[go: up one dir, main page]

Academia.eduAcademia.edu
Trialogical learning and object-oriented collaboration   Sami  Paavola  1,  Kai  Hakkarainen  1   1  University  of  Helsinki,  Faculty  of  Educational  Sciences,  Helsinki,  Finland.   Emai:  sami.paavola@helsinki.fi;;  kai.hakkarainen@helsinki.fi   A  draft  version  of  a  paper:   Paavola,  S.  &  Hakkarainen,  K.  (2021)  Trialogical  learning   and  object-­oriented  collaboration.  In:  U.  Cress,  A.  Wise,  C.  Rose,  &  J.  Oshima  (Eds.)   International  Handbook  of  Computer  Supported  Collaborative  Learning.  Springer.  DOI:   10.1007/978-­3-­030-­65291-­3.     Abstract:  This chapter delineates different approaches to technology-mediated learning that emphasize “object-oriented” collaboration. The chapter introduces, more specifically, trialogical learning, as distinguished from individual knowledge acquisition (“monological”) or from participation in social interaction and meaning making (“dialogical” approaches, see TrausanMatu, Wegerif, and Major, this volume). We briefly introduce object-oriented collaboration and the trialogical approach where human learning and activity are targeted at jointly developed knowledge artifacts and related knowledge practices. As objects and object-orientedness have become centrally important for understanding collaboration in modern knowledge work, the facilitation of trialogical processes of collaborative learning is crucial in educational contexts. Several approaches focusing on object-oriented collaboration are analyzed, including those that use different terminology. The trialogical approaches appear to form a continuum with dialogical theories and meaning-making traditions often highlighted in CSCL research. Finally, we anticipate future uses of trialogical learning and object-oriented collaboration.   Keywords: object-oriented collaboration, trialogical learning, knowledge-creation metaphor, knowledge practices   1   Introduction  and  Scope     The  meaning  of  artifacts  and  objects  as  central  elements  in  human  interaction  and   collaborative  activity  is  nowadays  highlighted  in  relation  to  learning  theories  (Paavola  &   Hakkarainen,  2009),  design  research  (Ewenstein  &  Whyte,  2009),  maker-­centered   learning  (Papert  &  Harel,  1991;;  Riikonen  et  al.,  2018),  science  and  technology  studies   (Latour,  1996),  and  organization  studies  (Engeström  &  Blackler,  2005).  Artifact   mediation  plays  an  important  role  in  several  theoretical  frameworks,  such  as  distributed   cognition  (Pea,  1993),  knowledge  building  with  conceptual  artifacts  (Bereiter,  2002),   cultural-­historical  activity  theory  (Engeström,  2015),  actor-­network  theory  focusing  on   the  heterogeneous  networks  of  humans  and  nonhumans  (Latour,  1996),  and  recent   discussions  on  sociomateriality  (Orlikowski,  2009;;  Leonardi  et  al.,  2012).   Sociomateriality  is  a  posthumanist  framework  maintaining  that  object-­oriented   technology-­mediated  activity  entangles  emergent  configurations  between  material   (technology)  and  social  (technology  use  in  social  contexts)  elements.  Socio-­cultural   approaches  have  long  emphasized  that  tools  and  concepts  mediate  human  interaction   with  the  world  and  between  humans  (Miettinen  &  Paavola,  2018).  The  central  role  of   artifacts  and  objects  has  been  emphasized  in  technology-­mediated  collaborative   learning  from  the  very  beginning,  starting  with  Papert’s  constructionism  (learning  by   making)  (Papert  &  Harel,  1991)  and  moving  through  learning  by  design  (Kolodner,   2002).   Object-­oriented  technology-­mediated  collaboration  goes  a  step  further  beyond  mere   intersubjectivity  (human–human  interaction)  to  consider  the  role  of  artifacts  and  objects   in  human  learning  and  development.  Objects  and  artifacts  do  not  solely  have  a   mediating  role,  but  (knowledge)  objects,  artifacts,  and  practices  can  themselves  be   seen  as  targets  for  collaborative  development  and  modification  in  educational  and   professional  contexts.  The  sustained  pursuit  of  the  advancement  of  jointly  developed   artifacts  and  practices  not  only  orients  collaboration  but  at  the  same  time  requires  new   ways  of  organizing  collaborative  learning  and  working.  Object-­driven  activities  then   require  new  theoretical  conceptualizations  of  different  aspects  of  collaborative  learning.     2   Trialogical  learning  builds  on  the  idea  of  object-­orientedness.  Rather  than  being  a  mere   intersubjective  process,  collaboration  is  embedded  in  heterogeneous  networks  of   artifacts  and  objects,  characterized  by  Latour  (1996)  as  interobjectivity  (see  Stahl,  and   Hakkarainen,  this  volume).  It  refers  to  those  forms  of  collaborative  learning  where   people  are  collaboratively  and  systematically  developing  shared,  tangible  “objects”   (conceptual  or  material  artifacts,  practices,  ideas)  together.  The  term  has  been   developed  in  relation  to  technology-­mediated  learning  when  new  technology  makes   collaborative  knowledge  processes  durable  and  provides  new  affordances  and  means   for  trialogical  efforts  of  creating  knowledge-­laden  artifacts  and  related  practices.  It  is  not   a  specific  pedagogical  model  but  rather  a  framework  to  facilitate,  support,  and  develop   object-­oriented  collaboration  and  knowledge  creation  in  different  contexts.   The  terms  “trialogical  learning”  and  “trialogical  approach”  are  neologisms  that  were   originally  presented  as  a  main  characteristic  of  the  theories  representing  the  knowledge-­ creation  metaphor  of  learning  (Paavola  &  Hakkarainen,  2005).  The  knowledge-­creation   metaphor  of  learning  is  separated  from  the  metaphors  of  acquisition  (the  transmission   or  acquisition  of  conceptual  or  factual  knowledge  from  textbooks  or  from  a  teacher  to   learners  more  or  less  straightforwardly)  and  participation  (growing  up  with  the  prevailing   practices  of  a  specific  community)  (Paavola  et  al.,  2004).  The  well-­known  distinction   between  the  acquisition  (AM)  and  the  participation  metaphors  (PM)  of  learning  was   suggested  by  Anna  Sfard  (1998).  At  that  time  theories  on  the  meaning  of  participation  in   cultural  practices  and  communities  (PM)  were  challenging  traditional  “cognitivist”   approaches  (AM)  on  learning  and  human  cognition.  The  cognitivist  approaches  defined   individuals  as  a  site  of  learning  and  the  human  mind  as  a  container  of  factual  and/or   conceptual  knowledge.  The  knowledge-­creation  metaphor  is  inspired  by  classic   theorists  such  as  Peirce,  Popper,  and  Vygotsky,  and  by  educational  and  organizational   theories  by  Engeström,  Nonaka,  and  Bereiter.  It  refers  to  theories  of  collaborative  work   and  learning,  which  emphasize  dynamic  processes  for  transforming  prevailing   knowledge  and  practices.  The  knowledge-­creation  metaphor  also  highlights  the   importance  of  cultural  practices  along  with  individual  initiatives  in  learning,  and  ways  of   transforming  traditional  dichotomies  of  human  activity  and  learning  (concepts  vs.   practices,  individuals  vs.  collectives,  subjects  vs.  objects,  humans  vs.  nonhumans).     3   We  have  ourselves  long  argued  that  CSCL  would  benefit  from  focusing  on  theories  and   models  relevant  in  the  modern  knowledge  society  that  aim  at  understanding  how  people   collaboratively  advance  knowledge  or  transform  their  communities  (Paavola  et  al.,   2004).  A  common  characteristic  of  these  theories  is  that  they  do  not  concentrate  on   processes  of  knowledge  acquisition  by  individual  learners  (a  “monological”  approach)   nor  just  on  processes  of  participation  in  social  interaction  (a  “dialogical”  approach),  but   on  understanding  those  processes  where  common  objects  of  activity  are  developed   collaboratively  (both  individually  and  collectively).  Interaction  is  trialogical  when  it   happens  through  developing  common  objects  (or  objects  of  activity),  not  just  between   people  or  between  people  and  their  environment.  From  the  trialogical  perspective   collaboration  is  not  only  a  matter  of  sharing  meaning  and  understanding  but  involves   shared  efforts  of  advancing  envisioned  epistemic  objects  (e.g.,  artifacts  and  practices)   that  are  given  tangible  (i.e.,  materially  embodied)  form  in  terms  of  writing,  visualization,   prototyping,  or  other  means.  Concrete  artifacts  produced  in  collaborative  processes  are   often  generated  when  seeking  to  reach  envisioned  epistemic  objects  (Knorr  Cetina,   2001)  at  the  edge  of  knowing.  Intermediary  artifacts  are  stepping  stones  that  enable   advancing  the  inquiry  toward  epistemic  objects  that  itself  become  more  complex  and   open  up  new  questions  when  pursued.  Although  collaboration  is  a  social  process,   individual  agents  have  an  important  role  in  it,  assuming  fertile  support  provided  by   community-­level  practices.    