[go: up one dir, main page]

Academia.eduAcademia.edu
Coll. Antropol. 37 (2013) Suppl. 2: 171–177 Original scientific paper Differences in Motor and Cognitive Abilities of Children Depending on Their Body Mass Index and Subcutaneous Adipose Tissue Patrik Drid, Sandra Vujkov, Damjan Jak{i}, Tatjana Trivi}, Dragan Marinkovi} and Gustav Bala University of Novi Sad, Faculty of Sport and Physical Education, Novi Sad, Serbia ABSTRACT The aim of the present study was to analyze differences in motor and cognitive abilities of children depending on their value in quantitative indicators of Body Mass Index (BMI) and subcutaneous fatty tissue. The study sample consisted of overall 910 boys and girls, aged 11 to 14, all from elementary schools in Vojvodina (Serbia). Six anthropometric, eight motor and one cognitive variable were analyzed to identify quantitative and qualitative differences in motor and cognitive functioning of children. Children were divided into three groups within gender based on their body mass index calculated and subcutaneous fatty tissue measured. The results obtained from the study indicate the existence of differences in motor and only partly in intellectual abilities between groups of subjects. The greatest differences between the clusters were found in the level of coordination of the entire body, and the static strength of arms and shoulders. Key words: obesity, Raven’s Progressive Matrices, motor functioning Introduction Overweight and obesity represents a modern disease that had spread world-wide in the past few decades as a product of a modern lifestyle with an increased lack of physical activity. To date, there are many ways to define obesity, one of which says that obesity represents an increasing proportion of body fat to total body weight by over 30% in women and 25% in men1. This abnormal accumulation of fat is a result of increased energy intake and/or reduced energy consumption. This may cause many health-related problems and diseases, and is present in childhood as well as in adults. Obesity, as a medical and social problem of the humankind, is widely researched. The statistics of a current state regarding this problem are concerning, especially with increasing number of children that are considered to be overweighed or obese in developed countries2. In the United States obesity occurs in 18.8% of children with an average age of 12, while in Switzerland this percentage is much lower – 6.53. In the EU countries, 38.2% of school age children are overweight and of these, 10% are obese4. In Serbia, 7.3% of children and adolescents aged 6–14 years are reported as obese5. To date, there are very convincing evidence that the prevalence of childhood overweight and obesity has stabilised in the last decade6–9. Research of Péneau et al.6 shows that the overall trend in prevalence of overweight children between 1996 and 2006 was stable for population aged from 6 to 15. However, health experts and researchers talk about a pediatric 'obesity epidemic' with exponentially increasing rates of obesity and overweight. Although levels of Australian pediatric overweight remain high, the prevalence of overweight and obesity seems to have flattened and have not followed the anticipated exponential trajectory8. In addition, the prevalence of overweight among adolescents and US children increased between 1980 and 20049. Therefore, it can be noticed that obesity and excessive weight are more pronounced in economically developed areas as well as in urban populations4. Factors that cause overweight and obesity are not merely simple events; they are mainly a large number of mutually intertwined different factors (i.e. genetic, physiological, endocrine, psychological, sociological and others). They can be distinguished by a sedentary lifestyle, Received for publication November 11, 2012 171 P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 which is observed more at children, and represents one of the key factors of obesity. Excess weight is related to many medical problems such as cardiovascular problems, high cholesterol, diabetes (type II), hypertension, orthopedic abnormalities, gastrointestinal problems and even cancer10–12. Furthermore, an elevated body mass index (BMI) can be a serious risk factor for stroke and dementia in adults13–15. Moreover, depression and its symptoms have been indicated as a future leader of affective disorder in young people, and Erickson et al.16 has shown that it might be a consequence of obesity, primarily in women. In addition, authors suggests that overweight girls, in relation to overweight boys, manifest more depressive symptoms than their normal-weight peers do. Body mass index (BMI), is one of the most common and widely used Somatic Index in evaluating overweight and obesity. It is commonly used in adults, whereas its adequacy in use for children and youth is still being explored17. The concept of BMI is based on the assumption of proportionality between body mass and squared body height, which mainly depends on body proportions, and is not the same for adults and with children (with regards to growth and development). Although the correlation of BMI with body fat was found significant, one should be careful in coming to conclusions regarding BMI as a predictor of body fat content17. It has been proved that the emergence of obesity and excessive amounts of adipose tissue has a negative impact on cognitive, motor, emotional, and social development of children. Cognitive and intellectual abilities of children in particular and later as adolescents and elderly, during the acquisition and development are adversely affected by obesity10. Some recent studies suggest a negative relations between obesity and cognitive abilities, in particular, two studies indicating cognitive deficits in young adults with elevated BMI18,19. Obesity is a chronic disorder that has multiple causes2. Overweight and obesity in childhood has proven to have significant impact on both physical and psychological health. In addition, psychological disorders such as depression occur with increased frequency in obese children. Unlike other studies, in aspect of gaining new information, authors tried to apply different methodology that involves not only calculated BMI for defining overweight and obese children, but skinfolds as well. Therefore, the aim of this study was to analyse differences in motor and cognitive abilities of children depending on their value in quantitative indicators of BMI and subcutaneous adipose tissue. Materials and Methods The sample of subjects The sample of subjects was drawn randomly from a number of elementary schools in Vojvodina (Serbia), a total of 910 children aged 11–14 (413 boys and 497 girls). All subjects and their parents were fully informed about the nature and demands of the study and all parents voluntarily gave their informed consent for their child, to 172 participate in the study, which was approved by the University’s Ethical Advisory Commission in accordance with the Helsinki Declaration. All measurements and tests were carried out in the morning (from 8:00 to 12:00 h) by the same-trained measurers, who used the same measuring instruments and protocols. Decimal age of subjects was calculated according to the International Biological Programme (IBP) and treated the children’s age on the day of measurement and testing. Measures and tests Anthropometric evaluation Evaluation of anthropometric characteristics was carried out by the International Biological Programme (IBP), and the sample consisted of: Body height, Body weight, Abdominal skinfold, Subscapular skinfold, Triceps skinfold, Body mass index. Body weight and body height were measured without shoes and body mass index (BMI) was calculated (kg/m2). »Over-weight« and »obesity« were defined using the age- and sex-specific criteria of the International Obesity Task Force (IOTF)20. Three skinfolds were measured with modified Lohman et al.21 procedure: Abdominal skinfold: a vertical fold is raised 5cm laterally at the level of the umbilicus; Subscapular skinfold: an angular fold taken at the 45 degree angle 1–2 cm below the inferior angle of the scapula; Triceps skinfold: a vertical fold on the posterior midline of the upper right arm, halfway between the acromion and the olecranon processes, with the arm held freely to the side of the body. For all skinfolds, the average of three measurements at each site was being used for analysis. The children’s age is presented in decimals, which represents the period between the date of birth and the date of measuring and testing of every child, transformed into a corresponding result according to the IBP. Motor performance evaluation The battery of eight motor tests used in this research estimates the effectiveness of the following functional mechanisms: movement structuring, tonus and synergetic regulation, regulation of excitation intensity and regulation of excitation duration22. Motor abilities of boys and girls were estimated by these motor test battery: – functional coordination: Obstacle course backwards, Slalom with 3 balls; – frequency of simple movements: Arm plate tapping; – flexibility: Forward bend from straddle sitting position; – power (explosive strength): Standing broad jump; – muscular endurance (isometric strength): Bent-arm hang; – muscular endurance (isotonic strength): Crossed arm sit-ups. – speed of running: 20-m dash. A short description of the motor tests follows. Every child was given an opportunity to rehearse the test before registering the results. In this way, more adequate and reliable results were obtained. 1) Obstacle course backwards. The child has to walk backwards on all fours and cover the distance of 10 m, climb the top of Swedish bench and go through the P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 frame of the bench. The task is measured in tenths of a second. 2) Slalom with 3 balls. On command »GO« the child rolls three balls between cones and cover the distance of 10 m. After he/she passes the last of five cones, the child turns around it continuously rolling the balls around the cones toward the start line. The task is completed when the child rolls all three balls over the start line. The score is the length of time required to complete the task, measured in tenths of second. 3) Arm plate tapping. For fifteen seconds the child has to tap alternately two plates on the tapping board with his dominant hand, while holding the other hand in the centre between two plates. The result is the number of alternate double hits. 4) Forward bend from straddle sitting position. The child sits on a floor, leaning against the wall, in straddle position and bows forward as deep as possible. A straight angle ruler lies down in front of the child and he/she reaches the scale with cm as far as he/she can. The result is the depth of the reach measured in cm. 5) Standing broad jump. The child jumps with both feet from the reversed side of Reuter bounce board onto a carpet, which is marked in cm. The result is the length of the jump in cm. 6) Crossed-arm sit-ups. The child lies on his/her back with knees bent and arms crossed on the opposite shoulders. He/she rises into a seated position and returns into the starting position. The instructor’s assistant holds the child’s feet. The result is the number of correctly executed rises to the seated position (no longer than 60 seconds). 7) Bent arm hang. The child under-grips the bar and holds the pull-up as long as he/she can (chin above the bar). The result is the time of the hold measured in tenths of a second. 8) 20 m dash. On command »GO«, the child that stands behind the start line has to run 20 m as fast as he/she can, to the end of track (20 m). Children run in pairs. The score is the time of running, measured in tenths of second. Cognitive Functioning Evaluation The Raven’s Standard Progressive Matrices (RSPM) assessed cognitive abilities. RSPM represents multiple-choice tests and in each test item, a candidate is asked to identify the missing segment required to complete a larger pattern. Many items are presented in the form of a 3×3 or 2×2 matrix, giving the test its name. There are five sets (A to E) of 12 items each (e.g. A1 – A12), with items within a set becoming increasingly difficult, requiring ever greater cognitive capacity to encode and analyze information. Statistical procedures Since the variables such as body height, body weight, BMI, abdominal, subscapular and triceps skinfold, come from various metric spaces, their standardization was necessary. The groups within both genders were determined using measures of squared Euclid’s distance index based on body weight and adipose tissue, with Ward’s hierarchical method of cluster analysis. Differences between distinguished taxonomic groups in motor variables and variable for the assessment of general cognitive ability were determined using multivariate analysis of variance (MANOVA), and univariate analysis of variance (ANOVA). Post-hoc Scheff's procedure was applied to analyze differences between pairs of groups. All data were analysed using IBM SPSS Statistics (version 19.0) program for Windows. Results Overall sample of subjects was divided into two groups by gender (413 boys and 497 girls) and, within gender, into three groups with different characteristics using Ward’s hierarchical clustering procedure presented in Table 1 and 2. Group A for boys is characterised by a minimum values of body height, body weight, BMI and average values of subcutaneous fatty tissue. Group B is characterised with highest values of body height, average values of BMI and lowest values of subcutaneous fatty tissue, whereas group C is characterised with highest values of TABLE 1 BASIC PARAMETERS OF TAXONOMIC GROUPS – BOYS A (N=190) Variable B (N=161) C (N=62) X SD X SD X SD 154.74 8.84 169.06 9.65 159.98 11.29 Body weight (kg) 45.00 10.88 54.85 9.88 65.67 17.04 Abdominal skinfold (mm) 12.57 7.03 10.12 4.44 32.43 4.77 Body height (cm) Subscapular skinfold (mm) 7.62 2.95 7.01 1.83 22.55 7.17 Triceps skinfold (mm) 10.58 3.91 8.56 2.94 21.78 5.24 Body mass index (kg/m2) 18.58 3.00 19.04 2.05 25.29 3.41 Age (decimal years) 12.85 0.66 13.17 0.73 12.75 1.20 173 P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 TABLE 2 BASIC PARAMETERS OF TAXONOMIC GROUPS – GIRLS A (N=259) Variable C (N=28) B (N=210) X SD X SD X SD Body height (cm) 159.40 9.13 164.32 7.84 163.26 8.88 Body weight (kg) 45.06 7.51 57.58 7.67 71.55 11.97 Abdominal skinfold (mm) 11.51 3.49 19.98 4.38 31.61 5.23 7.53 1.61 11.70 3.24 25.85 5.45 Triceps skinfold (mm) 10.25 2.33 15.04 3.73 24.64 5.65 Body mass index (kg/m2) 17.60 1.61 21.26 1.83 26.72 3.19 Age (decimal years) 13.08 1.02 13.48 1.12 13.26 1.15 Subscapular skinfold (mm) body weight, subcutaneous fatty tissue and BMI and average body height. Group A in girls is characterised by a minimum values of body height, body weight and BMI and subcutaneous fatty tissue. Group B is also characterised with highest values of body height, average values of body height and BMI, whereas group C is characterised with highest values of body weight, subcutaneous fatty tissue and BMI. Differences between the formed groups in the field of motor abilities were determined using multivariate and univariate analysis of variance, while the differences between pairs of group’s was defined with post-hoc Sheff’s test. All results are shown in Tables 3 and 4. The presented results in Table 3 indicate that in entire system of variables, as well as individual variables, there were significant differences between taxonomic groups of boys. Second taxon differed significantly in all variables over the first and third, a difference between the first and third taxon was in favour of the first one in the next variables: Obstacle course backwards, Slalom with three balls, Standing broad jump, Crossed-arm sit- -ups, Bent arm hang and 20 m dash. All differences were significant. The obtained results in the multivariate space of variables for girls showed that there were statistically significant differences between the groups (Table 4). Statistically significant differences between groups were found in all variables except the Raven variable. Comparing pairs of groups, A to C significantly differed in the variables Obstacle course backwards, Standing broad jump, Crossed-arm sit-ups, Bent-arm hang and 20-m dash, respectively, and compared to group B only in Bent-arm hang variable. Group B was significantly better than group A in the variables Slalom with three balls, Arm plate tapping, Forward bend from straddle sitting position and compared to group C in all variables except the Raven variable. Discussion The purpose of this study was to analyse differences in motor and cognitive abilities of 11–14 years old children depending on their value in quantitative indicators of BMI and subcutaneous adipose tissue. The presented TABLE 3 DIFFERENCES BETWEEN TAXONOMIC GROUPS OF BOYS Variable Obstacle course backwards (s) # Slalom with 3 balls (s) # A B C X (SD) X (SD) X (SD) 14.55 (3.66)cc 12.92 (2.88)aa cc 19.14 (5.85) 59.36 0.00 30.81 (6.11)aa cc 38.15 (6.82) 34.83 0.00 35.62 (7.24)c f p Arm plate tapping (freq.) 28.14 (4.69) 31.03 (4.84)aa cc 28.24 (4.56) 17.92 0.00 Forward bend from straddle sitting position (cm) 42.59 (8.64) 47.56 (9.33)aa cc 43.00 (8.96) 14.49 0.00 203.13 (22.57)aa cc 157.45 (23.37) 111.15 0.00 Standing broad jump (cm) 177.35 (21.70)cc Crossed-arm sit-ups (freq.) 40.27 Bent-arm hang (s) 36.91 (24.18)cc 52.93 (22.07)aa cc 4.11 (0.33)cc 20-m dash (s) # Raven (points) (7.96)cc 41.49 (8.75) F=17.61 45.20 (6.74)aa cc 34.81 (9.45) 43.48 0.00 11.60 (10.61) 82.24 0.00 3.81 (0.29)aa cc 4.38 (0.43) 74.43 0.00 43.93 (9.64)aa cc 41.27 (10.26) 3.49 0.03 P=0.00 Scheffe’s post hoc test: aa £ 0.01 statistical significance relative to A; cc statistical significance £ 0.01 compared to C; b £ 0.05 statistical significance relative to B; # – variables with the inverse metrics 174 P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 TABLE 4 DIFFERENCES BETWEEN TAXONOMIC GROUPS OF GIRLS A B C X (SD) X (SD) X (SD) f p 0.00 Obstacle course backwards (s) # 15.56 (3.46)cc 16.14 (4.58)cc 22.52 (7.72) 32.30 Slalom with 3 balls (s) 38.66 (7.09) 36.82 (7.29)cc a 41.52 (7.97) 6.98 0.00 Arm plate tapping (freq.) 30.52 (4.34) 31.77 (4.66)a c 29.52 (3.68) 6.10 0.00 Forward bend from straddle sitting position (cm) 59.28 (12.56) 62.33 (11.96)a c # 57.19 (10.48) 4.58 0.00 Standing broad jump (cm) 177.10 (19.74)cc 177.94 (21.78)cc 151.70 (22.51) 19.72 0.00 Crossed-arm sit-ups (freq.) 39.62 (7.79)c 40.23 (8.36) c 36.19 (8.35) 3.02 0.05 0.00 Bent-arm hang (s) 36.78 (18.88)bb cc 7.17 (8.42) 52.45 20-m dash (s) # 4.21 (0.32)cc 4.20 (0.36)cc 4.51 (0.38) 9.90 0.00 Raven (points) 42.76 (13.62) 41.80 (16.16) 46.19 (7.91) 1.15 0.32 F=11.17 24.91 (15.90)cc P=0.00 Schaffe’s post hoc test: a statistical significance of £ 0.05 compared to A; bb £ 0.01 statistical significance relative to B; cc statistical significance £ 0.01 compared to C; c the statistical significance of £ 0.05 compared to C; # – variables with the inverse metric results indicate the existence of differences in motor, and partly in the intellectual abilities between groups of subjects divided based on BMI and subcutaneous adipose tissue. This difference was more pronounced with boys compared to girls. Boys with higher BMI and substantial amount of subcutaneous adipose tissue generally performed weaker in the motor tests, which is in line with some previous studies23. This difference was most pronounced in the mechanism for the regulation of excitation intensity (explosive strength of legs), as well as in static force of arms and shoulders indicating that boys with higher BMI and amount of subcutaneous adipose tissue have less explosive and static power. Explosive strength measured by Standing broad jump test unambiguously imply that a higher body mass index and amount of subcutaneous adipose tissue lead to poorer performance in this test. Muscles involved in this movement require greater explosive power, which was not pronounced with increased BMI for both genders. Similarly, girls showed the greatest difference in coordination and static strength of arms and shoulders. Short-term maintenance of the body in a static position, such as hang, is typical for children with higher body mass index and amount of subcutaneous