) and from
CSK® acquisitions (Paloscia et al., 2014). The WCM intro-
duces two parameters (A and B) that are generally crop de-
pendent, so that a rigorous determination of A and B would
imply taking into account both the crop type and its pheno-
logical cycle. However, in operational soil moisture applica-
tions, the availability of updated information about the veg-
etation stage of growth and the crop type is not guaranteed.
Hence it was decided to use the values of A and B found by
Bindlish and Baros (2001) and valid for different land uses.
Note that pixels where the plant water content is larger than
5 kg m−2 are masked since, for high values of plant water
content (and of NDVI, which generally increases with it), the
sensitivity of the radar measurement to soil moisture is very
low.

Before the SM retrieval, S1 images were calibrated, mul-
tilooked and geocoded using the SARscape software and the
SRTM (3 arcsec) DEM in order to obtain σ 0 maps (VV po-
larization) with a pixel size of 100×100 m2. Next, SM values
were estimated by inverting a forward backscattering model
(Oh et al., 2004), which relates the soil state, represented
by its surface roughness and SM (in volumetric terms) to
the SAR measurements. In practice, the forward model was
used to generate a lookup table in which each record contains
three values: volumetric SM, surface roughness and the cor-
responding σ 0 predicted by the forward model. After the cor-
rection of the vegetation effect, a search in the lookup table
was performed by the algorithm to retrieve SM values from
S1 σ 0 data (Kim et al., 2012). The volumetric SM range of
validity of the aforementioned forward backscattering model
was set between 0.05 and 0.4 m3 m−3. During the retrieval,
areas with a surface slope higher than 15◦ (associated with
complex topography) and areas with a CORINE Land Cover
2012 classification corresponding to forests, urban areas, and
water bodies were excluded to avoid poor quality estimates.
The percentage of pixels masked out during the retrieval was
about 50 %. The SM maps were then filtered with a low pass
filter with a kernel size of 5× 5 pixels in order to reduce
the noise. Therefore, the actual spatial resolution of the S1-
derived SM maps is of the order of 500× 500 m2, whereas

their pixel size is 100×100 m2 (the same as the RZ–SD maps
produced by Continuum).

As previously explained, the performance of S1 SM–DA
was compared with respect to the performance of the as-
similation of another high spatial resolution SM product,
namely H08. H08 is obtained by disaggregating to 1×1 km2

SM estimates retrieved from ASCAT acquisitions by using
the TU Wien change detection algorithm (spatial resolution:
25×25 km2, temporal resolution: 36 h; Wagner et al., 2013).
The disaggregation is achieved by adopting a linear approach
in which time-invariant coefficients are used. The coefficients
are derived from long Advanced Synthetic Aperture Radar
(ASAR) backscatter time series acquired by the ENVISAT
satellite (Wagner et al., 2013). The theoretical framework be-
hind this disaggregation approach is that of “temporal stabil-
ity”, i.e. SM temporal dynamics are similar across different
spatial scales (Vachaud et al., 1985). Even though H08 spa-
tial resolution is coarser than the one of S1, both SM products
can be considered at high spatial resolution for hydrological
applications.

3 Methods: data pre-processing and assimilation
algorithm

3.1 Data pre-processing of Sentinel 1-derived soil
moisture products

As stated in the introduction, satellite-derived SM products
are usually pre-processed before the assimilation to be phys-
ically consistent with the SM state variable simulated by the
hydrological model. Since S1 SM maps were produced with
the same pixel size as Continuum RZ–SD maps, their pre-
processing did not require any resampling. Following Al-
bergel et al. (2012), S1 surface volumetric SM estimates were
initially normalized between 0 and 1 using their own min-
imum and maximum values admissible from the retrieval
model (i.e. 0.05 and 0.4 m3 m−3) to be expressed in terms
of SD. Then, the exponential filter developed by Wagner et
al. (1999) was applied to the SD data to obtain an estimation
of the RZ (the generated product is often referred to as the
Soil Water Index – SWI). For each pixel, the filter smoothes
the time series of surface SD values to obtain an estimate of
the RZ–SD. The filter needs one soil parameter to be cal-
ibrated: the characteristic time length (T ), which character-
izes the SM temporal variation within the RZ profile. Follow-
ing the reasoning reported in Laiolo et al. (2015b), where the
T parameter was estimated according to hydrological con-
siderations related to the soil of the selected study area (i.e.
the Orba basin), a value of T = 10 days was used. Since
SWI estimates were still affected by systematic bias with re-
spect to modelled data, a third-order polynomial pixel-based
cumulative distribution function (CDF) matching approach
was adopted to remove it (Drusch, 2005; Reichle and Koster,
2004). This pre-processing allowed three S1-derived RZ–SD
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bias-free products to be obtained, defined as S1 SWI-CDF
NoCorVeg, S1 SWI-CDF CorVegCSK, and S1 SWI-CDF
CorVegOPTICAL, depending on the initial S1-derived SM
product that was used.