The  role  of  mediating  artifacts  as  tools  has  been  emphasized  in  CSCL  research   throughout  its  history.  Vygotsky’s  cultural-­historical  theory  highlighting  the  role  of   artifacts  in  cultural  mediation  has  influenced  CSCL  in  many  ways.  Activity  theory  assists   in  understanding  the  dual  role  of  artifacts  and  tools  in  relation  to  objects  (Engeström,   2015;;  Miettinen  &  Virkkunen,  2005).  CSCL  environments  function  as  tools  that  mediate   participants’  learning  and  knowledge-­creation  processes  in  various  institutional  and   cultural  settings.  The  participants  are  engaged  in  solving  complex  problems,  building   and  creating,  and  sharing  and  advancing  knowledge  in  terms  of  constructing  epistemic   artifacts.  A  growing  network  of  such  artifacts  mediate,  as  tools,  the  learners’  subsequent   learning  activities  and  associated  inquiries.  It  can  be  maintained  that  digital  tools  have   for  long  supported  mainly  either  “the  information  genre”  or  “the  communication  genre”     4   (Enyedy  &  Hoadley,  2006;;  Lakkala  et  al.,  2009)  rather  than  communal  knowledge   creation,  or  trialogical  processes  and  actual  work  with  shared  objects.  The  pursuit  of   object-­oriented  collaboration  is  a  socially  emergent  and  nonlinear  process  where  the   generated  artifacts  direct  and  guide  the  advancement  of  inquiry  in  unpredictable  ways,   affecting  future  trajectories  of  collaborative  activity.   Integrating  external  tools  as  instruments  of  learning  activity  is  a  developmental  process   of  its  own.  Both  individuals  and  communities  must  undergo  a  process  of  gradually   transforming  artifacts  into  instruments  of  their  activity  (Beguin  &  Rabardel,  2000).   Appropriating  CSCL  tools  for  remediating  learning  activity  requires  adapting  and   transforming  both  the  external  tools  (instrumentation)  as  well  as  the  participants’   cognitive-­cultural  schema  (instrumentalization).  Because  CSCL  environments  tend  to   offer  a  wide  variety  of  tools,  it  is  critical  to  investigate  “which  tools  are  actually  picked  up   and  appropriated  by  learners  and  how  they  put  them  to  use  for  object-­oriented   endeavors”  (Lund  &  Rasmussen,  2008).   Appropriating  novel  collaborative  instruments  as  tools  of  collective  activity  in  education   or  at  workplaces  is  not  a  trivial  matter  but  requires  extensive  effort  to  develop  support   for  social  practices.  Accordingly,  using  CSCL  environments  to  foster  object-­oriented   collaboration  with  knowledge  artifacts  requires  cultivating  social  practices  that  support   expansive  working  with  knowledge,  i.e.,  knowledge  practices  (Hakkarainen,  2009).  By   knowledge  practices,  we  refer  to  the  personal  and  social  practices  related  to  working   with  knowledge.  The  term  “knowledge”  is  used  in  the  broadest  sense,  to  include  what  is   explicit  or  stated  in  official  discourse  (e.g.,  approved  texts);;  what  is  implicit,  informing   one’s  habits;;  and  the  knowledge  that  underlies  the  competencies  of  experts,  for   example,  “procedural  knowledge.”  Central  characteristics  of  object-­oriented  knowledge   practices  are  the  deliberate  transformation  of  prevailing  practices  in  relation  to  unfolding   knowledge  objects  (Knorr  Cetina,  2001),  the  systematic  pursuit  of  novelty,  and  constant   work  at  the  edge  of  competence  (Bereiter  &  Scardamalia,  1993).  Trialogical  learning  is   then  linked  to  “the  practice  turn”  in  social  theory  (Schatzki  et  al.,  2001),  which  assists   educational  researchers  in  understanding  the  theoretically  tangible  social   transformations  needed  for  making  educational  innovations  happen.       5   History  and  Development     The  background  for  trialogical  learning  and  object-­oriented  collaboration  can  be  sought   from  various  theoretical  approaches.  They  build  on  classic  approaches  emphasizing   mediation  as  a  basis  for  understanding  human  activities,  from  Hegel  and  Marx  to   Vygotsky  and  subsequent  generations  of  socio-­cultural  researchers.  They  emphasize   “augmentationist”  frameworks,  according  to  which  human  intelligence  is  augmented  and   develops  through  the  evolution  of  external  symbolic  artifacts  and  their  systems  rather   than  within  a  human  head  (Skagestad,  1993;;  Donald,  1991).  Charles  Peirce’s  emphasis   on  broadly  conceived  semiotic  mediation  and  Karl  Popper’s  theory  of  objective   knowledge  provide  the  philosophical  background  for  this  kind  of  approach.  Human   beings  can  control  their  behavior  from  the  outside,  that  is,  culturally  by  using  signs  and   tools  (Vygotsky,  1978).  As  an  extension  of  this,  Wartofsky  maintained  in  his  historical   epistemology  that  an  “[a]rtifact  is  to  cultural  evolution  what  the  gene  is  to  biological   evolution”  (Wartofsky,  1979,  205).    More  recently,  distributed  cognition  (Pea,  1993;;   Hutchins,  1995)  has  challenged  the  idea  that  human  learning  takes  place  mainly  in   people’s  minds  or  inside  their  skin,  maintaining  that  learning  is  materially  distributed   between  minds  and  cultural-­historically  developed  tools,  practices,  and  environments.   The  emergence  of  literacy  transformed  human-­cognitive  architecture  as  profoundly  as   earlier  leaps  in  biological  evolution.  It  opened  various  external  memory  fields  for  writing   and  visualization  that  assist  in  solving  significantly  more  complex  problems  than  can  be   done  with  the  unaided  human  mind  (Donald,  1991).  The  other  aspect  is  the  social   distribution  of  intelligence.  Human  beings  are  ultra-­social  and  hyper-­collaborative  beings   in  nature  who  are  able  to  merge  and  fuse  intellectual  effort  and  create  collective   cognitive  systems  together.  CSCL  capitalizes  on  these  human  capabilities  of  materially,   socially,  historically,  and  culturally  distributed  cognition  (Pea,  1993;;  Vygotsky,  1978).         6   In  the  social  sciences  and  organizational  learning,  the  “practice  turn”  has  been   discussed  for  some  time  (Schatzki  et  al.,  2001).  There  are  different  kinds  of  practice   theories  (see  Miettinen  et  al.,  2012),  but  mainly  they  aim  at  transcending  traditional   dichotomies  of  human  and  nonhuman  entities  by  emphasizing  materially  mediated   and/or  embodied  activities.  The  initial  theories  of  CSCL  were  strongly  rooted  in   cognitive-­psychological  learning  research  and,  accordingly,  foregrounded  conceptual   and  mental  aspects  of  learning  (e.g.,  research  on  intentional  learning,  inquiry  learning,   and  conceptual  change).  Although  such  research  assisted  in  understanding  various   aspects  of  personal  learning  and  the  development  of  expertise,  it  runs  into  difficulties   when  attempting  to  implement  CSCL  practices  in  educational  institutions.  The  reason   for  this  difficulty  was  because  the  notion  of  social  practices  was  undertheorized  by  most   of  the  cognitively  inclined  researchers.  Yet  implementing  CSCL  in  educational  practices   calls  for  transforming  technology-­mediated  social  systems  and  institutional  practices   that  were  invisible  to  researchers  of  information  and  communication  technologies.   Although  information  was  conveyed  and  communication  was  established,  the   established  systemic  practices  or  learners  and  teachers  did  not  tend  to  change  beyond   a  superficial  level.  Practice-­related  considerations  regarding  situated  and  participatory   aspects  of  learning  (Lave  &  Wenger,  1991)  assisted  the  theoretical  and  methodological   advancement  of  CSCL  research.   As  important  as  the  practice  turn  and  situated  learning  theories  have  been,  such   approaches  run  into  difficulties  in  properly  addressing  knowledge-­related  aspects  of   learning  in  educational  and  professional  contexts.  Digital  technologies  make  knowledge   processes  a  durable  and  visible  part  of  personal  and  collaborative  learning  (Nerland,   2012).  Emerging  CSCL  practices,  as  well  as  CSCW  practices,  engage  participants  in   sustained  efforts  of  building,  sharing,  and  creating  knowledge.  The  trialogical  approach   foregrounds  sustained  work  with  epistemic  artifacts  and  practices  as  a  central  aspect  of   collaborative  learning  and  knowledge-­intensive  work.  Consequently,  Jensen  and   colleagues  (2012)  address  future  challenges  of  knowledge  work  and  state  that  we  need   a  “knowledge  turn”  after  the  practice  turn.  Knowledge  must  again  return  to   considerations  of  professional  learning  so  as  to  adequately  address  the  epistemification   or  scientification  of  digitalized  professional  practices  currently  dealing  with  increasingly     7   complex  problems,  multi-­professional  collaboration,  international  quality  systems,  and   global  standards  (Hakkarainen  et  al.,  2004).  