[go: up one dir, main page]

Academia.eduAcademia.edu

A New Species of Pipistrelle Bat (Chiroptera: Vespertilionidae) from Southern Arabia

2016, Acta Chiropterologica

Acta Chiropterologica, 18(2): 301–323, 2016 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/15081109ACC2016.18.2.001 A new species of pipistrelle bat (Chiroptera: Vespertilionidae) from southern Arabia PETR BENDA1, 2, 6, ANTONÍN REITER3, MARCEL UHRIN4, 5, and ZUZANA VARADÍNOVÁ1, 2 1 Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ-115 79 Praha 1, Czech Republic 2Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic 3South Moravian Museum in Znojmo, Přemyslovců 129/8, CZ-669 02 Znojmo, Czech Republic 4 Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-040 01 Košice, Slovakia 5Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, CZ-165 21 Praha 6, Czech Republic 6Corresponding author: E-mail: petr_benda@nm.cz A new species of the genus Pipistrellus is described from the Dhofar region, southern Arabia. The new species occurs in a very limited area lesser than 1,000 km2, situated in the belt of relative humid savannah habitats of coastal Arabia between easternmost Yemen and south-western Oman. This bat represents the eighth pipistrelle species known from Arabia and fourth bat species endemic to southern Arabia. The new species is positioned morphologically and genetically very close to the group of the Oriental species of the genus Pipistrellus and represents the westernmost offshoot of the Oriental vespertilionid bat fauna, isolated for more than 1,500 km across the Indian Ocean from the area of continuous distribution of this fauna in the Indian Subcontinent. Key words: mtDNA, morphometry, taxonomy, pipistrelle bats, Middle East INTRODUCTION In Arabia, pipistrelle bats or dwarf vespertilionid bats are represented by four genera, Pipistrellus Kaup, 1829, Hypsugo Kolenati, 1856, Neoromicia Roberts, 1926, and Vansonia Roberts, 1946. Only one species of the genus Neoromicia is known from the Peninsula, N. guineensis (du Bocage, 1889); it occurs only marginally in south-western Yemen, i.e., in the Afro-tropic corner of Arabia (Benda et al., 2011a). Vansonia rueppellii (Fischer, 1829) is known from two separate and limited areas in northern Arabia, Palestine in the west and lower Mesopotamia in the east (Harrison and Bates, 1991). Species of the two remaining genera are widely distributed in both eremic and arboreal parts of the Peninsula. Pipistrellus pipistrellus (Schreber, 1774) and Hypsugo savii (Bonaparte, 1837), both broadly distributed in the European, Maghrebian and Asian sections of the Mediterranean, are known from the arboreal habitats of north-western Arabia, from Palestine, Lebanon, and Syria (Harrison and Bates, 1991; Benda et al., 2006, 2010; Horáček et al., 2008). Two other Hypsugo species occur in restricted areas of the semi-eremic parts of the Peninsula; H. ariel (Thomas, 1904) is known from the western part of Arabia, it lives in the belt between Palestine and south-western Oman and in Egypt (Benda et al., 2008, 2010, 2011a), and H. arabicus (Harrison, 1979) is known from eastern Arabia, it occurs in the Al Hajar Mts., north-eastern Oman, and also in south-eastern Iran (Harrison and Bates, 1991; Benda et al., 2011a, 2012). Pipistrellus kuhlii (Kuhl, 1817) is the only bat widespread across the Peninsula (Harrison and Bates, 1991), it occurs in all parts of Arabia, including central areas of the Arabian Desert, mountains of western Yemen and Saudi Arabia, or coastal regions of north-eastern Oman. The only Arabian area, from which P. kuhlii is absent, is the Dhofar region on the Omani-Yemeni transition, in the central part of the south-Arabian coastal zone. The mountainous Dhofar region (ca. 1,500 km2) represents an island of tropic savannah vegetation isolated from the rest of the Arabian mainland by harsh deserts of the Empty Quarter. Due to direct exposition to the south-Asian summer monsoon, the phenology of the region sharply contrasts with the climatic cycles of other parts of southern Arabia (Sale, 1980). The bat fauna of Dhofar comprises 302 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová 14 species of nine families (Harrison and Bates, 1991; Benda et al., 2013) and of the Arabian pipistrelles, only H. ariel has been reported to occur marginally in the region (Benda et al., 2011a). On the other hand, the broader Dhofar region is known as a zone of a certain level of endemism, apparent even in mammals, where at least five endemic species are recognised (Hutterer and Harrison, 1988; Benda et al., 2009, 2011b; Benda and Vallo, 2009; Frynta et al., 2010). During several recent field trips to Dhofar, we recorded another pipistrelle bat in the most humid parts of the region. Already at the first sight, these bats do not fit by their characters to any other bat known from the Middle East (cf. Harrison and Bates, 1991), their body size is larger than that of other Arabian pipistrelles and their generally brown pelage colouration possesses a slight silverish tinge, similar to the African pipistrelles of the genus Neoromicia. Further detailed analyses of morphological and genetic traits revealed these bats as a new species, which represents the eighth pipistrelle bat species occurring in Arabia and fourth bat species endemic to Dhofar. Its description is provided here. MATERIALS AND METHODS Analyses For morphological comparisons of 66 available specimens of the new pipistrelle bat from Dhofar, we used around 300 specimens of the Arabian populations of pipistrelle bats housed in the National Museum (Natural History), Prague, Czech Republic (NMP). The examined museum material is listed in Appendix I. The specimens were measured in a standard way with the use of mechanical or optical callipers. Horizontal dental dimensions were taken on cingulum margins. Particular teeth are denoted according to the convention proposed by e.g., Bates and Harrison (1997), i.e. I2 and I3 for the upper incisors, P2 and P2 for the mesial premolars. For the evaluated external and cranial measurements see Abbreviations below. Bacula were extracted in a 6% solution of KOH and coloured with alizarin red. Statistical analyses were performed using the Statistica 6.0 software. We analysed partial sequences of the mitochondrial gene for cytochrome b (cyt b) of 32 specimens from Dhofar, combined with 49 newly obtained sequences from the Arabian and African populations of various species of pipistrelle bats and 30 previously published cyt b sequences deposited in the GenBank (see Appendix II for details on newly sequenced specimens and the corresponding GenBank accession numbers). Material for genetic analyses was obtained from pectoral muscles or wing punches preserved in alcohol. Total genomic DNA was extracted using Geneaid Genomic DNA Mini Kit (Taipei, Taiwan) and following the manufacturer’s protocol. The partial sequence of mitochondrial cyt b was amplified with forward L15162 (5’-GCAAGCTTCTACCATGAGGACAAATATC-3’ and reverse H15915 (5’-AACTGCAGTCATCTCCGGTTTACAAGAC-3’) primers. For PCR amplification a 25 µl coctail of 2 µl DNA template, 8.5 µl of ddH2O, 12.5 µl of PPP Master Mix and 1 µl of each primer was used. Thermal profile of amplification was described elsewhere (Stadelmann et al., 2004a). All PCR products were purified by ethanol/sodium acetate precipitation before the sequenation with amplification primers was carried out by Macrogen Inc. (Seoul, South Korea). Chromatograms of all sequences which are new for this study were checked by eye and assembled in Geneious v.6.0.6 (Biomatters, http://www.geneious.com). Multiple sequence alignment was carried out in MAFFT 7.017 (Katoh and Standley, 2013) producing 721 bp high quality alignment with no stop codons detected when translation into amino acids was obtained. A final 641 bp alignment was used for phylogenetic analyses after combining new sequences with those from GenBank. Both AIC and BIC model selection criteria as implemented in jModelTest v.2.1.10 (Darriba et al., 2012) recognised HKY+Γ+I as the best substitution model of nucleotide evolution. Phylogenetic trees of unique haplotypes were constructed using the maximum likelihood (ML) and Bayesian inference (BI) methods. ML analysis was performed in RAxML v.8.0.0 (Stamatakis, 2014) using raxmlGUI v.1.5 interface (Silvestro and Michalak, 2012), with GTRGAMMAI model selected as the closest alternative to HKY+Γ+I model. The branch support was assessed using the thorough bootstrapping algorithm from 1,000 pseudoreplicates. BI analyses were performed in MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001). Two runs, four Monte Carlo Markov Chains for each run were run simultaneously for ten million generations. Tree samples were recorded every 500 generation and a 50% majority-rule consensus tree was constructed after discarding the first 25% trees as burn-in. Uncorrected p-distances between species were calculated in MEGA 6.0 (Tamura et al., 2013). A 95% connectivity limit parsimony haplotype network from 721 bp alignment of all Dhofar samples was built using TCS 1.21 (Clement et al., 2000) software and overlapped with geographical structure in tcsBU (Murias Dos Santos et al., 2016). Acoustic recordings were made using a portable ultrasound detector D-240x (Pettersson Elektronik AB, Uppsala, Sweden) set on the time-expansion mode connected to Edirol R-09HR recorder (Roland Corporation, Los Angeles, USA). The analysed bat calls were recorded in free flight under natural conditions (foraging bats), usually near the sites where the bats were also mist-netted which allowed us to confirm the bat species determination. Several echolocation call sequences were recorded when hand-releasing the bats at capturing sites. The recordings were analysed with the BatSound Pro 4.00 software (Pettersson Elektronik AB). Time-expanded sequences (expansion factor 10) were digitised at the sampling rate 48 kHz with 16-bit precision and saved as *wav files. A 1,024 pt. FFT with Hanning window was used for