Following Drusch (2005), three additional products were
obtained by applying directly the pixel-based CDF matching
approach to the initial S1 surface SD values. The underly-
ing assumption behind this approach is that the differences
between diverse soil moisture datasets, referring to different
soil layers/depths, can be seen – in a statistical framework –
as differences between the moments of their statistical dis-
tributions. Even though these differences can be mainly as-
cribed to the first two moments, the CDF matching approach
– being an advanced non-linear technique – allows for reduc-
tion also of the differences between the higher moments of
distributions (in addition to the first two, i.e. mean and vari-
ance; Reichle and Koster, 2004). Therefore, the exploitation
of the CDF matching approach as an observation operator
transformed the S1 surface SD values into RZ–SD estimates
comparable to that produced by the Continuum model. In this
exercise, a third-order, pixel-based CDF matching approach
was used. The CDF matching was computed by taking into
account S1 and Continuum maps acquired at the same instant
of time. During its implementation, any pixel excluded dur-
ing the SM retrieval from S1 data was also masked out in the
Continuum RZ–SD maps. It was decided to evaluate this al-
ternative pre-processing (in which the exponential filter was
not used) because the SWI was initially designed for denser
time series (with respect to S1 A), such as those provided
by the ASCAT sensor. Therefore, it is also worth evaluat-
ing the performances of S1-derived RZ–SD maps obtained
when removing the temporal component (i.e. SWI) from the
pre-processing. These products were defined as S1 CDF No-
CorVeg, S1 CDF CorVegCSK, and S1 CDF CorVegOPTI-
CAL. A total number of six S1-derived RZ–SM products was
thus analysed. A graphical representation of the S1-derived
SM products’ data pre-processing is shown in Fig. 2.

3.2 Data pre-processing of ASCAT-derived soil
moisture products

Since ASCAT is a C-band scatterometer, the resulting H08
estimates, expressed in terms of SD, refer to the surface soil
layer. Hence, they must be pre-processed before being as-
similated into Continuum. Following Laiolo et al. (2015a, b)
and Cenci et al. (2016a), H08 data were firstly resampled to
the model’s spatial resolution (100×100 m2) using the near-
est neighbour approach. Subsequently H08 RZ–SD estimates
were obtained by applying the SWI (as for S1 data, a T value
equal to 10 days was used). Finally, H08 RZ–SD bias-free
estimates were obtained by applying a minimum–maximum
(MinMax) correction (Laiolo et al., 2015a, b; Cenci et al.,
2016a). Again, only morning SM maps (ASCAT acquisition
time: 09:30 UTC) were used in the experiment, for a total
number of images equal to 63.

Table 1. List of S1 and H08 (SWI-MinMax subsets [1] and [2]) im-
ages used in the SM–DA experiment. The symbol * denotes the im-
ages used for initializing the SWI. S1 acquisition time: 05:35 UTC.
H08 (ASCAT) acquisition time: 09:30 UTC.

Image ID Acquisition day S1 Acquisition day H08

0* 10/10/2014* 10/10/2014*
1 22/10/2014 22/10/2014
2 03/11/2014 01/11/2014
3 15/11/2014 15/11/2014
4 27/11/2014 27/11/2014
5 09/12/2014 10/12/2014
6 21/12/2014 21/12/2014
7 02/01/2015 03/01/2015
8 14/01/2015 14/01/2015
9 26/01/2015 27/01/2015
10 07/02/2015 07/02/2015
11 19/02/2015 17/02/2015