Following  Knorr  Cetina  (1999),  the   trialogical  framework  understands  knowledge  as  a  practice  to  be  socio-­materially   embodied  in  digital-­collaborative  technologies  and  in  the  practices  of  groups,   communities,  organizations,  and  networks.  The  practice-­based  considerations  of   knowledge  work  are  critical  because  the  objects  of  professional  work  are  becoming   increasingly  complex  and  messy  and  require  advanced  problem  solving,  expansive   learning,  and  the  creation  of  new  knowledge,  anchored  on  supporting  collectively   shared  knowledge  practices.       The  notion  of  objects  has  become,  in  different  forms,  more  prevalent  in  current  social   scientific  research  (Ewenstein  &  Whyte,  2009).  Objects  have  intrigued,  among  others,   philosophers  (Harman,  2018),  science  and  technology  researchers  (Knorr  Cetina,  1999;;   Latour,  2005),  organizational  researchers  (Engeström  &  Blackler,  2005),  engineering   and  architectural  design  researchers  (Ewenstein  &  Whyte,  2009;;  Paavola  &  Miettinen,   2018),  and  CSCL  researchers  (Bereiter,  2002).  The  notion  of  ‘boundary  objects’   allowing  collaboration  across  different  communities  without  consensus  is  nowadays   often  used  (Star  &  Griesemer,  1989).  ‘Epistemic  objects’  refer  to  the  open-­ended  nature   of  investigative  projects  that  involve  pursuing  partially  understood  objects  of  research   and  development  at  the  edge  of  the  knowledge  and  understanding  that  guide  the   inquiry,  becoming  constantly  more  complex  when  studied  (Knorr  Cetina,  1999;;  2001).   ‘Intermediary  objects’  refer  to  evolving  versions  and  different  phases  of  the  objects  to  be   constructed  (Vinck,  2011;;  Paavola  &  Miettinen,  2018).     As  stated  above,  objects  are  not  important  solely  as  mediating  artifacts.  Object-­ orientedness  highlights  the  dynamic  and  motivating  meaning  of  objects  in  collaboration.   Activity  theory  has  highlighted  that  the  object  of  activity  indicates  the  motive  of  each   activity  (Engeström,  2015);;  “the  object  of  an  activity  is  its  true  motive”  (Leontjev,  1978,   p.  62).  Investigators  can  make  “sense”  of  an  activity  by  analyzing  the  nature  of  the   objects  pursued.  In  an  educational  context  it  is,  for  example,  different  to  do  the  learning   assignments  as  “schoolwork”  than  to  orient  towards  solving  vital  community  problems,   contributing  to  society,  and  creating  something  that  is  useful  for  others  to  use.  Modern     8   knowledge  work  is  more  complex  and  interdisciplinary  than  before,  and  the  expansion   of  the  object  places  theoretical  and  methodological  challenges  on  activity  theory   (Spinuzzi,  2011).  Spinuzzi  has  highlighted  that  changes  in  work  activity  mean  that   objects  are  nowadays  often  representational  objects  (such  as  models,  applications,   plans)  and  more  multidimensional  than  before:  “more  broadly  circulated,  shared,  and   interpreted  in  different  activities”  (Spinuzzi,  2011,  p.  463).  Digitalization  has  reshaped   many  aspects  of  object-­oriented  learning  and  working  in  terms  of  digital  instruments,   which  enable  constructing  the  digitally  augmented  objects  being  inquired  about,   representing  and  sharing  objects,  engaging  in  real-­time  virtual  interaction  around   artifacts  in-­the-­making,  intermixing  the  digital  and  material  features  of  objects,  and   building  extended  networks  for  the  pursuit  of  inquiry  and  knowledge  creation.     At  the  same  time,  the  modern  world  challenges  traditional  ways  of  understanding  the   nature  of  practices  and  objects  as  a  part  of  knowledge  work.  Creative  knowledge  work   requires  the  dynamic,  creative,  and  reflective  notion  of  practices  instead  of  standard   procedures,  recurrent  processes,  and  rule-­based  routines.  Knorr  Cetina  (2001)  has   highlighted  the  motivating  force  of  “epistemic  objects”  in  such  expert  work  as  the  pursuit   of  innovations  or  academic  research.  The  targeted  epistemic  objects  are  open-­ended   and  “have  the  capacity  to  unfold  indefinitely”  (Knorr  Cetina,  2001,  p.  181).  The   pedagogic  models  being  investigated  by  learning  scientists  may,  accordingly,  be   understood  as  epistemic  objects.  Epistemic  objects  function  as  motivating  factors  in   learning  and  social  activity,  and  direct  and  guide  personal  and  collaborative  activity  both   in  education  and  professional  work  (Jensen  et  al.,  2012;;  Nerland  &  Jensen,  2012;;  also   Hakkarainen  et  al.,  2004).     A  central  aspect  of  CSCL  has  been  to  engage  students  in  a  research-­like,  progressive   inquiry  process  guided  by  their  own  question,  working  theories,  and  other  knowledge   objects  (Hakkarainen  et  al.,  2004).  By  following  the  dominating  tradition  of  the   philosophy  of  science,  progressive  inquiry  was  initially  understood  to  be  mainly  a   conceptual  process  (influenced  by  theories  close  to  the  acquisition  metaphor  of   learning).  In  accordance  with  Bereiter’s  (2002)  knowledge-­building  theory,  the  objects   pursued  in  collaborative  learning  were  understood  as  conceptual  artifacts.    Sustained     9   efforts  of  implementing  CSCL  in  education  made  us  aware  of  the  importance  of   embedding  epistemic  activities  into  deliberately  cultivated  social  practices.  The  parallel   pursuit  of  investigations  in  knowledge-­intensive  organizations  has  assisted  in   understanding  how  expert  knowledge  is  distributed  and  stretched  over  concepts  and   instruments,  methods  and  procedures,  embodied  arrangements  of  laboratory  spaces,   and  networks  of  peers  and  experts  (Knorr  Cetina,  1999;;  Latour  &  Woolgar,  1986;;   Pickering,  1995),  instead  of  arising  from  the  mere  rational  process  of  individual  minds.   Knowledge  creation  and  invention  appear  to  rely  on  collectively  cultivated  epistemic   practices  that  guide  and  channel  the  participants’  intellectual  efforts  in  creative  and   expansive  ways,  instead  of  representing  mysterious  individual  gifts  or  creative  talents.   The  trialogical  framework  emerged  from  associated  efforts  of  expanding  Bereiter’s   (2002)  knowledge-­building  approach  toward  a  practice-­based  direction  by  taking   epistemic,  social,  and  material  practices  into  account  (Hakkarainen,  2009).   Collaborative  knowledge  advancement  presupposes  the  transformation  of  related   knowledge  practices,  which  requires  time  and  sustained  efforts  from  teachers,  students,   and  researchers.   A  set  of  design  principles  have  been  developed  to  support  trialogical  knowledge   practices  (Hakkarainen  &  Paavola,  2009;;  Paavola  et  al.,  2011).  They  have  a  dual   nature:  (1)  they  point  out  characteristics  that  can  be  called  “trialogical”  and  (2)  give   broad  guidelines  for  enhancing  the  trialogical  features  of  the  learning  settings  in   question.  The  set  of  design  principles  (DPs)  of  trialogical  learning  were  developed  as:   · DP1: Organizing activities around advancing shared objects. · DP2: Supporting the integration of personal and collective agency and work (through developing shared objects). · DP3: Fostering long-term processes of knowledge advancement with shared objects, whether artifacts or practices. · DP4: Emphasizing development and creativity in shared objects through transformations and reflection.   10   · DP5: Promoting the cross-fertilization of various knowledge practices and artifacts across communities and institutions. · DP6: Providing flexible tools for developing artifacts and practices.   CSCL  research  has  traditionally  emphasized  interactional  and  dialogic  theories  of   learning  and  human  cognition  and  shared  meaning  making  (Koschmann,  1999;;  Stahl  et   al.,  2006;;  Suthers,  2006).  The  role  of  artifacts  and  objects  in  CSCL  research  has,   however,  become  clearly  more  prominent  recently  (see  e.g.  Stahl  et  al.,  2014;;   Ludvigsen  et  al.,  2015).  The  meaning  making  and  dialogical  tradition  highlights  issues   such  as  meaning,  intersubjectivity,  dialogues,  language,  communication,  different   voices  and  perspectives,  and  common  ground,  whereas  trialogical  approaches  highlight   jointly  produced  artifacts,  (shared  or  intermediary)  objects,  collaboration,  tools,   indexicality,  and  (knowledge)  practices.  There  is  no  sharp  contrast  but  rather  a   continuum  between  meaning-­making  approaches  on  the  one  hand,  and  trialogical   approaches  with  object-­orientedness  on  the  other  (see  Paavola  &  Hakkarainen,  2009).   Further,  intermediate  forms  exist  between  dialogical  and  trialogical  interaction  such  as   “anchored  discussion”  or  “object-­oriented  discussion,”  where  the  discussion  is  focused   on  a  specific  theme  or  parts  of  some  document.  