the analyses; oscillograms, power spectra and spectrograms were evaluated. For the parameters measured for each echolocation call see Table 4. For analysis, we used only the high quality recordings of the search phase calls. Abbreviations External dimensions (in mm): LC = head and body length, LCd = tail length, LAt = forearm length including wrist, LAu = ear length, LTr = tragus length. A new pipistrelle bat from Arabia Cranial dimensions (in mm): LCr = greatest length of skull, LCb = condylobasal length, LaZ = zygomatic width, LaI = width of interorbital constriction, LaInf = rostral width between foramina infraorbitalia, LaN = braincase width, LaM = mastoidal width, ANc = braincase height, LBT = largest horizontal length of tympanic bulla, CC = rostrum width across upper canines at crowns, M3M3 = width across third upper molars, CM3 = length of upper tooth-row from front of canine to back of third molar, M1M3 = length of upper tooth-row from front of first molar to back of third molar, CP4 = length of upper tooth-row from front of canine to back of the second premolar, P2 = mesiodistal length of the first upper premolar, LMd = condylar length of mandible, ACo = height of coronoid process, CM3 = length of lower tooth-row from front of canine to back of third molar, M1M3 = length of lower tooth-row from front of first molar to back of third molar, CP4 = length of lower tooth-row from front of canine to back of second premolar, P2 = mesio-distal length of the first lower premolar. Other abbreviations: A = alcoholic preparation, B = skin (balg), ind. = specimen of sex unidentified, M = mean, max., min. = range margins, S = skull, SD = standard deviation. COMPARISONS Length of upper tooth-row The Dhofar bats are large pipistrelles, in body and skull size similar to the samples of northArabian populations of P. kuhlii and H. savii (and V. rueppellii — cf. Harrison and Bates, 1991) and much larger — without any remarkable dimension 303 overlap — than other south-Arabian pipistrelle bats, P. kuhlii, H. ariel, Hypsugo arabicus, and N. guineensis, as well as north-Arabian P. pipistrellus (Fig. 1 and Table 1). The Dhofar bats are on average the largest pipistrelle bats from Arabia and absolutely the largest from southern Arabia. In the dorsal pelage colouration, the Dhofar bats are generally brownish with two basic colour morphs (Fig. 2), greyish-brown with a slight silverish tinge and reddish-brown with the silverish tinge less apparent. The ventral pelage is markedly paler than the dorsal pelage and the difference between the dorsal colour morphs is much more apparent in the ventral colouration (Fig. 2). The colouration of the wing membranes, ears and face is rather uniformly dark greyish brown, with only slightly paler membrane parts along bones. This colouration pattern differs completely from that of other Arabian pipistrelles, which is much paler in most of species — both in the pelage and naked parts (P. kuhlii, H. ariel, H. arabicus), with the exceptions of P. pipistrellus and N. guineensis, which are dark coloured similarly as the Dhofar bats (although with a different tinge of the brown pelage colouration), and H. savii and some individuals of V. rueppellii with pale pelage and black or blackish-brown naked Pipistrellus Dhofar P. kuhlii S Arabia P. kuhlii N Arabia P. pipistrellus Hypsugo savii H. ariel H. arabicus Neoromicia guineensis Greatest length of skull FIG. 1. Bivariate plot of skull dimensions of Arabian pipistrelle bats: greatest length of skull (LCr) against length of upper tooth-row (CM3) Variable n 66 66 66 65 66 49 49 46 49 49 49 49 49 49 47 49 49 49 49 49 LC LCd LAt LAu LTr LCr LCb LaZ LaI LaInf LaN LaM ANc LBT CC M3M3 CM3 LMd ACo CM3 66 65 67 65 65 59 59 43 59 59 59 59 59 59 56 58 59 57 56 56 SD n 2.307 2.081 0.990 0.564 0.370 0.237 0.227 0.210 0.104 0.149 0.123 0.165 0.145 0.142 0.118 0.153 0.103 0.213 0.106 0.116 28 28 28 28 28 24 24 21 24 24 24 24 24 23 24 24 24 24 24 24 2.953 2.404 0.904 0.951 0.436 0.245 0.234 0.227 0.127 0.115 0.152 0.147 0.353 0.132 0.095 0.136 0.102 0.180 0.095 0.110 40 40 41 40 39 41 40 40 41 40 41 40 41 40 41 41 41 41 41 41 M min max Pipistrellus kuhlii S Arabia 47.1 43 53 40.6 37 45 33.38 31.4 35.5 14.12 13.2 15.2 5.83 5.1 6.7 12.68 12.12 13.07 12.25 11.59 12.61 8.28 7.97 8.57 3.18 2.93 3.51 3.82 3.48 4.12 6.35 6.02 6.82 7.23 6.89 7.75 4.49 4.32 4.84 2.90 2.64 3.20 4.04 3.79 4.25 5.50 5.11 5.77 4.72 4.44 4.89 9.19 8.73 9.46 2.82 2.62 2.97 5.04 4.76 5.33 Hypsugo savii 50.0 45 58 38.9 34 45 33.89 32.1 36.5 13.73 12.0 15.8 5.00 3.8 6.1 13.49 12.90 14.08 13.13 12.49 13.67 8.73 8.30 9.27 3.46 3.21 3.65 4.46 4.14 4.84 6.71 6.44 6.98 7.37 6.98 7.81 4.58 4.20 6.74 3.13 2.88 3.45 4.29 3.98 4.50 5.79 5.54 6.13 4.62 4.37 4.82 9.49 8.97 9.89 2.83 2.58 3.06 4.93 4.58 5.13 SD n 2.276 2.392 1.064 0.577 0.443 0.239 0.258 0.180 0.132 0.180 0.185 0.194 0.127 0.147 0.106 0.138 0.105 0.196 0.093 0.131 96 96 97 96 96 97 97 85 97 95 97 95 97 94 96 97 96 97 97 96 3.599 2.517 0.998 0.899 0.570 0.279 0.294 0.230 0.100 0.168 0.134 0.173 0.374 0.129 0.136 0.147 0.106 0.224 0.108 0.120 26 26 26 26 26 22 22 19 22 22 22 22 22 22 22 21 21 22 22 22 M min max Pipistrellus kuhlii N Arabia 49.6 41 56 41.1 34 46 34.65 32.1 36.5 13.39 11.6 15.6 5.96 5.1 7.2 13.26 12.48 13.88 12.84 12.13 13.37 8.62 8.07 9.24 3.32 3.05 3.53 3.94 3.54 4.18 6.60 6.22 6.88 7.69 7.24 8.16 4.71 4.35 5.16 3.02 2.75 3.28 4.22 3.96 4.55 5.65 5.22 5.99 4.96 4.58 5.21 9.60 8.54 10.27 3.00 2.74 3.31 5.27 2.93 5.59 Hypsugo arabicus 43.3 40 48 40.3 37 44 31.63 28.9 34.3 12.40 11.2 13.5 5.12 4.7 5.8 11.55 10.97 12.09 10.93 10.47 11.26 7.29 6.93 7.56 2.90 2.69 3.15 3.29 3.07 3.56 5.78 5.59 6.02 6.25 5.97 6.48 4.02 3.76 4.22 2.71 2.52 2.97 3.31 3.01 3.62 4.66 4.39 5.09 3.95 3.72 4.13 7.79 7.38 8.15 2.30 2.19 2.47 4.19 3.93 4.48 SD 2.868 2.141 0.943 0.866 0.445 0.281 0.282 0.210 0.095 0.125 0.151 0.179 0.155 0.116 0.134 0.174 0.123 0.257 0.125 0.275 1.668 2.205 1.054 0.445 0.272 0.266 0.247 0.200 0.113 0.132 0.128 0.143 0.105 0.138 0.147 0.150 0.123 0.225 0.085 0.129 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová LC LCd LAt LAu LTr LCr LCb LaZ LaI LaInf LaN LaM ANc LBT CC M3M3 CM3 LMd ACo CM3 min max Pipistrellus Dhofar 51.0 46 57 38.3 31 42 35.48 33.5 38.4 14.04 13.0 15.3 5.53 4.8 6.6 13.46 12.88 13.95 13.00 12.53 13.48 9.00 8.45 9.56 3.65 3.39 3.84 4.30 3.93 4.68 6.92 6.64 7.16 7.74 7.38 8.04 5.10 4.84 5.42 2.99 2.61 3.34 4.49 4.19 4.79 6.16 5.80 6.56 5.00 4.65 5.24 9.92 9.38 10.36 3.12 2.89 3.34 5.34 4.93 5.58 Pipistrellus pipistrellus 43.0 36 48 34.4 27 39 30.60 28.6 32.5 11.74 10.0 13.5 4.93 3.9 6.0 11.71 11.15 12.38 11.26 10.73 11.78 7.45 7.04 8.35 3.11 2.84 3.42 3.47 3.28 3.83 6.03 5.67 6.41 6.61 6.32 7.24 4.26 3.93 6.77 2.82 2.53 3.26 3.51 3.31 3.77 4.82 4.47 5.21 4.16 3.94 4.38 8.16 7.64 8.56 2.36 2.14 2.67 4.39 4.06 4.62 M 304 TABLE 1. External and cranial dimensions (in mm) of the examined sample sets of pipistrelle bats from Arabia. See Materials and Methods for variable abbreviations, and Appendix I for the specimens examined 1.095 2.191 0.665 0.696 0.647 0.151 0.130 0.127 0.067 0.062 0.070 0.029 0.163 0.097 0.083 0.182 0.056 0.104 0.078 0.076 5 5 5 5 5 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 1.595 2.000 1.235 0.473 0.401 0.279 0.261 0.208 0.091 0.185 0.120 0.137 0.084 0.204 0.110 0.144 0.095 0.230 0.092 0.134 10 9 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2.758 3.251 0.984 0.563 0.422 0.308 0.358 0.211 0.087 0.142 0.116 0.144 0.113 0.142 0.145 0.185 0.152 0.209 0.078 0.150 20 20 20 20 20 16 16 14 16 16 16 16 16 15 16 15 15 16 16 13 LC LCd LAt LAu LTr LCr LCb LaZ LaI LaInf LaN LaM ANc LBT CC M3M 3 CM3 LMd ACo CM3 n Variable TABLE 1. Continued M min max Hypsugo ariel S Arabia 39.70 35.00 45.00 37.40 32.00 44.00 30.08 28.10 32.10 13.08 12.20 14.10 4.94 4.10 5.60 11.54 10.63 11.84 11.07 10.19 11.50 7.08 6.68 7.39 2.63 2.44 2.78 3.65 3.34 3.92 5.52 5.34 5.75 6.10 5.87 6.32 3.73 4.17 3.98 2.70 2.44 2.92 3.47 3.27 3.78 4.74 4.47 5.18 3.99 3.74 4.28 7.87 7.42 8.16 2.34 2.16 2.46 4.24 4.02 4.47 SD n M min max Hypsugo ariel N Arabia 40.10 37.00 42 39.30 37.00 44 30.40 28.90 33.7 13.22 12.50 14.0 4.94 4.40 5.6 11.51 11.18 11.89 11.00 10.67 11.51 6.93 6.41 7.18 2.64 2.46 2.76 3.51 3.26 3.86 5.60 5.33 5.76 6.09 5.82 6.31 3.92 3.79 4.02 2.62 2.28 2.93 3.40 3.25 3.59 4.65 4.42 4.87 3.92 3.75 4.08 7.77 7.46 8.17 2.37 2.24 2.57 4.10 3.87 4.29 SD n M min max Neoromicia guineensis 40.8 39 42 31.6 29 35 25.78 25.2 26.9 11.80 10.8 12.7 5.06 4.2 5.7 11.17 10.98 11.34 10.79 10.65 10.96 7.04 6.95 7.13 2.80 2.71 2.86 3.26 3.21 3.34 5.69 5.62 5.75 6.45 6.43 6.49 3.90 3.67 4.02 2.62 2.52 2.75 3.32 3.21 3.41 4.63 4.49 4.89 3.93 3.85 3.98 7.84 7.73 7.98 2.47 2.41 2.58 4.27 4.21 4.37 SD A new pipistrelle bat from Arabia 305 parts (for comparison see Benda et al., 2006: 182, 191, 208; 2008: 33; 2010: 268, 274; 2011a: 40; 2012: 399, 404, 414–416, 436; 2014a: 48). Similarly as in other pipistrelle bats, the hairs of the Dhofar bats are bicoloured, larger proximal parts are dark brown, distal parts are paler, possessing one of the two colour tinges (very pale brown or greyishochre in the ventral hairs). The skull of the Dhofar bats is robust, most massive among the south-Arabian pipistrelles (Table 2). The rostrum is relatively high and long in the Dhofar bats, much longer than in the Arabian species of the genera Hypsugo and Neoromicia, and on average also longer than in P. pipistrellus, but in length similar to Arabian P. kuhlii (Fig. 3A and Table 2). On the other hand, the rostrum is broad in the Dhofar bats, relatively much broader than in two other Arabian Pipistrellus species, in H. arabicus and in N. guineensis, but similarly broad as in H. savii and partially also as in H. ariel (Table 2). The braincase of the Dhofar bats is very high and rather broad (Fig. 3B), on average relatively highest among the Arabian pipistrelles (Table 2); it is similarly broad as in north-Arabian P. pipistrellus. The tympanic bulla of the Dhofar bats is relatively small, on average the smallest