In order to allow for a better understanding of the role of
the spatio-temporal resolution in a SM–DA framework, three
H08 datasets were created for the comparison with the S1-
derived SM products. In the first dataset, hereafter defined as
H08 SWI-MinMax, the aforementioned pre-processing chain
was applied to all 63 H08 (morning) images available for
the period under investigation. A second dataset, called H08
SWI-MinMax subset [1], was created by selecting the 12
H08 images closest in time with respect to the 12 S1 acquisi-
tions from the H08 SWI-MinMax dataset. The third dataset,
named H08 SWI-MinMax subset [2], was instead composed
by selecting the 12 H08 images closest in time with respect
to the 12 S1 acquisitions from the raw H08 dataset (i.e. be-
fore the pre-processing) that were then pre-processed as a
“standalone” dataset (thus computing the SWI and the Min-
Max correction only by using the selected images). The main
difference between the H08 SWI-MinMax dataset and H08
SWI-MinMax subsets [1] and [2] is thus in the number of
images comprising the datasets (respectively 63 vs. 12). This
comparison will thus help to better understand the role of
the temporal resolution (i.e. number of images) in a SM–DA
system in which high spatial resolution data are assimilated.
The main difference between H08 SWI-MinMax subsets [1]
and [2] is in the role that the temporal resolution plays in
the pre-processing (i.e. computation of the SWI and Min-
Max Correction). Note that only 11 images out of 12 have
been assimilated because the first one was used to initialize
the SWI filter for both S1 and the H08 SWI-MinMax sub-
set [1] and [2] datasets. Consequently 62 images from the
H08 SWI-MinMax dataset were finally assimilated. The list
of these images is reported in Table 1, as well as those be-
longing to the S1 dataset. A graphical representation of the
H08 products’ data pre-processing is shown in Fig. 2.
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Figure 2. Graphical representation of the data pre-processing of S1
(in black, on the left) and H08 (in grey, on the right) derived SM
products. The colour legend associated with each “final” product
obtained at the end of the pre-processing chain is the same as the one
used in Figs. 3, 5 and 6. In order to improve the figure readability, in
the graph the pre-processing part used to differentiate between the
H08 SWI-MinMax dataset and H08 SWI-MinMax subsets [1] and
[2] is not represented. Concerning this issue, the reader is invited to
refer to subparagraph “3.2 Data pre-processing of ASCAT-derived
soil moisture products”.

3.3 Data assimilation algorithm

A Nudging assimilation scheme was used to carry out the DA
experiment. According to the Nudging approach, a weighted
term (innovation) is added to the model forecast (model SM
estimate) to allow it to be closer to the observation. The in-
novation is defined as the difference between the observation
and the model forecast. The latter is updated every time step
(t) an observation is available. The weighting term is called
gain (G); in its scalar form, it ranges from 0 to 1. If G= 0,
the observation is not taken into account during the analy-
sis step (open loop – OL – mode); if G= 1, the observation
replaces the model forecast (direct insertion). Different ap-
proaches can be exploited to quantify G, which should take
into account the uncertainty of both datasets. An error char-
acterization is thus required. However, normally G is a con-
stant value in both space and time. This allows Nudging to be
an efficient (computationally inexpensive) assimilation algo-
rithm, which is of primary importance for operation applica-
tions (Walker and Houser, 2005). For this exercise it was not
possible to have a reliable error characterization and, thus, it
was not possible to correctly define G. This was for differ-
ent reasons: (i) absence of SM in situ monitoring networks
in the study area to which S1-based SM estimates could be

compared; (ii) lack of validation studies for the S1-derived
SM products in the literature; and (iii) impossibility of ap-
plying a triple collocation-based approach due to the lack of
other simultaneously obtained, independent datasets of suf-
ficient temporal length. In fact, the S1 time series is (still)
short and, in addition, H08 images are not always acquired
on the same day as S1 or at the same time of day (refer to
Table 1). All of this implies that it was not possible to have
a reliable error characterization and, thus, it was not possible
to define G with standard procedures. In order to circumvent
these issues, it was decided to run the assimilation with dif-
ferent values of G (from 0 to 1, with steps of 0.1), thereby
enabling a sensitivity analysis of its influence on the assim-
ilation performances (Brocca et al., 2010). Finally, it must
be pointed out that (i) the exact period of the assimilation
ranged from 20 October 2014 to 20 February 2015, to ex-
clude the initialization period that was necessary to compute
the SWI; (ii) the assimilation algorithm implemented within
the Continuum model prevents the assimilation of SM ob-
servation pixels whose modelled LST is lower than 0◦C (i.e.
frozen soil conditions).