All  in  all,  dialogical  and  trialogical   approaches  bring  forth  different  kinds  of  emphases.   Trialogical  learning  focuses  on  collaborative  processes  of  developing  artifacts  and   deliberate  efforts  to  transform  prevailing  practices.  It  typically  focuses  on  the  activities  of   small  groups  and  the  organization  of  their  collaboration  (see  the  chapter  concerning   group  practices).  However,  object-­orientedness  brings  forward  the  need  to  broaden  the   perspective  and  the  unit  of  analysis.  Work  with  knowledge  artifacts  requires  sustained   efforts  of  developing  related  social  practices  (Hakkarainen,  2009).  By  relying  on   Bakhtin’s  theory  of  chronotopes,  it  may  be  maintained  that  object-­orientedness  has   certain  temporal  and  spatial  implications  (Ritella  &  Hakkarainen,  2012).  The  temporal   structure  of  activity  is  transformed  by  changing  participants’  intangible  ideas  into  shared   epistemic  artifacts  and,  thereby,  bringing  the  results  of  past  inquiries  to  the  present.  The   spatial  transformation  involves  (a)  sharing  object-­driven  inquiries  regardless  of  location     11   and  making  remote  knowledge  resources  immediately  accessible,  and  (b)  working  with   objects  through  qualitatively  different  semiotic  spaces  organized  in  multiple  ways.  These   spatial  and  temporal  processes  may  be  fused  to  create  a  novel  chronotope  of   technology-­mediated  collaborative  learning.  Further,  cultural-­historical  activity  theory   has  been  used  in  CSCL  research  to  highlight  the  complex  social,  cultural,  and  historical   dynamics  that  influence  CSCL  practices  (Timmis,  2014).   State  of  the  Art     The  trialogical  approach  is  not  a  specific  pedagogic  model  but  rather  a  metalevel   framework  for  identifying,  examining,  and  fostering  learning  in  line  with  the  knowledge-­ creation  metaphor  of  learning,  going  beyond  mere  individual  knowledge  acquisition  or   social  participation.  This  kind  of  learning  is  by  its  nature  interventionist  and   transformative.  It  aims  at  transforming  current  practices  of  learning  by  taking  into   account  and  developing  theories,  pedagogical  practices,  and  technologies  in  line  with   object-­oriented  collaboration.  It  can  be  argued  that  human  learning  and  productive   cultural  activity  are  inherently  trialogical  in  nature  in  terms  of  involving  collaborative   efforts  of  creating  and  extending  shared  objects  of  activity.  But  at  the  same  time   trialogical  learning  requires  conscious  effort  and  deliberate  ways  of  organizing   collaboration  to  be  successful.  The  trialogical  approach  has  been  and  can  be  developed   in  various  directions  depending  on  the  context  and  methodological  choices.  In  this   chapter  we  present  some  of  these  directions.  Trialogical  learning  and  object-­oriented   collaboration  are  quite  broad  notions  (as  with  “dialogical  learning”)  which  can  be   interpreted  in  many  ways.     An  important  starting  point  for  the  trialogical  framework  has  been  learning  taking  place   in  educational  institutions.  With  the  assistance  of  the  trialogical  design  principles,  the   focus  has  been  on  ways  of  promoting  knowledge-­creating  learning  from  elementary  to   higher  education.  Elements  of  trialogical  learning  can  be  found  from  many  pedagogic     12   models,  such  as  problem-­based  learning,  project-­based  learning,  flipped  learning,   game-­based  learning,  learning  by  design,  and  learning  by  making.    The  emphasis  is,   however,  on  supporting  certain  kinds  of  processes  of  learning.  The  trialogical  approach   highlights  sustained  efforts  of  pursuing  targeted  epistemic  objectives  by  modifying  and   developing  targeted  and  tangible  outcomes.  Pedagogic  models  often  highlight  practical   aspects  of  scaffolding  learning  processes,  whereas  the  trialogical  approach  focuses  on   combining  practical  support  with  ambitious  epistemic  and  creative  efforts.  The  trialogical   design  principles  assist  in  making  pedagogic  implementation  of  these  approaches  more   “trialogical”  in  terms  of  involving  systemic  efforts  of  creating  and  developing  shared   artifacts  and  cultivating  associated  knowledge  practices.  In  different  contexts,  the   design  principles  are  implemented  in  varying  ways.   Bereiter  and  Scardamalia’s  knowledge-­building  approach  has  highlighted  collaboration   with  conceptual  artifacts  (Bereiter,  2002;;  Scardamalia  &  Bereiter,  2014b).  Some  newer   approaches  have  developed  knowledge  building  in  connection  with  practice-­based   research  and  especially  with  cultural-­historical  activity  theory  (Zhang  et  al.,  2018).  This   kind  of  “knowledge  creation”  approach  (Tan  et  al.,  2014)  provides  one  kind  of  trialogical   framework  where  work  with  conceptual  artifacts  is  central.   Several  researchers  have  analyzed  collaborative  knowledge-­creation  processes  and   ways  of  promoting  them  in  different  educational  contexts.  Damsa  and  Ludvigsen  (2016)   have  analyzed  the  co-­construction  of  knowledge  objects.  They  are  elaborating  the   variety  of  interactions  around  concepts,  ideas,  and  knowledge  objects,  some  of  which   materialize  into  texts  or  related  knowledge  objects.  Muukkonen  et  al.  (2011)  have   studied  knowledge  creation  in  university  courses  and  analyzed  the  pedagogical   infrastructures  promoting  object-­oriented  inquiry.  The  design  principles  of  trialogical   learning  are  used  to  analyze  and  develop  trialogical  learning,  especially  in  the  context  of   higher  education  (Moen  et  al.,  2012).  Teachers’  ways  of  organizing  and  re-­designing   courses  using  trialogical  design  principles  have  been  studied  in  different  educational   contexts  (see  Lakkala  et  al.,  2015;;  Ilomäki  et  al.,  2017).    Students’  competences   required  in  knowledge  work  are  analyzed  using  the  knowledge-­creation  metaphor  of   learning  and  work  on  shared  objects  as  a  basic  framework  (Muukkonen  et  al.,  2017).     13   Cress  and  Kimmerle  (2008)  have  analyzed  “collaborative  knowledge  building”  around   Wikipedia  articles.  They  developed  a  model  using  Luhmann’s  systems  theory  and   Piaget’s  cognitive  theory  to  analyze  these  kinds  of  processes.  Wikipedia  is  an   interesting  topic  to  analyze  because  Wikipedia  articles  are  usually  not  just  based  on   knowledge  sharing  but  on  collaborative  means  of  modifying  these  articles.  Cress  and   Kimmerle  do  not  use  the  term  “trialogical  learning”  in  their  article,  but  the  processes  are   quite  similar  (see  also  Cress  &  Kimmerle,  2018).  It  should  be  remarked,  however,  that   some  trialogical  processes  are  more  ambitious  epistemically  than  others.  Bereiter   (2010)  has  maintained  that  the  stated  Wikipedia  aim  of  reaching  consensus  and   presenting  impartial  views  is  different  from  the  disciplined  pursuit  of  idea  improvement   that  characterizes  knowledge  building.   The  rationale  of  having  academic  investigators  taking  an  active  part  in  designing,   assessing,  and  improving  trialogical  learning  processes  at  educational  institutions  is  to   provide  the  students  and  teachers  access  to  the  knowledge  practices  of  research  and   creative  knowledge  work.  Thereby  they  are  cross-­fertilizing  educational  and  creative   professional  knowledge  practices.  The  trialogical  approach  aims  at  anchoring   knowledge-­creating  learning  experiments  at  schools  on  expert-­like  practices  of  co-­ inquiry  and  co-­design,  and  capitalizing  on  research  on  expertise  as  well  as  the  newest   practice-­based  standards  of  science  education  (Duschl  &  Bismack,  2016;;  Osborne,   2014).  The  present  knowledge-­–practice  driven  approach  relies  on  pedagogic   applications  of  three  mutually  supporting  lines  of  knowledge-­creating  activity,  i.e.,  1)   scientific  practices,  2)  engineering  practices,  and  3)  practices  of  learning  through   collaborative  design.       Inquiry  learning  and  engineering  practices   Scientific  practices  engage  students  in  working  with  objects  such  as  questions,   generating  working  hypotheses,  carrying  out  experiments,  analyzing  results,  visualizing   and  modeling  results,  presenting  evidence-­based  arguments,  and  reporting  (Osborne,   2014).  The  knowledge-­creation  potential  of  such  practices  even  at  the  elementary  level     14   of  education  has  been  revealed  through  various  studies  on  inquiry  learning,   investigative  learning,  and  knowledge  building.  Engineering  practices,  in  turn,  focus  on   applying  scientific  knowledge  to  investigating  complex  open-­ended  challenges  as   objects,  envisioning  potential  solutions,  determining  their  criteria,  constructing  and   iteratively  testing  solutions,  modeling  solutions,  comparing  their  strengths  and   weaknesses,  and  building  and  communicating  results  (Krajcik  &  Shin,  2014).  