among the Arabian pipistrelles (Table 2). The combination of these few skull characters shows the Dhofar bats as a unique skull morphotype among the Arabian pipistrelle bats (Table 2 and Figs. 3–4). On the other hand, the robust nature of the skull in the Dhofar bats is similar to that in some Oriental representatives of the genus Pipistrellus, e.g., P. ceylonicus (Kelaart, 1852), P. coromandra (Gray, 1838), and/or P. tenuis (Temminck, 1840) — see Bates and Harrison (1997) and Benda and Gaisler (2015). The dentition of the Dhofar bats is of the Pipistrellus formula, two upper premolars were present in all examined specimens. Both upper incisors are markedly bicuspid, the second incisor (I3) is rather high, the I3 crown reaches some 70–80% of the first incisor (I2) height; the second cusp is in both incisors lower than the first (mesial) one, reaching some 60–80% of the mesial cusp (Fig. 5). The small upper premolar (P2) is positioned palatally from the tooth-row, from side almost invisible, hidden by the canine and the large upper premolar (P4), these two teeth are not in a direct mesio-distal contact, but very close to it (Fig. 5). This combination of characters distinguishes the Dhofar bats from all other Arabian pipistrelle bats. The small upper premolar is absent in N. guineensis and also in the majority of the examined specimens of the Hypsugo species. In 306 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová FIG. 2. Pelage colouration examples of Pipistrellus dhofarensis sp. n., above the dorsal aspect, below the ventral aspect. Ain Tabruq, Dhofar, Oman; males, holotype and paratypes (from right to left): NMP 92740, 92741 (holotype), 92747, 92748. Photos by A. Reiter all Arabian pipistrelle bats other than the Dhofar bats, the second upper incisor (I3) is unicuspid, and so is the first one (I2) in P. kuhlii, in the latter species and in V. rueppellii, the I3 crown is very small, reaching some 1/3 of the I2 crown height (or even less). For further comparison see also Harrison and Bates (1991: 88–93) and/or Benda et al. (2006: 186; 2008: 39; 2015: 427). The baculum of the Dhofar bats is a typical baculum of the genus Pipistrellus s.str. (see Hill and Harrison, 1987), it is a narrow and long bone, round on section, sligthly curved dorsally in its distal third in some individuals and with short bifurcations at both epiphyses (Fig. 6). Its total length is 3.55– 3.95 mm (M 3.77 mm; n = 7), depth of the proximal bifurcation 0.58–0.76 mm, and depth of the distal bifurcation 0.34–0.47 mm. Generally, this shape is similar to bacula of P. pipistrellus and P. kuhlii, but these bones are much smaller (reaching only ca. 1/2 of the Dhofar bat baculum length), and V. rueppellii, but this bone is much larger (ca. twice longer than the Dhofar bat baculum), and all of them are more 0.005 0.007 0.028 0.004 0.026 0.007 0.007 0.007 0.029 0.010 0.016 0.011 0.006 0.032 0.021 0.010 0.021 0.008 SD 4 4 4 4 4 4 0.008 0.017 0.023 0.015 0.027 0.016 21 22 21 22 22 22 0.004 0.010 0.026 0.009 0.056 0.009 0.007 0.013 0.019 0.014 0.018 0.012 96 94 96 97 97 94 M min max Pipistrellus kuhlii N Arabia 0.374 0.361 0.392 0.297 0.277 0.320 0.852 0.813 0.897 0.498 0.470 0.521 0.714 0.664 0.759 0.228 0.213 0.247 Hypsugo arabicus 0.342 0.325 0.352 0.285 0.270 0.301 0.838 0.770 0.895 0.501 0.481 0.522 0.696 0.667 0.728 0.234 0.217 0.257 Neoromicia guineensis 0.351 0.346 0.357 0.292 0.283 0.300 0.847 0.819 0.886 0.509 0.505 0.512 0.686 0.653 0.714 0.234 0.226 0.243 n SD 10 10 10 10 10 10 0.008 0.011 0.024 0.012 0.021 0.011 41 40 41 41 41 40 0.005 0.008 0.019 0.012 0.053 0.010 0.006 0.008 0.018 0.008 0.015 0.009 24 24 24 24 24 23 M min max Pipistrellus kuhlii S Arabia 0.372 0.358 0.382 0.301 0.271 0.322 0.856 0.808 0.895 0.501 0.469 0.523 0.707 0.666 0.737 0.229 0.211 0.247 Hypsugo savii 0.343 0.333 0.352 0.330 0.309 0.349 0.929 0.855 0.972 0.498 0.474 0.515 0.682 0.626 1.004 0.232 0.215 0.247 Hypsugo ariel N Arabia 0.340 0.326 0.350 0.305 0.284 0.330 0.868 0.823 0.912 0.487 0.470 0.510 0.700 0.667 0.754 0.228 0.198 0.251 n SD min max Pipistrellus Dhofar 0.371 0.360 0.385 0.319 0.305 0.343 0.899 0.852 0.943 0.514 0.495 0.536 0.737 0.710 0.776 0.222 0.203 0.242 Pipistrellus pipistrellus 0.355 0.346 0.367 0.296 0.277 0.317 0.843 0.801 0.881 0.515 0.490 0.543 0.706 0.662 1.087 0.241 0.222 0.270 Hypsugo ariel S Arabia 0.346 0.334 0.365 0.317 0.298 0.331 0.864 0.833 0.916 0.479 0.461 0.509 0.722 0.689 0.766 0.235 0.213 0.248 49 49 47 49 49 49 59 59 56 59 59 59 15 16 15 16 16 15 CM3/LCr LaInf/LCr CC/CM3 LaN/LCr ANc/LaN LBT/LCr CM3/LCr LaInf/LCr CC/CM3 LaN/LCr ANc/LaN LBT/LCr CM3/LCr LaInf/LCr CC/CM3 LaN/LCr ANc/LaN LBT/LCr M n Index TABLE 2. Skull shape indices of the examined sample sets of pipistrelle bats from Arabia. See Abbreviations in the Materials and Methods for abbreviations of measurements taken A new pipistrelle bat from Arabia 307 markedly curved (Fig. 6 — see also Hill and Harrison, 1987: 285, 288, 293; Benda et al., 2006: 193). Bacula of other genera (Hypsugo, Neoromicia) show completely different shapes and sizes (Fig. 6; Hill and Harrison, 1987; Benda et al., 2006, 2011a, 2012). On the other hand, bacula of the Dhofar bats are similar in size and shape to those of several Indian Pipistrellus species, P. ceylonicus, P. tenuis, and P. coromandra — see Hill and Harrison (1987) and Bates and Harrison (1997). The molecular genetic analysis of 32 individuals of the Dhofar bats (i.e., almost half of the number of available specimens) showed eight different haplotypes (Appendix II), differing in one to seven substitutions (distance range 0.14–0.97%). While half of the number of haplotypes were found only in one individual and two haplotypes (Dhofar 2 and Dhofar 6) in two individuals each, two remaining haplotypes were much more common, the haplotype Dhofar 1 was documented from 17 bats and the haplotype Dhofar 8 from seven bats (Fig. 7). Both latter haplotypes were found to be widespread across the whole Dhofar region, between Hawf in Yemen and Wadi Hannah in the eastern part of the Omani Dhofar, inclusive. The comparison of a partial sequence of the mitochondrial cyt b gene (641 bp) with sequences from a selection of pipistrelle bats of various genera from the Palaearctic, Afro-tropic and the Oriental regions (i.e. from all three biogeographic regions surrounding the Dhofar area), grouped the Dhofar bats as a well supported separate lineage within a group of Oriental species of the genus Pipistrellus (Fig. 8). The Dhofar bat lineage belongs to a well supported cluster of three lineages, comprising also P. abramus and P. javanicus; on the other hand, the Dhofar bats are distant from these taxa rather deeply, by 13.7–16.1% and 13.6–14.0%, respectively, of the uncorrected genetic distance (Table 3). All other known Arabian taxa of pipistrelle bats were shown to cluster within different and far distant clades representing different genera or species groups of vespertilionine bats (Fig. 8) and the topology of branches generally conforms to the known phylogenetic patterns in this group (see e.g., Roehrs et al., 2010). Basic characteristics of echolocation calls of the Dhofar bats from particular sites of the Omani part of Dhofar are presented in Table 4. A comparison of statistical values of these calls with the echolocation characteristics of three other pipistrelle bats from southern Arabia (Oman) are given in Table 5. 308 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová Relative width of rostrum A Pipistrellus Dhofar P. kuhlii S Arabia P. kuhlii N Arabia P. pipistrellus Hypsugo savii H. ariel H. arabicus Neoromicia guineensis Relative length of rostrum Relative height of braincase B Pipistrellus Dhofar P. kuhlii S Arabia P. kuhlii N Arabia P. pipistrellus Hypsugo savii H. ariel H. arabicus Neoromicia guineensis Relative width of braincase FIG. 3. Bivariate plot of skull dimensions of Arabian pipistrelle bats: A — relative length of rostrum (CM3/greatest length of skull) against relative width of rostrum (rostrum width across upper canines/CM3) and B — relative width of braincase (braincase width/greatest length of skull) against relative height of braincase (braincase height/braincase width) A new pipistrelle bat from Arabia 309 (so, frequently I2 appears as unicuspid in this bat), while in P. ceylonicus the secondary cusp on the second upper incisor (I3) is relativelly low and medially orientated, but present. From P. javanicus the Dhofar bats markedly differ also in the form and size of baculum. The Dhofar bats represent the westernmost offshoot of the Oriental vespertilionid bat fauna, isolated by more than 1,500 km across the Indian Ocean and/or the deserts of the Middle East from the area of continuous distribution of this fauna in the Indian Subcontinent (see Corbet and Hill, 1992; Bates and Harrison, 1997). The Dhofar bats, the only (phylogenetically) Oriental vespertilionid bat of the Afrotropics, seem to comprise a similar biogeographical element as the flying foxes of the genus Pteropus Brisson, 1762, similarly common bats in the Oriental region as the pipistrelles. These megabats reach the Afro-tropical region only in its easternmost margins (Seychelles, Comoros, Zanzibar FIG. 4. Lateral views of the holotype and paratype skulls of P. dhofarensis sp. n. from Ain Tabruq, Oman; above — NMP 92741 (holotype); below — NMP 92740 (paratype). Scale bar 5 mm DISCUSSION The above summarised results of morphologic and molecular genetic comparisons showed the Dhofar pipistrelle bats to represent a distinct morphotype and lineage, which differs from all other Arabian pipistrelles. On the other hand, the morphologic analysis of cranial and bacular characters as well as the genetic analysis showed these bats to be phylogenetically positioned closely to the Oriental representatives of the genus Pipistrellus. Although similar and related to the Oriental pipistrelles, the Dhofar bats apparently represent a separate species and this separation is clear both from the genetic distinctness (at least from