adipose tissue, because of their body weight. Some researchers have found that there was a negative correlation between BMI and motor abilities, where obese children showed poorer performance on age-appropriate field based tests24. D’Hondt et al.25 concluded that childhood obesity is associated with lower total Movement Assessment Battery for Children20. In addition, obese children also displayed less of general motor skill performance that required endurance and strength. Furthermore, flexibility was in a significant negative correlation with increased BMI, as compared to children with normal body weight26–31. By analysing the association between motor coordination (MC) and BMI across childhood and early adolescence, Lopes et al.23 revealed that MC is inversely associated with BMI, and that the strength of the inverse relation increases during child- hood in both genders. Obese and overweight children showed markedly worse motor coordination levels23. According to Colella et al.32, overweight children reported larger body-dissatisfaction scores, lower self-efficacy scores, and poorer performance on weight-bearing tasks than non-overweight peers. Fogelholm et al.33 observed that overweight in 15 to 16 year-old boys and girls were negatively associated with cardiorespiratory fitness, abdominal muscle endurance, explosive power, speed and agility. In most tests, even highly active overweight individuals could not reach better than average fitness levels. The study of Bovet et al.34 was restricted to the 4599 students aged 12 to 15. They reveal that a strong inverse relationship between overweight and performance of several standardized tests of physical fitness at adolescents in a country in the African region. Two variables that evaluate the level of coordination showed that boys with higher body mass index and amount of subcutaneous fat were significantly inferior to other taxonomic groups of boys, indicating markedly poorer motor coordination for overweight and obese boys compared to normal weight boys. Accordingly, girls with normal to moderate BMI and subcutaneous fat performed complex coordination task significantly better too, which indicates better ability in reorganization of movement stereotypes. Furthermore, the group with moderate BMI and subcutaneous fat, achieved better results in second coordination test to the group of girls with higher BMI and subcutaneous fat (p = 0.01), whereas differences between girls with normal to moderate BMI and subcutaneous fat were statistically significant to a less severe criterion (p = 0.05). In addition, results in research for coordination and obesity for children indicate contradictory findings of several authors. Kiphard and Schilling35 reported that obese children showed significantly weaker coordination than normally nourished children, and Adam et al.36 suggest that the correlation between BMI and coordination was not statistically significant. Overall, these results agree with most other results that demonstrate an inverse relation175 P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 ship between childhood body weight and various measures of motor coordination (i.e., process and product movement assessments)37–39. Unlike the motor variables, intelligence did not significantly differ between the selected groups of girls, whereas the assessment of intelligence with boys showed that group B achieved significantly best results in RP Matrices. If we observe other research of correlation between intelligence and obesity, it is interesting to notice that a comprehensive and extensive research40 concludes that a lower IQ score in childhood is linked to obesity and being overweight later, particularly more prevalent with women. In addition, a statistically significant correlation was found between cognitive ability and BMI, when subjects showed significantly lower results in cognitive tests than children of normal nourishment41. Intelligence was measured using the Intelligence Scale for Children (WISC). In this study, the sample also showed a significant difference between subjects who were obese from those who were not42. Physical activity levels are significantly lower among overweight children than their lean counterparts are. Furthermore, children’s motivation to participate in physical activity is influenced by their perceived and actual competence and their parents’ perceptions of their competence. Overweight children have also reported lower perceived physical competence than non-overweight children43, whereas, the correlation of cognitive and motor sphere is shown to be much more distinct in pre-pubertal and even more in pubertal children44,45. Even though, the cross-sectional nature of the results does not allow us to make causal inferences regarding the relationships between BMI, motor performance and intelligence, results obtained in this study gives us preliminary picture of the current state regarding the overweight and obesity issue in Serbia. In addition, BMI is not the most accurate predictor of body fat percentages but is widely abused as an indicator of body fat because of its simplicity of use46. Furthermore, it should be taken into consideration that with the growth and development period of children, BMI is very artificial value representing no true body proportions. However, this research also has its practical implication. Observations given in this study highlights the potential importance of promoting use of physical activity in children for more efficient prevalence of childhood overweight and obesity. It can be significantly influenced on biological growth and development of child’s body with correctly applied training of high intensity, especially in long terms of application47–48. Therefore, continued development of motor abilities and implementation of moderate physical activity on a daily basis should be a strategy goal of childhood interventions in order to promote long-term overweight and obesity prevention. Conclusion Obtained results reported in this cross-sectional study support the majority of results indicating negative correlation of BMI and subcutaneous adipose tissue with motor performance. Overweight and obese children showed, in general, worse motor coordination performance for both genders, whereas the difference in cognitive assessment appeared only with boys. Acknowledgements This research is a part of science-research project »Anthropological status and physical activity of Vojvodina population«, co-financed by the Provincial Secretariat for Science and Technological Development of Vojvodina, which is accomplished by the Faculty of Sport and Physical Education in Novi Sad (No: 114-451- 00606/2007-02, head researcher: prof. G. Bala). REFERENCES 1. IVKOVI]-LAZAR T, Gojaznost [Obesity] (Medicinski fakultet, Novi Sad, 2004). — 2. DEHGHAN M, AKHTAR-DANESH N, MERCHANT AT, Nutr J, 4 (24) (2005) 1. DOI: 10.1186/1475-2891-4-24. — 3. LASSERRE AM, CHIOLERO A, PACCAUD F, BOVET P, Swiss Med Wkly, 137(9–10) (2007) 157. — 4. WANG Y, LOBSTEIN T, Int J Pediatr Obes, 1(1) (2006) 11. DOI: 10.1080/17477160600586747. — 5. OSTOJIC S, STOJANOVIC D, STOJANOVIC V, MARIC J, NJARADI N, J Health Popul Nutr, 29(1) (2011) 53. — 6. PÉNEAU S, SALANAVE B, MAILLARD-TEYSSIER L, ROLLAND-CACHERA MF, VERGNAUD AC, MÉJEAN C, CZERNICHOW S, VOL S, TICHET J, CASTETBON K, HERCBERG S, Int J Obesity, 33(4) (2009) 401. DOI: 10.1038/IJO.2009.31. — 7. JAKIMAVICIENE EM, TUTKUVIENE J, Coll Antropol, 31(1) (2007) 79. — 8. OLDS TS, TOMKINSON GR, FERRAR KE, MAHER CA, Int J Obesity, 34(1) (2010) 57. DOI:10.1038/IJO.2009.211 — 9. Ogden CL, Carroll MD, Flegal KM, Jama-J Am Med Assoc, 299(20) (2008) 2401. — 10. WABITSCH M, Eur J Pediatr, 159(1) (2000) 8. — 11. BRAY GA, J Clin Endocr Metab, 89(6) (2004) 2583. DOI: 10.1210/jc.2004-0535. — 12. DANIELS S, Future Child, 16(1) (2006) 47. — 13. GUSTAFSON D, ROTHENBERG E, BLENNOW K, STEEN B, SKOOG I, Arch Inter Med, 163(13) (2003) 1524. DOI: 10. 1001/archinte.163.13.1524. — 14. ROSENGREN A, SKOOG I, GUSTAFSON D, WILHELMSEN L, Arch Inter Med, 165 (2005) 321. DOI: 10.1001/ archinte.165.3.321. — 15. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Yaffe K, Brit Med J, 330 (2005) 1360. DOI: 10.1136/ 176 bmj.38446.466238.E0. — 16. ERICKSON SJ, ROBINSON TN, HAYDEL KF, KILLEN JD, Arch Pediat Adol Med, 154(9) (2000) 931. — 17. STUPNICKI R, Biomedical Human Kinetics, 4 (2012) 70. DOI: 10.2478/v10101012-0013-1. — 18. GUNSTAD J, PAUL RH, COHEN RA, TATE DF, GORDON E, Eat Weight Disord, 11(1) (2006) 15. — 19. GUNSTAD J, PAUL RH, COHEN RA, TATE DF, SPITZNAGEL MB, GORDON E, Compr Psychiatry, 48(1) (2007) 57. — 20. HENDERSON SE, SUGDEN DA, Movement assessment battery for children: Manual (Psychological Corporation, London, 1992). — 21. LOHMAN TG, ROCHE AF, MARTORELL R, Anthropometric Standardization Reference Manual (Human Kinetics, Champaign, 1988). — 22. BALA G, JAKSIC D, KATIC R, Coll Antropol, 33(2) (2009) 373. — 23. LOPES VP, STODDE, D F, BIANCHI MM, MAIA JA, RODRIGUES LP, J Sci Med Sport, 15(1) (2012) 38. DOI: 10.1016/j.jsams. 2011.07.005. — 24. GRAF C, KOCH B, KRETSCHMANN-KANDEL E, FALKOWSKI G, CHRIST H, COBURGER S, LEHMACHER W, BJARNASON-WEHRENS B, PLATEN P, TOKARSKI W, PREDEL HG, DORDEL S, Int J Obes Relat Metab Disord, 28(1) (2004) 22. — 25. D’HONDT E, DEFORCHE B, DE BOURDEAUDHUIJ I, LENOIR M, Adapt Phys Activ Q, 26(1) (2009) 21. — 26. DEFORCHE B, LEFEVRE J, DE BOURDEAUDHUIJ I, HILL, AP, DUQUET W, BOUCKAERT J, Obes Res, 11(3) (2003) 434. — 27. GRAF C, JOUCK S, KOCH B, STAUDENMAIER K, VON SCHLENK D, PREDEL HG, TOKARSKI W, DORDEL S, Monatsschr Kinderh, 155(7) (2007) 631. DOI: 10.1007/s00112-007-1502-0. — 28. P. Drid et al.: Motor and Cognitive Abilities of Children, Coll. Antropol. 37 (2013) Suppl. 2: 171–177 GRAF C, KOCH B, FALKOWSKI G, JOUCK S, CHRIST H, STAUENMAIER K, J Sports Sci Med, 4 (2005) 291. — 29. TOKMAKIDIS SP, KASAMBALIS A, CHRISTODOULOS AD, Eur J Pediatr, 165(12) (2006) 867. — 30. CASAJÚS JA, LEIVIA MT, VILLARROYA A, LEGAZ A, MORENO LA, Ann Nutr Metab, 51 (2007) 288. — 31. FREY GC, CHOW B, Int J Obes, 30(5) (2006) 861. DOI: 10.1038/sj.ijo.0803196. — 32. COLELLA D, MORANO M, ROBAZZA C, BORTOLI L, Percept Motor Skill, 108(1) (2009) 209. — 33. FOGELHOLM M, STIGMAN S, HUISMAN T, METSÄMUURONEN J, Scand J Med Sci Sports, 18(2) (2008) 162. — 34. BOVET P, AUGUSTE R, BURDETTE H, Int J Behav Nutr Phys Act, 4 (2007) 24. DOI: 10.1186/1479-5868-4-24. — 35. KIPHARD EJ, SCHILLING VF, Köperkoordinations-test für kinder Manual (Beltz Test Gmbh, Weinhein, 1974). — 36. ADAM C, KLISSOURAS V, RAVAZZOLO M, RENSON R, TUXWORTH W, Eurofit: European Test of Physical Fitness, (Council of European Committee for Development of Sport, Rome, 1988). — 37. LUBANS DR, MORGAN PJ, CLIFF DP, BARNETT LM, OKELY AD, Sports Med, 40(12) (2010) 1019. DOI: 10.2165/11536850-000000000- 00000. — 38. JONES RA, OKELY AD, CAPUTI P, CLIFF DP, J Sci Med Sport, 13(6) (2010) 589. DOI: 10.1016/j.jsams.2010.04.002. — 39. OKELY AD, BOOTH ML, CHEY T, Res Q Exerc Sport, 75(3) (2004) 238. — 40. CHANDOLA T, DEARY IJ, BLANE D, BATTY GD, Int J Obesity, 30(9) (2006) 1422. DOI: 10.1038/sj.ijo.0803279. — 41. LI Y, DAI Q, JACKSON JC, ZHANG J, Obesity, 16(8) (2008) 1809. DOI: 10.1038/oby.2008.296. — 42. OLSSON GM, HULTING L, Eat Weight Disord, 15(1–2) (2010) 68. — 43. JONES RA, OKELY AD, CAPUTI P, CLIFF DP, J Sci Med Sport, 13(6) (2010) 589. DOI: 10.1016/j.jsams.2010.04.002. — 44. KATIC R, BALA G, Coll Antropol, 36(1) (2012) 69. — 45. KATIC R, BALA G, BAROVIC Z, Coll Antropol, 36(2) (2012) 563. — 46. STUPNICKI R, TOMASZEWSKI P, MILDE K, CZECZELEWSKI J, LICHOTA M, GLOGOWSKA J, Pediatr Endocrinol Diabetes Metab, 15(3) (2009) 139. — 47. BALA G, DRID P, Coll Antropol, 34(4) (2010) 1347. — 48. DRID P, BALA G, OBADOV S, Arch Budo, 95. G. Bala University of Novi Sad, Faculty of Sport and Physical Education, Lov}enska 16, Novi Sad, Serbia e-mail: gustavbala@yahoo.com RAZLIKE U MOTORI^KIM I KOGNITIVNIM SPOSOBNOSTIMA DJECE U ZAVISNOSTI OD INDEKSA TJELESNE MASE I POTKO@NOG MASNOG TKIVA SA@ETAK Cilj ovog istra`ivanja je bio da se utvrde razlike u motori~kim i kognitivnim sposobnostima djece u zavisnosti od kvantitativnih pokazatelja Indeksa Tjelesne Mase (ITM) i potko`nog masnog tkiva. Uzorak ispitanika je sa~injavalo 910 djevoj~ica i dje~aka iz osnovnih {kola sa podru~ja Vojvodine, uzrasta 11–14 godina. Analizirano je {est antropometrijskih, osam motori~kih i jedna kognitivna varijabla s ciljem utvr|ivanja kvantitativnih i kvalitativnih razlika u prostorima motori~kog i kognitivnog funkcioniranja djece. Djeca su podijeljena na dva subuzorka na osnovu spola, a unutar subuzorka su podijeljeni u tri grupe na osnovu prera~unatog ITM-a i izmjerenog potko`nog masnog tkiva. Rezultati dobiveni u ovom istra`ivanju ukazuju na postojanje razlika u motori~kom, i djelomi~no u kognitivnom prostoru izme|u grupa ispitanika. Najve}a razlika izme|u taxona se pokazala u podru~ju koordinacije cijelog tijela i stati~ke snage ruku i ramenog pojasa. 177
FACTA UNIVERSITATIS Series: Physical Education and Sport Vol. 11, No 1, 2013, pp. 73 - 80 Original research article THE DIFFERENCES IN AEROBIC CAPACITY OF BASKETBALL PLAYERS IN DIFFERENT PLAYING POSITIONS  UDC 796.323:66.098.2 Dragan Marinković1, Slobodan Pavlović2 1 University of Novi Sad, Faculty of Sport and Physical Education, Serbia 2 Faculty for Teaching in Užice, Užice, Serbia Abstract. Maximal oxygen consumption is one of the best indicators of aerobic power and the most widely used parameter of functional capacity of an athlete. The task of this study is to discover whether there is a statistically significant difference between university basketball players in different playing positions (guard, wing, center) in terms of aerobic capacity. The study sample consisted of 30 basketball players, who have been categorized as guards (n = 11), wings (n = 11) and centers (n = 8). The overall sample consisted of players of the basketball team of the Faculty of Sport and Physical Education in Novi Sad, aged 20-26. With a laboratory on-line, breath-bybreath (CPET) system their relatively maximal oxygen consumption – Vo2max (ml•kg1•min-1) was diagnosed. The analysis of variance (ANOVA) was applied to the analysis of differences between participants in different playing positions. According to the results, it was determined that there was a difference (p <0.05) in the aerobic capacity of players in a relation to their playing position. Players in the guard positions had the largest value of Vo2 max while the centers had the lowest values. Key words: College basketball, Vo2max, spiroergometry, ANOVA method. INTRODUCTION Basketball represents a collective sport which is very popular both in Serbia and worldwide due to its attractiveness and dynamics. According to Roper (1996) 11% of people in the United States are engaged in some form of basketball activity. It is a modern game which must be looked at as a high intensity sport. Players face different tasks which must be completed at short intervals in the best possible way. Basketball is one of the most dynamic games with a constant change of typical and atypical  Received January 24, 2013 / Accepted May 21, 2013 Corresponding author: Dragan Marinković, MSc St. Lovćenska 16, 21000 Novi Sad, Serbia Phone: +381 (0) 21 450188  Fax: +381 (0) 21 450199  E-mail: marinkovicdragan@hotmail.com 74 D. MARINKOVIĆ, S. PAVLOVIĆ situations. The player must perceive them quickly, analyze and adequately respond to them (Karalejić & Jakovljević, 1998). It is very difficult to define such a collective game as basketball in terms of the psychological space of player functioning and in a relation to the benefit of the result. In recent years, the number of studies which determined the physiology of basketball in different ways has increased (Gillam, 1985a; Hoffman, Fry, Howard, Maresh, & Kraemer, 1991; Bolonchuck, Lukaski, & Siders, 1991; Ciuti et al., 1996). The question that is asked of many people is whether basketball is mainly an aerobic or anaerobic sport? An activation of energy processes during a basketball game is mainly based on aerobic sources (McInnes, Carlson, Jones, & McKenna, 1995). However, it can be said that there are some differences between basketball being played in the U.S. and Europe. Basketball being played in Europe is mostly aerobic, while American basketball, which is different based on its rules and dynamics, is mostly anaerobic (Scheller & Raskm 1993; McKeag, 2003). It is assumed that anaerobic metabolism is crucial for a basketball game. Many studies point to the fact that the success of the basketball game to a large extent depends on the anaerobic capabilities of basketball players themselves and that they are the most important in the game (Parr, Wilmore, Hoover, Bachman, & Kerlan, 1978; Hoffman, Tenenbaum, Maresh, & Kraemer, 1996; Crisafulli, Melis, Tocco, Laconi, Lai, & Concu, 2002; Taylor, 2004). Basketball is a sport which relies on ATP-CP and the anaerobiclactate system (Bergh et al., 1978; Douglas, McKeag, Hoffman, 2003). On the other hand, the aerobic system is indispensable in building anaerobic systems during the training process for basketball players. Therefore, aerobic metabolism is significant, but more in terms of the process of recovery from intense anaerobic activity than the direct effects in the game (McKeag, 2003). Aerobic capacity is especially important in the stages of recovery. It represents the ability to perform work over a longer period of time in conditions of aerobic metabolism (Sudarov & Fratrić, 2010). The aerobic capacity indicates the general magnitude of aerobic metabolic processes in the human body and an athlete, and represents larger part of the total energy capacity that he owns (Ponorac, Matavulj, Grujić, Rajkovača, & Kovačević, 2005). On the other hand, the term "maximal oxygen consumption" generally refers to the intensity of the aerobic process and represents the ability of a body to, at a certain point, consume the greatest amount of oxygen (Živanić, Životić-Vanović, Mijić, & Dragojević, 1999). Maximal oxygen consumption or maximal aerobic capacity is the best indicator of cardiorespiratory endurance and aerobic fitness (Stojiljković, Radovanović, & Savić, 2010). Through the evolution of basketball over time three playing positions were defined: guard, wing and center; and each has its own characteristics and role in the game. The characteristics of each position are reflected in the anthropometric (Jeličić, Sekulić, & Marinković, 2002), situational (Marinković, 2010; Sindik & Jukić, 2011; Trninić, Jeličić, & Jelaska, 2011) and functional peculiarities of the players. The players in center positions move mostly near the basket, and with their body domination they perform jumps and movements in the area, while on the other hand, the guards have an important role in the organization of the game and activities in the external position (Krause, 1991). Wingers are tasked to support the guards in the offense and the centers in the defense, thereby their role is a little more complex (Jordan & Martin, 1995). Due to the different roles and tasks that must be manifested in the game, the players are also different according to their physiological aspect. The energy systems that are involved are different for each playing The Differences in Aerobic Capacity of Basketball Players in Different Playing Positions 75 position. Therefore their maximum aerobic capacity is different and according to different studies they showed a range of 40 (ml·kg-1·min-1) up to 75 (ml·kg-1·min-1) (Matković, Matković, & Knjaz, 2005). There is a smaller number of studies which specifically address maximal oxygen consumption in university basketball players. However, some that stand out indicate that American university players have a maximum oxygen consumption of 65.2 ± 6.2 (ml·kg-1·min-1) (Tavino, Bowers, & Archer, 1995) while other authors have collected data that they have Vo2max values of 53.0 ± 4.7 (ml·kg-1·min-1) (Caterisano, Patrick, Edenfield, & Batson, 1997). Latin, Berg, & Baechle (1994) investigated the aerobic capacities of a university basketball team and obtained data that guards have an average value of maximal oxygen consumption 56.0 (ml·kg-1·min-1), wings of 56.0 (ml·kg-1·min-1) and the centers of 55.0 (ml·kg-1·min-1). The maximum oxygen consumption varies from position to position, and the data indicates that the university guards also possessed 60.4 Vo2max (ml·kg-1·min-1), wing players -59.3 (ml·kg-1·min-1) while the centers had a minimum value of -56.2 (ml·kg-1·min-1) (Matković et al., 2005). The aim of this study is to determine whether there is a difference between university basketball players in different playing positions (guard, wing and center) in terms of aerobic capacity and their maximum oxygen consumption. THE METHOD The sample of participants The survey covered a total of 30 participants (age, height, weight) and was of a transversal character. The sample is composed of players from the basketball team members of the Faculty of Sport and Physical Education, University of Novi Sad. All of the participants have been active players for over 8 years, and registered in the clubs for different levels of competition in the Basketball Federation of Serbia. The study required the entire sample to be divided according to playing positions and three sub-groups were formed consisting of guards (N = 11), wings (N = 11) and centers (N = 8). Since players in the center position represent a smaller part of the team in relation to the backs and wings, the relationship was developed in this study to fit the above mentioned fact. The diagnostic laboratory test on a treadmill was used to measure ventilation capacity. Scheller and Rask (1993) recommend testing the players on a treadmill, and not on a cycloergometer, because running is a natural moving action in a basketball game. The total sample of participants is tested laboratory on-line, breath-by-breath (CPET) where alongside many parameters the relative Vo2max (ml·kg-1·min-1) was recorded, as a value interesting for the research needs. As a part of the statistical procedure, the values of arithmetic means and standard deviations for all the variables (age, height, body weight, Player Experience, Vo2max) were gathered. By using a univariate analysis of variance (ANOVA) it was determined whether there is a difference (p ≤ 0.05) in the relative maximal oxygen consumption between players in different playing positions in the whole sample. 