Scientific   and  engineering  practices  provide  critical  resources  for  understanding  and  integrating   the  knowledge  and  methods  required  for  trialogical  learning.  Together  scientific  and   engineering  practices  allow  integrating  inventive  activities  with  cross-­cutting  curricular   challenges  across  many  subject  domains.     Collaborative  design  and  maker  culture   Collaborative  designing  involves  team  effort  to  find  and  construct  solutions  for  a  design   challenge  (Kangas  et  al.,  2013;;  Koh  et  al.,  2015,  Seitamaa-­Hakkarainen  et  al.,  2012).   Further,  the  design  process  involves  iteratively  and  nonlinearly  developing  the  design   objects  involved  in  ideation  (coming  up  with  design  ideas);;  studying  users  and  their   needs;;  analyzing  constraints;;  exploring  and  testing  various  aspects  of  design;;  creating   mock-­ups  and  prototypes;;  getting  feedback  from  peers,  users,  and  experts;;  and   constructing  and  manufacturing  the  design  object.  Design  objects  are  instantiated  in  a   series  of  successively  more  refined  artifacts  and  productions,  which  enable  finding   novel  perspectives  and  going  beyond  the  information  given.   Many  investigators  from  Piaget  to  Papert  and  Bruner  have  emphasized  the  importance   of  learning  by  constructing  and  inventing  artifacts.  The  present  fabrication  technology   allows  bringing  the  practices  of  the  maker  culture  to  schools  in  the  form  of  feasible   knowledge-­creation  projects  with  hitherto  unforeseen  complexity,  intellectual  challenge,   and  aesthetic  appeal  (Blikstein,  2013;;  Halverson  &  Sheridan,  2014;;  Kafai  et  al.,  2014).   In  Finland,  compulsory  craft  studies  and  associated  laboratory  spaces  enable   integrating  such  activities  into  regular  school  work  (Korhonen  &  Lavonen,  2017).   Students  use  the  traditional  instruments  of  laboratories  in  art,  craft,  technology,  and     15   science  education  (STEAM).  Further,  students  are  being  introduced  to  digital  fabrication   technologies  such  as  3D  CAD  and  3D  printing,  the  construction  and  programming  of   robots,  the  design  and  construction  of  circuits,  and  wearable  computing  (e-­textiles),  by   which  one  may  create  multi-­faceted  complex  artifacts.  Such  trialogical  practices  enable   young  children  to  construct  complex  controllable  artifacts  with  hybrid  physical,  digital,   and  virtual  features  (Riikonen  et  al.,  2018).  Maker-­centered  knowledge  practices  entail   participation  in  such  modes  of  invention  as  generating  questions,  building  working   theories,  solving  complex  problems,  formulating  and  pursuing  promising  ideas,   sketching,  prototyping,  and  making.  Learning  by  making  involves  interaction  between   ideas,  instruments,  socio-­material  spaces,  and  embodied  experiences  in  creative   externalization,  material  explorations,  prototyping,  and  the  reciprocal,  continued   refinement  of  intangible  and  tangible  design  ideas.     Future     Research  on  object-­oriented  collaboration,  trialogical  learning,  and  knowledge  creation   has  the  potential  to  be  developed  in  different  educational,  professional,  and  academic   research  contexts.  Pursuing  these  lines  of  research  is  important  because  productive   participation  in  the  emerging  knowledge  society,  which  is  oriented  toward  building  a   sustainable  future,  will  require  the  cultivation  of  novel  competencies  and  practices  by  all   citizens.  Instead  of  merely  promoting  intellectual  elites,  all  citizens  need  sophisticated   innovation  competencies  and  related  knowledge  practices,  and  associated  identities  as   potential  developers  and  creators  of  knowledge.  This  requires  an  improved   understanding  of  associated  cultural-­creative  practices  in  learning  and  the  processes   involved  in  gaining  or  deepening  knowledge,  and  organizing  knowledge  work  and   learning.   Different  socio-­cultural  dimensions  (technological,  social,  institutional)  that  affect  how   learning  is  organized  or  understood  need  to  be  taken  into  account.  Building  a  productive     16   culture  of  object-­oriented  collaboration  at  educational  institutions  is  a  socially  emergent   process  (Sawyer,  2005)  that  requires  deliberate  long-­term  orchestration  (Viilo  et  al.,   2016).  Different  time  scales  and  layers  of  activities  have  an  effect  on  the  development   of  collaborative  learning  (see  Stahl,  2013).  This  requires  building  a  research–practice   partnership  that  engages  both  researchers  and  practitioners  in  solving  persistent   problems  of  practice  related  to  school  transformation,  that  is,  from  a  long-­term   developmental  perspective  starting  from  real  world  practices  and  problems  (Coburn  &   Penuell,  2016).   The  trialogical  framework  emerged  from  efforts  to  foster  object-­oriented  collaborative   learning  and  knowledge-­creation  processes  through  CSCL  environments.  The  research   objects  and  practices  reflect  the  nature  of  the  data  that  various  kinds  of  environments   (i.e.,  discussion  forums,  knowledge-­building  environments)  provided.  Novel  digital   fabrication  technologies  have  enabled  engaging  students  in  co-­inventing  complex   artifacts  with  hybrid  physical  and  digital  features.  Students  are  also  engaged  in  learning   by  creative  game  design,  and  corresponding  co-­design  projects  with  virtual  reality  (VR)   and  augmented  reality  (AR)  are  not  far  in  the  future.  All  of  these  investigations  involve   potential  trialogical  features  in  terms  of  sustained  collaborative  object-­driven  activity.   Collaborative  work  with  digital  objects  involves  “virtual  materiality”  or  “digital  materiality”   with  novel  forms  of  tangibility  (see  Paavola  &  Miettinen,  2018),  which  changes  the   dynamics  and  ways  of  collaboration.    Digital  artifacts  build  on  a  “dubious  ontology”   (Ekbia,  2009)  that  challenges  existing  theories  of  human  activity  and  learning  in  many   ways.  This  requires  novel  conceptualizations  on  the  role  of  virtual  reality  and  hybrid   practices  as  a  part  of  trialogical  processes. Research  on  CSCL  is  mediated  by  the  evolving  ecology  of  socio-­digital  tools.  From  the   perspective  of  expanding  trialogical  learning  practices  across  educational  fields,  it  is   important  that  CSCL  is  no  longer  confined  to  monolithic  learning  environments.  The   emerging  ecology  of  socio-­digital  technologies  involves  integrated  systems  of  mobile   and  wireless  technologies,  enabling  any  place  to  be  potentially  transformed  into  a   learning  space  within  and  outside  educational  institutions  (Hakkarainen  et  al.,  2015).   There  are  thousands  of  applications  that  can,  at  least  potentially,  be  used  to  facilitate     17   object-­oriented  collaboration  processes.  With  new  cohorts  of  teachers  and  students   comfortable  with  various  socio-­digital  technologies,  this  provides  new  affordances  for   eliciting  teachers’  and  students’  epistemic  agency.  Without  the  guidance  of  educational   theories  and  innovative  pedagogies,  such  grass-­root  educational  efforts  may  serve   narrow  rather  than  in-­depth  epistemic  objectives.  Trialogical  learning  aims  at  supporting   sustained  and  focused  object-­driven  inquiry  in  contrast  to  conventional  social  media   practices  that  are  often  fragmented  and  shallow  in  nature.  The  trialogical  emphasis  on   object-­driven  collaboration  does  not  mean  that  human  development  and  personal   learning  is  not  important.    As  indicated  by  Stetsenko  (2005),  object-­orientedness  (or   object-­relatedness)  means  that  individual  and  collective  processes  are  interrelated  and   co-­evolving  rather  than  separate  processes.  When  participants  are  working  with  the   object,  the  object  is,  so  to  speak,  molding  the  participants  by  fostering  learning  and   development.  The  development  of  human  subjectivity  and  agency  should  be  seen  as  a   central  part  of  the  development  of  collaborative  and  collective  processes.  The   combination  of  individual  and  collective  agency,  and  how  that  combination  can  be   analyzed  requires  more  theoretical  and  empirical  research.   This  is  also  a  methodological  challenge  for  the  future  of  CSCL  research.  Digital   ecologies  of  learning  and  schooling  enable  tracking  students’  personal,  social,  and   object-­oriented  learning  processes  in  novel  ways  (Larusson  &  White,  2014).   Knowledge-­creation  processes  cannot  be  rigidly  scripted  but  should  involve  self-­ organized  and  socially  emergent  processes  (Scardamalia  &  Bereiter,  2014a)  that  may   be  hard  to  anticipate  and  complex  to  analyze.  