the three available species examined) and from morphological characters (comp. Bates and Harrison, 1997). The morphologically closest species seem to be P. javanicus and P. ceylonicus, from which the Dhofar bats differ markedly in body and skull size (P. javanicus is smaller, with the forearm length up to 30 mm, while P. ceylonicus is larger, with forearm length up to 42 mm) and particularly in the dental traits, namely in the shape of upper incisors; in P. javanicus the first upper incisor (I2) is more compressed with its distal cusp being often only indistinctly separated FIG. 5. Views of the tooth-rows of P. dhofarensis sp. n.; top row — antero-lateral views on left upper incisors; middle row — occlusal views of the upper unicuspid teeth, below row — occlusal views of the lower unicuspid teeth; left column — NMP 92741 (holotype), Ain Tabruq, Oman; middle column — NMP 92740 (paratype), Ain Tabruq, Oman; right column — NMP 94014, Difa, Oman. Scale bar 1 mm 310 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová Archipelago, Madagascar, Mascarenes) and do not occur in the African continent per se (Bergmans, 1990; Almeida et al., 2014). However, whether this biogeographical similarity of the Oriental megaand microbats in the Afro-tropics follows also similar histories, remains a task for more profound analyses. At least two scenarios of the origin of the Dhofar pipistrelle populations could be taken in consideration; the populations descend from an isolate that resulted from the strong aridisation of the Middle East at the Miocene-Pliocene transition, or the populations originate from stray individuals that were brought to Dhofar by monsoons from the Indian subcontinent. Anyway, considering the relatively rich genetic variation within the Dhofar bat populations, their colonisation of Dhofar certainly does not seem to represent a recent event. The Dhofar bat represents the fourth bat species endemic to southern Arabia, along with Rhinopoma hadramauticum Benda, 2009, Triaenops parvus Benda and Vallo, 2009 and Asellia arabica Benda, Vallo and Reiter, 2011 (see Benda and Vallo, 2009; Benda et al., 2009, 2011b). However, only the Dhofar pipistrelle bat is restricted by its distribution range to the relatively humid savannah part of FIG. 6. Bacula of pipistrelle bats from southern Arabia: a–e — P. dhofarensis sp. n., f–h — P. kuhlii, i–k — H. ariel, l–n — H. arabicus; a — NMP 95634, Hawf, Yemen; b — NMP 95646, Hawf, Yemen; c — NMP 95633, Hawf, Yemen; d — NMP 92707, Hagarir, Oman; e — NMP 94010, Difa, Oman; f — NMP pb3639, Assala, Yemen; g — NMP 92618, Nakhl, Oman; h — NMP 93816, Shinas, Oman; i — NMP pb3029, Hawf, Yemen; j — NMP pb3052, Damqawt, Yemen; k — NMP 94075, Rima, Wadi Gharah, Oman; l — NMP 93740, Al Aqor, Wadi Tiwi, Oman; m — NMP 92783, Mansaft, Oman; n — NMP 48415, Pir Sohrab, Iran. Scale bar 1 mm A new pipistrelle bat from Arabia 311 FIG. 7. Median-joining haplotype network of P. dhofarensis sp. n. based on 721 bp of the cytochrome b gene. Circle sizes are proportional to the number of individuals with the particular haplotype. Mutation steps are shown as small empty circles Dhofar, while other two species live also in more arid regions at the coast of the Hadramaut province of Yemen and R. hadramauticum is known from a single locality just in coastal Hadramaut. These four species, members of four different families, represent 28.6% of the local bat fauna. Such a large percentage of endemism is not known in other mammalian groups of the broader Dhofar region and, at the same time, this is the only zone of a significant bat endemism in the whole Middle East. Although the Dhofar biota represents the easternmost ofshoot of the Afro-tropic region, the Dhofar bat endemics show relations to the faunas living east and north of Dhofar, and the Dhofar pipistrelle bat is the most extreme example of this. TAXONOMIC DESCRIPTION Pipistrellus dhofarensis sp. n. Type material Holotype: Adult male (NMP 92741, alcoholic specimen with extracted skull), Ain Tabruq, 28 October 2009, leg. P. Benda, A. Reiter and M. Uhrin. Paratypes: 6 ♂♂, 6 ♀♀ (NMP 92740, 92742, 92743, 92747–92750 [S+A], 92744–92746, 92751, 92752 [A]), site, date and collectors as in the holotype. Type locality Sultanate of Oman, Dhofar Province, Ain Tabruq spring; 17°06’N, 54°20’E, 115 m a.s.l. Description Pipistrellus dhofarensis sp. n. is a small bat and a medium-sized to large representative of the genus Pipistrellus (Fig. 9), on average the largest form of the genus occurring in Arabia (Table 2): forearm length 33–39 mm, greatest length of skull 12.8– 14.0 mm, length of the upper tooth-row 4.6–5.3 mm. The ears are short and massive (leathery), of a nearly triangular shape, with obtuse angles, 13.0–15.3 mm long, and the tragus is short and broad, curved anteriorly, 4.8–6.6 mm long (Fig. 9). For external and most of the cranial dimensions of P. dhofarensis sp. n. see Table 1, the additional dimensions of unicuspid and molar tooth-rows, respectively, are as follows (n = 49): M1M3 3.16–3.55 mm (M 3.41 mm), CP4 1.97–2.38 mm (M 2.22 mm), M1M3 3.24–3.92 mm (M 3.69 mm), CP4 1.81–2.00 mm (M 1.92 mm). The dorsal pelage colouration of P. dhofarensis sp. n. has two basic colour morphs (Fig. 2), greyish-brown with a slight silverish tinge and reddish-brown; the ventral pelage is markedly paler than the dorsal one (Fig. 2). The hairs are bicoloured, larger proximal parts are dark brown, distal parts are paler, possessing one of the two colour tinges (see Figs. 2 and 9). The wing membranes, ears and face are dark greyish-brown, the membrane parts along bones are slightly paler (Fig. 2). The proximal part of the uropatagial membrane (ca. 10 mm along the body) is in some individuals covered by sparse hairs, in some individuals bald. The size of epiblema is variable, in some individuals is about 2 mm wide, rounded, with a well visible keel, 312 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová FIG. 8. Bayesian consensus tree representing the phylogenetic relationships among haplotypes of Arabian pipistrelle bats and haplotypes from a selection of Old World pipistrelles based on sequences (641 bp) of the mitochondrial cytochrome b gene. A dot associated with a node indicates a support by more than 95% posterior probability (BI reconstructions) and 70% bootstrap (ML reconstructions) TABLE 3. Percent pairwise uncorrected genetic distances among haplotypes of the compared pipistrelle bats (641 bp of the cytochrome b gene); above diagonal — mean, below diagonal — range No. Species Pipistrellus Dhofar P. abramus P. javanicus P. coromandra P. pipistrellus P. hesperidus P. rusticus P. kuhlii P. maderensis Nyctalus noctula N. leisleri N. plancyi Vansonia rueppellii Neoromicia nana N. somalica N. capensis N. zuluensis N. guineensis Laephotis botswanae Hypsugo savii H. ariel H. arabicus Plecotus sp. 1 2 3 4 5 6 7 8 9 10 11 12 – 13.7–16.1 13.6–14.0 16.1–16.9 17.1–18.6 19.5–20.3 18.1–18.9 16.4–17.9 17.0–17.6 18.6–19.0 17.1–18.7 20.8–21.4 19.7–20.3 18.6–20.1 17.8–18.8 18.1–18.4 17.9–19.0 19.0–19.7 18.1–18.7 18.7–19.7 18.6–20.1 18.4–18.9 20.6–21.2 14.55 – 13.4–15.3 16.1–16.9 16.7–18.7 18.4–19.5 17.8–18.6 16.1–18.9 17.3–18.9 16.2–16.9 15.6–17.6 18.1–19.0 18.7–20.1 18.1–19.6 17.0–19.0 16.7–18.6 17.2–18.7 18.3–19.3 18.6–19.3 16.4–17.9 17.6–18.6 20.9–21.4 19.3–20.9 13.85 14.12 – 16.5–16.8 17.6–18.9 17.6–19.2 19.3–20.3 15.3–16.8 16.5–17.0 16.1–16.4 16.1–17.0 19.0–19.5 18.9–19.5 18.1–18.4 17.0–18.4 15.4–16.2 17.9–19.5 17.9–19.5 17.8–18.3 17.9–19.0 16.8–19.3 17.9–18.4 18.7–20.4 16.46 16.46 16.69 – 17.9–18.1 18.1–18.7 18.6–19.5 18.7–20.3 19.3–19.7 17.5 16.7–17.3 19.5–19.8 19.0–19.2 20.0–20.6 16.8–18.0 16.2–16.5 20.0–20.4 20.3–20.4 18.6–18.9 18.9–19.5 19.2–19.5 20.7 19.0–20.6 18.17 17.42 18.32 18.04 – 15.2–16.2 16.0–17.5 13.4–14.9 13.7–14.2 15.4–16.2 15.9–17.1 16.5–17.0 17.9–19.0 16.7–17.9 16.5–18.1 15.3–16.5 18.3–19.1 18.4–19.0 16.2–17.2 18.3–19.3 16.8–19.2 18.4–19.1 20.6–21.8 20.04 18.97 18.43 18.53 15.66 – 12.3–13.7 13.9–15.4 14.0–15.3 16.1–16.9 17.4–18.4 17.6–18.6 18.9–19.7 19.0–20.1 19.0–20.4 17.9–19.8 17.8–19.7 18.6–20.3 18.4–19.2 18.1–19.5 20.1–21.5 19.8–21.1 16.5–19.8 18.50 17.95 19.78 18.97 16.57 13.03 – 14.4–15.4 14.4–15.0 16.9–17.3 15.5–16.4 18.3–19.5 18.7–19.7 18.1–19.0 18.6–20.3 19.2–20.1 19.5–20.9 19.3–20.6 19.7–20.7 19.2–20.0 19.8–21.4 20.1–21.7 18.9–20.1 17.10 17.37 16.08 19.37 14.00 14.70 14.84 – 4.8–6.4 16.2–17.7 15.5–17.2 17.6–19.0 17.6–18.3 16.2–18.4 17.5–19.5 15.9–17.8 17.3–19.7 16.8–18.7 18.3–19.8 18.7–20.4 17.3–19.3 17.8–19.3 18.4–20.0 17.39 17.90 16.77 19.54 13.99 14.68 14.69 5.62 – 17.0–17.5 16.9–17.3 17.3–17.9 17.2–17.5 17.6–18.6 18.4–19.1 17.6–18.6 17.6–18.9 16.5–17.8 19.3–19.5 18.7–20.0 17.3–18.6 18.1–18.7 17.8–19.0 18.85 16.45 16.23 17.49 15.76 16.58 17.10 16.76 17.21 – 12.8–13.6 14.7–15.1 17.3–17.8 19.2–19.5 17.3–18.6 16.6–17.8 18.6–19.0 19.2–20.0 18.1–18.3 19.5–20.0 18.3–19.2 18.6–18.9 20.7–21.5 18.06 16.43 16.55 17.02 16.53 17.86 15.90 16.44 17.14 13.18 – 15.6–17.2 17.4–18.4 18.9–19.5 18.6–19.8 17.8–18.1 19.7–20.3 19.2–20.9 19.1–19.7 21.1–22.3 18.1–20.3 19.1–19.7 18.8–20.0 21.03 18.72 19.32 19.66 16.71 18.07 18.82 18.39 17.56 14.96 16.23 – 22.0–22.2 21.1–21.8 20.4–22.2 19.5–20.1 18.4–20.3 20.0–20.7 19.7–20.3 20.1–20.6 18.6–20.0 21.2–22.3 20.9–22.5 A new pipistrelle bat from Arabia 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 313 No. Species Pipistrellus Dhofar P. abramus P. javanicus P. coromandra P. pipistrellus P. hesperidus P. rusticus P. kuhlii P. maderensis Nyctalus noctula N. leisleri N. plancyi Vansonia rueppellii Neoromicia nana N. somalica N. capensis N. zuluensis N. guineensis Laephotis botswanae Hypsugo savii H. ariel H. arabicus Plecotus sp. 13 14 15 16 17 18 19 20 21 22 23 19.98 19.25 19.21 19.14 18.37 19.34 19.08 17.89 17.30 17.54 17.85 22.05 – 18.3–18.6 18.3–18.7 17.5–18.1 19.8–20.4 19.0–20.1 18.7–19.0 18.7–19.5 19.3–21.2 20.0–20.1 20.1–20.4 19.36 18.76 18.25 20.23 17.13 19.57 18.47 17.42 18.12 19.36 19.21 21.44 18.41 – 15.5–16.4 15.8–16.8 16.8–18.6 19.0–20.0 16.2–16.8 17.8–18.7 18.6–19.3 