76 D. MARINKOVIĆ, S. PAVLOVIĆ THE RESULTS The research that was conducted aimed to determine the differences in the aerobic capacity of the players in relation to their playing position. Table 1 shows the data related to the research sample and values of their maximum oxygen consumption obtained using the laboratory measurements. Table 1. Maximum oxygen consumption differences. Variable Age (y) PE (y) Height (cm) Weight (kg) Vo2max (ml·kg-1·min-1) 50.6±3 Guards (n=11) Forwards (n=11) Centers (n=8) Total (n=30) 22.4±1.9 6.1±2.4 183.3±4.5 80.1±4.7 22.4±2 6.1±2.1 190.8±2.4 87.0±5 48.2±3.1 23.1±2.5 7.0±3.2 196.3±2.3 92.8±10.1 46.1±2.2 22.6±2.1 6.6±2.5 189.5±6.2 86.0±8.2 48.5±3.3 F= 5.640 p= .009 Legend: n – the number of participants; Values shown as arithmetic mean ± SD; Vo2max – maximal oxygen consumption; F – univariate f-test value; p – statistical significance of ≤ 0,05. According to the data from Table 1 it was seen that all the players are approximately the same age, given that the entire sample was taken from a university population and that the variations are small. Player Experience (PE) is also approximate for all the players and shows that young players had relatively little experience in competitive activities in their clubs. Some anthropometric characteristics indicate that the players in the center position possessed the highest weight at the same time they were the tallest in comparison to the other players. The guards are lower based on their body constitution and they weigh less. The crucial data for this study in Table 1, Vo2max values show that the guards possessed the highest capacities while players in the center positions had the lowest. Such results point to the fact that the players show significant statistical difference based on this parameter in this sample according to the playing position. DISCUSSION This research supports many studies dealing with the anaerobic capacity of basketball players and differences between groups of players in this functional category based on its data. The aerobic capacity of the participants in this study (48.5 ± 3.3 ml·kg-1·min-1) can be compared to the values obtained in previous studies involving players (Hoffman & Maresh, 2000). The guards showed the greatest results in aerobic capacity (50.6 ± 3 ml·kg-1·min-1). In modern basketball, they apply more running and aerobic activities that need to be on high aerobic levels. Players in guard positions must have high aerobic characteristics due to The Differences in Aerobic Capacity of Basketball Players in Different Playing Positions 77 their higher and constant mobility, agility and speed both in the defense and in attack phase (Stapff, 1998; Carda & Looney, 1994; McKeag, 2003). The high level of durability gives the guards a better base for performing on the field in terms of intensity required by a basketball game (Ostojić, Mazić, & Dikić, 2006). Cardiovascular capacity and heart rate as indicators of workload also show that the guards are the ones who are most involved in the game itself and that their needs require a high aerobic capacity of all the systems of s involved in this process (Rodriguez-Alonso, Fernandez-Garcia, Perez-Landaluce, & Terrados, 2003). Their activity in the defense requires constant movement in the defensive position, guarding players in the external position as well as in various more aggressive versions of man to man defense. As for their activities under attack, guards showed great efficiency in the execution of a shot from an outside position, they perform a number of assists (Marinković, 2010; Sindik & Jukić, 2011) and their movement in offense is largely based in the field out of the line 6.75 (Erčulj, Dežman, Vučković, Perš, Perše, & Kristan, 2007). In all these technical and tactical activities from time to time they use their anaerobic capacities (sprints, penetration, faking and cutting) while in periods of smaller activities in the form of recovery, with functional aerobic capabilities they make up the consumed oxygen and eliminate the lactates formed by oxidative (Tomlin & Wenger, 2001). Although aerobic abilities by themselves do not have a significant contribution to the basketball performance of guards (Gillam, 1985b), they have a role in the recovery and regeneration capacity process from high-intense anaerobic activity (Hoffman, Tenenbaum, Maresh, & Kraemer, 1996). The players in the wing position, according to the Vo2max values (48.2 ± 3.1 ml·kg-1·min1 ) are between the shooting guards and centers, and their values do not differ greatly from the data obtained in previous studies (Caterisano, Patrick, Edenfield, & Batson, 1997; Hoffman & Maresh, 2000; Ostojić et al., 2006). Modern basketball requires greater flexibility in terms of applying the activity to the conditions of the game itself. As a position that will advance a lot in the future, it is based on the activities behind the three-point line but also near the basket during offense, which puts great pressure on the players. The anthropometric and motor activity depends on their abilities. The players in the wing position that are more accurate, more agile, faster, often find their place in external positions. They are slightly more powerful, their technical and tactical units are directed from the immediate vicinity of the basket. By analyzing basketball games (Erčulj et al., 2008; Marinković, 2010; Sindik & Jukić, 2011) it was concluded that players in wing positions also have the characteristics of guards and centers, therefore their movements are from the front line to the front line; in addition they often participate in counter attacks. According to Miller (as cited in Matković, Matković, & Knjaz, 2005) wing players spend most of their time in actions running (60% of max.). In such movements the aerobic energy production system is important for them because according to the average heart rate, their zone is mainly aerobic with frequent but short trips to the anaerobic phase (Rodriguez-Alonso, Fernandez-Garcia, Perez-Landaluce, & Terrados, 2003). Therefore, similar to the guards, aerobic ability is probably associated with recovery intervals and the lactate removal process during the match and after it, with regard to the relationship between oxygen intake and the recovery of skeletal muscle (Piiper & Spiller, 1970; Idström, Harihara Subramanian, Chance, Schersten, & Bylund-Fellenius, 1985). Aerobic metabolism of the wing players can be the primary energy system that is involved in walking and low intensity running during a basketball game (Narazaki, Berg, Stergiou, & Chen, 2009). 78 D. MARINKOVIĆ, S. PAVLOVIĆ Centers show the lowest values of RVo2Max (46.1 ± 2.2 ml·kg-1·min-1), according to their actions in the game. This information was obtained in previous studies (Parr, Wilmore, Hoover, Bachman, & Kerlan, 1978; Latin, Berg, & Baechle, 1994; Miller & Bartlett, 1996; Matković et al., 2005; Sallet, Perrier, Ferret, Vitelli, & Baverel, 2005) and indicates that the players in center positions are the least aerobically fit compared to the players in the wing and guard positions. Centers have a lot of jumping, pushing and boxing out, and it is assumed that they should have a more pronounced anaerobic performance, explosiveness and strength (Carda & Looney, 1994). Their game involves the use of physical contact with opposing players in order to provide the best possible position. Thus, the physiological characteristics are such as to allow positioning of the low post to perform various numbers of jumps, and activities close to the basket (Ostojić et al., 2006; Sindik & Jukić, 2011). According to the same research, centers possessed significantly better anaerobic abilities because of the specific role as well as in offensive and defensive actions by players. CONCLUSION A statistically significant difference in maximal oxygen consumption in relation to the playing position indicates that each position requires different capacities according to their functional characteristics. Coaches and sport and physical education experts should use this kind of research to realize what functional characteristics and abilities their players should possess. Compared to such data it is necessary to construct the training process with the goal of raising those abilities that are required from the players, but with the goal of advancing their efficiency in tournament games as a basic parameter of success.. REFERENCES Bergh, U., Thorstensson, A., Sjodin, B., Hulten, B., Piehl, K., & J. Karlsson, J. (1978). Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Medicine & Science in Sports & Exercise, 10, 151154. Bolonchuck, W.W., Lukaski, H.C., & Siders, W.A. (1991). The structural, functional, and nutritional adaptations of college basket- ball players over a season. Journal of Sports Medicine and Physical Fitness, 31 (2), 165-172. Carda, R.D., & Looney, M.A. (1994). Differences in physical characteristics in collegiate baseball players. A descriptive position by position analysis. Journal of Sports Medicine and physical Fitness, 34 (4), 370-376. Caterisano, A., Patrick, B., Edenfield, W., & Batson, M. (1997). The effects of a basketball season on aerobic and strength parameters among college men: Starters vs. reserves. Journal of Strength and Conditioning Research, 1 (11), 21-24. Ciuti, C., Marcello, C., Macis, A., Onnis, E., Solinas, R., Lai, C., & Concu, A. (1996). Improved aerobic power by detraining in basketball players mainly trained for strength. Sports Medicine Training and Rehabilitation, 6, 325-335. Crisafulli, A., Melis, F., Tocco, F., Laconi, P., Lai, C., & Concu, A. (2002) External mechanical work versus oxidative energy consumption ratio during a basketball field test. Journal of Sports Medicine and Physical Fitness, 442, 409-417. Douglas, B., McKeag, M.D., & Hoffman, J.R. (2003). Handbook of Sports Medicine and Science: Basketball. Oxford: Blackwell Science. Erčulj, F., Dežman, B., Vučković, G., Perš, J., Perše, M., & Kristan, M. (2008). An analysis of basketball players' movements in the Slovenian basketball league play-offs using the SAGIT tracking system. Facta Universitatis series Physical Education and Sport, 6 (1), 75-84. The Differences in Aerobic Capacity of Basketball Players in Different Playing Positions 79 Gillam, G. (1985a). Identification of anthropometric and physiological characteristics relative to participation in college basketball. National Strength & Conditioning Association Journal, 7, 34-36. Gillam, G. (1985b) Physiological basis of basketball bioenergetics. National Strength & Conditioning Association Journal, 6, 44-71. Hoffman, J.R., & Maresh, C.M. (2000). Physiology of basketball. In: Garrett, W.E., & Kirkendall, D.T. (Eds). Exercise: Basic and Applied Science. Baltimore, MD: Lippincott Williams & Wilkins, pp. 733–744. Hoffman, J.R., Fry, A.C., Howard, R., Maresh, C.M., & Kraemer, W.J. (1991). Strength, speed, and endurance changes during the course of a division I basketball season. Journal of Applied Sport Science Research, 5, 144-149. Hoffman, J.R., Tenenbaum, G., Maresh, C.M. & Kraemer, W.J. (1996). Relationship between athletic performance tests and playing time in elite college basketball players. Journal of Strength and Conditioning Research, 10, 67-71. Idström, J.P, Harihara Subramanian, V., Chance, B., Schersten, T., & Bylund-Fellenius, A.C. (1985). Oxygen dependence of energy metabolism in contracting and recovering rat skeletal muscle. American Journal of Physiology, 248, 40-48 Jeličić, M., Sekulić, D., & Marinković, M. (2002). Anthropometric characteristics of high level European junior basketball players. Collegium Antropologicum, 26, 69-76. Jordan, F., & Martin, J. (1995). Basket performance. Paris: Edition Amphora. Karalejić, M., & Jakovljević, S. (1998). Testiranje i merenje u košarci (Testing and measurement in basketball). Belgrade: Basketball Federation of Serbia. In Serbian Krause, J. (1991). Basketball skills and drills. Champaign, IL: Human kinetics. Latin, R.W., Berg, K., & Baechle, T. (1994). Physical and perfor- mance characteristics of NCAA division I male basketball players. The Journal of Strength & Conditioning Research, 8, 214–218. Marinković, D. (2010). Tehničko-taktička aktivnost igrača neposredno pre postizanja koša, na Evropskom prvenstvu „Poljska 2009" (Technical-tactical activity of the player just before the scoring, on the European Championship „Poland 2009". Bachelor's Thesis, Novi Sad: Faculty of Sport and Physical Education, University of Novi Sad. In Serbian Matković, R.B., Matković, B., & Knjaz, D. (2005). Fiziologija košarkaške igre (Physiology of the basketball game). Hrvatski športskomedicinski vjesnik, 2, 113-124. In Croatian McInnes, S.E., Carlson, J.S., Jones, C.J., & McKenna, M.J. (1995). The physiological load imposed on basketball players during competition. Journal of Sports Sciences, 13, 387-397. McKeag, D. (2003). Basketball - Olympic handbook of sports medicine. Oxford: Blackwell Publishing. Miller, S., & Bartlett, R. (1996). The relationship between basketball shooting kinematics, distance and playing position. Journal of Sports Sciences, 14, 243-253. Narazaki, K., Berg, K., Stergiou, N., & Chen, B. (2009). Physiological demands of competitive basketball. Scandinavian Journal of Medicine & Science in Sports, 19 (3), 425-432. Ostojić, S.M., Mazić, S., & Dikić, N. (2006). Profiling in basketball: Physical and physiological characteristics of elite players. Journal of Strength and Conditioning Research, 20 (4), 740– 744. Parr, R.B., Wilmore, J.H., Hoover, R., Bachman, D., & Kerlan, R. (1978). Professional basketball players: Athletic profiles. Physician and Sportsmedicine, 6, 77-84. Piiper, J., & Spiller, P. (1970). Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. Journal of Applied Physiology, 28, 657–662. Ponorac, N., Matavulj, A., Grujić, N., Rajkovača, Z., & Kovačević, P. (2005). Maksimalna potrošnja kiseonika (VO2max) kao pokazatelj fizičke sposobnosti sportiste. Acta Medica Medianae, 44 (4), 17-20. Rodriguez-Alonso, M., Fernandez-Garcia, B., Perez- Landaluce, J., & Terrados, N. (2003). Blood lactate and heart rate during national and international women's basketball. Journal of Sports Medicine and Physical Fitness, 43, 432-436. Roper, S.. (1996). Outdoor recreation in America – executive sumary. Washington, D.C: Recreation Roundtable/ USDI publication. Available at: http://www.funoutdoors.com/node/view/1110 Sallet, P., Perrier, D., Ferret, J. M., Vitelli, V., & Baverel, G. (2005). Physiological differences in professional basketball players as a function of playing position and level of play. The Journal of Sports Medicine and Physical Fitness, 45 (3), 291-294. Scheller, A. Jr., & Rask, B. (1993). A protocol for the health and fitness assessment of NBA players. Clinical Journal of Sport Medicine, 12 (2), 193-205. Sindik, J., & Jukić, I. (2011). Differences in situation efficacy indicators at the elite basketball players that play on different positions in the team. Collegium Antropologicum, 35 (4), 1095-1104. Stapff, A. (1998). Basketball Players. In: Gore, C.J. (Ed.) Test methods manual (3rd ed). Canberra: Australian Sports Commission. 80 D. MARINKOVIĆ, S. PAVLOVIĆ Stojiljković, N., Radovanović, D., & Savić, Z. (2010). Istorijski razvoj metoda za praćenje maksimalne potrošnje kiseonika (Historical development of methods for monitoring maximal oxygen consumption). In: Simović, S. (Ed.): 2nd International Scientific Conferenece Anthropological Aspect of Sport, Physical Education and Recreation, Banja Luka: Faculty of Physical Education and Sports, University Banja Luka, Proceedings, pp. 143-151. Sudarov, N., & Fratrić, F. (2010). Dijagnostika treniranosti sportista (Diagnostics of athletes' form). Novi Sad: Pokrajinski zavod za sport. In Serbian Tavino, L., Bowers, C., & Archer, C. (1995). Effects of basketball on aerobic capacity, anaerobic capacity, and body composition of male college players. The Journal of Strength & Condition, 9 (2), 75-77. Taylor J. (2004). A tactical metabolic training model for collegiate basketball. Strength & Conditioning Journal, 26 (5), 22-29. Tomlin, D.L., & Wenger, H.A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31 (1), 1-11 Trninić, M., Jeličić, M., & Jelaska, I. (2011). Utvrđivanje razlika između juniorskih igrača na pojedinim pozicijama u košarkaškoj igri na temelju pokazatelja situacione efikasnosti (Determination of the differences between junior players on certain playing positions of the basketball game based on the indicators of situational efficiency). Fizička kultura, 65 (1), 24-33. Živanić, S., Životić-Vanović, M., Mijić, R., & Dragojević, R. (1999). Aerobna sposobnost i njena procena Astrandovim testom opterećenja na bicikl-ergometru (Aerobic capacity and its estimation by Astrand evaluation test on bicycle ergometer). Beograd: Udruženje za medicinu sporta Srbije. In Serbian. RAZLIKE U AEROBNOM KAPACITETU KOŠARKAŠA NA RAZLIČITIM IGRAČKIM POZICIJAMA Dragan Marinković, Slobodan Pavlović Maksimalna potrošnja kiseonika predstavlja jedan od najboljih pokazatelje aerobne moći, i najrasprostranjeniji parametar funkcionalne moći sportiste. Suprotnosti u vidu funkcionalnih sposobnosti igrača upućuju nas na to da trenažnim procesima unapređujemo one sposobnosti koje su od značaja za tu igračku poziciju. Zadatak ovog istraživanja jeste da se otkrije da li postoji statistički značajna razlika između univerzitetskih košarkaša različitih igračkih pozicija (bek, krilo, centar) u pogledu aerobnih kapaciteta. Istraživanjem je obuhvaćen uzorak od 30 košarkaša, koji su kategorisani kao bekovi (n=11), krila (n=11), i centri (n=8). Celokupni uzorak su činili igrači članovi košarkaške selekcije Fakulteta sporta i fizičkog vaspitanja u Novom Sadu, uzrasta 20-26 godina. Laboratorijskim on-line, breath-by-breath (CPET) sistemom je dijagnostikovan njihova relativna maksimalna potrošnja kiseonika - Vo2max (ml•kg-1•min-1). Za analizu razlika između ispitanika različitih igračkih pozicija primenjivana je univarijatna analiza varijanse (ANOVA). Prema dobijenim rezultatima, utvrđeno je da postoji razlika (p < 0.05) u aerobnom kapacitetu košarkaša u odnosu na njihovu igračku poziciju. Igrači na pozicijama beka su posedovali najveći vrednost Vo2 max dok su centri imali najmanje vrednosti. Ključne reči: univerzitetska košarka, Vo2max, spiroergonometrija, ANOVA metoda.
Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

EXERCISE AND QUALITY OF LIFE Volume 5, No. 1, 2013, 43–52 UDC 572.5–053.4–055.25:796.012.1/.2 Research article THE RELATIONSHIP bETWEEN COORDINATION, MOTOR AbILITIES AND ANTHROPOMETRIC CHARACTERISTICS OF PRESCHOOL GIRLS Dragan Marinković* Doctoral student, Faculty of Sports and Physical Education, University of Novi Sad Abstract Coordination as complex motor ability in preschool age represents a base for development of other abilities and thus point out their relationships with overall motor development of a child. The goal of this research is to analyze the relationship of coordination with motor abilities and anthropometric characteristics of preschool girls. In a sample of 197 girls aged from 4 – 6 years, seven tests of motor skills were applied and five anthropometric measures. Using standard multiple regression, a statistically significant correlation between motor abilities/anthropometric characteristics and coordination of preschool girls was identified. The system of motor and anthropometric variables as a whole explains 41% of variance of the depended variable. Among the variables of the predictor system, the best predictors of girls’ performance on coordination test, were the following variables: hand tapping, standing broad jump and abdominal skinfold. The results suggest that the preschool girls’ motor skills are related in a specific way and that coordination has a large impact on other motor skills. Keywords: coordination, girls, preschool age, motor abilities, morphological status Introduction Coordination as a motor ability occupies the attention of experts and scientists. Its complexity and structure are not yet sufficiently known, so that its relationship with other components of the physical and motor development is under-researched. Relations between coordination and other dimensions in preschool children can be viewed from different perspectives. The first refers to what kind of correlation are coordination and other motor skills in. According to previous research (Lopes, Rodrigues, Maia, & Malina, 2011; Marinkovic, 2012), a positive correlation exists; children with better coordination show greater efficiency in the performance of activities that involve other motor skills. * Corresponding author. University of Novi Sad, Faculty of Sport and Physical Education, Lovćenska 16, 21000 Novi Sad, Serbia, e-mail: marinkovicdragan@hotmail.com © 2013 Faculty of Sport and Physical Education, University of Novi Sad, Serbia D. Marinković Another issue refers to the relationship of coordination and anthropometric characteristics such as body weight and subcutaneous adipose tissue; the results of some research (Bala, 1981; D’Hondt et al., 2011; Drid et al., 2013; Lopes, Stodden et al., 2012) show that they correlate in a way that obese children show poor coordination and other motor skills. Preschool age presents a very important period in the formation of motor behavior. Before entering the elementary school, a significant development of coordination skills in children occurs and it is more pronounced in boys than in girls (Broverman, Klaiber, Kobayashi, & Vogel, 1968; Svirčević-Milovanović, 1994; Cvetković, Popović & Jakšić, 2007; Bala et al., 2009; Sindik, 2009). For denoting the key capabilities of human motor performance, different terms are used: motor abilities, anthropological abilities, motor dimensions, kinesiology skills, movement abilities, physical fitness, etc. Motor abilities are relatively stable congenital and acquired functional abilities of organs and organ systems of which depends the efficiency of motor activity (Ašmarin, 1990). In this paper, emphasis is placed on basic motor abilities since in the preschool age, specific motor abilities are not yet developed and they are of general type (Luria, 1976; Bala, 2002; Popović et al, 2006), that is, the abilities are not distinguished as is the case with older children, adolescents and adults. For girls of this age this specificity is also typical, because some parts of the CNS are not sufficiently developed and the preconditions for the improvement of motor skills at a higher level are not formed. Motor development cannot be observed in isolation and it depends on many factors such as morphological characteristics, hereditary characteristics, conative characteristics and cognitive abilities, but also the environment. Many studies indicate that girls achieve poor results in most motor tests and therefore are different than boys of the same age (Bala, 2003, Montgomery et al., 2004; Telford, Salmon, Timperio, & Crawford, 2005). Yet girls perform better on flexibility test in comparison to their male counterparts (Kosinac & Katić, 1999; Bala, 2003; De Privitellio, Marić & Mijan, 2006). An integral part of motor skills is coordination, which is responsible for performing complex movements. Coordination as basic motor ability is not fully researched, although it draws the great attention of experts and scientists. The mechanism responsible for the coordination is very complex. Theoretical basis for understanding of coordination can be found in research of Kurelić and associates (1975), Viskić – Štalec & Mejovšek (1975), Gredelj, Metikoš, Hošek, & Momirović (1975). Generally speaking, the coordination is the basic framework for the organization of motor activities, and a good organization results in a great success in performing motor skills. That is the reason why many contemporary theories of motor skills put this motor ability in the first place, and there is a large number of similar definitions that are set by various authors and each one of them emphasizes complexity and significance of coordination (Fleishman, 1964; Momirović, 1970; Gredelj et al, 1975; Hošek, 1976; Drabik, 1996; Bompa, 1999; Stojiljković, 2003; Nićin, 2008). The sensitive period for coordination development is between 6–8 and 12 years of age (Bompa, 1999; Hahn, as cited in Knjaz, Rupčić & Verunica 2007). The greatest development and potential in the manifestation of coordination can be expected between 19–24 years of age in boys and between 17–21 years of age in girls (Svirčević – Milovanović, 1994). Because the coordination as a motor skill is a framework for the organization of physical activity (Viskić – Štalec & Mejovšek, 1975), it prevails in most motor tasks. The level of coordination is an important predictor of physical activity in preschool aged children and in early school years (Lopes, Rodrigues et al., 2011). Given that the motor abilities at this age are of general character (Sabo, 2003), the coordination within the system of motor abilities is dominant and strongly affects the performance of different motor activities. Children with better coordination more efficiently perform motor activities than children whose coordination is at the lower level. Bala (1981) states that the coordination as a motor ability in girls develops more intensive after sixth year of age. 44 Correlates of preschool girls’ coordination After sixth year the curve of the ability advancement grows and it is similar to the curve that boys have in the same age. According to Popović et al. (2006) the development coordination of preschool girls has a stepwise character, but in time it develops in linear and intensive manner. In preschool girls, almost all emerging motor abilities are related to each other, and it’s often spoken about the general motor factor (Bala, 1981), or a two-dimensional model where the first factor presents a general motor factor, while the second one appears as a single factor of flexibility (Bala et al., 2009). Growth and development of an individual can be seen through the many aspects as those of psychological, functional, and those that involve anatomical and histological changes. The building of a specific structure and function of organ systems represents a process of tissue differentiation and functional maturation which altogether represents a process of physical development (Jakonić, 2003). Morphological characteristics represent the biological basis that generates manifestation of anthropometric characteristics, such as body height and weight, the volume of the body and extremities, length and thickness of the long bones (parts of the legs and the corresponding joints), skin folds, etc. They define the growth and development of children, as well as their physical structure (constitution), by determining the structure of morphological characteristics (Bala, 2007). Anthropometric measures are the ones that can be measured with anthropometric instruments on the human body. They can be of manifest and latent character (Bala, 1981). Most of the body measurements, with the exception of subcutaneous adipose tissue and measures of the head and face, follow the general curve of growth and development. Malina and Bouchard (1991) proved by longitudinal data that the differences between boys and girls in most of the measured anthropometric characteristics (body height, body weight, sitting height, leg length, hip width, shoulder width, etc.) are almost insignificant until the 13–14 years of age. Studies dealing with anthropometric characteristics of preschool children identified different number of latent factors (Momirović et al, 1967; Momirović, 1970; Kurelić et al., 1975; Bala, 1977; Szirovicza, Momirović, Hošek & Gredelj, 1980; Katić, Zagorac, Živičnjak & Hraski, 1994). The growth of the anthropometric measures of girls is continuous and shows different variability across the age groups (Bala, 1981). This variability is particularly evident in variables assessing subcutaneous tissue, with girls having significantly higher scores (Bala, 1981; Bala et al., 2009; Horvat, Mišigoj Duraković, & Prskalo, 2009). In other anthropometric characteristics, it seems that there is no difference between boys and girls at this age (Katić et al, 1994; Krističević, Delija, and Horvat, 1999). Relationship of anthropometric characteristics and coordination in preschool girls is not well known. However, previous findings suggest that body height significantly affects the performance on coordination tests. The smallest effect of anthropometric characteristics is found in tasks that depend on the mechanism of central movement control. Subcutaneous adipose tissue generally has a negative correlation with all motor abilities, including coordination. In the same time, the obesity is increasing globally (Ogden et al., 2006; Wang & Lobstein, 2006) and its influence on effectiveness in coordination tasks is being considered (Tokmakidis, Kasambalis & Christodoulos, 2006). Most of the findings indicate a negative relationship of weight and greater amounts of subcutaneous adipose tissue with coordination (Bala, 1981; Graf, Koch, et al, 2004; Wong & Cheng, 2006; Graf, Jouck, et al, 2007; Bala et al, 2009; Popović & Radanović, 2010; D’ Hondt et al, 2011; Lopes, Stodden et al., 2011). According to these studies, girls who have greater amounts of subcutaneous adipose tissue and also a higher body mass index, have poor coordination. The aim of this study was to analyze a relationship of coordination with the anthropometric characteristics and motor abilities of preschool girls. 45 D. Marinković METHOD The survey applied a sample of 197 girls, aged 4 – 6, enrolled in kindergartens in Novi Sad, capital city of the northern province of Serbia. Measuring instruments used in this study assess two domains – anthropometric and motor. Anthropometric measures were applied according to the International Biological Program (IBP) (Lohman, Roche & Martorell, 1988). The sample of anthropometric measures, selected according to the previously mentioned model of morphological traits (Bala, 1981), included: Skeleton dimension: 1. Body height (mm) – aheight Body volume and subcutaneous fat: 2. Body weight (0.1 kg) – aweight 3. Abdominal skinfold (0.1 mm) – anbelly 4. Subscapular skinfold (0.1 mm) – anback 5. Triceps skinfold (0.1 mm) – anupperarm Motor testing, realized according to standardized procedure for this population (Bala, Stojanović M. V., & Stojanović, M., 2007). The following test battery was applied: Body coordination and reorganization of movement stereotype: 1. Obstacle course backwards (0.1 s) – mpolygon; 2. Standing broad jump (cm) – mlongj; 3. 20-m dash (0.1s) – mt20. Static strength: 4. Pull-up endurance test (0.1s) – mendurance Movement frequency: 5. Arm plate tapping (freq.) – mtapping Flexibility: 6. Sit and reach test (cm) – mpbend Repetitive abdominal strength: 7. Crossed-arm sit-ups (freq.) – mplift The obtained data were analyzed by standard multiple regression to determine the linear model of the criterion variable, which in this case was coordination (Obstacle course backwards) and the system of predictor variables, comprising motor variables (N=7) and anthropometric measures (N=5). The analysis was carried out by SPSS 20.0 statistical package. 46 Correlates of preschool girls’ coordination Results This study was aiming to investigate the relationship of coordination with motor abilities and anthropometric dimensions in preschool girls. The results obtained by statistical analysis are presented in following tables and figures. Table 1 Descriptive statistic of analyzed variables Variable AM SD KV% Min Max 56.38 8.00 14.19 41 87 mpolygon 365.19 156.57 42.88 106 1143 mtapping 14.89 3.43 23.04 5 24 mpbend 40.11 6.69 16.68 27 59 mslongj 99.17 21.13 21.31 40 150 110.84 102.71 92.66 0 571 20.88 9.49 45.50 0 47 aheight 1164.22 79.41 6.82 976 1413 aweight 215.67 45.40 21.06 136 486 anbelly 78.92 45.98 58.27 28 300 anback 71.31 30.04 42.13 36 246 anupperarm 97.36 31.46 32.31 46 228 mt20 mendurance mplift Legend: AM – arithmetic mean; SD – standard deviation; KV% – coefficient of variation; Min – minimal values; Max – maximal values; Skew- skewness; Kurt- kurtosis. Table 1 presents descriptive data on motor abilities and anthropometric characteristics of the analyzed sample. Based on variability measures, it can be concluded that the sample is most heterogeneous when it comes to performance motor test “pull-ups”, then “Crossed-arm sit-ups” and “Obstacle course backwards”. The highest individual variability in terms of anthropometric variables is registered in skinfolds, and the lowest in body height. To examine the combined impact of motor and anthropometric variables on performance in coordination test, a predictor system was formed comprising all motor and anthropometric variables included in this study. The results presented in Tables 2–3 show the proportion of criterion total variance explained by the predictor system, as well as significance of particular predictor in explanation of total variance in coordination test. 47 D. Marinković Table 2 Regression results R Coefficient of Corrected coefficient determination of determination .409 .374 .640 Standard error 123.918 Legend: R- Coefficient of correlation As can be seen from Table 2, the established system of predictor variables explain almost 41% of the coordination variance in the sample of preschool girls (R = .409). Table 3 Value and significance of beta coefficient Variable system Standardized Beta coefficient t p mt20 .086 1.000 .318 mtapping -.180 -2.559 .011 mpretkl -.053 -.817 .415 mskokda -.232 -2.440 .016 mizdrzaj -.046 -.679 .498 mpodiza -.069 -.964 .336 aheight -.147 -1.053 .294 aweight .006 .033 .974 anbelly .331 2.267 .025 anback -.099 -.737 .462 anupperarm .023 .225 .822 F P 11.466 .000 Legend: t- t test values; p = level of significance; F-multivariate variance analysis test; P = level of significance. From the values of standardized beta coefficients (Table 3) it can be seen that the largest, and also statistically significant values were obtained in hand tapping test, standing broad jump test and abdominal skin folds measures. Arm plate tapping has a negative value of beta coefficient, which means: the higher frequency of tapping, the better performance on the coordination test. As for the standing broad jump, higher scores on standing broad jump predicts better results on the coordination test. Excessive subcutaneous adipose tissue negatively affects the performance on the coordination test, thus the greater the amount of adipose tissue, the test performance is worse. 