Research  on  learning  analytics  is   currently  developing  instruments  and  methods  for  tracing  personal  and  social  learning   processes  (Chen  &  Zhang,  2016;;  Buckinghan  Shum  &  Daekin  Crik,  2016).  From  the   trialogical  perspective,  it  is  important  to  develop  instruments  and  methods  for  following   the  trajectories  of  the  evolving  objects  that  learners  are  working  with.  In  this  regard,   epistemic  network  analysis,  which  enables  examining  the  interconnectedness  of  ideas   in  qualitative  discourse  data,  may  provide  useful  resources  (Shaffer  et  al.,  2009).  Novel   instruments  and  tools,  such  as  the  Idea  Thread  Mapper  (Zhang  et  al.,  2018),  have  been   developed  for  visually  representing  the  collective  progression  of  an  object-­driven     18   learning  process.  The  aim  is  to  empower  learners  to  use  their  own  learning  data  and   foster  their  ownership  and  shared  regulation  of  the  knowledge-­creation  process. It  appears  to  us  that  beyond  institutional  and  structural  reasons,  CSCL  practices  have   not  penetrated  strongly  into  the  educational  system  because  CSCL  researchers  have   underestimated  the  in-­depth  challenges  associated  with  instrumental  genesis  at  the   personal  and  collective  levels  as  well  as  the  associated  transformation  of  social  and   cultural  practices.  Investigators  have  often  reported  one-­shot  experiments  where   participants  have  appropriated  a  collaborative  learning  pedagogy  with  collaborative   technologies.  Alternatively,  mature  CSCL  cultures  have  been  analyzed  that  appear  to   miraculously  enact  sophisticated  learning  practices  without  comprehensive   developmental  trajectories  leading  to  advanced  knowledge  practices.  It  can  be   maintained  that  all  successful  cultures  of  CSCL  are  simultaneously  also  expansive-­ learning  communities  (Engeström,  2015)  focused  on  problematizing  current  practices,   envisioning  changes,  and  gradually,  step  by  step,  consolidating  novel  inquiry  practices.   Consequently,  we  presume  that  knowledge-­practice  oriented,  sociomaterial   investigations  on  working  with  knowledge  artifacts,  which  take  different  “layers”  of   activities  into  account,  are  becoming  more  prevalent  in  the  future  of  CSCL  research.   Implementing  knowledge-­creation  practices  in  education  requires  the  appropriation  of  a   developmental  perspective  where  the  focus  is  on  the  epistemological,  cognitive,  social,   and  technological  infrastructures  of  CSCL  (Lakkala  et  al.,  2008;;  Bielaczyc,  2013),  that   is,  designing  synergetic  scaffolding  for  knowledge-­creating  learning  cultures  (Tabak,   2004).  Successful  implementation  of  CSCL  practices  entangles  epistemic  and   sociomaterial  aspects  of  learning  together  (see  e.g.  Fenwick  &  Edwards,  2010).  The   enlarging  body  of  interventionist  approaches,  from  design  experiments  (Bielaczyc,   2013)  to  design-­based  implementation  research  (Penuel  et  al.,  2011),  and  educational   improvement  science  (Bryk  et  al.,  2015)  to  social  design  experiments  (Gutierrez  &   Jurow,  2016),  has  been  developed  to  address  various  aspects  of  the  research–practice   partnership  needed  for  transforming  education  through  CSCL.     19   References     Béguin,   P.,   &   Rabardel,   P.   (2000)   Designing   for   instrument-­mediated   activity.   Scandinavian  Journal  of  Information  Systems,  12,  173–190.   Bereiter,  C.  &  Scardamalia,  M.  (1993).  Surpassing  Ourselves.  Chicago,  IL:  Open  Court.   Bereiter,  C.  (2002).  Education  and  mind  in  the  knowledge  age.  Hillsdale,  NJ:  Erlbaum.   Bereiter,  C.  (2010).  Can  children  really  create  knowledge?  Canadian  Journal  of  Learning   and  Technology,  36,  1.   Bielaczyc,  K.  (2013).  Informing  design  research:  Learning  from  teachers’  design  of  social   infrastructure.  The  Journal  of  the  Learning  Sciences,  22,  258-­311.   Blikstein,  P.  (2013).  Digital  fabrication  and  ”making”  in  education:  The  democratization  of   innovation.  In  J.  Walter-­Herrmann  &  C.  Buching  (Eds.),  FabLabs:  Of  machines,  makers,   and  inventors.  Bielefeld:  Transcript.   Bryk,  A.  S.,  Gomez,  L.  M.,  Grunow,  A.,  &  LeMahieu,  P.  G.  (2015).  Learning  to  improve:   How   American   schools   can   get   better   at   getting   better.     Cambridge,   MA:   Harvard   Education  Press.   Buckinghan   Shum,   S   &   Deakin   Crick,   R.   (2016).   Learning   analytics   for   21st   century   competencies.  Journal  of  Learning  Analytics,  3,  6-­21.   Chen,  B  &  Zhang,  J.  (2016).  Analytics  for  knowledge  creation:  Towards  epistemic  agency   and  design  mode  thinking.  Journal  of  Learning  Analytics,  3,  139-­163.   Coburn,   C.   E.   &   Penuel,   W.   R.   (2016).   Research-­practice   partnership   in   education:   Outcomes,  dynamics,  and  open  questions.  Educational  Researchers,  45,  48-­54.   Cress,   U.,   &   Kimmerle,   J.   (2008).   A   systemic   and   cognitive   view   on   collaborative   knowledge  building  with  wikis.  International  Journal  of  Computer-­Supported  Collaborative   Learning,  3(2),  105.   Cress,  U.    &  Kimmerle,  J.  (2018).  Collective  Knowledge  Construction.  In  F.  Fischer,  C.  E.     Hmelo-­Silver,  S.  R.  Goldman,  &  P.  Reimann  (Eds.).  (2018).  International  handbook  of  the   learning  sciences.  Routledge.     20   Damşa,  C.  I.,  &  Ludvigsen,  S.  (2016).  Learning  through  interaction  and  co-­construction   of  knowledge  objects  in  teacher  education.  Learning,  culture  and  social  interaction,  11,   1-­18.   Donald,   M.   (1991).   Origins   of   the   modern   mind.   Cambridge,   MA:   Harvard   University   Press.   Duschl,   R   &   Bismack,   A.   S.   (2016)   (Eds).   Reconceptualizing   STEM   education:   The   central  role  of  practices.  London:  Routledge.   Ekbia,  Hamid  R.  (2009).  Digital  artifacts  as  quasi-­objects:  Qualification,  mediation,  and   materiality.  Journal  of  the  American  Society  for  Information  Science  and  Technology,  60,   12,  2554-­2566.   Engeström,  Y.  and  Blackler,  F.  (2005).  On  the  Life  of  the  Object.  Organization  12(3),  307-­ 330.   Engeström,   Y.   (2015).   Learning   by   expanding.   An   activity-­theoretical   approach   to   developmental  research.  First  published  1987.  Cambridge  University  Press.   Enyedy,  N.  and  Hoadley,  C.  M.  (2006).  From  dialogue  to  monologue  and  back:  Middle   spaces  in  computer-­mediated  learning.  Computer-­Supported  Collaborative  Learning  1(4),   413-­439.   Ewenstein,  B.  and  Whyte,  J.  (2009).  Knowledge  practices  in  design:  The  role  of  visual   representations  as  `epistemic  objects'.  Organization  Studies,  30,  1,  7-­30.   Fenwick,  T.,  and  Edwards,  R.  (2010).  Actor-­network  theory  in  education.  Routledge.   Gutierrez,   K.   D.   and   Jurow   S.   (2016).   Social   design   experiments:   Toward   equity   by   design.  The  Journal  of  the  Learning  Sciences,  25,  565-­595.   Hakkarainen,   K.,   Palonen,   T.,   Paavola,   S.   &   Lehtinen,   E.   (2004).   Communities   of   networked  expertise:  Professional  and  educational  perspectives.  Advances  in  Learning   and  Instruction  Series.  Amsterdam:  Elsevier.   Hakkarainen,   K.   (2009).   A   knowledge-­practice   perspective   on   technology-­mediated   learning.   International   Journal   of   Computer   Supported   Collaborative   Learning,   4,   213-­ 231.   Hakkarainen,  K.  &  Paavola,  S.  (2009).  Toward  a  trialogical  approach  to  learning.  In  B.   Schwarz,   T.   Dreyfus,   &   R.   Hershkowitz   (eds.)   Transformation   of   Knowledge   Through   Classroom  Interaction  (pp.  65-­80).  London:  Routledge.     21   Hakkarainen,  K.,  Hietajärvi,  L.,  Alho,  K.,  Lonka,  K.,  &  Salmela-­Aro,  K.  (2015).  Socio-­digital   revolution:   Digital   natives   vs   digital   immigrants.   In   J.   D.   Wright   (editor-­in-­chief)   International   encyclopedia   of   the   social   and   behavioral   sciences   (pp.   918-­923).   2nd   Edition,  Vol  22.  Amsterdam:  Elsevier.   Halverson,   E.   &   Sheridan,   K.   M.   (2014).   The   maker   movement   in   education.   Harvard   Education  Review,  84,  4,  495-­504.   Harman,  G.  (2018).  Object-­oriented  ontology:  the  new  theory  of  everything.  New  York:   Penguin.   Hutchins,  Edwin  (1995).  Cognition  in  the  Wild.  Cambridge,  MA:  MIT.   Ilomäki,  L.,  Lakkala,  M.,  Toom,  A.,  &  Muukkonen,  H.  (2017).  Teacher  learning  within  a   multinational   project   in   an   upper   secondary   school.   Education   Research   International,   Volume  2017,  https://doi.org/10.1155/2017/1614262.   Jensen,  K.,  Lahn,  L.  C.  &  Nerland,  M.  (2012).  Introduction:  Professional  learning  in  new   knowledge   landscapes:   A   cultural   perspective.   In   K.   Jensen,   L.   C.   Lahn,   M.   Nerland   (Eds.).,   Professional   learning   in   the   knowledge   society   (pp.   1-­24).   Rotterdam,   The   Netherlands:  Sense.   