18.1–18.9 19.5–20.3 18.35 17.95 17.72 17.27 17.40 19.89 19.28 18.50 18.72 17.86 19.12 21.07 18.42 16.01 – 8.6–9.2 15.1–16.1 16.1–16.8 10.0–10.6 18.6–20.0 16.5–18.0 16.9–17.3 19.8–20.6 18.32 17.45 15.81 16.38 15.83 18.60 19.57 16.85 18.15 17.07 17.93 19.86 17.89 16.28 9.00 – 15.0–16.1 16.1–17.0 8.7–9.7 18.6–19.3 15.9–17.6 17.5–18.3 18.4–20.0 18.60 17.97 18.80 20.18 18.55 18.83 20.05 18.68 18.37 18.84 19.97 19.50 20.12 17.78 15.56 15.57 – 7.6–9.8 15.9–16.4 18.3–19.5 18.1–19.0 18.7–19.5 20.9–21.8 19.31 18.68 18.76 20.32 18.66 19.33 19.92 17.70 17.16 19.71 20.12 20.33 19.72 19.51 16.48 16.64 8.79 – 15.6–16.5 18.1–19.7 18.7–19.5 17.8–18.4 19.3–21.7 18.51 18.84 18.02 18.72 16.71 18.77 20.03 19.06 19.46 18.19 19.37 20.05 18.85 16.51 10.15 9.15 16.22 15.99 – 18.9–20.0 16.5–17.3 17.2–17.6 19.5–20.3 19.17 17.43 18.56 19.19 18.77 18.74 19.58 19.71 19.34 19.75 21.72 20.41 19.11 18.28 19.33 18.98 18.72 18.88 19.50 – 13.6–14.5 13.7–14.7 18.9–19.5 19.39 18.06 18.41 18.98 18.08 20.88 20.72 18.41 17.97 18.79 19.34 19.41 20.49 18.93 17.29 16.76 18.58 19.15 16.95 14.14 – 13.4–13.9 18.3–20.1 18.64 21.10 18.17 20.75 18.87 20.32 20.69 18.54 18.41 18.74 19.37 21.63 20.02 18.51 17.09 17.86 18.95 18.06 17.39 14.20 13.60 – 19.8–20.0 20.89 20.05 19.73 19.81 21.14 18.03 19.52 19.24 18.41 21.08 19.37 21.58 20.28 19.92 20.21 18.95 21.42 20.10 19.89 19.15 19.27 19.89 – P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 314 TABLE 3. Extended A new pipistrelle bat from Arabia 315 TABLE 4. Mean values of particular components of echolocation calls of P. dhofarensis sp. n. from particular sites in Dhofar, Oman (data are presented separately for the foraging and the hand-released bats). Explanations: n calls = number of particular calls analysed; n seq = number of sequences recorded and analysed; PD = pulse duration [ms]; Fmax = frequency of maximum energy (peak frequency) [kHz]; SF = start frequency [kHz]; EF = end frequency [kHz]; IPI = inter-pulse interval [ms] Site Foraging bats Mudhai Hagarir Ain Jarziz Ain Tabruq Difa Shihayt Total foraging bats Hand-released bats Hagarir Ain Jarziz Total hand-released bats Date n calls n seq PD Fmax SF EF IPI 24 October 2009 25 October 2009 27 October 2009 28 October 2009 26 March 2012 28 March 2012 23 5 7 19 3 4 61 5 1 1 3 1 1 12 5.80 4.50 8.25 7.76 3.50 7.30 6.57 46.13 45.74 38.74 41.13 45.63 41.38 43.30 49.25 52.22 53.53 58.81 49.17 50.93 53.32 44.98 44.72 37.44 39.40 44.30 40.48 42.00 107.59 89.58 106.58 69.31 107.25 68.57 91.21 25 October 2009 27 October 2009 8 8 16 1 2 3 5.26 5.84 5.37 39.99 41.84 41.25 56.67 62.87 59.53 37.57 38.33 37.99 79.53 72.38 73.60 in some individuals it is a narrow structure resembling a thickened margin of the calcareal spur only. The skull of P. dhofarensis sp. n. is robust (Fig. 4), the dorsal skull profile is only slightly convex in the frontal region, its highest point is near to the lambda; a low sagittal crest is present in some specimens. The rostrum is high, long and broad, both relatively and absolutely, the braincase is broad and very high, the zygomatic arches are very narrow and fine. The horizontal length of tympanic bulla represents 20–24% of the greatest skull length. The dental formula is 2123/3123, both upper incisors are markedly bicuspid (Fig. 5), the second incisor (I3) is rather high, the I3 crown reaches some 70–80% of the first one (I2) height; in both incisors, the second cusp is markedly lower than the first (mesial) one, reaching some 50–80% of the first cusp. The small upper premolar (P2) is positioned palatally from the tooth-row, almost invisible in the lateral view, hidden by the canine and the large upper premolar (P4), the latter two teeth are positioned very close to each other, but not in a direct mesio-distal contact. P4 bears a moderately developed cusp on the mesiopalatal margin of the cingulum. The medio-distal length of P2 (0.45–0.53 mm) represents 20.6–25.0% of the upper unicuspid tooth-row (CP4). The lower incisors are tricuspid. Size of the crown area of the first lower premolar (P2) is very variable, but it is mostly very close to that of the second lower premolar (P4) — the medio-distal length of P2 (0.45–0.69 mm) represents 24.4–37.6% (mean 32.8%) of the upper unicuspid tooth-row (CP4). The molars are massive, typical of the genus Pipistrellus, in the upper molars, metalophs in M1 and M2 are heavilly developed, while paralophs are rather weak, metaconules are high, and paraconules are TABLE 5. Comparison of echolocation parameters of pipistrelle bats from southern Arabia. For explanations see Table 4 Parameter PD M SD min–max 6.30 1.71 2.94–9.54 M SD min–max 5.27 1.33 3.57–6.80 M SD min–max 4.54 0.52 3.72–5.29 M SD min–max 7.87 1.07 6.60–8.80 Fmax SF EF Pipistrellus Dhofar (n seq = 15, n calls = 60–73) 42.88 54.41 41.09 3.09 6.40 3.25 37.80–48.60 46.80–76.70 36.10–46.20 Pipistrellus kuhlii (n seq = 6, n calls = 13–28) 40.02 47.22 38.68 1.32 4.98 1.72 37.30–42.00 40.70–55.40 35.40–41.70 Hypsugo ariel (n seq = 3, n calls = 14–17) 44.62 55.77 43.41 1.93 8.99 1.62 41.70–47.20 44.50–75.80 41.00–45.50 Hypsugo arabicus (n seq = 2, n calls = 4–19) 34.18 41.76 32.07 1.49 4.21 1.55 31.90–36.50 36.10–48.50 30.00–34.40 IPI 87.39 37.23 26.50–247.80 140.20 57.58 84.60–286.00 78.61 9.83 57.60–91.40 103.60 5.31 96.70–108.60 316 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová FIG. 9. Left — portrait of P. dhofarensis sp. n. from Hagarir, Oman. Right — penis of P. dhofarensis sp. n. from Ain Jarziz, Dhofar, Oman (NMP 92726). Photos by A. Reiter in all three molars only slightly developed; nyctalodoncy is in all three lower molars very distinctly evident. The penis of P. dhofarensis sp. n. has the shape typical of the genus Pipistrellus (Fig. 9), the glans penis has a very distinct medial stripe on the dorsal side of praeputium and is covered by very pale hairs. The body of penis is almost naked, with a fine ‘collar’ of short hairs in the middle of its length. The skin of the whole penis is pale greyish-brown. The baculum of P. dhofarensis sp. n. is a narrow and long change to bone, round on section in its central part, with relatively short bifurcations at both epiphyses, straight or slightly curved dorsally in the distal third of its length (Fig. 6a–e). The baculum dimensions are as follows (n = 7): baculum length 3.55–3.95 mm (M 3.77 mm), maximum width of the proximal epiphysis 0.55–1.29 mm (M 0.81 mm), maximum width of the distal epiphysis 0.37–0.47 mm (M 0.43 mm), diaphysis width at proximal bifurcation 0.20–0.34 mm (M 0.25 mm), diaphysis width at distal bifurcation 0.11–0.16 mm (M 0.13 mm), depth of the proximal bifurcation 0.58–0.76 mm (M 0.65 mm), depth of the distal bifurcation 0.34–0.47 mm (0.38 mm). Dimensions of the holotype (in mm): LC 54; LCd 36; LAt 35.3; Lau 13.8; LTr 5.7; LCr 13.54; LCb 12.83; LaZ 9.12; LaI 3.65; LaInf 4.33; LaN 6.92; LaM 7.71; ANc 5.11; LBT 2.91; CC 4.55; M3M3 6.15; CM3 4.91; M1M3 3.42; CP4 2.14; P2 0.50; LMd 9.78; ACo 3.32; CM3 5.34; M1M3 3.79; CP4 1.90; P2 0.66. Echolocation The search phase calls of foraging individuals of P. dhofarensis sp. n. show the following parameters (see Table 5 for complete statistics of the data): pulse duration 2.9–9.6 ms, frequency of maximum energy (peak frequency) 37.8–48.6 kHz (mean 42.88 kHz; n = 73), start frequency at 46.8–76.7 kHz, end frequency at 36.1–46.2 kHz. Genetics Pipistrellus dhofarensis sp. n. showed unique base positions in the 641 bp partial sequence of the mitochondrial gene for cytochrome b at 28 sites (4.4% of the sequence) within the group of the closely related Oriental pipistrelles examined (P. dhofarensis sp. n., P. abramus, P. javanicus, and P. coromandra): 426, 510, 525, 702, 738, 816, 873, 933 (A→G); 432, 483, 579, 729, 958, 981 (C/T→A); 478, 507, 756, 963, 993, 1057 (C→T); 480 (T→A); 501 (G→A); 543, 698, 759 (T→C); 666 (A/C→G); 741 (A/C→T); 792 (C→A). Moreover, eight sites were unique within all compared Pipistrellus species included in this study: 432, 579 (C/T→A); 478 (C→T); 480 (C/G/T→A); 666 (A/C/T→G); 698 (T→C); 702, 738 (A→G); bicuspid unicuspid unicuspid unicuspid unicuspid bicuspid uni- to bicuspid uni- to bicuspid bicuspid bicuspid bicuspid bicuspid uni- to bicuspid bicuspid uni- to bicuspid uni- to bicuspid bicuspid bicuspid unicuspid unicuspid, smaller unicuspid, smaller unicuspid, smaller unicuspid, smaller bicuspid bicuspid bicuspid bicuspid, second cusp smaller smaller unicuspid, much smaller uni- to bicuspid unicuspid unicuspid unicuspid, smaller much smaller unicuspid, smaller similar smaller smaller smaller smaller smaller similar similar smaller similar smaller similar mostly absent smaller smaller mostly unicuspid, absent mostly absent absent similar Baculum shape size similar much smaller similar smaller similar smaller similar smaller similar much smaller similar much larger similar much larger similar smaller similar similar similar smaller similar much larger different smaller different much smaller different much smaller different smaller different smaller different much smaller different much smaller P3 [R] I3 I2 narrower & shorter narrower narrower similar to narrower shorter similar similar narrower & shorter similar shorter shorter shorter narrower & shorter narrower & shorter narrower & shorter shorter narrower & shorter shorter Braincase shape [R] lower narrower narrower lower similar similar similar lower similar lower similar lower narrower lower lower & narrower lower & broader lower lower Rostrum shape [R] much smaller similar smaller smaller much smaller smaller smaller much smaller larger much smaller smaller similar much smaller much smaller smaller much smaller much smaller much smaller Pipistrellus pipistrellus P. kuhlii N Arabia P. kuhlii S Arabia P. hesperidus P. rusticus P. abramus P. javanicus P. coromandra P. ceylonicus P. tenuis Vansonia rueppellii Hypsugo savii H. ariel H. arabicus Neoromicia capensis N. somalica N. guineensis N. nana Differential diagnosis For a detailed comparison and the differential diagnosis of P. dhofarensis sp. n. see Comparisons and Tables 1 and 2 as well as Discussion. For a brief review of comparison of particular morphological characters of P. dhofarensis sp. n. see Table 6. Pelage colouration similar paler paler similar similar similar similar similar similar similar paler paler paler paler similar similar similar similar Etymology The name dhofarensis refers to Dhofar, a small and fertile region on the Omani-Yemeni transition in the central part of the south-Arabian coastal zone, famous for its frankincense production. The proposed English vernacular name of Pipistrellus dhofarensis sp. n. is Dhofar pipistrelle. Body size Distribution Pipistrellus dhofarensis sp. n. occurs in a very limited territory, in a belt of relatively humid savannah habitats of coastal Arabia between easternmost Yemen and south-western Oman, less than 200 km long and only few km wide. This distribution range represents one of the smallest ranges among continentally distributed bats. The westernmost and most elevated known locality is Hawf, Yemen (16°39’N, 53°03’E, 735 m a.s.l.), the easternmost and lowest site is Wadi Ain, 13 km east of Mirbat, Oman (17°01’N, 54°47’E, 59 m a.s.l.). 