
CRANKS AND T -CORES

Frank Garvan,* Dongsu Kim,** and Dennis Stanton***

Abstract. New statistics on partitions (called cranks) are defined which combina-

torially prove Ramanujan’s congruences for the partition function modulo 5, 7, 11,
and 25. Explicit bijections are given for the equinumerous crank classes. The cranks
are closely related to the t-core of a partition. Using q-series, some explicit formulas
are given for the number of partitions which are t-cores. Some related questions for
self-conjugate and distinct partitions are discussed.

1. Introduction.

Let p(n) be the number of partitions of n [1]. Dyson [7] proposed a combinatorial
proof of Ramanujan’s congruence

p(5n+ 4) ≡ 0 mod 5.

He defined an integral statistic on partitions, called the rank, whose value mod 5
split the set of partitions of 5n+4 into 5 equal classes. He further conjectured that
the rank also proved

p(7n+ 5) ≡ 0 mod 7,

and hypothesized a statistic, called the crank, which would similarly prove

p(11n+ 6) ≡ 0 mod 11.

Atkin and Swinnerton-Dyer [5] proved Dyson’s conjecture for 5 and 7. In [9], a crank
for 11 as well as new cranks for 5 and 7 were found relative to vector partitions.
Later, Andrews and Garvan [3] were able to define a crank, in terms of ordinary
partitions, for 5, 7 and 11, thus completing the solution of Dyson’s crank conjecture.
New relations for the crank of partitions mod 8, 9 and 10 have been found in [10].

Explicit bijections between these equinumerous classes have not been found in
any of these three cases. This should be related to another possible approach to
these problems: split the set of partitions of 5n + 4 into p(5n + 4)/5 classes, each
of size 5. Hopefully, the bijections among the five classes should be realized by a
5-cycle which acts on all partitions of 5n + 4 with no fixed points. The orbits of
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the 5 cycle are the p(5n+4)/5 classes. A crank statistic should be defined which is
{0, 1, 2, 3, 4} on an orbit. A 5-cycle, but no crank, was found by computer in [11].
In this paper, we complete this program by finding dihedral groups of size 10, 14,
and 22 which act on the partitions of 5n+4, 7n+5, and 11n+6, respectively. The 5
(7 or 11) cycles in these groups have no fixed points, thus proving the congruences.
We also define new statistics on partitions, i.e. new cranks, which split the set of
partitions into equinumerous classes. A cycle in the dihedral groups increases the
crank by 1, thus supplying an explicit bijection between the crank classes. Our
definitions of the cycles and the cranks are completely combinatorial.

The key ingredients to our proof are two bijections for partitions and t-cores,
which are given in §2. They allow us to find dihedral groups as symmetry groups of
quadratic forms. There are interesting q-series attached to these forms, and these
q-series imply some remarkable explicit formulas (Theorems 4 and 5 in §5) for the
number of partitions which are t-cores, t = 5 or 7. The explicit cranks are given in
Theorems 2 and 3, and in Proposition 1 of §3 and §4. A crank for 25n+24 is given
in §6. Similar bijections and generating functions for self-conjugate partitions and
partitions with distinct parts are given in §7 and §8.

We shall use the notation for generating function from q-series, e.g.

(a ; q)k =

k−1
∏

i=0

(1− aqi),

so
∞
∑

n=0

p(n)qn =
1

(q ; q)∞
.

2. Two bijections.

In this section we give two bijections relating partitions and t-cores.

First we set the notation. Let P be the set of all partitions. For any λ ∈ P , let
|λ| denote the number that λ partitions. Fix a positive integer t. Let Pt−core be the
set of partitions which are t-cores. Recall that there are two equivalent definitions
of a t-core: a partition λ is a t-core if, and only if, λ has no hook numbers that are
multiples of t [13, 2.7.40]; or if, and only if, λ has no rim hooks that are multiples
of t [13, p. 75]. We let at(n) be the number of partitions of n which are t-cores.

The first bijection is well-known [13, 2.7.17].

Bijection 1. There is a bijection φ1 : P → Pt−core × P × P × · · · × P ,

φ1(λ) = (λ̃, λ0, λ1, . . . , λt−1),

such that |λ| = |λ̃|+ t
∑t−1

i=0 |λi|.

The generating function identity equivalent to Bijection 1 is

(2.1)

∞
∑

n=0

p(n)qn =
1

(qt ; qt)t∞

∞
∑

n=0

at(n)q
n.