48 Correlates of preschool girls’ coordination Discussion The study was conducted in order to determine the relation of coordination with motor and anthropometric characteristics of the preschool girls. Standard multiple regression analysis was conducted in order to identify the direction and strength of such relationship. A combined predictor system is formed, consisting of motor and anthropometric variables, in order to investigate its relation to the criterion variable (obstacle course backwards). The entire system of motor and anthropometric variables explained 41% of variance of the dependent variable. The unexplained variance can probably be attributed to motor abilities and anthropometric characteristics that were not included in this research, as well as to the other characteristics like conative, cognitive and social dimensions of the preschool aged girls. Although the predictor system as a whole is significant in prediction of the criterion variable, the coordination could be best predicted by performance in standing broad jump and arm plate tapping, and by abdominal skin fold amounts. Girls who scored higher in tests of arm plate tapping and standing broad jump, and which had less abdominal subcutaneous fat, performed better on tests of obstacle course backwards. As for the standing broad jump, the obtained result could be explained by the fact that this test is considered to be an indirect test of coordination and reorganization of movement stereotypes for preschool children. The frequency of movements refers to the aspect of speed, and since the obstacle course must be performed as fast as possible, it is understandable that faster girls perform better on the obstacle course too. It may be noted that in combined predictor model, the body height was not a significant predictor. The results suggest that the motor abilities are better predictors of coordination in preschool girls, than anthropometric characteristics. These results can be explained by the trend and level of growth and development of the morphological structure and the development of the central nervous system, and also the physical activity of girls (Bala et al., 2009). At preschool age, the general character of motor skills is notable for girls (Ismail & Gruber, 1971; Luria, 1976; Bala, 1981; Bala, 2002; Sabo, 2003; Fratrić & Rubin, 2006; Popović et al., 2006), and our findings are consistent with previous studies. Possible limitations of the research refer to the characteristics and the size of the participants sample and the limited number of predictor variables employed. However, identifying the relationship between coordination and other motor dimensions, as well as anthropometric characteristics, might be useful for extending the theoretical and empirical knowledge. Developmentally appropriate physical activity for preschool children can greatly contribute to the health and overall well-being of the children, with parents and educators being main figures in supporting and enhancing children’s motor development. References Ašmarin, V. A. (1990). Teorija i metodika fizičeskogo vospitanija. Moskva: Prosveščenie. Bala, G. (1977). Struktura antropometrijskih dimenzija kod osoba ženskog pola. Kineziologija, 7(1–2), 13–22. Bala, G. (1981). Struktura i razvoj morfoloških i motoričkih dimenzija dece SAP Vojvodine. Novi Sad: Fakultet fizičke kulture. 49 D. Marinković Bala, G. (2002). Strukturalne razlike motoričkih sposobnosti dečaka i devojčica u predškolskom uzrastu. Pedagoška stvarnost, 48(9–10), 744–752. Bala, G. (2003). Kvantitativne razlike osnovnih antropometrijskih karakteristika i motoričkih sposobnosti dečaka i devojčica u predškolskom uzrastu. U XLII Kongres antropologa Jugoslavije: Izvodi saopštenja (p. 72). Bala, G. (2007). Morfološke karakteristike predškolske dece. U G. Bala (Ed.), Antropološke karakteristike i sposobnosti predškolske dece (pp. 33–66). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Bala, G., Jakšić, D., & Popović, B. (2009). Trend relacija morfoloških karakteristika i motoričkih sposobnosti dece. U Relacije antropoloških karakteristika i sposobnosti predškolske dece (pp. 61–112). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Bala, G., Stojanović, M. V., & Stojanović, M. (2007). Merenje i definisanje motoričkih sposobnosti dece. Novi Sad: Fakultet sporta i fizičkog vaspitanja. Bompa, T. O. (1999). Periodization. Theory and Methodology of Training. Champaign, IL: Human Kinetics. Broverman, D. M., Klaiber, E. L., Kobayashi, Y., & Vogel, W. (1968). Roles of activation and inhibition in sex differences in cognitive abilities. Psychological Review, 75(1), 23–50. Cvetković, M., Obradović, J., & Krneta, Ž. (2007). Trend razvoja motoričkih sposobnosti dece nižeg školskog uzrsta. U G. Bala (Ed.), Zbornik radova interdisciplinarne naučene konferencije sa međunarodnim učešćem “Antropološki status i fizička aktivnost dece i omladine” (pp. 55–64). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Cvetković, M., Popović, B., & Jakšić, D. (2007). Razlike u motoričkim sposobnostima predškolske dece u odnosu na pol. U N. Smajlović (Ed.), Zbornik naučnih i stručnih radova II međunarodnog simpozijuma “Nove tehnologije u sportu”(pp. 288–293). Sarajevo: Fakultet sporta i tjelesnog odgoja. D’Hondt, E., Deforche, B., Vaeyens, R., Vandorpe, B., Vandendriessche, J., Pion, J., . . . & Lenoir, M. (2010). Gross motor coordination in relation to weight status and age in 5- to 12-yearold boys and girls: A cross-sectional study. International Journal of Pediatric Obesity, 6, 556–564 De Privitellio, S., Maric, Ž., & Mijan, J. (2006). Razlike u motoričkim sposobnostima devojčica i dečaka predškolske dobi. U G. Bala (Ed.), Zbornik radova interdisciplinarne naučene konferencije sa međunarodnim učešćem “Antropološki status i fizička aktivnost dece i omladine” (pp. 57–65). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Drabik, J. (1996). Children and Sports Training. Island Point, VT: Stadion Publishing Company. Drid, P., Vujkov, S., Jakšić, D., Trivić, T., Marinković, D., & Bala, G. (2013). Differences in motor and cognitive abilities of children depending on their body mass index and subcutaneous adipose tissue. Collegium Antropologicum, 37(2), 171–177. Fleishman, E. A. (1964). The Structure and Measurement of Physical Fitness. Englewood Cliffs, N. J.: Prentice-Hall. Fratrić, F., & Rubin, P. (2006). Kvantitativne razlike motoričkog statusa dečaka i devojčica uzrasta 4–7 godina sa teritorije Novog Sada. U: G. Bala G.(Ed.) Zbornik radova interdisciplinarne naučne konferencije sa međunarodnim učešćem Antropološki status i fizička aktivnost dece i omladine (pp. 51–56). Novi Sad: Fakultet sporta i fizičkog vaspitanja. 50 Correlates of preschool girls’ coordination Graf, C., Jouck, S., Koch, B., Staudenmaier, K., Von Schlenk, D., Predel, H. G., . . . & Dordel, S. (2007). Motorische Defizite – wie schwer wiegen sie? Übergewicht und Adipositas im Kindes- und Jugendalter. Monatszeitschrift Kinderheilkunde, 155(7), 631–637. Graf, C., Koch, B., Kretschmann-Kandel, E., Falkowski, G., Christ, H., & Coburger, S. (2004). Correlation between BMI, leisure habits and motor abilities in childhood. International Journal of Obesity and Related Metabolic Disorders, 28(1), 22–26. Gredelj, M., Metikoš, D., Hošek, A. & Momirović, K. (1975). Model hijerarhijske strukture motoričkih sposobnosti. Rezultati dobijeni primjenom jednog neoklasičnog postupka za procjenu latentnih dimenzija. Kineziologija, 5, 7–81. Horvat, V., Mišigoj-Duraković, M. & Prskalo, I. (2009). Body size and body composition change trends in preschool children over a period of five years. Collegium Antropologicum, 33(1), 99–103. Hošek, A. (1976). Struktura koordinacije (The structure of coordination). Kineziologija, 6(1–2), 151 -192. Ismail, A. H., & Gruber, J. J. (1971). Integrated Development – Motor Aptitude and Intellectual Performance. Columbus: Charles E. Merrill Books. Jakonić, D. (2003). Osnove sportske medicine. Novi Sad: Fakultet sporta i fizičkog vaspitanja. Katić, R., Zagorac, N., Živičnjak, M., & Hraski, Ž. (1994). Taxonomic analysis of morphological/ motor characteristics in seven-year old girls. Collegium Antropologicum, 18(1), 141–154. Knjaz, D., Rupčić, T., & Verunica, Z. (2007). Razvoj koordinacije kroz senzitivna razdoblja s posebnim naglaskom na košarkaške programe. U 16. ljetna škola kineziologa Republike Hrvatske Antropološke, metodičke, metodološke i stručne pretpostavke rada u područjima edukacije, sporta, sportske rekreacije i kineziterapije zbornik radova (pp. 444–449). Zagreb: Hrvatski kineziološki savez. Kosinac, Z., & Katić, R. (1999). Longitudinalna studija razvoja morfološko-motoričkih karakteristika dečaka i devojčica od 5. do 7. godina. U II međunarodna znanstvena konferencija (pp. 144–147). Dubrovnik. Krističević, T., Delija, K., & Horvat, V. (1999). Usporedbe nekih antropometrijskih karakteristika dece predškolske dobi s obzirom na spol. Napredak, 140(3), 349–355. Kurelić, N., Momirović, K., Stojanović, M., Šturm, J., Radojević, Đ. & Viskić-Štalec, N. (1975). Struktura i razvoj morfoloških i motoričkih dimenzija omladine. Beograd: Institut za naučna istraživanja Fakulteta za fizičko vaspitanje. Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric Standardization Reference Manual. Chicago: Human Kinetics Books. Lopes, V. P., Rodrigues, L. P., Maia, J. A. R., & Malina, R. M. (2011). Motor coordination as predictor of physical activity in childhood. Scandinavian Journal of Medicine and Science in Sports, 21, 663–669. Lopes, V. P., Stodden, D. F., Bianchi, M. M., Maia, J. A., & Rodrigues, L. P. (2011). Correlation between BMI and motor coordination in children. Journal of Science and Medicine in Sport, 15(1), 38–43. Luria, A. R. (1976). Osnovi neuropsihologije. Beograd: Nolit. Malina, R. M., & Bouchard, C. (1991). Growth, Maturation, and Physical Activity. Champaign, IL: Human Kinetics Books. 51 D. Marinković Momirović, K. (1970). Komparativna analiza latentnih antropometrijskih dimenzija muškaraca i žena. Glasnik antropološkog društva Jugoslavije, 7, 193–207. Montgomery, C., Reilly, J. J., Jackson, D. M., Kelly, L. A., Slater, C., Paton, J. Y., . . .& Grant, S. (2004). Relation between physical activity and energy expenditure in a representative sample of young children. American Journal of Clinical Nutrition, 80, 591–596. Nićin, Đ. (2008). Antropomotorika: teorija. Beograd: Fakultet za menadžment i sport. Ogden, C. L., Carroll, M. D., Curtin, L. R., McDowell, M. A., Tabak, C. J., & Flegal, K. M. (2006). Prevalence of overweight and obesity in the United States, 1999–2004. JAMA, 295(13), 1549–1555. Popović, B. & Radanović, D. (2010). Relacije morfoloških karakteristika i koordinacije kod devojčica koje se bave gimnastičkim aktivnostima. Glasnik Antropološkog društva Srbije, 45, 243–252. Popović, B., Cvetković, M., & Grujičić, D. (2006). Trend razvoja motoričkih sposobnosti predškolske dece. U G. Bala (Ed.), Zbornik radova interdisciplinarne naučene konferencije sa međunarodnim učešćem “Antropološki status i fizička aktivnost dece i omladine” (pp. 21–30). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Sabo, E. (2003). Struktura motoričkog prostora i razlike u motoričkim sposobnostima devojčica predškolskog uzrasta pri upisu u osnovnu školu. Norma, 9(2–3), 185–196. Sindik, J. (2009).Kineziološki programi u dečijim vrtićima kao sredstvo očuvanja detetova zdravlja i poticanja razvoja. Medica Jadertina, 39(1–2), 19–28. Stojiljković, S. (2003). Osnove opšte antropomotorike. Niš: Studentski kulturni centar. Svirčević-Milovanović, K. (1994). Koordinacija sa primenom sredstava za njeno poboljšanje. Diplomski rad. Novi Sad: Fakultet fizičke kulture. Szirovicza, L., Momirović, K., Hošek, A. & Gredelj, M. (1980). Latentne morfološke dimenzije određene na temelju faktorskog i taksonomskog modela u standardiziranom image prostoru. Kineziologija, 3, 15–20. Telford, A., Salmon, J., Timperio, A., & Crawford, D. (2005). Examining physical activity among 5- to 6- and 10- to 12-year-old children: The Children’s Leisure Activities study. Pediatric Exercise Science, 17, 266–280. Tokmakidis, S. P., Kasambalis, A., & Christodoulos, A. D. (2006). Fitness levels of Greek primary schoolchildren in relationship to overweight and obesity. European Journal of Pediatrics, 165(12), 867–874. Viskić-Štalec, N., & Mejovšek, M. (1975). Kanoničke relacije prostora koordinacije i prostora motorike. Kineziologija, 5, 83–112. Wang, Y., & Lobstein, T. (2006). Worldwide trends in childhood overweight and obesity. International Journal of Pediatric Obesity, 1, 11–25. Wong, A. K. Y., & Cheung, S. Y. (2006). Gross motor skills performance of Hong Kong Chinese children. Journal of Physical Education and Recreation (Hong Kong), 12(2), 23–29. 52
Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Р КР Д У и љ и а и 16 • р ј 15 • ISSN 1450-6718 У и ц р 2013 Пр УДК 572.7.087-053.4 и ауч и ч а а • 249–258 При љ : 3. 6. 2013. Прих аћ : 25. 11. 2013. Slobodan Pavlović UnivОrzitОt u KragujОvМu, UčitОljski fakultОt u UžiМu Dragan Marinković Univerzitet u Novom Sadu, Fakultet sporta i fizičkog vaspitanja RELACIJE POJEDINIH ANTROPOMETRIJSKIH KARAKTERISTIKA I MOTORIČKIH SPOSOBNOSTI KOD DECE PREDŠKOLSKOG UZRASTA Apstrakt: Na uzorku od 150 dece predškolskog uzrasta od 4 do 6 godina, koji su izvučeni iz populacije dece u predškolskim ustanovama i vrtićima u Užicu, primenjeno je 7 testova za procenu motoričkih sposobnosti i 5 testova za procenu morfoloških karakteristika. Predmet ovog istraživanja je u vezi sa relacijama kožnih nabora i motoričkih sposobnosti dece predškolskog uzrasta oba pola, dok je cilj da se ukaže koliki je značaj te korelacije. Primenom Pirsonove korelacije, utvrđeno je da postoji statistički značajna korelacija između kožnih nabora i izdržaja u zgibu, zatim kožnih nabora i poligona natraške kod dečaka, dok kod devojčica postoji korelacija između kožnih nabora i izdržaja u zgibu, dok relacija između kožnih nabora i poligona natraške ne postoji u značajnoj meri. Ključne reči: predškolski uzrast, motoričke sposobnosti, morfološke karakteristike. 