4 Results and discussion

The impact of the assimilation was evaluated in terms of im-
pact on discharge predictions, by comparing the modelled
discharge (before and after the assimilation) with the ob-
served one recorded by the hydrometer of the Casal Cer-
melli station, located at the outlet of the catchment (refer
to Fig. 1). Different statistical scores were computed: the
Nash–Sutcliffe (NS) efficiency coefficient (Nash and Sut-
cliffe, 1970), the efficiency (Eff) of assimilation (Massari et
al., 2015a) and the normalized error reduction (NER, Chen et
al., 2011). NS ranges from −∞ to 1 (perfect model). Since
it is biased toward higher flows, if it is calculated from dis-
charge values in a logarithmic scale (NSLS), it can be used
to specifically evaluate the model performances for lower
flows (Massari et al., 2015a). NS and NSLS were both used
to evaluate results. Eff, ranging from −∞ to 100, repre-
sents the percentage of worsening (Eff < 0) or improvements
(Eff > 0) after SM–DA. NER is a dimensionless value, rang-
ing between −∞ and 100, representing the percentage of
root mean squared error (RMSE) reduction (or increment) af-
ter SM–DA. The higher the NER value, the higher the RMSE
reduction. Note that the RMSE is also biased toward higher
flows.

NS, NSLS, NER and Eff were computed in the assimila-
tion time period to better understand the overall impact of
the assimilations (Analysis 1). Since the time period under
investigation is short, a seasonal analysis was not feasible.
However, it was possible to identify two distinct sub-periods
characterized by contrasting discharge regimes: higher flows
(20 October–22 December, Analysis 2) and lower flows (23
December–20 February, Analysis 3). A specific event was

Adv. Geosci., 44, 89–100, 2017 www.adv-geosci.net/44/89/2017/



L. Cenci et al.: An evaluation of the potential of S1 for improving flash flood predictions via SM–DA 95

Figure 3. NS, NSLS, NER and Eff values computed for all the S1 and H08 datasets during the time period corresponding to Analyses 1–5.
For each analysis, the corresponding hydrograph is also shown.

evaluated, i.e. the highest peak recorded in the period under
investigation (Analysis 4). The statistical scores in Analy-
ses 1–4 were computed on hourly discharge values. Finally,
the SM–DA impact on the daily maxima (hourly) discharge
values recorded in the period under examination was inves-
tigated (Analysis 5). Analyses 1–5 were also carried out for
the H08 SWI-MinMax dataset and SWI-MinMax subsets [1]
and [2]. Results are shown in Fig. 3.

Concerning S1 SM–DA, almost all the analyses revealed
that the assimilation enhanced the model streamflow simula-
tions. In spite of the fact that negligible effects were recorded
on lower flows (Analysis 3 in Fig. 3), SM–DA considerably
improved Continuum discharge predictions (Analysis 1 in
Fig. 3), especially of higher flows (Analysis 2, Analysis 4
and Analysis 5 in Fig. 3). These results support previous find-
ings stating that (i) in regions not characterized by a proper
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rainy season, such as central Italy, SM–DA is able to improve
discharge predictions in periods characterized by high SM
temporal variability; and (ii) improvements particularly af-
fect higher flows (Massari et al., 2015a; Cenci et al., 2016a).

Considering the focus of this work (i.e. improving flash
flood predictions via SM–DA), Analysis 4 is interesting be-
cause of the exceptional nature, in terms of both intensity
and duration, of the observed flood event (refer to the hydro-
graph in Fig. 3). Furthermore, a S1 observation was available
before the event started, thus providing the best conditions to
evaluate its impact on the assimilation. The high improve-
ments provided by the assimilation are a demonstration of
the importance of SM–DA for reducing the uncertainty of
(flash) flood predictions.

Also, findings provided by Analysis 5 are relevant for the
research objectives of this study. In fact, it allows the assess-
ment of the discharge predictions in a hypothetical scenario
of flash flood early warning systems, in which the discharge
is likely to be predicted in terms of daily maximum values.
Results highlighted the positive impact of the assimilation on
peak flow predictions.