317 Species 792, and 981 (C/T→A). Unique site position numbers correspond to positions of the complete cytochrome b gene (1140 bp). Mitochondrial sequence of holotype and two examined paratypes (NMP 92741, 92748, 92751) — partial sequence (721 bp) of the cytochrome b gene (GenBank Accession Number KX375141; haplotype Dhofar 1, see Appendix II), 5’ end: ttt ctg agg ggc cac agt aat tac caa tct cct ctc cgc cat ccc tta tat tgg aac aga ctt agt aga atg aat ctg agg tgg att ttc tgt gga caa agc cac ttt gac tcg att ctt tgc ctt cca ctt cct ctt acc att tat cat ttc agc cct agt aat ggt cca ttt act att cct aca cga aac agg atc taa caa ccc aac agg cat ccc ctc tgs cat aga tat aat ccc ctt cca tcc gta cta tac aat caa aga tat cct agg act ttc tgt gat aat ctt agc cct att atc cct agt act att ctc gcc tga cat att agg aga tcc cga taa tta tac acc agc aaa ccc act caa tac acc ccc tca tat taa acc tga atg gta ttt cct att tgc ata tgc aat cct acg atc aat tcc caa taa act agg agg agt gct agc cct agt cct ctc aat tct cat cct cat cat tat ccc cct cct cca cac ttc caa gca acg aag cat gac ttt tcg acc cat tag tca atg cct att ctg act att aac agc aga tct ttt aac cct gac atg aat cgg agg aca acc agt cga aca tcc cta cgt aat tat cgg aca att agc ctc tat cct ata ctt tat aat tat cat tgt aat aat acc act agc cag tct tat aga aaa cca cct att aaa atg a. TABLE 6. State of morphological characters in the pipistrelle bats of Arabia, north-eastern Africa and India as compared to that in P. dhofarensis sp. n. [R] — relative value of the character A new pipistrelle bat from Arabia 318 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová ACKNOWLEDGEMENTS We thank Adéla Šmídová, Marina Kipson and Jiří Šmíd for their help with sequenation of several comparative taxa. We also very appreciate an anonymous referee for the suggestions improving the manuscript. All methods applied for new collections of the museum specimens comply with the national laws of the respective countries. The study was supported by the Ministry of Culture of the Czech Republic (# DKRVO 2016/15, 00023272). LITERATURE CITED ALBERDI, A., T. GILBERT, O. RAZGOUR, O. AIZPURUA, J. AIHARTZA, and I. GARIN. 2015. Contrasting population-level responses to Pleistocene climatic oscillations in an alpine bat revealed by complete mitochondrial genomes and evolutionary history inference. Journal of Biogeography, 42: 1689–1700. ALMEIDA, F. C., N. P. GIANNINI, N. B. SIMMONS, and K. M. HELGEN. 2014. Each flying fox on its own branch: a phylogenetic tree for Pteropus and related taxa (Chiroptera: Pteropodidae). Molecular Phylogenetics and Evolution, 77: 83–95. BATES, P. J. J., and D. L. HARRISON. 1997. Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, 258 pp. BENDA, P., and J. GAISLER. 2015. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 12. Bat fauna of Afghanistan: revision of distribution and taxonomy. Acta Societatis Zoologicae Bohemicae, 79: 267–458. BENDA, P., and P. VALLO. 2009. Taxonomic revision of the genus Triaenops (Chiroptera: Hipposideridae) with description of a new species from southern Arabia and definitions of a new genus and tribe. Folia Zoologica, 53 (Monograph 1): 1–45. BENDA, P., M. ANDREAS, D. KOCK, R. LUČAN, P. MUNCLINGER, P. NOVÁ, J. OBUCH, K. OCHMAN, A. REITER, M. UHRIN, et al. 2006. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae, 70: 1–329. BENDA, P., C. DIETZ, M. ANDREAS, J. HOTOVÝ, R. K. LUČAN, A. MALTBY, K. MEAKIN, J. TRUSCOTT, and P. VALLO. 2008. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 6. Bats of Sinai (Egypt) with some taxonomic, ecological and echolocation data on that fauna. Acta Societatis Zoologicae Bohemicae, 72: 1–103. BENDA, P., A. REITER, M. AL-JUMAILY, A. K. NASHER, and P. HULVA. 2009. A new species of mouse-tailed bat (Chiroptera: Rhinopomatidae: Rhinopoma) from Yemen. Journal of the National Museum (Prague), Natural History Series, 177: 53–68. BENDA, P., R. K. LUČAN, J. OBUCH, A. REITER, M. ANDREAS, P. BAČKOR, T. BOHNENSTENGEL, E. K. EID, M. ŠEVČÍK, P. VALLO, et al. 2010. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 8. Bats of Jordan: fauna, ecology, echolocation, ectoparasites. Acta Societatis Zoologicae Bohemicae, 74: 185–353. BENDA, P., M. M. AL-JUMAILY, A. REITER, and A. K. NASHER. 2011a. Noteworthy records of bats from Yemen with description of a new species from Socotra. Hystrix, Italian Journal of Mammalogy, 22: 23–56. BENDA, P., P. VALLO, and A. REITER. 2011b. Taxonomic revision of the genus Asellia (Chiroptera: Hipposideridae) with a description of a new species from southern Arabia. Acta Chiropterologica, 13: 245–270. BENDA, P., K. FAIZOLÂHI, M. ANDREAS, J. OBUCH, A. REITER, M. ŠEVČÍK, M. UHRIN, P. VALLO, and S. ASHRAFI. 2012. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Societatis Zoologicae Bohemicae, 76: 163–582. BENDA, P., A. REITER, and M. UHRIN. 2013. Bat fauna of the Sultanate of Oman. Mammalian Biology, 78S: 6. BENDA, P., R. K. LUČAN, W. M. SHOHDI, M. PORTEŠ, and I. HORÁČEK. 2014a. Microbats of the Western Oases of Egypt, Libyan Desert. Vespertilio, 17: 45–58. BENDA, P., F. SPITZENBERGER, V. HANÁK, M. ANDREAS, A. REITER, M. ŠEVČÍK, J. ŠMÍD, and M. UHRIN. 2014b. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 11. On the bat fauna of Libya II. Acta Societatis Zoologicae Bohemicae, 78: 1–162. BENDA, P., T. ANDRIOLLO, and M. RUEDI. 2015. Systematic position and taxonomy of Pipistrellus deserti (Chiroptera: Vespertilionidae). Mammalia, 79: 419–438. BERGMANS, W. 1990. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 3. The genera Scotonycteris Matschie, 1894, Casinycteris Thomas, 1910, Pteropus Brisson, 1762, and Eidolon Rafinesque, 1815. Beaufortia, 40: 111–177. CLEMENT, M., D. POSADA, and K. CRANDALL. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9: 1657–1659. CORBET, G. B., and J. E. HILL. 1992. The Mammals of the Indomalayan Region: a systematic review. Oxford University Press and British Museum (Natural History), Oxford, vi + 488 pp. DARRIBA, D., G. L. TABOADA, R. DOALLO, and D. POSADA. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772. DONG, J., X. MAO, H. SUN, D. M. IRWIN, S. ZHANG, and P. HUA. 2014. Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Genetica, 142: 483–494. FRYNTA, D., K. PALUPČÍKOVÁ, E. BELLINVIA, P. BENDA, H. SKARLANTOVÁ, L. SCHWARZOVÁ, and D. MODRÝ. 2010. Phylogenetic relationships within the cahirinus-dimidiatus group of the genus Acomys (Rodentia: Muridae): new mitochondrial lineages from Sahara, Iran and the Arabian Peninsula. Zootaxa, 2660: 46–56. HARRISON, D. L., and P. J. J. BATES. 1991. The mammals of Arabia, 2nd edition. Harrison Zoological Museum, Sevenoaks, 354 pp. HEANEY, L. R., D. S. BALETE, P. ALVIOLA, E. A. RICKART, and M. RUEDI. 2012. Nyctalus plancyi and Falsistrellus petersi (Chiroptera: Vespertilionidae) from northern Luzon, Philippines: ecology, phylogeny, and biogeographic implications. Acta Chiropterologica, 14: 265–278. HILL, J. E., and D. L. HARRISON. 1987. The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of Pipistrellus and Eptesicus, and the descriptions of a new genus and subgenus. Bulletin of the British Museum (Natural History), Zoology Series, 52: 225–305. HORÁČEK, I., P. BENDA, R. SADEK, S. KARKABI, M. ABI-SAID, R. LUČAN, P. HULVA, and R. KARANOUH. 2008. Bats of A new pipistrelle bat from Arabia Lebanon. State of knowledge and perspectives. Al-Ouat’ Ouate, Revue Libanaise de Spéléologie et de Karstologie (N.S.), 14: 52–67. HUELSENBECK, J. P., and F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755. HUTTERER, R., and D. L. HARRISON. 1988. A new look at the shrews (Soricidae) of Arabia. Bonner Zoologische Beiträge, 39: 59–72. KATOH, K., and D. M. STANDLEY. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772–780. MURIAS DOS SANTOS, A., M. P. CABEZAS, A. I. TAVARES, R. XAVIER, and M. BRANCO. 2016. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics, 32: 627–628. QIAN, K., D. YU, H. CHENG, K. B. STOREY, and J. ZHANG. 2015. The complete mitochondrial genome of Nyctalus noctula (Chiroptera: Vespertilionidae). Mitochondrial DNA, 22: 1–2. RAHMAN, M. M., K. B. YOON, M. Z. HUSSIN, and Y. C. PARK. 2016. Complete mitochondrial genome sequence of the Indian pipistrelle Pipistrellus coromandra (Vespertilioninae). Animal Cells and Systems, 20: 86–94. ROEHRS, Z. P., J. B. LACK, and R. A. VAN DEN BUSSCHE. 2010. Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. Journal of Mammalogy, 91: 1073–1092. RUEDI, M., and F. MAYER. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetic and Evolution, 21: 436–448. SALE, J. B. 1980. The environment of the mountain region of Dhofar. Journal of Oman Studies, Special Report, 2: 17–23. 319 SILVESTRO, D., and I. MICHALAK. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12: 335–337. STADELMANN, B. Y., L. G. HERRERA, J. ARROYO-CABRALES, J. J. FLORES-MARTINEZ, B. P. MAY, and M. RUEDI. 