1. TEORIJSKI PRISTUP PROBLEMU PrОНškolski period predstavlja jednu od faza u počОtnom stvaranju svestrane ličnosti deteta. Tu se misli na razdoblje od trećО Нo sОНme godinО života. Na razvojnom putu deteta u predškolskom periodu nastaju promene i menjaju se psihosomatske dimenzije deteta. Napredak intelektualnih i fizičkih svojstava deteta u ovom periodu je znatan (Giakumis, 1993). Mora se najpre skrenuti pažnja, kada se govori o razvoju deМО u prОНškolskom uzrastu, na to da je naglašОn i viНno upadljiv proces u kontekstu integralnosti, što znači Нa su fizički, motorički, kognitivni i konativni aspekti deteta veoma tesno povezani (Ismail, Gruber, 1971; Bala, 1981). To podrazumeva da je svestrani razvoj isprepletan i da razvoj u jednom domenu utičО na razvoj u drugom domenu. Motoričko funkcionisanje deМО prОНškolskog uzrasta je specifično, u odnosu na odrasle, i ono je generalnog tipa (Bala, 1981). U počОtnom razvoju motorike, dete reaguje celim telom. Ovakvo reagovanje se smatra nekom vrstom kombinacija elementarnih sposobnosti. Mnogim analizama je utvrđОno da osnovne - elementarne motoričke sposobnosti, u ovom uzrastu nisu definisane (Ismali i Gruber, 1971; Bala, Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 1981; Nićin, KalajНžić, Bala, 1996). S druge strane, postoji grupa autora iz Slovenije koja tvrdi da su motoričke sposobnosti deteta u prОНškolskom uzrastu definisane (StrОl i Šturm, 1981; Rajtmajer i Proje, 1990; PlaninšОМ, 1995; Rajtmajer, 1997). Nezavisno od toga da li su definisane ili ne, motoričke sposobnosti, suština je da ne postoje klinički značajne razlike između polova u motoričkim sposobnostima i da su one samo naznačОne u korist dečaka (Nićin, KalajНžić, Bala, 1996; Roncesvalles, 2006, prema: Đorđić, Bala, 2006). Sve ovo govori o složОnosti procesa odrastanja i njegovoj kompleksnosti, kao i o nedovoljno formiranim zakonitostima rasta i razvoja. Radovi na temu motoričkih sposobnosti i morfoloških karakteristika, odnosno na temu relacija nisu čОst prОНmet istraživanja. Neki od razloga su neprimereni merni instrumenti (Hraski i Živčić, 1996). Гatim, rad sa deМom prОНškolskog uzrasta na samim testiranjima je otežan zbog njihove aktivnosti, nestrpljivosti i drugih oblika ponašanja koja su karakteristična za ovaj uzrast, što otОžava preciznost merenja. Mogu se definisati određОne zakonitosti unutar rasta i razvoja i međusobnih relacija morfoloških i motoričkih dimenzija. One zavise od endogenih i egzogenih faktora, a naročito od pola, uzrasta, ali i od fizičke aktivnosti dece. Individualne razlike među НОcom su generatori različitih telesnih konstitucija, kao i tipova motoričkih sposobnosti. Poznavanje zakonitosti koje se najvišО manifestuju u vidu relacija između antropoloških dimenzija, neophodno je zbog toga što sО Оfikasnost bilo kojih motoričkih programa, uz odgovarajućО motoričke sposobnosti, možО ispoljiti jedino preko efektora, koje predstavljaju mišići, kosti i zglobovi (Bala, Jakišić i Popović, 2009). PrОma tome, ispoljavanje motoričkih sposobnosti direktno zavisi, osim od stanja centralnog nervnog sistema i od morfoloških dimenzija, odnosno antropometrijskih karakteristika. Postoje brojna istraživanja o relacijama morfoloških, tj. antropometrijskih karakteristika i motoričkih sposobnosti na odraslima. Međutim, kod deМО prОНškolskog uzrasta nema mnogo ovakvih istraživanja. VidmešОk (1996) na uzorku dece uzrasta od tri godine utvrdila je povezanost telesne visine sa uspešnim izvođОnjem motoričkih testova. KonНrič i saradnici (2002) su ispitali relacije motoričkih sposobnosti i morfoloških karakteristika na uzorku od 400 dece uzrasta sedam i devet godina. Na osnovu rezultata koje su dobili, utvrdili su pozitivnu povezanost morfoloških varijabli koje su uticale na rezultate testova skok u dalj iz mesta i bacanje medicinke. Istovremeno, negativna povezanost utvrđОna je između morfoloških varijabli i motoričkih sposobnosti zabeležОnih kod testova trčanje na 600 m i podizanje trupa za 60 sekundi. Delija i Horvat (2001) su proveravali relaciju motoričkog znanja i antropometrijskih karakteristika na uzorku od stotinu deМО prОНškolskog uzrasta šОste i sedme godinО života. Rezultati su pokazali značajne korelacije kriterijske varijable, koju jО činio generalni faktor motoričkih znanja sa obimom podlaktice, naborom nadlaktice i sedećО visine. Kukolj i saradnici (2006), utvrđuju da masa i visina tela imaju pozitivne veze sa rezultatima u testovima sile i snage, dok potkožno masno tkivo ima negativnu povezanost sa silom mišića. Longitudinalnost skeleta je povezana sa motoričkim sposobnostima – gipkost, brzina i koordinacija. Marinković (2012) u svom radu navodi da postoji statistički značajna povezanost antropometrijskih karakteristika i motoričkih sposobnosti sa koordinacijom kod devojčiМa prОНškolskog uzrasta. 250 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 Iz uvodnih izlaganja možО se primetiti da u proceni strukture i kvaliteta motoričkih sposobnosti i morfoloških karakteristika postoje mnoge dileme i predrasude. Predmet ovog istraživanja je u vezi sa relacijama motoričkih i morfoloških varijabli. Cilj je da se ukažО kolika je značajna povezanost kožnih nabora i rezultata u motoričkim testovima. U skladu sa postavljenim predmetom i ciljem rada, postavljena je hipoteza, gНО sО očОkuje značajna negativna korelacija kožnih nabora i rezultata na motoričkim testovima. 2. METODOLOŠKI OKVIR ISTRAŽIVANJA Istraživanje je sprovedeno na uzorku od 150 deМО prОНškolskog uzrasta (74 dečaka i 76 devojčica), uzrasta od 4 do 6 godina. Ispitanici su bili podvrgnuti testiranju tokom maja meseca 2012. godine. Morfološki status ispitanika bio je procenjen na osnovu pet antropometrijskih mera, koje su preporučОne od strane Internacionalnog biološkog programa (Lohman, Roche, Martorell, 1988): 1) Telesna visina (mm), 2) Telesna težina (0,1kg), 3) Nabor trbuha (0,1mm), 4) Nabor leđa (0,1mm) i 5) Nabor nadlakta (0,1mm ). Za procenu motoričkih sposobnosti ispitanika korišćОna je baterija testova za odrasle koji su, modifikovani i prilagođОni za primenu na deМi prОНškolskog uzrasta (Bala, 1996; 1999a; 1999b; Bala, Popović, Stupar, 2000; Kulić 2005). Primenjeno je sledećih sОdam testova za procenu motoričkih sposobnosti: 1) Test Poligon natraške (0,1s), 2)Test Skok u dalj iz mesta (cm), 3) Test Trčanje 20m (0,1s), 4) Test Izdržaj u zgibu (0,1s), 5) Test Taping rukom (frek.), 6) Test Pretklon u sedu raznožno (Мm), 7) Test Podizanje trupa (frek.). Relacije u celokupnom sistemu antropometrijskih i motoričkih varijabli između НОčaka i devojčica prОНškolskog uzrasta su proračunate i testirane uz pomoć Pirsonove korelacije. Pouzdanost zaključivanja o značajnosti bio je nivo p ≤ 0.05. Statističke analize su sprovedene upotrebom SPSS paketa, verzija 20. 3. REZULTATI I DISKUSIJA Rezultati ovoga istraživanja prikazani su na način Нa najpre obrađuju prostor deskriptivne statistike zasebno za dečake i devojčice, da bi u drugom delu bilo obrađОno polje korelacija između motoričkih i antropometrijskih karakteristika. Rezultati prikazani u tabeli 1 pokazuju da kod dečaka u većini motoričkih varijabli nema značajnijih odstupanja od normalne distribucije rezultata, jer vrednost skjunisa ne prelazi 1.00 u oba smera, osim kod izdržaj u zgibu. 251 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 Tabela 1. Osnovni statistički parametri motoričkih sposobnosti i morfoloških karakteristika dečaka predškolskog uzrasta Varijable mt20 mpoligo mtaping mpretkl mskokda mizdrzaj mpodiza avisina atezina antrbuh anledja anadlak RANGE 34 513 19 39 100 401 39 290 246 190 162 173 MIN 41 121 7 15 56 0 0 1014 141 29 37 40 MAX MEAN SD KV% SKEW. KURT. 75 52,88 6,32 12,05 .785 .958 634 303,04 107,30 35,41 .824 .614 26 15,11 3,68 24,49 .401 .306 54 34,81 7,76 22,37 -.023 -.332 156 108,46 21,99 20,35 -.520 -.019 401 98,95 95,61 96,62 1,632 2,323 39 19,78 9,77 49,49 -.270 -.804 1304 1177,12 66,19 5,62 -.084 -.641 387 223,39 40,86 18,39 1,099 2,585 219 73,61 41,10 55,83 1,704 2,947 199 65,62 26,48 40,45 2,313 8,094 213 87,11 31,84 36,65 1,354 2,974 Legende: RANGE-raspon; MIN-minimalna vrednost; MAX-maksimalna vrednost; MEAN-aritmОtička srОНina; SD-standardna devijacija; KV%-koeficijent varijacije; SKEW-skjunis; KURT-kurtozis To nije neobično iz razloga što kod procene sposobnosti suprotstavljanja zamoru (testovi statične i repetitivne snage), crte ličnosti predstavljaju remeteći factor u proceni stvarnog nivoa sposobnosti (Madić, 2006; Bala, 2010). Rezultati kurtozisa kreću se ispod vrednosti 3,00, što distribuciju čini platikurtičnom, tj. rasplinutom. U prostoru morfoloških, odnosno antropometrijskih karakteristika vrednosti skjunisa i kurtozisa odstupaju od normalne distribucije rezultata, a naročito u varijablama kožni nabor leđa. Ovo nije retka pojava, jer nisu sva deca slične građe i konstitucije i postoje izvesna odstupanja od prosečnih vrednosti, a na to utiču mnogi faktori, kao što su: životna sredina, ishrana, nasledne osobine i sl. Vrednosti standardne devijacije i koeficijenta varijacije kao mere koje ukazuju na odstupanja u normalnoj raspodeli upućuje nas na to da su dečaci na istraživanom uzorku u pojedinim varijablama pokazali da su heterogeni. Tako se možО uvideti da je najveća vrОНnost koeficijenta varijacije, a time i raspršОnost, u varijablama: Izdržaj u zgibu, Kožni nabor na trbuhu i Podizanje trupa. S druge strane, dečaci su pokazali homogenost u varijablama, Telesna visina, Telesna težina i Trčanje na 20m, gde je uzorak imao manja odstupanja. Tabela 2. Osnovni statistički parametri motoričkih sposobnosti i morfoloških karakteristika devojčica predškolskog uzrasta Varijable mt20 mpoligo 252 RANGE 30 974 MIN 44 166 MAX 74 1140 MEAN 56,42 351,03 SD 6,795 142,13 KV% 12,04 40,59 SKEW. .450 3,550 KURT. -.489 17,059 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 mtaping mpretkl mskokda mizdrzaj mpodiza avisina atezina antrbuh anledja anadlak 12 44 101 386 46 654 184 186 132 150 10 11 46 0 0 1005 159 34 39 49 22 15,03 2,718 18,18 .348 -.094 55 39,97 8,038 20,11 -.630 1.040 147 99,28 19,34 19,58 .066 .094 386 108,87 90,482 83,11 1,160 .862 46 20,88 9,518 45,68 -.020 -.093 1659 1175,59 96,33 8,29 1,811 7,530 343 215,34 39,08 18,15 1,024 .972 220 80,54 42,85 53,20 1,514 1,772 171 72,62 30,12 41,58 1,878 3,602 199 97,29 31,92 32,81 1,096 1,241 Legende: RANGE-raspon; MIN-minimalna vrednost; MAX-maksimalna vrednost; MEAN-aritmОtička srОНina; SD-standardna devijacija; KV%-koeficijent varijacije; SKEW-skjunis; KURT-kurtozis Devojčice su u prostoru motoričkih varijabli homogene, osim kod rezultata na testu poligon natraške, gde vrednosti kurtozisa i skjunisa odstupaju od normale (tabela 2). Vrednosti koeficijenta varijacije upućuju nas na stav da su i devojčice pokazalО slične parametre u ovoj meri varijabilnosti. One su, naime, bile heterogene u varijablama Izdržaj u zgibu, Kožni nabor na trbuhu i Podizanje trupa, a homogenost u varijablama Telesna visina, Telesna težina i Trčanje na 20m. Takva raspodela, kako kod dečaka tako i devojčica, govori da je kod dece ovog uzrasta varijabilnost u većini motoričkih i antropometrijskih parametara uglavnom slična. Jedan od razloga nehomogenosti rezultata na testu poligon natraške, možО biti neadekvatan test, koji višО procenjuje brzinu i snagu nego samu koordinaciju (Matić, 1976). U prostoru morfoloških karakteristika, tj. antropometrijskih karakteristika, vrednost skjunisa i kurtozisa odstupa od normale kod telesne visinО, što ukazuje na nehomogenost devojčica. Tabela 3. Pirsonove korelacije antropometrijskih i motoričkih varijabli kod dečaka avisina atezina antrbuh anledja anadlak mt20 -.476** -.229* .172 .082 .102 mpoligo mtaping mpretkl mskokda mizdrzaj mpodiza -.013 .277* .088 .425** .489** .350** .136 .247* .168 .196 -.104 .197 -.056 -.046 -.163 .050 .353** -.336** -.048 -.038 -.136 -.021 .361** -.304** .267* .004 -.036 -.146 -.024 -.344** Legenda: ** - statistički гnačajno гa vrednost; p <. 01; * - statistički značajno za vrednost p < .05 U skladu sa ciljem rada, u tabeli 3 su označene najznačajnije vrednosti korelacije kožnih nabora i motoričkih varijabli. Najveći koeficijent pozitivne korelacije kod dečaka postoji između varijabli Telesna visina, s jedne strane, i varijabli trčanje na 20m (-.476), skok u dalj iz mesta (.489), taping rukom (.425), podizanje trupa (.350), s druge strane. Viši ispitanici su imali bolje rezultate na testovima pomenutih 253 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 motoričkih varijabli. Negativan predznak kod korelacije trčanja na 20 m i telesne visine ne ukazuje na negativnu povezanost, jer je u pitanju inverzna vrednost, tj. manje vremenske vrednosti ukazuju na bolji rezultat na testu. Ove korelacijО su očОkivane, jer većО vrОНnosti longitudinalne dimenzionalnosti tela, kao što jО tОlesna visina, doprinosi boljim rezultatima (VidemšОk, 1996; Bala, 2009; Horvat, 2010). Najveći koeficijenti negativne korelacijО uočОni su između motoričkih varijabli poligon natraške, sa jedne strane i kožnih nabora, s druge strane (nabor trbuha .353. i nabor leđa .361). To nije iznenađujućО pošto ispitanici sa većim količinom adipoznog tkiva na struku i leđima, inačО postižu slabije rezultate na testovima koordinacije, zbog većО balansne mase u tom telesnom segment, a indirektno i celom telu (Pišot, 1999; Popović i Radanović, 2010). NОgativna korelacija je takođО zabeležОna između izdržaja u zgibu i svih kožnih nabora: nabor trbuha (-.336), nabor leđa (-.304), nabor nadlakta (-.344). Generalno, antropometrijske karakteristike, kožni nabori, imaju negativnu korelaciju sa svim motoričkim varijablama, a najizražОnija je sa izdržajem u zgibu (Bala, 2009). Tabela 4. Pirsonove korelacije antropometrijskih i motoričkih varijabli kod devojčica avisina atezina antrbuh anledja anadlak mt20 -.129 -.086 .080 .083 .149 mpoligo mtaping mpretkl mskokda mizdrzaj mpodiza -.114 .141 .110 .180 .296** .304** -.064 .183 .249* .065 -.190 .103 .192 -.042 -.047 -.280* -.208 -.454** .175 -.067 .004 -.203 -.208 -.357** .143 -.083 -.093 -.252* -.149 -.404** Legenda: ** - statistički гnačajno гa vrednost; p <. 01; * - statistički značajno za vrednost p <. 05 Kod devojčica su vrednosti korelacija antropometrijskih karakteristika i motoričkih sposobnosti nОšto drugačije nego kod dečaka (tabela 3). NajvećО vrОНnosti korelacijО uočОne su između varijable telesne visine, s jedne strane, i varijable Pretklon u sed raznožno (.296) i Skoka u dalj (.304), s druge stranО. VišО ispitanice su pokazivale bolje rezultate na pomenutim testovima. Kada se analiziraju korelacije izdržaj u zgibu i kožni nabori trbuha (.-454), leđa (0,357), i nadlaktice (0,404), uočava se da su rezultati značajnosti korelacija isti kao i kod dečaka, tj. negativne korelacije su izražОne sa izdržajem u zgibu. Sagledavanjem antropometrijskog sistema varijabli pojedinačno, konstatuje se da telesna visina i kožni nabori imaju velike korelacije sa motoričkim sposobnostima izdržljivosti u statičkoj snazi, gipkosti i eksplozivnoj snazi nogu, što jО u skladu sa rezultatima prethodnih istraživanja (Bala, 1981; D'Hondt i sar., 2011; Lopes i sar., 2011). Postoji mogućnost da telesna visina u ovom uzrastu reprezentuje ne samo fizički rast i razvoj, vОć i stОpen sazrevanja organizma (nervni i mišićni sistОm), što onda pozitivno korelira sa efikasnošću НОvojčica u pojedinim motoričkim zadacima snage, izdržljivosti i gipkosti. Što sО tičО nОgativne povezanosti varijable kožni nabori sa izdržajem u zgibu, neka prethodna istraživanja su ukazala na to (Wong i Cheung, 2006; Graf i sar., 2007). 254 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 NajupОčatljiviji rezultat istraživanja jeste nizak i malo značajan koeficijent korelacije koordinacije i antropometrijskih varijabli, a naročito kožnih nabora. Neka dosaНašnja istraživanja (Graf i sar., 2004; Tokmakidis, Kasambalis i Christodoulos, 2006; Kostić i sar., 2009; Popović i Radanović, 2010) ukazuju da prekomerna težina i veliki kožni nabori negativno utiču na ispoljavanje koordinacionih sposobnosti. Međutim, rezultati ovog istraživanja pokazuju suprotno. Razloge ovakvog rezultata treba tražiti na višО strana. JeНan oН njih jО, kao što jО vОć pomenuto u ovom radu, nedovoljno prikladni merni instrumenti za deМu prОНškolskog uzrasta. Nažalost, nekog prikladnijeg modela još nОma, mada se generalnost motoričkog prostora dece svО čОšćО Нovodi u pitanje, kao i stvarna veličina njihovog motoričkog prostora. Primena nekog motoričkog testa je primerena npr. za odrasle ili stariju decu, a nije za malu decu ili za devojčice, odnosno dečake i sl. (Bala i sar., 2007). Zatim, možО biti i prethodno motoričko iskustvo, koje je doprinelo boljim rezultatima. Elementi testa poligon natraške sadržО ОlОmente provlačОnja i penjanja kroz elementО švОНskog sanduka (Višnjić i sar., 2004), što sО čОsto primenjuje kao elementi vežbanja tokom redovnih fizičkih aktivnosti u prОНškolskim ustanovama. Ovo su samo neke od pretpostavki nepostojanja korelacije varijabli kožnih nabora i poligona natraške kod devojčica, a sigurno ih ima još mnogo. ZAKLJUČAK Na osnovu rezultata i diskusije namećО sО višО značajnih zaključka po pitanju korelacija motoričkih sposobnosti i kožnih nabora deМО prОНškolskog uzrasta. Delovanje na motorički razvoj dece treba sprovesti na takav način da se vežbanjem dovede do kvalitativnih promena (Findak, Mraković i Delija, 2001). Svakako, decu treba usmeravati na redovno fizičko vОžbanjО kako bi razvijali motoričke sposobnosti, a zatim doprineli smanjivanju ili, ako do toga nijО Нošlo, prevenciji nastanka većih količina adipoznog tkiva, tj. gojaznosti, koje ograničava postizanje boljih rezultata na motoričkim testovima i u svakodnevnim fizičkim aktivnostima uopštО. To jО naročito važno zbog toga što u Нanašnje vreme gojaznost sve višО poprima karakteristike epidemije. TakođО jО nОophodno, istraživanja motoričkog i antropometrijskog prostora deМО prОНškolskog uzrasta produbljivati i proširivati, jer je to neiscrpan prostor novih saznanja. Literatura Bala, G. (1981). Struktura i razvoj morfoloških i motoričkih dimenzija dece SAP Vojvodine. Novi Sad: Fakultet fizičke kulture. Bala, G. (1996). Sportska školica – Razvoj motoričkog ponašanja dece. Novi Sad: Kinesis. 