[go: up one dir, main page]

Academia.eduAcademia.edu
SUPPLEMENTARY INFORMATION Experimental and Computational Thermodynamic Study of the Three Monofluoronitrobenzene Isomers Manuel A.V. Ribeiro da Silva*, Manuel J. S. Monte, Ana I. M. C. Lobo Ferreira, Juliana A. S. A. Oliveira, Álvaro Cimas Centro de Investigação em Química, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal * Fax: +351-22-0402 522; Phone: +351-22-0402 521; E-mail: risilva@fc.up.pt This supplementary information includes the details of all the combustion calorimetry experiments performed by rotating bomb for the three fluoronitrobenzenes studied, as well as the fully optimized structures and the calculated energies of all compounds. 1 Combustion calorimetry results Tables S1 to S3 report the details of all experimental determinations of the standard (pº = 0.1 MPa) massic energies of combustion of 2-fluoronitrobenzene, 3-fluoronitrobenzene and 4-fluoronitrobenzene. The symbols presented in these tables have the following meanings: m(cpd) is the mass of compound burnt in each experiment; m'(fuse) is the mass of fuse (cotton) used in each experiment; m''(polyethylene) is the mass of polyethylene used in each experiment; Ti is the initial temperature rise; Tf is the final temperature rise; Tad is the corrected temperature rise; εi is the energy equivalent of the contents in the initial state; εf is the energy equivalent of the contents in the final state; ε(calor)corr. is the corrected energy equivalent of the calorimeter for the amount of water used; m(H2O) is the deviation of mass of water added to the calorimeter from 5222.5 g; U(IBP) is the energy change for the isothermal combustion reaction under actual bomb conditions; U(fuse) is the energy of combustion of the fuse (cotton); U(polyethylene) is the energy of combustion of polyethylene; U(HNO3) is the energy correction for the nitric acid formation; U(ign) is the electrical energy for ignition; U(carb) is the correction energy for carbon soot formation; correction; c U∑ is the standard state u o is the standard massic energy of combustion. 2 Table S1 - Standard massic energy of combustion of 2-fluoronitrobenzene, at T = 298.15 K Experiment 1 2 3 4 5 6 m(cpd) / g 0.69461 0.77954 0.72795 0.62492 0.73257 0.64872 m'(fuse) / g 0.00241 0.00276 0.00317 0.00270 0.00294 0.00234 m''(polyethylene) / g 0.17675 0.17808 0.17244 0.18237 0.17914 0.16807 Ti / K 297.1972 297.1387 297.1850 297.2730 297.1915 297.2811 Tf / K 298.1207 298.1599 298.1538 298.1475 298.1506 298.1494 0.90523 0.97816 0.92562 0.85760 0.94155 0.85126 51.76 51.89 51.75 51.62 51.82 51.63 53.48 53.7 53.48 53.28 53.61 53.24 25152.0 25164.5 25159.1 25163.7 25158.2 25156.1 –1.3 1.7 0.4 1.5 0.2 –0.3 − U(IBP) / J 22813.94 24664.43 23334.41 21623.46 23735.27 21457.11 U(fuse) / J 39.14 44.82 51.48 43.85 47.75 38.00 8180.45 