Kafai,   J.,   Fields,   D.   a.,   Searle,   K.   A.   (2014).   Electronic   textiles   as   disruptive   designs.   Supporting  and  challenging  maker  activities  in  schools.  Harvard  Education  Review,  84,   4,  532-­556.   Kangas,  K.,  Seitamaa-­Hakkarainen,  P,  &  Hakkarainen,  K.  (2013).  Figuring  the  world  of   designing:   Expert   participation   in   elementary   classroom.   International   Journal   of   Technology  and  Design  Education,  23,  425-­442.   Knorr   Cetina,   K.   (1999)   Epistemic   cultures:   How   the   sciences   make   knowledge.   Cambridge,  MA:  Harvard  University  Press.   Knorr   Cetina,   K.   (2001)   Objectual   practices.   In   T.   Schatzki,   Knorr   Cetina,   K.,   &   Von   Savigny,   E.   (Eds.)   The   practice   turn   in   contemporary   theory   (pp.   175-­188).   London:   Routledge.   Koh,  J.  H.  L.,  Chai,  C.  S.,  Wong,  B.,  &  Hong,  H.  Y.  (2015).  Design  thinking  for  education:   Conceptions  and  applications  in  teaching  and  learning.  London:  Springer;;   Kolodner,  J.  (2002).  Facilitating  the  learning  of  design  practices:  Lesson  learned  from  an   inquiry  in  science  education.  Journal  of  Industrial  Teacher  Education,  39(3),  1–31.     22   Korhonen,  T.  &  Lavonen,  J.  (2017).  A  new  wave  of  learning  in  Finland:  Get  started  with   innovation!  In  S.  Choo,  D.  Sawch,  A.  Villanueva  &  R.  Vinz,  R.  (Eds.).  Educating  for  the   21st  Century:  Perspectives,  Policies  and  Practices  from  Around  the  World  (pp-­  447-­467).   Singapore:  Springer.   Koschmann,  T.  D.  (1999).  Toward  a  dialogic  theory  of  learning:  Bakhtin’s  contribution  to   understanding   learning   in   settings   of   collaboration.   In   C.   M.   Hoadley   &   J.   Roschelle   (Eds.),   Proceedings   of   the   Computer   Support   for   Collaborative   Learning   (CSCL)   1999   Conference  (pp.  308–313).  Mahwah,  NJ:  LEA.   Krajcik,   J.   S.,   &   Shin,   N.   (2014).   Project-­Based   Learning.   In   R.   K.   Sawyer   (Ed.),   The   Cambridge   Handbook   of   the   Learning   Sciences   (2nd   ed.,   pp.   275-­297).   New   York:   Cambridge  University  Press.   Lakkala,   M.,   Muukkonen,   H.,   Paavola,   S.,   &   Hakkarainen,   K.   (2008).   Designing   Pedagogical   Infrastructures   in   University   Courses   for   Technology-­Enhanced   Collaborative  Inquiry.  Research  and  Practice  in  Technology  Enhanced  Learning,  3,  33-­ 64.   Lakkala,  M.,  Paavola,  S.,  Kosonen,  K.,  Muukkonen,  H.,  Bauters,  M.,  and  Markkanen,  H.   (2009).   Main   functionalities   of   the   Knowledge   Practices   Environment   (KPE)   affording   knowledge  creation  practices  in  education.  In  C.  O'Malley,  D.  Suthers,  P.  Reimann,  and   A.   Dimitracopoulou   (Eds.),   Computer   Supported   Collaborative   Learning   Practices:   CSCL2009  Conference  Proceedings  (pp.  297-­306).  Rhodes,  Creek:  International  Society   of  the  Learning  Sciences  (ISLS).   Lakkala,   M.,   Toom,   A.,   Ilomäki,   L.,   &   Muukkonen,   H.   (2015).   Re-­designing   university   courses   to   support   collaborative   knowledge   creation   practices.   Australasian   Journal   of   Educational  Technology,  31(5),  521-­536.   Larusson,  J.  A.  &  White,  B.  (Eds.)  (2014).  Learning  Analytics:  From  Research  to  Practice.   London:  Springer.   Latour,   B.,   &   Woolgar,   S.   (1986).   Laboratory   life:   The   construction   of   scientific   facts.   Princeton  University  Press.   Latour,  B.  (1996).  On  interobjectivity.  Mind,  culture,  and  activity,  3(4),  228-­245.   Latour,   B.   (2005).   Reassembling   the   social:   An   introduction   to   actor-­network-­theory.   Oxford  university  press.   Lave,   J.   &   Wenger,   E.   (1991).   Situated   learning:   Legitimate   peripheral   participation.     Cambridge:  Cambridge  University  Press.     23   Leonardi,  P.  M.,  Nardi,  B.  A.,  &  Kallinikos,  J.  (Eds.).  (2012).  Materiality  and  organizing:   Social  interaction  in  a  technological  world.  Oxford  University  Press.   Leontjev,  A.  N.  (1978).  Activity,  Consciousness  and  Personality.  Prentice  Hall,  Englewood   Cliffs.   Ludvigsen,  S.,  Stahl,  G.,  Law,  N.,  &  Cress,  U.  (2015).  From  the  editors:  Collaboration  and   the  formation  of  new  knowledge  artifacts.  International  Journal  of  Computer-­Supported   Collaborative  Learning,  10(1),  1-­6.   Lund,  A.,  &  Rasmussen,  I.  (2008).  The  right  tool  for  the  wrong  task?  Match  and  mismatch   between   first   and   second   stimulus   in   double   stimulation.   International   Journal   of   Computer-­Supported  Collaborative  Learning,  3(4),  387.   Miettinen,   R.,   &   Virkkunen,   J.   (2005).   Epistemic   objects,   artefacts   and   organizational   change.  Organization,  12(3),  437-­456.   Miettinen,   R.,   Paavola,   S.,   and   Pohjola,   P.   (2012).   From   habituality   to   change:   Contribution  of  activity  theory  and  pragmatism  to  practice  theories.  Journal  for  the  Theory   of  Social  Behaviour  42(3),  345-­360.   Miettinen,  R.  &  Paavola,  S.  (2018)  Beyond  the  distinction  between  tool  and  sign:  Objects   and  artefacts  in  human  activity.  A.  Rosa  &  J.  Valsiner  (Eds.)  The  Cambridge  Handbook   of  Sociocultural  Psychology  (pp.  148-­162).  Cambridge:  Cambridge  University  Press.   Moen   A.,   Morch,   A.,   and   Paavola   S.  (Eds.)  (2012).   Collaborative   Knowledge   Creation:   Practices,  Tools,  Concepts.  Rotterdam:  Sense  Publishers.   Muukkonen,  H.,  Lakkala,  M.,  &  Paavola,  S.  (2011).  Promoting  knowledge  creation  and   object-­oriented  inquiry  in  university  courses.  In  S.  Ludvigsen,  A.  Lund,  I.  Rasmussen,  &   R.   Säljö   (Eds.),   Learning   across   sites:   New   tools,   infrastructures   and   practices.   New   Perspectives  on  Learning  and  Instruction  (pp.  172-­189).  Oxon,  UK:  Routledge.   Muukkonen,  H.,  Lakkala,  M.  Toom,  A.,  &  Ilomäki,  L.  (2017).  Assessment  of  competences   in  knowledge  work  and  object-­bound  collaboration  during  higher  education  courses.  In  E.   Kyndt,  V.  Donche,  K.  Trigwell,  &  S.  Lindblom-­Ylänne  (Eds.)  Higher  Education  Transitions:   Theory  and  Research  (pp.  288-­305).  EARLI  book  series  New  Perspectives  on  Learning   and  Instruction.   Nerland,   M.   (2012).   Professions   as   knowledge   cultures.   In   K.   Jensen,   L.   C.   Lahn,   M.   Nerland  (Eds.).,  Professional  learning  in  the  knowledge  society  (pp.  27-­48).  Rotterdam,   The  Netherlands:  Sense.     24   Nerland,  M.,  &  Jensen,  K.  (2012).  Epistemic  practices  and  object  relations  in  professional   work.  Journal  of  Education  and  Work,  25(1),  101-­120   Orlikowski,   W.   J.   (2009).   The   sociomateriality   of   organisational   life:   considering   technology  in  management  research.  Cambridge  Journal  of  Economics  34(1),  125-­141.   Osborne,  J.  (2014).  Teaching  scientific  practices.  Journal  of  Science  Teacher  Education,   25,  177-­196.   Paavola,   S.,   Lipponen,   L.,   &   Hakkarainen,   K.   (2004).   Modeling   innovative   knowledge   communities:   A   knowledge-­creation   approach   to   learning.   Review   of   Educational   Research,  74,  557-­576.   Paavola,  S  &  Hakkarainen,  K.  (2005).  The  knowledge  creation  metaphor  –  An  emergent   epistemological  approach  to  learning.  Science  &  Education  14,  537-­557.   Paavola,  S.  and  Hakkarainen,  K.  (2009).  From  meaning  making  to  joint  construction  of   knowledge   practices   and   artefacts:   A   trialogical   approach   to   CSCL.   In   C.   O'Malley,   D.   Suthers,  P.  Reimann,  and  A.  Dimitracopoulou  (Eds.),  Computer  Supported  Collaborative   Learning   Practices:   CSCL2009   Conference   Proceedings   (pp.   83-­92).   Rhodes,   Creek:   International  Society  of  the  Learning  Sciences  (ISLS).   Paavola,  S.,  Lakkala,  M.,  Muukkonen,  H.,  Kosonen,  K.  &  Karlgren,  K.  (2011).  The  roles   and   uses   of   design   principles   for   developing   the   trialogical   approach   on   learning.   Research  in  Learning  Technology  19(3),  233-­246.   Paavola,   S.   &   Miettinen,   R.   (2018).   Dynamics   of   design   collaboration.   BIM   models   as   intermediary   digital   objects.   Computer   Supported   Cooperative   Work   (CSCW)   27(3-­6),   1113-­1135.   Papert,  S  &  Harel,  I.  (1991).  Constructionism.  New  York:  Ablex.   Pea,  R.  D.  (1993).  Practices  of  distributed  intelligence  and  designs  for  education.  In  G.   Salomon  (ed),  Distributed  cognitions:  Psychological  and  educational  considerations  (pp.   47–87).  Cambridge:  Cambridge  University  Press.   Penuel,  W.  R.,  Fishman,  B.  J.,  Cheng,  B.  H.,  &  Sabelli,  N.  (2011).  Organizing  research   and  development  at  the  intersection  of  learning,  implementation,  and  design.  Educational   Researchers,  40,  331-­337.   Pickering,  A.  (1995).  The  mangle  of  practice:  Time,  agency,  and  science.  University  of   Chicago  Press.     25   Riikonen,  S,  Seitamaa-­Hakkarainen,  P.  &  Hakkarainen,  K  (2018).  Bringing  practices  of   co-­design  and  making  to  basic  education.  In  J.  