2004a. Molecular systematics of the piscivorous bat Myotis (Pizonyx) vivesi. Journal of Mammalogy, 85: 103–109. STADELMANN, B., D. S. JACOBS, C. SCHOEMAN, and M. RUEDI. 2004b. Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterologica, 6: 177–192. STAMATAKIS, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313. TAMURA, K., G. STECHER, D. PETERSON, A. FILIPSKI, and S. KUMAR. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729. THABAH, A., G. LI, Y. WANG, B. LIANG, K. HU, S. ZHANG, and G. JONES. 2007. Diet, echolocation calls and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): another carnivorous bat. Journal of Mammalogy, 88: 728–735. TSYTSULINA, K., M. L. DICK, K. MAEDA, and R. MASUDA. 2012. Systematics and phylogeography of the steppe myotis Myotis aurascens Kuzyakin, 1935 (Chiroptera, Vespertilionidae). Russian Journal of Theriology, 11: 1–20. WEI, L., J. R. FLANDERS, S. J. ROSSITER, C. M. MILLER-BUTTERWORTH, L. B. ZHANG, and S. Y. ZHANG. 2010. Phylogeography of the Japanese pipistrelle bat, Pipistrellus abramus, in China: the impact of ancient and recent events on population genetic structure. Biological Journal of the Linnean Society, 99: 582–594. Received 29 April 2016, accepted 27 July 2016 APPENDIX I List of the specimens examined in morphological analysis Pipistrellus dhofarensis sp. n. — Oman: 5 ♂♂, 3 ♀♀ (NMP 92725–92728, 92730, 92731 [S+A], 92729, 92732 [A]), Ain Jarziz (Dhofar Prov.), 27 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♂♂, 3 ♀♀ (NMP 94032–94035 [S+A], 94031, 94036 [A]), Ain Sahnawt (Dhofar Prov.), 27 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 7 ♂♂, 6 ♀♀ (NMP 92740–92743, 92747–92750 [S+A], 92744–92746, 92751, 92752 [A]), Ain Tabruq (Dhofar Prov.), 28 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 5 ♂♂, 2 ♀♀ (NMP 94009–94014 [S+A], 94008 [A]), Difa (Dhofar Prov.), 26 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♂♂, 5 ♀♀ (NMP 92706, 92707, 92709–92712 [S+A], 92708, 92713 [A]), Hagarir (Dhofar Prov.), 25 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 4 ♂♂ (NMP 94061, 94062 [S+A]), Shihayt, Wadi Darbat (Dhofar Prov.), 28 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂ (NMP 94063 [A]), Wadi Ain, 13 km E of Mirbat (Dhofar Prov.), 29 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♂♂, 2 ♀♀ (NMP 94067– 94070 [S+A], 94066 [A]), Wadi Hannah (Dhofar Prov.), 30 March 2012, leg. P. Benda, A. Reiter and M. Uhrin. – Yemen: 9 ♂♂, 7 ♀♀ (NMP 95632–95635, 95637, 95638, 95641–95645 [S+A], 95636, 95639, 95640, 95646, 95647 [A]), Hawf (Al Mahra Prov.), 12 and 14 October 2005, leg. P. Benda. Pipistrellus pipistrellus (Schreber, 1774) — Jordan: 1 ♂, 5 ♀♀ (NMP 92827–92831 [S+A], 92832 [A]), ‘Arjan, 12 July 2010, leg. P. Benda and A. Reiter; – 2 ♀♀ (NMP 92807, 92808 [S+A]), Al Maqar’iyya, 7 July 2010, leg. P. Benda and A. Reiter; – 1 ♀ (NMP 92815 [S+A]), As Salihiyyah, 8 July 2010, leg. P. Benda and A. Reiter; – 1 ♂, 3 ♀♀ (NMP 92458–92460 [S+A], 92461 [A]), Jebel Masuda, Ain Amshit, 15 May 2009, leg. P. Benda, J. Obuch and A. Reiter; – 1 ♂, 1 ♀ (NMP 92378, 92379 [S+A]), Tall Numeira, 17 October 2008, leg. P. Benda and J. Obuch; – 1 ♀ (NMP 92427 [S+A]), Wadi Ghuweir, Khirbet Feynan, 13 May 2009, leg. P. Benda, J. Obuch and A. Reiter. – Lebanon: 3 ♀♀ (NMP 93534, 93535 [S+A], 93536 [A]), Adonis, Nahr Ibrahim, 1 June 2010, leg. P. Benda and M. 320 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová APPENDIX I. Continued Uhrin; – 4 ♂♂, 1 ♀ (NMP le102, le103, 91896 [S+A], le105, 91895 [A]), Afqa Cave, 26 June 2006, leg. R. Lučan, I. Horáček and P. Hulva, 17 January 2008, leg. P. Benda, R. Lučan, I. Horáček and M. Uhrin; – 3 ♂♂, 2 ♀♀ (NMP 93528, 93529, 93531, 93532 [S+A], 93530 [A]), Balaa, 31 May 2010, leg. P. Benda and M. Uhrin; – 1 ♂ (NMP le101 [S+A]), Er Rouais Cave, 26 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 2 ♂♂, 2 ♀♀ (NMP 93545, 93547, 93548 [S+A], 93546 [A]), Faraya El Mzar, 2 June 2010, leg. P. Benda and M. Uhrin; – 1 ♂ (NMP 93524 [S+A]), Frat, Nahr Ibrahim, 29 May 2010, leg. P. Benda and M. Uhrin; – 1 ♂, 1 ♀ (NMP 91902, 91903 [S+A]), Haqel Al Azime, Achou Cave, 18 January 2008, leg. P. Benda, R. Lučan, I. Horáček and M. Uhrin; – 1 ♀ (NMP 93572 [S+A]), Jenta, 8 June 2010, leg. P. Benda and M. Uhrin; – 6 ♂♂, 1 ♀ (NMP le19–le24 [S+A], le26 [A]), Jezzine, Pont El Khalass, 23 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 2 ♂♂ (NMP 93565, 93566 [S+A]), Majdal Tarchich, 7 June 2010, leg. P. Benda and M. Uhrin; – 2 inds. (NMP le12, le13 [S+A]), Nahr Es Safa, 22 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 1 ♂ (NMP le118 [S+A]), Qadisha Cave, 27 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 2 ♂♂, 2 ♀♀ (NMP le169, le193, le212, 93693 [S+A]), Ras El Assi, 29 June 2006, leg. R. Lučan, I. Horáček and P. Hulva, 17 March 2009, leg. T. Bartonička, P. Benda, R. Lučan and I. Horáček. – Syria: 1 ♀ (NMP 48902 [S+A]), Baniyas, 31 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 4 ♂♂ (NMP 48981– 48984 [S+A]), Maalula, 30 April 2001, leg. P. Muncinger and P. Nová; – 2 ♀♀ (NMP 48084, 48085 [S+A]), Rabi’ah, 1 July 1998, leg. M. Andreas, P. Benda and M. Uhrin; – 1 ♂, 1 ♀ (NMP 48871, 48872 [S+A]), Sarghaya, 28 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♂♂ (NMP 48060, 48061, 48063 [S+A]), Slinfeh, 29 June 1998, leg. M. Andreas, P. Benda and M. Uhrin. Pipistrellus kuhlii (Kuhl, 1817) — Jordan: 3 ♀♀ (NMP 92818, 92819 [S+A], 92820 [A]), As Salihiyyah, 8 July 2010, leg. P. Benda and A. Reiter; – 4 ♂♂, 2 ♀♀ (NMP 92368–92372, 92822 [S+A]), Azraq, 13 October 2008, leg. P. Benda and J. Obuch, 9 July 2010, leg. P. Benda and A. Reiter; – 1 ♂ (NMP 92367 [S+A]), Hammam As Sarh, 13 October 2008, leg. P. Benda and J. Obuch; – 1 ♂, 1 ♀ (NMP 92840, 92841 [S+A]), Jufat Al Qafrayn, 15 July 2010, leg. P. Benda and A. Reiter; – 2 ♂♂, 1 ♀ (NMP 92559–92561 [S+A]), Milka, 27 May 2009, leg. Z. Amr, P. Benda and A. Reiter; – 1 ♂ (NMP 92833 [S+A]), Nahla, 13 July 2010, leg. P. Benda and A. Reiter; – 1 ♂ (NMP 92365 [S+A]), Qasr Kharana, 12 October 2008, leg. P. Benda and J. Obuch; – 1 ♀ (NMP 92823 [S+A]), Shawmari Reserve, 10 July 2010, leg. P. Benda and A. Reiter. – Lebanon: 1 ♂ (NMP le213 [S+A]), El Fidar, 2 July 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 1 ♂, 2 ♀♀ (NMP le202–le204 [S+A]), Ras El Assi, 29 June 2006, leg. R. Lučan, I. Horáček and P. Hulva. – Oman: 1 ♂, 1 ♀ (NMP 92639, 92640 [S+A]), Ar Rustaq, 19 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂ (NMP 93728 [S+A]), Jaalan Bani Bu Hassan, 2 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂ (NMP 94003 [S+A]), Khassab, 18 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♂♂ (NMP 92618, 92619 [S+A], 92617 [A]), Nakhl, 17 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♂♂, 1 ♀ (NMP 93815–93817 [S+A]), Shinas, 13 April 2011, leg. P. Benda, A. Reiter and M. Uhrin. – Syria: 4 ♀♀ (NMP 48808, 48810, 48811 [S+A], 48809[S+B]), Abu Kemal, 16 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♀♀ (NMP 48824, 48825 [S+A]), Ain Diwar, 18 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♂♂, 2 ♀♀ (NMP 48844–48847 [S+A]), Al Tawani, 21 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♂♂, 2 ♀♀ (NMP 48831, 48832, 48835, 48836 [S+A]), Ayyash, 19 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♂♂, 3 ♀♀ (NMP 48903–48906, 48908 [S+A], 48907 [S+B]), Baniyas, 31 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 5 ♂♂ (NMP 48028, 48029, 48966–48968 [S+A]), Halabiyyeh, 17 June 1998, leg. M. Andreas, P. Benda and M. Uhrin, and 15 April 2001, leg. P. Munclinger and P. Nová; – 2 ♂♂ (NMP 48820, 48821 [S+A]), Khazneh, 17 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂ (NMP 49988 [S+A]), Qala’at Al Hosn, 10 May 2001, leg. R. Lučan; – 1 ♂ (NMP 48814 [S+A]), Qala’at Ar Rahba, 17 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♂♂ (NMP 48767–48769 [S+A]), Qala’at Ja’abar, 12 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂ (NMP 48758 [S+A]), Qala’at Najm, 10 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♀♀ (NMP 48888–48890 [S+A]), Qantara, 30 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂ (NMP 48891 [S+A]), Qasr Ibn Wardan, 31 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♂♂, 1 ♀ (NMP 48929–48931 [S+A]), Qatura, 2 June 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂, 1 ♀ (NMP 49987, 48947 [S+A]), Ras Al Bassit, 29 April 2001, leg. R. Lučan, 3 June 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 13 ♂♂, 3 ♀♀ (NMP 47993–47999, 48948, 48949, 48951, 48952, 48784–48786, 48789, 48790 [S+A]), Rasafah, 16 June 1998, leg. M. Andreas, P. Benda, A. Reiter and M. Uhrin, 13 April 2001, leg. P. Munclinger and P. Nová, 13 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♂♂, 2 ♀♀ (NMP 48884–48887 [S+A]), Safita, 29 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♂♂ (NMP 48800–48802 [S+A]), Sbeikhan, 15 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 2 ♂♂, 4 ♀♀ (NMP 48837–48842 [S+A]), Tadmor, 20 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 3 ♀♀ (NMP 48862–48864 [S+A]), Talsh’hab, 25 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂, 1 ♀ (NMP 48034 [S+A], 48036 [S+B]), Tell Sheikh Hamad, 19 June 1998, leg. M. Andreas, P. Benda, A. Reiter and M. Uhrin. – Yemen: 3 ♂♂, 1 ♀ (NMP pb3743, pb3745, pb3746 [S+A], pb3744 [A]), Arus, 1 November 2007, leg. P. Benda and A. Reiter; – 2 ♂♂ (NMP pb3638, pb3639 [S+A]), Assala, 26 October 2007, leg. P. Benda and A. Reiter; – 1 ♀ (NMP pb3105 [S+A]), Hammam Ali, 27 October 2005, leg. P. Benda; – 7 ♂♂, 4 ♀♀ (NMP pb3094– pb3098, pb3101–pb3104 [S+A], pb3099, pb3100 [A]), Wadi Maytam, 26 October 2005, leg. P. Benda. Hypsugo savii (Bonaparte, 1837) — Lebanon: 4 ♂♂, 1 ♀, 1 ind. (NMP 90900, 91783, 91784, le106, le108, le197 [S+A]), Afqa Cave, 26 June 2006, leg. R. Lučan, I. Horáček and P. Hulva, 15 July 2006, leg. P. Benda, 22 January 2007, leg. P. Benda, R. Černý, R. Lučan and I. Horáček; – 1 ♂ (NMP 93561 [S+A]), Arnoun, 6 June 2010, leg. P. Benda and M. Uhrin; – 1 ♂ (NMP 93527 [S+A]), Balaa, 31 May 2010, leg. P. Benda and M. Uhrin; – 2 ♂♂ (NMP le99, le100 [S+A]), El