8242.07 7980.74 8440.39 8291.19 7778.72 U(HNO3) / J 39.82 41.79 38.51 33.73 46.39 34.63 U(ign) / J 1.18 1.17 1.19 1.17 1.19 1.19 U(carb) / J 0.00 2.31 0.00 0.00 0.00 0.00 U∑ / J 30.11 29.45 29.69 30.86 29.87 30.13 20910.18 20920.81 20927.25 20922.09 20912.77 20926.79 Tad / K −1 εi / J·K εf / J·K−1 ε(calor)corr. / J·K−1 m(H2O) / g a U(polyethylene) / J o − cu / J·g −1 − ª U(IBP) = – ε(calor)corr. c u o = (20920.0 ± 2.9) J⋅g−1 Tad + (Ti − 298.15 K) εi + (298.15 K − Ti − Tad) εf + U(ign); ε(calor)corr. = ε(calor) + cp(H2O, l) m(H2O, l). 3 Table S2 - Standard massic energy of combustion of 3-fluoronitrobenzene, at T = 298.15 K Experiment 1 2 3 4 5 6 m(cpd) / g 0.64411 0.60814 0.70537 0.57896 0.78101 0.91954 m'(fuse) / g 0.00246 0.00282 0.00275 0.00273 0.00310 0.00329 m''(polyethylene) / g 0.15405 0.16288 0.17242 0.14440 0.16938 0.18615 Ti / K 297.3149 297.3283 297.2284 297.3884 297.1702 297.0256 Tf / K 298.1501 298.1507 298.1482 298.1514 298.1456 298.1462 0.81777 0.80486 0.90291 0.74653 0.95915 1.10418 51.59 51.56 51.72 51.48 51.60 51.61 53.14 53.11 53.42 52.91 53.38 53.60 25150.7 25152.4 25151.5 25157.8 25160.3 25155.3 –1.6 –1.2 –1.4 0.1 0.7 –0.5 − U(IBP) / J 20608.47 20284.45 22755.03 18818.28 24180.77 27831.74 U(fuse) / J 39.95 45.80 44.66 44.34 50.34 53.43 7130.03 7538.71 7979.82 6683.36 7839.42 8615.53 U(HNO3) / J 34.21 32.54 37.79 32.78 45.19 47.04 U(ign) / J 1.18 1.18 1.18 1.18 1.19 1.19 U(carb) / J 0.00 0.00 0.00 0.00 0.00 4.95 U∑ / J 29.60 30.18 29.87 29.56 29.68 30.41 20764.59 20780.12 20787.52 20775.60 20763.04 20760.68 Tad / K −1 εi / J·K εf / J·K−1 ε(calor)corr. / J·K−1 m(H2O) / g a U(polyethylene) / J o − cu / J·g −1 − ª U(IBP) = – ε(calor)corr. c u o = (20771.9 ± 4.4) J⋅g−1 Tad + (Ti − 298.15 K) εi + (298.15 K − Ti − Tad) εf + U(ign); ε(calor)corr. = ε(calor) + cp(H2O, l) m(H2O, l). 4 Table S3 - Standard massic energy of combustion of 4-fluoronitrobenzene, at T = 298.15 K Experiment 1 2 3 4 5 6 m(cpd) / g 0.66848 0.68551 0.63212 0.62018 0.74654 0.66344 m'(fuse) / g 0.00270 0.00309 0.00304 0.00242 0.00280 0.00320 m''(polyethylene) / g 0.16551 0.16568 0.15521 0.15672 0.17368 0.16258 Ti / K 297.2733 297.2580 297.3229 297.3131 297.1912 297.2827 Tf / K 298.1481 298.1475 298.1500 298.1575 298.1463 298.1480 0.85739 0.87226 0.80949 0.80173 0.93723 0.84823 51.65 51.68 51.58 51.56 51.78 51.64 53.27 53.32 53.12 53.10 53.53 53.24 25157.8 25154.5 25150.3 25158.2 25157.4 25164.1 0.1 –0.7 –1.7 0.2 0.0 1.6 − U(IBP) / J 21613.11 21985.13 20399.45 20210.19 23625.58 21387.54 U(fuse) / J 43.85 50.18 49.37 39.30 45.47 51.97 7660.11 7667.98 7183.32 7253.28 8038.20 7524.81 U(HNO3) / J 34.57 34.86 35.04 34.86 38.45 34.81 U(ign) / J 1.19 1.18 1.19 1.18 1.18 1.18 U∑ / J 29.90 29.78 29.74 29.85 29.57 29.83 20710.69 20717.90 20727.05 20724.47 20727.48 20719.46 Tad / K −1 εi / J·K εf / J·K−1 ε(calor)corr. / J·K−1 m(H2O) / g a U(polyethylene) / J − cuo / J·g−1 − ª U(IBP) = – ε(calor)corr. c u o = (20721.2 ± 2.6) J⋅g−1 Tad + (Ti − 298.15 K) εi + (298.15 K − Ti − Tad) εf + U(ign); ε(calor)corr. = ε(calor) + cp(H2O, l) m(H2O, l). 