Kay  &  R  Luckin  (Eds.),  Proceedings  of  the   13th  International  Conference  on  the  Learning  Sciences  “Rethinking  learning  in  the  digital   age:  Making  the  learning  sciences  count”  (pp.  248-­255).  Institute  of  Education,  University   College  London,  UK.   Ritella,  G.  &  Hakkarainen,  K  (2012).  Instrument  genesis  in  technology  mediated  learning:   From   double   stimulation   to   expansive   knowledge   practices.   International   Journal   of   Computer-­Supported  Collaborative  Learning,  7,  239-­258.   Sawyer,   R.   K.   (2005).   Emergence:   Societies   as   complex   systems.   Cambridge,   MA:   Cambridge  University  Press.   Scardamalia,   M.,   &   Bereiter,   C.   (2014a).   Knowledge   building   and   knowledge   creation:   Theory,  pedagogy,  and  technology.  In  R.  K.  Sawyer  (Ed.),  The  Cambridge  handbook  of   the   learning   sciences   (2nd   ed.,   pp.   397–417).   New   York,   NY:   Cambridge   University   Press.   Scardamalia,  M.  &  Bereiter,  C.  (2014b).  Smart  technology  for  self-­organizing  processes.   Smart  Learning  Environments,  1:1.   Schatzki,  T.  R.,  Knorr  Cetina,  K.,  &  Von  Savigny,  E.  (Eds.).  (2001).  The  practice  turn  in   contemporary  theory.  London:  Routledge.   Seitamaa-­Hakkarainen,   P.,   Kangas,   K.,   Raunio,   A.-­M.,   &   Hakkarainen,   K.   (2012).   Collaborative  design  practices  in  technology-­mediated  learning.  Design  and  Technology   Education:  An  International  Journal,  17,  54-­65.   Seitamaa-­Hakkarainen,  P  &  Hakkarainen,  K.  (2017).  Learning  by  making.  In  K.  Peppler   (Ed.)  The  SAGE  Encyclopedia  of  Out-­of-­School  Learning  (pp.  421-­424).  Thousand  Oaks:   Sage.   Sfard,  A.  (1998).  On  two  metaphors  for  learning  and  the  dangers  of  choosing  just  one.   Educational  Researcher,  27,  4–13.   Shaffer,  D.  W.,  Hatfield,  D.,  Svarovsky,  G.  N.,  Nash,  P.,  Nulty,  A.,  Bagley,  E.,  Frank,  K.,   Rupp,  A.  A.,  &  Mislevy,  R.  (2009).  Epistemic  network  analysis:  A  prototype  for  21st-­century   assessment  of  learning.  International  Journal  of  Learning  and  Media,  1,  33-­53.   Skagestad,  P.  (1993).  Thinking  with  machines:  Intelligence  Augmentation,  Evolutionary   Epistemology,   and   Semiotic.   The   Journal   of   Social   and   Evolutionary   Systems,   16(2),   157–180.     26   Spinuzzi,   C.   (2011).   Losing   by   expanding:   Corralling   the   runaway   object.   Journal   of   Business  and  Technical  Communication,  25(4),  449-­486.   Stahl,  G.  (2013).  Learning  across  levels.  Computer-­Supported  Collaborative  Learning  8,   1-­12.   Stahl,   G.,   Koschmann,   T.,   &   Suthers,   D.   (2006).   Computer-­supported   collaborative   learning:   An   historical   perspective.   In   R.   K.  Sawyer   (Ed.),   Cambridge   handbook  of   the   learning  sciences  (pp.  409-­426).  New  York:  Cambridge  University  Press.   Stahl,   G.,   Ludvigsen,   S.,   Law,   N.,   &   Cress,   U.   (2014).   CSCL   artifacts.   International   Journal  of  Computer-­Supported  Collaborative  Learning,  9(3),  237-­245.   Star,  S.  L.  and  Griesemer,  J.  R.  (1989).  Institutional  Ecology,  `Translations'  and  Boundary   Objects:  Amateurs  and  Professionals  in  Berkeley's  Museum  of  Vertebrate  Zoology,  1907-­ 39.  Social  Studies  of  Science  19(3),  387-­420.   Stetsenko,  A.  (2005).  Activity  as  object-­related:  Resolving  the  dichotomy  of  individual  and   collective  planes  of  activity.  Mind,  Culture,  and  Activity,  12(1),  70-­88.   Suthers,   D.   D.   (2006).   Technology   affordances   for   intersubjective   meaning   making:   A   research  agenda  for  CSCL.  International  Journal  of  Computer-­Supported  Collaborative   Learning  (ijCSCL),  1(3),  315-­337   Tabak,  I.  (2004).  Synergy:  A  complement  to  emerging  patterns  of  scaffolding.  The  Journal   of  the  Learning  Sciences,  13,  305-­335.   Tan,   S.   C.,   So,   H.   J.,   &   Yeo,   J.   (Eds.).   (2014).   Knowledge   creation   in  education.   New   York,  NY:  Springer.   Timmis,   S.   (2014).   The   dialectical   potential   of   Cultural   Historical   Activity   Theory   for   researching   sustainable   CSCL   practices.   International   Journal   of   Computer-­Supported   Collaborative  Learning,  9(1),  7-­32.   Viilo,   M.,   Seitamaa-­Hakkarainen,   P.,   &   Hakkarainen,   K.   (2016).   Teacher’s   long-­term   orchestration  of  technology-­mediated  collaborative  inquiry  project.  Scandinavian  Journal   of  Educational  Research,  62(3),  407-­432.   Vinck,   D.   (2011).   Taking   intermediary   objects   and   equipping   work   into   account   in   the   study  of  engineering  practices.  Engineering  Studies  3,  1,  25-­44.   Vygotsky,   L.   S.   (1978).   Mind   in   Society.   The   Development   of   Higher   Psychological   Processes.  Cambridge,  MA:  Harvard  University  Press.     27   Wartofsky,  M.  (1979).  Models:  Representation  and  Scientific  Understanding.  Dordrecht:   Reidel.   Zhang,  J.,  Tao,  D.,  Chen,  M.  H.,  Sun,  Y.,  Judson,  D.,  &  Naqvi,  S.  (2018).  Co-­organizing   the   collective   journey   of   inquiry   with   Idea   Thread   Mapper.   Journal   of   the   Learning   Sciences,  27(3),  390-­430.           Additional  Reading     1.    Ritella,  G.,  &  Hakkarainen,  K.  (2012).  Instrumental  genesis  in  technology-­ mediated  learning:  From  double  stimulation  to  expansive  knowledge  practices.   International  Journal  of  Computer-­Supported  Collaborative  Learning.  7(2),  239-­258.   This  article  addressed  theoretical  foundations  of  CSCL.  The  article  elaborates  concepts   of  epistemic  mediation,  chronotope,  double  stimulation,  instrumental  genesis,  and   knowledge  practices  and  their  interrelations  in  the  context  of  promoting  educational   transformations  at  the  digital  age.       2.         Paavola,   S.   and   Hakkarainen,   K.   (2009).   From   meaning   making   to   joint   construction  of  knowledge  practices  and  artefacts:  A  trialogical  approach  to  CSCL.  In   C.   O'Malley,   D.   Suthers,   P.   Reimann,   and   A.   Dimitracopoulou   (Eds.),   Computer   Supported   Collaborative   Learning   Practices:   CSCL2009   Conference   Proceedings   (pp.  83-­92).  Rhodes,  Creek:  International  Society  of  the  Learning  Sciences  (ISLS).   The   article   presents   the   basics   of   the   trialogical   approach   to   learning.   The   use   of   this   notion  is  explained  as  well  as  theoretical  backgrounds  for  the  approach  in  line  with  the   knowledge-­creation  metaphor  of  learning  (Paavola  et  al.  2004;;  Hakkarainen  et  al.  2004).   The   paper   also   makes   a   comparison   between   trialogical   and   dialogical   theories   of   learning  and  their  uses  in  CSCL  (computer-­supported  collaborative  learning)  research.       3.     Damşa,  C.  I.,  &  Ludvigsen,  S.  (2016).  Learning  through  interaction  and  co-­ construction  of  knowledge  objects  in  teacher  education.  Learning,  culture  and  social   interaction,  11,  1-­18.     28   The  article  presents  an  empirical  study,  employing  a  design-­based  research  approach,   of  student  teachers'  learning  through  collaborative,  small-­group  projects  and  work  on   shared  knowledge  objects.  The  aim  was  to  understand  how  knowledge  objects,  e.g.,   teaching  and  learning  materials,  emerge  through  students'  interaction,  how  they  are   developed  through  iterative  co-­construction,  and  how  they  play  a  role  in  the  learning   process.  Interaction  data  and  knowledge  objects  generated  by  groups  were  analyzed   through  qualitative  methods,  with  a  focus  on  the  types  of  interaction,  the  uptake  of  ideas   and  concepts,  and  their  co-­elaboration.       4.          Kangas,  K.,  Seitamaa-­Hakkarainen,  P,  &  Hakkarainen,  K.  (2013).  Figuring  the   world  of  designing:  Expert  participation  in  elementary  classroom.  International   Journal  of  Technology  and  Design  Education,  23,  425-­442.   The  article  examines  elementary  school  students’  participation  in  knowledge-­creating   learning  that  involves  collaborative  design  and  making  of  artifacts.  With  support  of  a   professional  designer,  students  were  engaged  in  figured  world  of  designing  and  guided   to  appropriate  associated  knowledge  practices.       5.          Zhang,  J.,  Tao,  D.,  Chen,  M.  H.,  Sun,  Y.,  Judson,  D.,  &  Naqvi,  S.  (2018).  Co-­ organizing  the  collective  journey  of  inquiry  with  Idea  Thread  Mapper.  Journal  of  the   Learning  Sciences,  27(3),  390-­430.   The   article   addressed   the   role   of   technology-­mediated   knowledge   practices   in   socially   organizing  collective  inquiry  processes  within  two  CSCL  classrooms.  The  study  revealed   that  promising  directions  of  object-­driven  (trialogical)  inquiry  can  be  monitored  with  Idea   Thread  Mapper  (ITM).  Moreover,  practices  of  reflective  structuration  supported  long-­term   advancement  of  inquiry  in  terms  of  active  participation,  inter-­connected  contributions,  and   coherent  scientific  understanding.           29