The negligible effects of SM–DA on lower flows (Analy-
sis 3) can be explained as follows. Since it is well known that
SM estimates are not reliable when frozen soil conditions
prevail (Wagner et al., 2013), the SM–DA system was set up
in order not to assimilate the pixels of the observations whose
LST predicted by the Continuum model was lower than 0 ◦C.
By observing Fig. 4, which shows the average catchment val-
ues of LST computed at the time of S1 acquisitions, it can be
inferred that – during the lower flow period – many of the
pixels of the S1-derived SM products were not assimilated
because, most of the time, the average catchment LST was
lower than 0 ◦C. Consequently, the low number of assimi-
lated pixels produced a negligible effect of S1 SM–DA on
discharge predictions. Future versions of the SM retrieval al-
gorithm will account for a quality check process able to cor-
rectly deal with the “frozen soil condition” issue during the
production of the surface volumetric soil moisture maps (e.g.
using the Continuum LST data to mask out, during the SM
retrieval, S1 pixels with a high probability of having frozen
soil).

The sensitivity analysis of G values showed that all the
aforementioned outcomes were more pronounced as the
weight assigned to the observations increased. This was due
to the fact that, even though the model performed well in
its OL realization (refer to NS values in Fig. 3), it overesti-
mated the streamflow simulations (Fig. 5). SM–DA allowed
the predictions to be improved by reducing the entity of the
overestimation. This effect was due to the fact that, during
the higher flow period, S1-derived SM products estimated
values of SM lower than those estimated by the Continuum
model (Fig. 6). Therefore, the assimilation reduced the val-
ues of the modelled SM, which in turn produces lower dis-
charge values. The higher the weight assigned to the innova-
tion, the higher the “correction” of the overestimation of the

Figure 4. Time series of mean LST values (computed at catchment
scale in ◦C) estimated by Continuum during S1 and H08 subset
acquisitions (refer to Table 1).

Continuum model (of both SM and discharge values) on the
occasion of the flood events.

Concerning the S1-derived products, the analyses pointed
out the enhanced performances provided by the CorVeg-
OPTICAL maps pre-processed with the CDF matching ap-
proach. This emphasized (i) the importance of the correction
of the vegetation effect during the SM retrieval algorithm,
also for slightly vegetated soils (CorVegCSK data provided
positive results as well, outperforming NoCorVeg maps), and
(ii) the fact that the CDF matching approach is particularly
suitable for S1 data because it does not account for the tem-
poral component that characterizes the SWI.

The results obtained by assimilating the H08 SWI-
MinMax products showed almost similar but more marked
trends with respect to S1 SM–DA (refer to Analyses 1–5 in
Fig. 3). This difference was due to the higher temporal reso-
lution of the ASCAT observations that significantly improved
the Continuum predictions on higher flows. The relevance of
the temporal resolution in the SM–DA was evident from the
comparison between results obtained by the assimilation of
the H08 SWI-MinMax dataset and results obtained by assim-
ilating SWI-MinMax subsets [1] and [2]. Moreover, it was
also clear from the comparison between the SWI-MinMax
subset [1] and [2] performances (Fig. 3). In spite of the same
number of images that were used, the effect of the tempo-
ral resolution in SWI-MinMax subset [1], included in the
data pre-processing through the application of the SWI, was
able to provide enhanced results. Results obtained by Anal-
ysis 4 (Fig. 3) were also particularly interesting to support
the aforementioned conclusion. In that event, only one S1
observation was assimilated (15 November 2014) and, co-
herently, only one H08 image was used in the assimilation
of SWI-MinMax subsets [1] and [2] (15 November 2014).
However, three H08 images were exploited during the as-
similation of the H08 SWI-MinMax dataset (15, 16 and 17
November 2015) and the performances of their assimilation
were clearly enhanced with respect to the others. These re-
sults allow the argument that, even though the spatial res-
olution of the observations is an important component of a
SM–DA system, the importance of their temporal resolution
seems to be even higher. In fact, it must be considered that
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Figure 5. Mean discharge values computed for each model realization (i.e. a model with a different G value) during the time period corre-
sponding to Analyses 1–4. For the colour legend assigned to each line, please refer to the legend of Figs. 2 and 3.

all the SM products were considered at a high spatial resolu-
tion for hydrological purposes. Nevertheless, there are large
differences between the original spatial resolutions of the two
sensors considered; i.e. all the information about the SM tem-
poral behaviour in H08 is derived from ASCAT acquisitions
whose spatial resolution is 25×25 km2 (Matgen et al., 2012b;
Wagner et al., 2013).