5 Table S4. Experimental and calculated selected structural parameters for the isomer 2-fluoronitrobenzene. B3LYP 6-31G(d) a 6-31G(d,p)a MP2 cc-pVTZa 6-311++G(d,p)a cc-pVTZa Experimental Valuesa,c 1.096(18)b C3-H 1.085 N-O1 1.232 1.232 1.219 1.232 1.228 N-O2 1.228 1.228 1.223 1.231 1.229 C2-C3 1.392 1.392 1.384-1.395 1.391 1.388-1.394 1.395(2)b C2-F 1.334 1.334 1.332 1.337 1.332 1.306(13) C1-N 1.469 1.469 1.472 1.462 1.461 1.471(13) C1-C2 1.402 1.402 1.384-1.395 1.394 1.388-1.394 1.395(2)b C6-H 1.083 C6-C1 1.398 C4-H 1.086 C3-C4 1.393 C5-H 1.085 C5-C6 1.390 1.389 1.384-1.395 1.395 1.388-1.394 1.395(2)b C4-C5 1.398 1.398 1.384-1.395 1.400 1.388-1.394 1.395(2)b H-C3-C2 118.2 H-C3-C4 121.9 C2-C3-C4 119.9 119.9 120.1 119.4 119.6 120.8(12) O1-N-O2 124.8 124.8 125.2 126.1 125.9 124.9(8) O1-N-C1 117.0 1.096(18)b 1.398 1.384-1.395 1.394 1.388-1.394 1.395(2)b 1.096(18)b 1.392 1.384-1.395 1.397 1.388-1.394 1.395(2)b 1.096(18)b O2-N-C1 118.2 C3-C2-F 117.8 C3-C2-C1 120.0 120.0 120.1 117.5(15) F-C2-C1 122.1 122.1 120.4 125.6(18) N-C1-C2 122.2 N-C1-C6 118.0 118.0 C2-C1-C6 119.7 119.8 H-C6-C1 118.0 H-C6-C5 121.8 C1-C6-C5 120.2 H-C4-C3 119.4 H-C4-C5 120.2 C3-C4-C5 120.4 H-C5-C6 119.8 H-C5-C4 120.4 C6-C5-C4 119.8 φ(C-N) 12.8 12.9 118.7 120.1 120.8 47.1 114.8(10) 119.8 123.8(15) 37.6(3) a I.F. Shishkov, L.V. Khristenko, L.V. Vilkov, S. Samdal, S. Gundersen, Struct. Chem. 2003, 14, 151. b C-C and C-H distances reported here are experimental average values. c Values in parentheses are the standard deviations from least-squares refinement in units of the last digit. 6 Table S5. Experimental and calculated selected structural parameters for the isomer 3-fluoronitrobenzene. B3LYP 6-31G(d) cc.pVTZa MP2/cc-pVTZa 1.338 Experimental Valuesa,c C3-F 1.345 1.344 C4-H 1.085 1.078-1.081 C4-C3 1.393 1.382-1.390 C5-H 1.086 1.078-1.081 C5-C4 1.396 1.382-1.390 1.385-1.393 N-O1 1.230 1.221 1.228 1.226(3) N-O2 1.230 1.221 1.228 1.226(3) C6-H 1.082 1.078-1.081 C6-C5 1.395 1.390 C2-H 1.082 1.078-1.081 C2-C3 1.388 1.382 C1-N 1.474 1.480 C1-C6 1.393 1.387 1.385-1.393 C1-C2 1.393 1.387 1.385-1.393 F-C3-C4 119.0 118.9 F-C3-C2 118.8 C4-C3C2 122.2 122.3 H-C4-C3 119.3 119.5-121.9 126.7(43)b H-C4-C5 121.8 119.5-121.9 126.7(43)b C3-C4C5 118.9 H-C5-C4 119.7 119.5-121.9 126.7(43)b H-C5-C6 119.7 119.5-121.9 126.7(43)b C4-C5C6 120.6 O1-N-O2 124.8 O1-N-C1 117.6 O2-N-C1 117.6 H-C6-C5 122.0 119.5-121.9 126.7(43)b H-C6-C1 119.6 119.5-121.9 126.7(43)b C5-C6C1 118.3 H-C2-C3 121.6 119.5-121.9 126.7(43)b H-C2-C1 121.3 119.5-121.9 126.7(43)b C3-C2C1 117.2 N-C1-C6 119.0 N-C1-C2 118.3 118.3 118.3(6) C6-C1C2 122.7 122.6 φ(C-N) 0.0 0.0 