255 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 Bala, G. (1999a). Motor behavior evaluation of preschool children on the basis of different result registration procedures of motor test performance. In: V. Strojnik, A. Ušaj (EНs.), Proceedings of the 6. Sport Kinetics Conference '99. Theories of Human Motor Performance and their Reflections in Practice Ljubljana: University of Ljubljana, Faculty of Sport, 62–65. Bala, G. (1999b). Some problems and suggestions in measuring motor behavior of preschool children. Kinesiologia Slovenka, 5 (1-2), 5–10. Bala, G. (2009). Trend relacija morfoloških karakteristika i motoričkih sposobnosti prОНškolske dece. U: G. Bala, D. Jakšić i B. Popović (ur.): Relacije antropoloških karakteristika i sposobnosti predškolske dece. Novi Sad: Fakultet sporta i fizičkog vaspitanja, 60–111. Bala, G. (2010). Kvantitativne razlike osnovnih antropometrijskih karakteristika i motoričkih sposobnosti dečaka i devojčica u predškolskom uzrastu. XLII Kongres antropologa Jugoslavije, Izvodi iz saopštОnja, 72. Bala, G., Popović, B., Stupar, D. (2002). Neophodne modifikacije nekih standardnih motoričkih testova za predškolsku decu, Zbornik radova. Novi Sad: Univerzitet u Novom Sadu, Novosadski maraton 10. međunarodni simpozijum Sport, fizička aktivnost i zdravlje mladih, 411–417. Bala, G., Stojanović, V. M. i Stojanović, M. (2007). Neka iskustva u definisanju internih i eksternih metrijskih karakteristika motoričkih testova za decu. U: G. Bala (ur.), Merenje i definisanje motoričkih sposobnosti dece. Novi Sad: Fakultet sporta i fizičkog vaspitanja, 110. Delija, K. i Horvat, V. (2001). Utvrđivanje antropološkog statusa djece prОНškolske dobi. Napredak 142 (1), 102–108. D’HonНt, E., DОforche, B., Vaeyens, R., Vandorpe, B., Vandendriessche, J., Pion, J., et al. (2010). Gross motor coordination in relation to weight status and age in 5 to 12year-old boys and girls: A cross-sectional study. International Journal of Pediatric Obesity, 6, 556–564. Đorđić, V. i Bala, G. (2006). Rast i razvoj deМО prОНškolskog uzrasta. U: G. Bala (Ur.), Fiгička aktivnost devojčica i dečaka predškolskog uzrasta. Novi Sad: Fakultet sporta i fizičkog vaspitanja, 31–55. Findak, V., Mraković, M. i DОlija, K. (2001). ObiljОžja opterećОnja u radu s djecom prОНškolske dobi. U: V. Findak, K. Delija (ur.). Zbornik radova 10. ljetnjО škole pedagoga fizičke kulture. PorОč: Hrvatski savez pedagoga fizičke kulture. Giakumis, G. (1993). Uticaj telesnog vežbanja na motoriku predškolske dece i predlozi za poboljšanje sadašnjeg plana i programa (diplomski rad u rukopisu). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Graf, C., Jouck, S., Koch, B., Staudenmaier, K., Von Schlenk, D., Predel, H.G., et al. (2007). Motorische Defizite – wie schwer wiegen sie? Übergewicht und Adipositas im Kindes – und Jugendalter. Monatszeitschrift Kinderheilkunde, 155(7), 631–637. Graf, C., Koch, B., Kretschmann-Kandel, E., Falkowski, G., Christ, H., Coburger, S. (2004). Correlation between BMI, leisure habits and motor abilities in childhood. International Journal of Obesity i Related Metabolic Disorders, 28(1), 22–26. 256 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 Horvat, V. (2010). Relacije između morfoloških i motoričkih dimenzija te spremnosti za školu djece predškolske dobi (doktorska disretacija u rukopisu). Zagreb: Kineziološki fakultet. Hraski, Ž., Živčić, K. (1996). Mogućnost razvoja potencijala djeМО prОНškolske dobi. U D. Milanović (ur.), Zbornik radova. Zagreb: Fitness, str. II, 16–9. Ismail, A. H., & Gruber, J. (1971). Integrated development – Motor aptitude and intellectual performance. Columbus: Charles E. Merrill Books. KonНrič, M., Mišigoj-Duraković, M., Metikoš, D. (2002). A contribution to understending relations between morphological and motor characteristics in 7–9 year old boys. Kineziology, 34 (1), 5–15. Kostić, R., Đurašković, R., Pantelić, S., Živković, D., Uzunović, S. i Živković, M. (2009). Relacije antropometrijskih karakteristika i koordinacionih sposobnosti. Facta Universitatis – Physical Education and Sport, 7(1), 101–112. Kukolj, M. (2006). Razvoj motoričkih osobina učОnika od I do IV razreda, longitudinalna studija na uzorku učОnika osnovnih škola. U: Efekti diferencirane nastave fiгičkog vaspitanjana psihosomatski status dece i omladine. Novi Sad: Fakultet sporta i fizičkog vaspitanja, 449–464. Kulić, D. (2005). Karakteristike motoričkog razvoja predškolske dece (diplomski rad u rukopisu). Novi Sad: Fakultet fizičke kulture. Lohman, T.G., Roche, A.F., & Martorell, R. (1988). Anthropometric standardization reference manual. Chicago: Human Kinetics Books. Lopes, V. P., Stodden, D. F., Bianchi, M. M., Maia, J. A., & Rodrigues, L. P. (2011). Correlation between BMI and motor coordination in children. J Sci Med Sport, 15(1), 38–43. MaНić, D. (2006). RОlacije konativnih karakteristika i uspОšnost u motoričkim testovima u kojima preovladava sposobnost suprostvaljanja zamoru kod deМО prОНškolskog uzrasta. Antropološki status i fizička aktivnost dece, Zbornik radova, Novi Sad. Marinković, D. (2012). Relacije koordinacije sa motoričkim i antropometrijskim karakteristikama devojčica predškolskog uzrasta (master rad u rukopisu). Novi Sad: Fakultet sporta i fizičkog vaspitanja. Matić, M. (1976). Prilog proučavanju zavisnosti rezultata u testovima snage od nekih činilaca motivacije u određenom postupku njihove primene na učenicima (doktorska disertacija u rukopisu). Beograd: Fakultet fizičke kulture. Nićin, Đ., KalajНžić, J., Bala, G. (1996). Motion characteristics of female and male children of pre-school age 5th. International congress on physical education and sport. Komotini, Greece. Pišot, R. (1999). The diferences in the motor structure of six-and half years old boys before and after the partialization of morfological characteristics. 2. Međunarodna znanstvena koferencija, Dubrovnik, Hrvatska, 22-26 rujan 1999. PlaninšОМ, J. (1995). Relacije med nekaterimi motoričnimi in kognitivnimi sposobnostimi petletnih otrok (magistarski rad u rukopisu). Ljubljana: Fakulteta za šport. 257 Pavlović, S., Marinković, D.: Relacije pojedinih antropometrijskih karakteristika... Р КР  . 16  Р. 15  Ц Р 2013  249–258 Popović, B. i Radanović, D. (2010). RОlacije morfoloških karakteristika i koordinacije kod devojčica koje se bave gimnastičkim aktivnostima. Glasnik Antropološkog društva Srbije, 45, 243–252. Rajtmajer, D. (1997). Diagnostično-prognostična vloga norm nekaterih motoričnih sposobnosti pri mlajših otrocih. UM, PeF, Maribor, 6–16, 20–25. Rajtmajer, D., Proje, S. (1990). Analiza zanesljivosti in faktorska struktura kompozitnih testov za spremljanje in vrednotenje motoričnega razvoja prОНškolskih otrok. Šport, 38(1-2), 48–51. StrОl, J., Šturm, J. (1981). Zaneseljivost in struktura nekaterih motoričnih sposobnosti in morfoloških značilnosti šest in pol letnih učencev in učenk. Ljubljana: Inštitut za kineziologijo. Tokmakidis, S. P., Kasambalis, A., & Christodoulos, A. D. (2006). Fitness levels of Greek primary schoolchildren in relationship to overweight and obesity. European journal of pediatrics, 165(12), 867–874. VidmešОk, M. (1996). Motoričke sposobnosti triletnih otrok (doktorska disertacija u rukopisu). Ljubljana: FakultОt za šport. Višnjić, D., Jovanović, A., Miletić, K. (2004). Teorija i metodika fiгičkog vaspitanja. Beograd: Fakultet sporta i fizičkog vaspitanja. Wong, A. K. Y., Cheung, S. Y. (2006). Gross motor skills performance of Hong Kong Chinese children. Journal of Physical Education i Recreation (Hong Kong), 12(2), 23–29. Slobodan Pavlović University of Kragujevac, Teacher-training Faculty of Uzice Dragan Marinković University of Novi Sad, Faculty of Sport and Physical Education in Novi Sad RELATION OF CERTAIN ANTHROPOMETRIC CHARACTERISTICS AND MOTOR ABILITIES IN PRESCHOOL CHILDREN Summary On the sample of 150 preschool children aged 4 to 6 years, who were drawn from the population of children in preschools and kindergartens in Uzice, seven tests of motor skills and 5 tests for evaluation of morphological characteristics were applied. The subject of this research is related to the relations of skin folds and motor skills in preschool children of both sexes, while the aim is to highlight the importance of that correlation. By using Pearson correlation, it was found that there was a statistically significant correlation between skinfold and endurance in pull-ups, then by skin folds and polygons backward in boys, whereas with girls, there was a correlation between skinfold and endurance in pull-ups, while the relation between skin folds and polygon backwards did not exist in a considerable extent. Keywords: preschool, motor abilities and morphological characteristics. 258
Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

9. godišnja međunarodna konferencija KONDICIJSKA PRIPREMA SPORTAŠA Zagreb, 25. i 26. veljače 2011. Dragan Marinković Fakultet sporta i fizičkog vaspitanja, Novi Sad, Srbija UVOD Košarka se kao timski sport odlikuje atraktivnošću i dinamičnošću što je i čini jednim od najpopularnijih sportova kako kod nas tako i širom svijeta. Prema istraživanju Roper Starch Worldwide (1997.) 11% stanovništva u Sjedinjenim Američkim Državama igra košarku u nekom od njenih oblika. Ona privlači veliki broj mladih da se sve više uključuju u njene trenažne procese i razne vidove natjecanja. Košarka je jedna od najdinamičnijih sportskih igara sa stalnim mijenjanjem tipičnih i atipičnih situacija, koje igrač mora brzo uočiti, analizirati i na njih adekvatno reagirati (Jakovljević, 1996.). Uslijed djelovanja različitih čimbenika na igru i uspjeh košarkaša u fazama obrane, napada i tranzicije, treneri i stručnjaci na području košarke trude se razviti one motoričke sposobnosti, svojstva, tehnike koje bi doprinijele većoj učinkovitosti i vodile većem uspjehu, a sam uspjeh u košarci kao polistrukturnoj sportskoj igri ovisi o mnogo čimbenika, kako onih sa aspekta igrača tako i nekih socioloških. U nastojanju da se u mogućem prostoru djelovanja postigne što bolji rezultat trenažni proces se svakim danom sve više usavršava, a nove metode i tehnologije su sve više prisutne. Motorička priprema podrazumijeva razvijanje osnovnih ili temeljnih motoričkih sposobnosti. Te sposobnosti su genetski određene u većem ili manjem stupnju i predstavljaju latentnu strukturu koja se očituje u uvjetima motoričkih aktivnosti. S druge strane, Nićina (2000.) kaže da se specifične motoričke sposobnosti stječu u životu i posebno u nekim sportovima, a rezultat su specifičnog treninga, odnosno osobnog motoričkog funkcioniranja. U trenažnom procesu treba težiti što većoj suglasnosti svih motoričkih sposobnosti neophodnih za uspjeh u košarci. Viša razina vladanja tehničko-taktičkim elementima, zahtijeva i višu razinu motoričke pripremljenosti, jer samo takva priprema doprinosi boljoj, lakšoj i ekonomičnijoj implementaciji složenih pokreta u natjecateljskim uvjetima. Da bi se postigla učinkovitija izvedba tehničkih aktivnosti igrača potrebno je optimalno motoričko dostignuće. Jedan od sastavnih dijelova motoričkih sposobnosti je i koordinacija koja je odgovorna za izvođenje složenih pokreta. Koordinacija kao osnovna motorička sposobnost, iako privlači veliku pažnju stručnjaka i naučnika, spada u red nedovoljno istraženih područja u sportu. Mehanizam odgovoran za koordinaciju je veoma složen. Funkcionalnu osnovu motoričkih reakcija uključujući rad koordinativnih aktivnosti nalazimo u istraživanjima Kurelića i suradnika (1975.), Viskić-Štalec (1974.), Gredelja i suradnika (1975.) i Mejovšeka (1975.). Generalno gledajući, koordinacija je osnovni okvir o kojem ovisi organizacija aktivnosti, a dobra koordinacija rezultira velikom uspješnošću u izvođenju vještina. Grupe mišića koordinirane na višoj razini koriste manje energije tijekom kontrakcija i tako proizvode superiornije izvedbe (Bompa, 1999.). Koordinaciju još zovu i motorička inteligencija, a velika povezanost sa središnjim živčanim sustavom ukazuje na njenu složenu dimenzionalnost. Prema Pavloviću (2008.) koordinacija sudjeluje u svim oblicima kretanja i aktivnostima. Kao svrsishodno i kontrolirano energetsko, vremensko i prostorno organiziranje pokreta u jednu cjelinu (Nićin, 2008.), koordinacija najčešće dolazi do izražaja u situacijama kada treba brzo rješavati, obično situacijske, motoričke probleme. Kao temeljna motorička sposobnost, koordinacija je u korelaciji s antropometrijskim karakteristikama pod kojima podrazumijevamo longitudinalnu dimenzionalnost, transverzalne dimenzionalnosti, cirkularnu dimenzionalnost, masu tijela i potkožno masno tkivo (Kostić i sur., 2009.). Prema njima, korelacija između koordinacije i antropometrijskih karakteristika na uzorku djevojčica uzrasta 7 godina je statistički značajna, dok kod dječaka istog uzrasta ta korelacija nije statistički značajna. Možemo zaključiti da je razlog tome ranije sazrijevanje djevojčica o čemu piše i Stojković (2005.). Košarkaška tehnika nije ništa drugo nego specifična koordinacija (Karalejić, 1998.). Veliki broj tehničko-taktičkih elemenata koji se primjenjuju u igri i velika varijabilnost korištenja istih košarku svrstava u red sportova za koje je specifična koordinacija neophodna. Ona predstavlja sposobnost uspješne realizacije što većeg OPĆE TEME TRENING KOORDINACIJE U KOŠARCI 195 OPĆE TEME Dragan Marinković TRENING KOORDINACIJE U KOŠARCI broja elemenata tehnike i njihovo različito kombiniranje. Ovakvu formulaciju specifične koordinacije definirao je između ostalih i Bompa (1985.; 1999.). Situacijska koordinacija je složenija od specifične i nadograđuje se na nju. Ona bi se mogla opisati kao sposobnost uspješnog, nepredvidivog i svrsishodnog motoričkog reagiranja u “konfliktnim” natjecateljskim situacijama (Metikoš, Milanović, Prot, Jukić i Marković, 2003.). Mnogi autori su se bavili i interpersonalnom koordinacijom (Swinnen, Heuer, Massion i Casaer, 1994.; Swinnen, 2002.). Njena važnost je u tome što ona podrazumijeva koordinacijsku aktivnost između dvije (ili više) osobe. Igra na terenu kako u fazi obrane tako i u fazi napada, često zahtjeva od igrača da sinkroniziraju i koordiniraju svoje aktivnosti kretanja. Akcijske cjeline u napadu kao odgovori na različite sisteme obrana, moraju biti dovoljno dobro trenirane, a od igrača se traži da koordinacijske aktivnosti u vidu tehničkotaktičkih elemenata međusobno usklade i da u takvom prostoru i vremenu ostvare pozitivan rezultat. Pored navedenih dimenzija-vrsta koordinacije, u košarci su prisutni i sljedeći oblici koordinacije: spretnost, okretnost, agilnost, fina koordinacija tijela, gruba koordinacija tijela, pravovremenost, tempo, opća