Concerning the analysis carried out on the lower flows
(Analysis 3, Fig. 3), it is evident that the impact of all the
H08 data affected negatively the performances of the Con-
tinuum model. This may be due to the marked differences
between the SM time series obtained from ASCAT and that
one modelled by Continuum (Fig. 6). Arguably, such differ-
ences can be due to several factors having degraded the qual-
ity of the H08 SM estimates, e.g. during the SM retrieval
from ASCAT data that – having a pixel size of 25× 25 km2

– could have included with a high level of probability areas
with frozen soil conditions and/or during the disaggregation
process based on time-invariant coefficients. Thus, the assim-
ilation affected the model predictions in a negative way. Also,
the decreased performances of SWI-MinMax subsets [1] and
[2] in the Eff coefficient computed in Analysis 1 can be ex-
plained in the same way.

The results of the sensitivity analysis carried out on the G
value for H08 are coherent with findings obtained from S1.

5 Conclusions

The aim of this research was to evaluate the potentialities
of S1 for improving flash flood predictions via SM–DA. To
this aim, different S1-derived SM products, characterized by
high spatial resolution (∼ 500× 500 m2) and moderate tem-
poral resolution (12 days), were generated. The maps were
obtained by applying the same SM retrieval algorithm, with
the notable difference that the effect of vegetation on the
radar backscattering was corrected in a different way. The
maps were assimilated within a time-continuous, spatially
distributed, physically based hydrological model to evalu-
ate the impact of the assimilation on discharge predictions,
with a particular emphasis on high flow predictions. In or-
der to understand the impact of the spatio-temporal resolu-
tion, results were compared with those obtained by assimi-
lating ASCAT-derived SM products (H08), characterized by
high spatio-temporal resolution (1× 1 km2 and 36 h, respec-
tively). The experiment was carried out in an Italian catch-
ment prone to flash floods during the time period October

www.adv-geosci.net/44/89/2017/ Adv. Geosci., 44, 89–100, 2017



98 L. Cenci et al.: An evaluation of the potential of S1 for improving flash flood predictions via SM–DA

Figure 6. Time series of mean SD values computed at catchment scale for S1 datasets and H08 subsets. Note that S1 and H08 images were
acquired in different hours and not always on the same day (refer to Table 1).

2014–February 2015. Results showed that the assimilation
of S1-derived SM enhanced the model discharge predictions,
especially of higher flows. Results also highlighted the bet-
ter performances provided by the satellite-derived SM maps
in which the vegetation effect was corrected using optical
data and when the pixel-based CDF matching was used as an
observation operator for both RZ estimation and bias reduc-
tion/removal. The comparison with the H08 product pointed
out that, despite high spatial resolution being able to provide
an important contribution in SM–DA systems, the temporal
resolution has the most crucial role.

We believe these findings are important and represent an
innovative contribution within the SM–DA framework be-
cause S1-derived SM maps are still a relatively new product.
Moreover, to our knowledge this is the first work published in
an international journal dealing with their assimilation within
a hydrological model to improve continuous streamflow sim-
ulations and flash flood predictions. However, results were
obtained by analysing a short time period and should be sup-
ported by further research activities. To this aim, future anal-
yses will be based on longer time series of S1 data (including
S1 B data and/or different orbits), other study areas, differ-
ent pre-processing/assimilation techniques, and different hy-
drological models. Additional studies aimed at (i) obtaining
an accurate error characterization of the aforementioned S1-
derived SM products and (ii) comparing such products with

respect to low spatial resolution/high temporal resolution SM
data (e.g. H16, SMOS and SMAP) are also recommended.
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information about the model and the source code can be found
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to run the model belong to the Piedmont Region and were
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H08 data were obtained through the Italian Civil Protection
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at https://scihub.copernicus.eu/. Landsat data were downloaded
at http://earthexplorer.usgs.gov/. Project carried out using CSK®
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