Aaqoura, Er Rouais Cave, 26 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 6 ♂♂ (NMP le27, le29–le33 [S+A]), Jezzine, Pont El Khalass, 23 June 2006, leg. R. Lučan, I. Horáček and P. Hulva; – 3 ♂♂ A new pipistrelle bat from Arabia 321 APPENDIX I. Continued (NMP le205–le207 [S+A]), Ras El Assi, Deir Mar Maroun Monastery, 29 June 2006, leg. R. Lučan, I. Horáček and P. Hulva. – Syria: 2 ♀♀ (NMP 48868 [S+B], 48869 [S+A]), Barqash, 26 May 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 5 ♂♂ (NMP 48919–48923 [S+A]), Hayalien, 1 June 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 1 ♂ (NMP 48980 [S+A]), Maalula, 30 April 2001, leg. P. Munclinger and P. Nová; – 1 ♀ (NMP 48076 [S+A]), Qala’at Sheisar, 1 July 1998, leg. M. Andreas, P. Benda and M. Uhrin; – 3 ♀♀ (NMP 48932–48934 [S+A]), Qatura, 2 June 2001, leg. M. Andreas, P. Benda, A. Reiter and D. Weinfurtová; – 9 ♂♂ (NMP 48064–48068, 48070– 48072 [S+A], 48069 [S+B]), Slinfeh, 29 June 1998, leg. M. Andreas, P. Benda and M. Uhrin; – 1 ♂ (NMP 48048 [S+A]), Yabroud, 27 June 1998, leg. M. Andreas, P. Benda and M. Uhrin. Hypsugo arabicus (Harrison, 1979) — Oman: 1 ♂ (NMP 92624 [S+A]), Al Aqar, 2 km S of Wakan, 17 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♂♂, 2 ♀♀ (NMP 93739– 93741 [S+A], 93742 [A]), Al Aqor, Wadi Tiwi, 4 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♂♂ (NMP 92665, 92666 [S+A]), Al Nakhar, 22 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♀♀ (NMP 93822, 93823 [S+A]), Al Zihaymi, 14 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂ (NMP 92779 [S+AR), Dibab, 2 November 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♀♀ (NMP 93760, 93761 [S+A]), Ghab, Wadi Al Hawasina, 7 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♂♂, 1 ♀ (NMP 92782, 92783 [S+A], 92784 [A]), Mansaft, 3 November 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂, 2 ♀♀ (NMP 93785, 93786 [S+A], 93787 [A]), Misfat Al Khawater, 9 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♀ (NMP 92774 [S+A]), Muqal, 1 November 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♂ (NMP 93997 [S+A]), Sal Alah, 15 March 2012, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♀♀ (NMP 93812, 93813 [S+A], 93814 [A]), Subakh, Hatta Pools, 12 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 2 ♀♀ (NMP 93733, 93734 [S+A]), Wadd, 3 April 2011, leg. P. Benda, A. Reiter and M. Uhrin; – 1 ♀ (NMP 94001 [S+A]), Wadi Banah, 16 March 2012, leg. P. Benda, A. Reiter and M. Uhrin. Hypsugo ariel (Thomas, 1904) — Jordan: 7 ♂♂, 1 ♀ (NMP 92488–92494 [S+A], 92487 [A]), Al Ghal, 17 May 2009, leg. P. Benda and A. Reiter; – 1 ♀ (NMP 92380 [S+A]), Tall Numeira, 17 October 2008, leg. P. Benda and J. Obuch; – 1 ♀ (NMP 92804 [S+A]), Wadi Al Hassa, 5 July 2010, leg. P. Benda and A. Reiter; – 1 ♂ (NMP 92095 [S+A]), Wadi Rum, 24 October 2004, leg. R. Lučan. – Oman: 1 ♂ (NMP 92754 [S+A]), Jufa, 29 October 2009, leg. P. Benda, A. Reiter and M. Uhrin; – 3 ♂♂, 1 ♀ (NMP 94074–94076 [S+A], 94073 [A]), Rima, Wadi Gharah, 2 April 2012, leg. P. Benda, A. Reiter and M. Uhrin. – Yemen: 1 ♂ (NMP pb3058 [S+A]), Al Nueimah, 20 October 2005, leg. P. Benda; – 2 ♂♂, 1 ♀ (NMP pb3050, pb3051 [S+A], pb3052 [A]), Damqawt, 16 October 2005, leg. P. Benda; – 5 ♂♂, 4 ♀♀ (NMP pb3022–3025, 3027–3030 [S+A], pb3026 [A]), Hawf, 14 October 2005, leg. P. Benda; – 1 ♂, 1 ♀ (NMP pb3054 [S+A], pb3055 [A]), 25 km WSW of Sayhut, 17 October 2005, leg. P. Benda. Neoromicia guineensis (de Bocage, 1889) — Yemen: 2 ♂♂ (NMP pb3124, pb3125 [S+A]), Jebel Bura, 30 October 2005, leg. P. Benda; – 3 ♂♂ (NMP pb3663, pb3664 [S+A], pb3662 [A]), Ash Shukayrah, Wadi Bani Khawlan, 27 October 2007, leg. P. Benda and A. Reiter. APPENDIX II List of the specimens examined in genetic analysis Species Pipistrellus sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. Haplotype Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 1 Dhofar 2 Dhofar 2 Dhofar 3 Dhofar 4 Dhofar 5 Dhofar 6 GBAN KX375141 – – – – – – – – – – – – – – – – KX375142 – KX375143 KX375144 KX375145 KX375146 Country Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Oman Yemen Yemen Oman Oman Oman Oman Oman Oman Locality Ain Jarziz Ain Jarziz Ain Tabruq Ain Tabruq Ain Tabruq Difa Difa Ain Sahnawt Ain Sahnawt Ain Sahnawt Ain Sahnawt Ain Sahnawt Ain Sahnawt Shihayt, Wadi Darbat Wadi Hannah Hawf Hawf Hagarir Wadi Hannah Difa Ain Jarziz Difa Hagarir Vaucher/Reference NMP 92727 NMP 92732 NMP 92741 NMP 92748 NMP 92751 NMP 94008 NMP 94013 NMP 94031 NMP 94032 NMP 94033 NMP 94034 NMP 94035 NMP 94036 NMP 94061 NMP 94068 NMP 95633 NMP 95640 NMP 92708 NMP 94070 NMP 94012 NMP 92725 NMP 94014 NMP 92710 322 P. Benda, A. Reiter, M. Uhrin, and Z. Varadínová APPENDIX II. Continued Species P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. P. sp. n. Pipistrellus abramus P. abramus P. abramus P. abramus Pipistrellus coromandra Pipistrellus hesperidus P. hesperidus P. hesperidus P. hesperidus P. hesperidus P. hesperidus P. hesperidus P. hesperidus P. hesperidus Pipistrellus javanicus P. javanicus Pipistrellus kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii P. kuhlii Pipistrellus maderensis P. maderensis P. maderensis P. maderensis P. pipistrellus P. pipistrellus P. pipistrellus P. pipistrellus Pipistrellus rusticus P. rusticus P. rusticus P. rusticus P. rusticus Nyctalus leisleri N. leisleri Nyctalus noctula N. noctula Nyctalus plancyi N. plancyi N. plancyi Vansonia rueppellii V. rueppellii V. rueppellii Laephotis botswanae Haplotype Dhofar 6 Dhofar 7 Dhofar 8 Dhofar 8 Dhofar 8 Dhofar 8 Dhofar 8 Dhofar 8 Dhofar 8 China 1 China 2 China 3 China 4 Malaysia 1 Ethiopia 1 Ethiopia 2 Ethiopia 3 Ethiopia 4 Ethiopia 5 Ethiopia 6 Ethiopia 7 Ethiopia 8 Ethiopia 9 Philippines 1 Philippines 2 Yemen 1 Yemen 2 Yemen 3 Yemen 4 Oman 1 Oman 2 Egypt 1 Egypt 2 Egypt 3 Egypt 4 Cyprus 1 Tenerifa 1 Tenerifa 2 Tenerifa 3 Tenerifa 4 Jordan 1 Greece 1 Iran 1 Iran 2 Namibia 1 Namibia 2 Namibia 3 Namibia 4 Namibia 5 Switzerland 1 Switzerland 2 Greece 2 Switzerland 3 China 5 Philippines 3 China 6 Morocco 1 Egypt 5 Egypt 6 Namibia 6 GBAN – KX375147 KX375148 – – – – – – KF782167 GQ332528 GQ332494 KF051952 KP688404 KX375149 KX375150 KX375151 KX375152 KX375153 KX375154 KX375155 KX375156 KX375157 JX570908 JX570909 KX375158 KX375159 KX375160 KX375161 KP455382 KP455383 KP455372 KP455371 KP455345 KP455339 KP455370 KP455376 KP455373 KP455374 KP455375 KX375162 AJ504443 KF874520 KF874519 KX375163 KX375164 KX375165 KX375166 KX375167 JX570901 AF376832 JX570902 AJ841967 KP273590 JX570905 DQ435073 KX375168 KX375169 KX375170 KX375171 Country Yemen Oman Oman Oman Oman Oman Oman Oman Yemen China China China China Malaysia Ethiopia Ethiopia Ethiopia Ethiopia Ethiopia Ethiopia Ethiopia Ethiopia Ethiopia Philippines Philippines Yemen Yemen Yemen Yemen Oman Oman Egypt Egypt Egypt Egypt Cyprus Tenerifa Tenerifa Tenerifa Tenerifa Jordan Greece Iran Iran Namibia Namibia Namibia Namibia Namibia Switzerland Switzerland Greece Switzerland China Philippines China Morocco Egypt Egypt Namibia Locality Hawf Wadi Hannah Hagarir Difa Difa Shihayt, Wadi Darbat Wadi Ain, E of Mirbat Wadi Hannah Hawf – – – – – Menagesha Forest Menagesha Forest Harrena Forest Metu Goba Metu Korem Desea Forest Simien National Park – – Mashgab Shibam Shibam Shibam – – – – – – – – – – – Tall Numeira – – – Nyangana Diyogha Nyangana Diyogha Gcangcu – – – – – – – Cascades Bou Mazouz Al Baharyia, Bawiti Al Baharyia, Bawiti Eenhana Vaucher/Reference NMP 95645 NMP 94066 NMP 92706 NMP 94009 NMP 94010 NMP 94062 NMP 94063 NMP 94069 NMP 95647 Dong et al. (2014) Wei et al. (2010) Wei et al. (2010) Dong et al. (unpubl.) Rahman et al. (2016) NMP pb5482 NMP pb5476 NMP 94998 NMP 92210 NMP 92117 NMP 92213 NMP pb5487 NMP pb5498 NMP pb5519 Heaney et al. (2012) Heaney et al. (2012) NMP pb3638 NMP pb3746 NMP pb3743 NMP pb3745 Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) Benda et al. (2014b) NMP 92378 Stadelmann et al. (2004a) Benda et al. (2012) Benda et al. (2012) NMP pb5215 NMP pb5324 NMP pb5214 NMP pb5323 NMP pb5149 Heaney et al. (2012) Ruedi and Mayer (2001) Heaney et al. (2012) Stadelmann et al. (2004b) Qian et al. (2015) Heaney et al. (2012) Thabah et al. (2007) NMP 90080 NMP 94970 NMP 94967 NMP pb5928 A new pipistrelle bat from Arabia 323 APPENDIX II. Continued Species L.botswanae Neoromicia capensis N. capensis N. capensis Neoromicia guineensis N. guineensis N. guineensis N. guineensis Neoromicia nana N. nana N. nana Neoromicia somalica N. somalica N. somalica Neoromicia zuluensis N. zuluensis N. zuluensis Hypsugo arabicus H. arabicus Hypsugo ariel H. ariel H. ariel Hypsugo savii H. savii H. savii H. savii Plecotus auritus Plecotus macrobullaris Haplotype Zambia 1 Namibia 7 South Africa 1 Zambia 2 Yemen 5 Yemen 6 Yemen 7 Yemen 8 Namibia 8 Zambia 3 Zambia 4 Ethiopia 10 Ethiopia 11 Ethiopia 12 South Africa 2 Namibia 9 Namibia 10 Oman 3 Oman 4 Yemen 9 Yemen 10 Egypt 7 Syria 1 Greece 3 Montenegro 1 Cyprus 2 – – GBAN KX375172 KX375173 KX375174 KX375175 KX375176 KX375177 KX375178 KX375179 KX375180 KX375181 KX375182 KX375183 KX375184 KX375185 KX375186 KX375187 KX375188 KX375189 KX375190 KX375191 KX375192 KX375193 KX375194 KX375195 KX375196 KX375197 AY665169 KR134407 Country Zambia Namibia South Africa Zambia Yemen Yemen Yemen Yemen Namibia Zambia Zambia Ethiopia Ethiopia Ethiopia South Africa Namibia Namibia Oman Oman Yemen Yemen Egypt Syria Greece Montenegro Cyprus – – Locality Sioma Bush Camp Ghaub Farm Lesetlheng Sioma Bush Camp Ash Shuqayrah Ash Shuqayrah Riqab, Jebel Bura Riqab, Jebel Bura Okashana Livingstone North Luangwa Menagesha Forest Harle Sorobo Mahagala Otjitotongwe Farm Sesfontein Al Nakhar Subakh, Hatta Pools Hawf Damqawt El A’aqab Hayalien Anthiro Gurec Troodos Forest – – Vaucher/Reference NMP RS966 NMP pb5880 NMP 95667 NMP RS986 NMP pb3662 NMP pb3664 NMP pb3124 NMP pb3125 NMP pb5909 NMP RS992 NMP RS1235 NMP pb5484 NMP pb5486 NMP pb5655 NMP 95658 NMP pb6039 NMP pb5802 NMP 92665 NMP 93814 NMP pb3026 NMP pb3051 NMP 92597 NMP 48920 NMP 49029 NMP 90223 NMP 90410 Tsytsulina et al. (2012) Alberdi et al. (2015)