124.9 1.332(8) 1.101(16) 1.385-1.393 1.101(16) 1.101(16) 1.385-1.393 1.399(4) 1.101(16) 1.385-1.393 1.391(4) 1.482(3) 1.396(4) 120.6(24) 122.4 125.3 123.0 121.4 125.3(37) 122.9(24) 0.0 a I.F. Shishkov, L.V. Khristenko, L.V. Vilkov, S. Samdal, S. Gundersen, Struct. Chem. 2003, 14, 151. b H-C-C angles reported here are experimental average values. c Values in parentheses are three standard deviations from leas-squares refinement in units of the last digit. 7 Table S6. Experimental and calculated selected structural parameters for the isomer 4-fluoronitrobenzene. B3LYP a MP2/cc-pVTZa Experimental Valuesa,c 6-31G(d) cc-pVTZa C5-H 1.084 1.079-1.080 N-O2 1.231 1.222 1.228 1.231(3) N-O1 1.231 1.222 1.228 1.231(3) C6-H 1.083 1.079-1.080 C6-C5 1.392 1.386-1.389 1.388-1.390 1.392(2)b C1-N 1.468 1.473 1.468 1.478 C1-C6 1.394 1.386-1.389 1.388-1.390 1.392(2)b 1.119(27) 1.119(27) C2-H 1.083 1.079-1.080 C2-C1 1.396 1.386-1.389 1.388-1.390 1.119(27) 1.392(2)b C4-F 1.343 1.342 1.34 1.337(12) C4-C5 1.393 1.386-1.389 1.388-1.390 1.392(2)b C3-H 1.085 1.079-1.080 C3-C2 1.390 1.386-1.389 1.388-1.390 1.392(2)b C3-C4 1.394 1.386-1.389 1.388-1.390 1.392(2)b H-C5-C6 121.7 119.5-121.6 126.5(36)b H-C5-C4 119.6 119.5-121.6 126.5(36)b C6-C5-C4 118.7 119.1 118.7 120.9(12) O2-N-O1 124.7 124.8 125.2 124.2(23) O2-N-C1 117.7 O1-N-C1 117.7 H-C6-C5 121.6 119.5-121.6 126.5(36)b H-C6-C1 119.5 119.5-121.6 126.5(36)b C5-C6-C1 119.0 N-C1-C6 119.0 N-C1-C2 118.9 119.1 119.1 C6-C1-C2 122.1 119.1 H-C2-C1 119.4 119.5-121.6 126.5(36)b H-C2-C3 121.6 119.5-121.6 126.5(36)b 118.7 118.7 1.119(27) 118.7 120.9(12) C1-C2-C3 119.0 F-C4-C5 118.8 F-C4-C3 118.7 C5-C4-C3 122.5 122.6 123.8(17) H-C3-C2 121.7 119.5-121.6 126.5(36)b H-C3-C4 119.6 119.5-121.6 126.5(36)b C2-C3-C4 118.7 φ(C-N) 0.0 0.0 0.0 0 I.F. Shishkov, L.V. Khristenko, L.V. Vilkov, S. Samdal, S. Gundersen, Struct. Chem. 2003, 14, 151. b H-C-C angles and C-C distances reported here are experimental average values. c Values in parentheses are three standard deviations from leas-squares refinement in units of the last digit. 8 Table S7. G3(MP2)//B3LYP computed enthalpies (energies plus thermal corrections for T = 298.15 K, in a.u.), for the three isomers of fluoronitrobenzene and the auxiliary molecules and atoms used in the gas-phase working reactions. Compound G3MP2 Enthalpy (298.15 K) 2-fluoronitrobenzene -535.286013 3-fluoronitrobenzene -535.295451 4-fluoronitrobenzene -535.296654 3 Carbon ( A1g) -37.788425 4 -54.524582 2 -0.499780 2 -99.641410 Nitrogen ( A1g) Hydrogen( A1g) Fluorine ( A1g) 3 Oxygen( A1g) -74.989704 Benzene -231.835136 Nitrobenzene -436.133826 Fluorobenzene -330.999161 Aniline -287.120066 1,2-difluorobenzene -430.156199 2-fluoroaniline -386.283633 1,3-difluorobenzene -430.161976 3-fluoroaniline -386.284519 1,4-difluorobenzene -430.160941 4-fluoroaniline -386.282075 9