dinamička koordinacija, koordinacija ruku, koordinacija nogu itd. (Pavlović, 1982.; Karalejić i Jakovljević, 2001.). RAZDOBLJE RAZVOJA KOORDINACIJE 196 Razdoblja intenzivnijeg razvoja pojedinih motoričkih sposobnosti uobičajeno se označavaju kao kritična ili osjetljiva razdoblja. Mnogi autori smatraju da je kritično razdoblje faza najviše moguće realizacije potencijala organizma u ontogenezi i da usmjereni razvoj motoričkih sposobnosti donosi mnogo bolje rezultate ukoliko se poklapa s osjetljivim razdobljima za danu motoričku sposobnost. Koordinacija kao osnovna motorička sposobnost također podliježe ovim zakonitostima. Veliki broj istraživačkih radova (Harre, 1979.; Milanović 1997.; Bompa, 1999.) bavi se pitanjima važnosti razvoja koordinacije u njenoj osjetljivoj fazi. Prema Nićinu (2008.) razdoblje 6 - 7 godine (sa sazrijevanjem nervnog sistema) pa do kraja puberteta označeno je kao kritično razdoblje. Zanimljivo je također da se ovo razdoblje poklapa za oba spola što nije slučaj s drugim osnovnim motoričkim sposobnostima. Stabilnost motoričkih sposobnosti pa i koordinacije ovisi o samom temelju, odnosno, onoj razini usvojenosti ove sposobnosti u početnim i kritičnim fazama razvoja. Što su zalihe stečenih motoričkih navika, prije svega opće koordinacije veće, time će se lakše ovladavati novim pokretima, i razina razvoja specifične koordinacije biti će veća. TESTIRANJE KOORDINACIJE Veoma bitna ljudska osobina je uspoređivanje i spoznavanje sebe u sredini i pronalaženje vlastitog mjesta u prostoru i vremenu. Program usmjerenog razvoja i usavršavanja koordinacije zahtjeva da se razina ove motoričke sposobnosti najprije ustanovi, odnosno dijagnosticira. Pod motoričkim testom podrazumijeva se standardizirana istraživačka tehnika za vrednovanje raznih motoričkih pojava (Nićin, 2008.). Procjena se dakle treba zasnivati na primjeni testova kako za opću koordinaciju tako i za specifičnu. Testovi za opću koordinaciju se temelje na izvođenju složenijih ili jednostavnih zadataka koji u sebi sadrže kombinacije različitih aktivnosti i osnovnih oblika kretanja. U ovom radu se navode primjeri raznih autora i stručnjaka na području sporta i košarke koji su iznijeli svoje mišljenje o testovima koji su se bolje pokazali u praksi. Autor navodi neke karakteristične primjere testova opće koordinacije u košarci: poligon natraške (koordinacija tijela); okretnost na tlu, i u zraku (koordinacija tijela); slalom nogama s dvije lopte (koordinacija nogu); slalom rukama s tri medicinke (koordinacija ruku); osmica sa saginjanjem (koordinacija nogu i tijela); penjanje i silaženje po klupi i švedskim ljestvama (koordinacija nogu i tijela); sunožni preskoci s okretom (koordinacija nogu i tijela); koraci u stranu (koordinacija nogu i tijela); skok u dubinu natraške (koordinacija nogu i tijela); gužvanje papira ili krpe nožnim prstima (koordinacija nogu, i fina koordinacija); preskakanje i provlačenje palice (koordinacija tijela, ruku i nogu); stepenice natraške (koordinacija tijela, reorganizacija stereotipa gibanja); varijacije ritmičkog bubnjanja rukama i nogama (ritmično impulsna koordinacija); poskoci u krugu (ritmička koordinacija). U košarkaškoj praksi mnogo se više koriste testovi za procjenu specifične koordinacije. Obično se testovi specifične koordinacije, agilnosti i drugih oblika koordinacije primjenjuju u starijim uzrastima - juniorskim, seniorskim ekipama, jer bi do tada opća koordinacija morala biti na zavidnoj razini te ju nije potrebno testirati u toj mjeri. Testovi se sastoje od motoričkih aktivnosti općeg karaktera (s i bez lopte) ali i one koje su karakteristične za samu košarku. Autor navodi neke karakteristične primjera testova opće koordinacije u košarci: t-test (agilnost u košarci); cik-cak kretanje u reketu (agilnost, koordinacija tijela i nogu); test 505 (agilnost); agilnost 20 jardi (engl. – 20 Yard Agility Drill), (agilnost, koordinacija nogu i tijela); povratna trčanja - “kamikaze” (engl. Suicide Drill) sa i bez lopte (koordinacija tijela, ruku, nogu, agilnost); osmice sa loptom između nogu (koordinacija ruku); štopanje i “oživljavanje” lopte (koordinacija ruku); vođenje dvije lopte (koordinacija ruku); vođenje lopte i preskakanje palice (koordinacija ruku, nogu i tijela); kruženje loptom oko struka i ritmično bubnjanje nogama (koordinacija ruku, nogu, ritmička koordinacija); interpersonalni koordinacijski zadatak (interpersonalna koordinacija). Metodologija istraživanja kao kineziološka disciplina zahtjeva da se testiranje provodi po određenim principima, normama, u skladu s određenim zakonitostima i procedurama. Dijagnostiku treba provoditi sistematski i povremeno, s ciljem da se utvrdi trenutno stanje i na vrijeme otkloni eventualni nedostatak u samom trenažnom procesu. Svi se podaci uredno bilježe i primjenjuju se suvremene metode obrade podataka kako bi se analizama došlo do parametara značajnih za struku. Jedino takvo praćenje učinaka vježbanja može dovesti do optimalnog i pravilnog transformiranja sustava kao što je motorička sposobnost - koordinacija. KOORDINACIJA U TRENAŽNOM PROCESU Trenažni proces je specifičan oblik integralnih fizikalnih i bioloških ciklusa. To je poseban ciklus koji se odvija kroz niz manjih i većih vremenskih cjelina, kao što su višegodišnji, godišnji, periodični, mjesečni, tjedni i dnevni (Fratrić, 2006.). Trenažni proces obuhvaća poznate vrste priprema, a kao najznačajnije se izdvajaju fizička (motorička), tehnička, taktička i psihološka. Sve vrste su u kompaktnoj i uzajamnoj vezi, pa se cjelovitost trenažnog procesa održava jedino optimalnim obučavanjem i usavršavanjem svih navedenih grupa. Ono što autor ovim radom želi postići, je implementirati koordinaciju kao bitnu kariku u stvaranju pravilnog motoričkog akta i tehnike, u košarkaški trening kako početnika tako i seniora. Koordinacija dakle, kao motorička dimenzija, sudjeluje u svim oblicima kretanja i aktivnostima u košarci. Zahvaljujući multidimenzionalnosti koordinacije i njenoj složenosti, veoma je važno razvijati čimbenike koji mogu biti važni za ovu motoričku sposobnost. Zadatak trenažnog procesa u košarci je razvijanje, održavanje i usavršavanje motoričke sposobnosti. Tijekom godina razvijala su se razna gledišta na to kako tretirati motoričke sposobnosti i kakav pristup prema njima treba imati tijekom samog trenažnog procesa. Motoričku dimenziju, što je nesumnjivo i koordinacija, prema nekim autorima možemo sagledavati i razvijati u dva pravca. 1) Prvi, onaj koji polazi od toga da se razvoj i održavanje koordinacije provodi tijekom cijele sportske karijere. 2) Drugi pravac u metodici razvoja motoričke sposobnosti kao što je koordinacija ukazuje da trenažne programe treba uskladiti s osjetljivim fazama razvoja. Fratrić (2008.) govori o dva metodička pravca: 1) Prvi metodički pravac predstavlja učenje novih i raznovrsnih struktura pokreta, koji ujedno i podižu razinu treniranosti; 2) Drugi metodički pravac u treningu koordinacije je usavršavanje već usvojenih struktura pokreta, ali u izmijenjenim uvjetima, koji vrlo često mijenjaju oblik strukture pokreta, tj. zahtijevaju reorganizaciju postojećih motoričkih znanja. Trener i stručnjak u području sporta i tjelesnog odgoja se treba odlučiti za neki od navedenih pravaca, kako bi jasno definirao ciljeve, precizno isplanirao razvoj koordinacije tijekom trenažnog procesa i pridržavao se pedagoških, metodičkih i svih drugih principa, te tako raspoloživim trenažnim i nastavnim sredstvima podigao razinu ove sposobnosti i u krajnjoj liniji ostvario uspjeh u košarci. Prema svemu do sada navedenom, koordinacija, iako veoma složena motorička sposobnost koja sudjeluje u svim oblicima motoričke djelatnosti i tehničko-taktičkim aktivnostima, predstavlja temelj za veću učinkovitost i uspjeh u košarci. U mlađem školskom uzrastu teško je primjenjivati krute uvjete treniranja, pa se trener i profesor mora služiti prilagođenim oblicima vježbanja. U ovom uzrastu naglasak se stavlja na oblikovanje osnovne koordinacije kao temelja za dalje usavršavanje i razvijanje ove motoričke sposobnosti. Subramaniam (2010.) navodi da trening treba biti zanimljiv, da treba stvarati pozitivnu atmosferu tijekom učenja novih motornih aktivnosti, da treba prevladavati zadovoljstvo, kognitivno angažiranje, izazovi i aktivno sudjelovanje svih u rješavanju situacijskih problema. Javljaju se mnogobrojne igre i natjecateljske metode kao rješenje nekih naizgled monotonih aktivnosti. Metoda igre, i primjena tradicionalnih igara, prema istraživanju Akbarija i suradnika (2009.), pokazala se kao dobra u oblikovanju motoričkih sposobnosti djece uzrasta od 7 do 9 godina. Kooperativno učenje, kako ga mnogi nazivaju, predstavlja trening u kojem prevladava suradnja, rad u grupama i dinamična aktivnost kroz koju se problemi rješavaju zajedno. Ovakav način provođenja treninga se pokazao boljim od individualnog pogotovo u mlađem školskom uzrastu i u prvim fazama osjetljivog razdoblja razvoja koordinacije. Djeci je pružena velika mogućnost za timski rad, komunikaciju i interpersonalnu koordinaciju (Dienstmannm, 2008.). Motoričke aktivnosti trebaju uključivati osnovne oblike kretanja, s povremenim korištenjem košarkaških tehnika koje su do tada naučene. Trenerima se napominje da podjednako utječu na razvoj i lijeve i desne strane tijela (bilateralni transfer), kako bi se stvorila dobra osnova OPĆE TEME 9. godišnja međunarodna konferencija KONDICIJSKA PRIPREMA SPORTAŠA Zagreb, 25. i 26. veljače 2011. 197 OPĆE TEME Dragan Marinković TRENING KOORDINACIJE U KOŠARCI 198 za kasnije usavršavanje svih pokreta. Autor navodi nekoliko primjera igara koje mogu doprinijeti stvaranju osnove koordinacijskih sposobnosti: skokovi u različitim pravcima; preskoci sa okretima; trčanje u različitim pravcima i na razne načine; penjanje na sprave (ljestvice, konopac, sanduk); vježbe s rekvizitima (obruči, palice, loptice, čunjevi, vijače sl.); vježbe ritmičnosti (bubnjanje, lupanje, hodanje u ritmu, vježbe u ritmu i sl.); rad sa ogledalima (sa i bez lopte); vježbe s promjenama brzine i ritma kretanja; preskakanje vijače (velike i male); bacanje lopte u kretanju (i razne vježbe sa manjim loptama); baratanje loptom u različitim uvjetima; sastavljanje različitih vrsti kretanja u cjelinu (poligoni); poligoni s različitim spravama i rekvizitima; poligoni i vježbe s izvođenjem košarkaških elemenata u različitim uvjetima; igre (između četiri vatre, skoči i hvataj, hvatanje frizbija, shooting star, hula-gol, basketboom, dodavanje ručnicima). Trenažni proces za stariji školski uzrast, juniorske i seniorske selekcije treba razvijati, usavršiti, i održati koordinaciju kako bi u natjecateljskom razdoblju koordinacija i sve njene strukture doprinijele boljoj i učinkovitijoj primjeni tehničko-taktičkih elemenata u samoj igri. Ova tri pravca djelovanja po pitanju koordinacije utemeljeni su na saznanjima da će se ljudske sposobnosti smanjiti ukoliko se neko vrijeme ne uče nova kretanja. Već uvježbane pokreti - znanja treba proširivati specijaliziranim vježbama jer košarkaši često nailaze na tzv. koordinacijsku barijeru, koja može predstavljati problem. Pri usavršavanju koordinacijskih sposobnosti košarkaša moguće je koristiti razne metodičke postupke i trenažne metode koje će potaknuti razvoj ove sposobnosti. Prema Krsmanoviću (1999) ovi postupci se svode na koordinacijsko usložnjavane vježbe - povećanje zahtjeva u odnosu na točnost i brzinu njenog izvođenja, promjena uvjeta u kojima se ona primjenjuje i sl. U završnim fazama oblikovanja motoričkog akta (automatizacija), neophodno je stvoriti stabilne, otporne, učinkovite pokrete. Prije svega, različite tehničko-taktičke elemente koji se usklađuju s nekarakterističnim situacijama, moraju biti učinkovitiji, jer se time ostvaruje visoka razina varijabilnosti koordinacijskih pokreta, odnosno, mogućnost primjene upravo njih u različitim uvjetima. Trener dobiva igrača čiji je raspon aktivnosti veći i učinkovitiji, a samim tim je i mogućnost primjene taktičkih varijanti veća. Autor navodi samo neke od primjenjivanih vježbi specifične koordinacije u praksi: smanjivanje terena za igru; primjena različitih taktičkih kombinacija; usklađivanje kretanja više igrača na zvučni i vizualni signal; složeni poligoni s primjenom tehničko-taktičkih elemenata; složene akcijske cjeline s preprekama; reakcije na zvučne i vizualne signale (jednog ili više igrača); simetrična kretanja; nekonvencionalna kretanja s loptom i bez nje; paralelno vježbanje s drugim vježbama; razvoj bolje anticipacije u situacijama. ZAKLJUČAK Koordinacija kao motorička inteligencija se razvija u više pravaca, i kao takva složena struktura sudjeluje u skoro svim tehničko-taktičkim elementima košarke. Na treneru i profesoru tjelesnog odgoja je da prvo dijagnosticira trenutno stanje, a zatim primjenom određenih metoda, trenažnih sredstava i metodskih postupaka razvije do optimalne razine koja će dovesti do uspjeha na samom terenu. Sastavni dio motoričke pripreme košarkaša je planiranje i provođenje razvoja, održavanja i usavršavanja koordinacijskih sposobnosti. Ono mora biti sastavni dio cjelokupnog sustava trenažnog procesa svake košarkaške ekipe, bilo da se radi o mlađim ili starijim, seniorskim uzrastima. Mora se odabrati pravo rešenje koje omogućuje i veću učinkovitost, a to je moguće jedino uz poštovanje svih kinezioloških disciplina. LITERATURA 1. 2. 3. 4. 5. 6. 7. 8. 9. Akbari, H., Abdoli, B., Shafizadeh, M., Khalaji, H., Hajihosseini, S., Ziaee, V. (2009). The Effect of Traditional Games in Fundamental Motor Skill Development in 7-9 Year Old Boys. Iranian Journal of Pediatrics, 3(2) , 123-129. Bompa, T. (1999). Training for Sports. Champaign, il: Human Kinetics. Bompa, T. (2005). Celokupan trening za mlade pobjednike. Zagreb: Gopal. Bompa, T. (2006). Teorija i metodologija treninga. Zagreb: Gopal. Dienstmann, R. (2008). Games for Motor Learning. Champaign: Human Kinetics. Fratrić, F. (2006). Teorija i metodika sportskog treninga. Novi Sad: Pokrajinski zavod za sport. Karalejić, M., Jakovljević, S. (1998). Testiranje i merenje u košarci. Beograd: KSS. Karalejić, M., Jakovljević, S. (2001). Osnove košarke. Beograd: Fakultet sporta i fizičkog vaspitanja. Kostić, R., Đurašković, R., Pantelić, S., Živković, D., Uzunović, S., Živković, M. (2009). Relacije antropometrijskih karakteristika i koordinacionih sposobnosti. Facta Universitatis - Physical Education and Sport, 7(1), 101-112. 10. 11. 12. 13. Krsmanović, B., Berković, L. (1999). Teorija i metodika fizičkog vaspitanja. Novi Sad: Univerzitet u Novom Sadu- Fakultet za sport i fizičko vaspitanje. Metikoš, D., Milanović, D., Prot, F., Jukić, I., Marković, G. (2003). Teorijske i metodičke osnove razvoja koordinacije. U D. Milanović i I. Jukić (ur.) Međunarodni znastveno-stručni skup “Kondicijska priprema sportaša”, 264-270. Zagreb: Kineziološki fakultet Sveučilišta u Zagrebu. Nićin, Đ. (2008). Antropomotorika - teorija. Beograd: Fakultet za menadžment i sport. Pavlović, M. (1982). Analiza odnosov kognitivnih razsežvosti in koordinacijskih sposobnosti mladih košarkarjev. Ljubljana: Univerza Edvarda Kardelja, Visoka škola za telesno kulturo. 14. 15. 16. 17. 18. Pavlović, R. (2008). Structure of Students Coordination. Acta Kinesiologica, 2, 57-61. Roper Starch. (1996). Outdoor recreation in America – executive summary. Washington, D.C: Recreation Roundtable/ USDI publication. Schmidt, R.A. (2005). Motor Control and Learning. Champaign: Human Kinetics. Stojković, I. (2005). Psihološki efekti tempa telesnog sazrevanja u pubertetu. Psihologija, 38(4), 383-402. Subramaniam, P. R. (2010). Unlocking the Power of situational Interest in Physical Education. JOPERD, 81(7), 38-41. OPĆE TEME 9. godišnja međunarodna konferencija KONDICIJSKA PRIPREMA SPORTAŠA Zagreb, 25. i 26. veljače 2011. 199
Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.