The second bijection is on t-cores only.
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Bijection 2. There is a bijection φ2 : Pt−core → {~n = (n0, n1, . . . , nt−1) : ni ∈
Z, n0 + · · ·+ nt−1 = 0}, where

|λ̃| = t‖~n‖2/2 +~b · ~n, ~b = (0, 1, · · · , t− 1).

The generating function identity equivalent to Bijection 2 is

(2.2)
∞
∑

n=0

at(n)q
n =

∑

~n·~1=0
~n∈Z

t

q
t
2‖~n‖

2+~b·~n.

Clearly (2.1) and (2.2) imply

(2.3)
∞
∑

n=0

p(n)qn =
1

(qt; qt)t∞

∑

~n·~1=0
~n∈Z

t

q
t
2‖~n‖

2+~b·~n.

We now give Bijection 2, and sketch Bijection 1.
Let λ̃ be a t-core. Define the vector ~n = φ2(λ̃) in the following way. Label a cell

in the i th row and j th column of λ̃ by j − i mod t. (This is called the t-residue
diagram in [13, p. 84].) We also label the cells in column 0 in the same way, and
call the resulting diagram the extended t-residue diagram. A cell is called exposed
if it is at the end of a row. Region r of the extended t-residue diagram of λ̃ is
the set of cells (i, j) satisfying t(r − 1) ≤ j − i < tr. We now define ni to be the

maximum region of λ̃ which contains an exposed cell labeled i. Since column 0
contains infinitely many exposed cells, ni is well-defined.

If an exposed cell labeled i lies in region r, then there is an exposed cell labeled
i in each region < r. For example, in region r− 1, if i is not exposed, then the rim
hook whose northeast head is i in region r, and whose tail is i + 1 in region r − 1
has length t. (Note: If i = t − 1, the rim hook will lie entirely in region r.) This

contradicts the assumption that λ̃ is a t-core.
Note that the size of the Durfee square of λ̃ is the sum of the positive ni’s, since

this is the number of exposed cells in positive regions.
We next verify that n0+n1+· · ·+nt−1 = 0. Let λ̃′ be the conjugate of λ̃. First we

show that if φ2(λ̃) = (n0, n1, · · · , nt−1), then φ2(λ̃
′) = (−nt−1,−nt−2, · · · ,−n0).

Let a cell labeled i be exposed in region r of λ̃, so that i+1 lies above i. In λ̃′, the
cell corresponding to i+1 will be labeled t− i−1, lie in region 1−r, and not be the
last cell in its row. Thus t− i− 1 is not exposed in region 1− r of λ̃′. This shows
that if i is exposed in region r of λ̃, r ≤ ni; then t− 1− i is not exposed in region r
of λ̃′, r ≥ 1−ni. A similar argument shows that if a boundary cell labeled t− i− 1
is not exposed in region 1− r, then i is exposed in region r. This verifies the claim
about φ2(λ̃

′). Since the size of the Durfee square is unchanged by conjugation, the
sum of the positive ni’s must be equal to minus the sum of the negative ni’s; that
is, n0 + n1 + · · ·+ nt−1 = 0.

The inverse map to φ2 is easy to find: if (n0, n1, · · · , nt−1) is given, then the
exposed cells in each region are known. This in turn gives the lengths of each row
of the Ferrers diagram of λ̃, and thus λ̃.
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Finally we show that if φ2(λ̃) = ~n, then λ̃ is a partition of the exponent in
Bijection 2. The number of cells to the right of the main diagonal of the Ferrers
diagram of λ is

∑

ni>0

ini + t

(

ni

2

)

.

For the cells below the main diagonal, we take λ̃′, to find

−
∑

nj<0

(t− 1− j)nj + t

(−nj

2

)

.

There are
∑

ni>0

ni

cells on the main diagonal. The sum of these three terms is the exponent of q in
(2.3).

We quickly sketch φ1 using the notation in Bijection 2. Given λ, we construct
t biinfinite words in the letters N and E, w0, . . . , wt−1. The j th letter of wi is E
if i is exposed in region j of λ, otherwise the j th letter is N (not exposed). If λ
is a t-core, then each word wi is an infinite sequence of E’s followed by an infinite
sequence of N ’s. In this case, λ = λ̃, and λi = ∅ for all i. Otherwise there is
an E to the right of some N . Find the rightmost E, say in position j. Find the
rightmost N to the left of this E, say in position k < j. Delete a rim hook in
λ whose northeast head is the cell corresponding to E, and whose southwest tail
is adjacent to the cell corresponding to N . Place a part of size j − k in λi. The
new partition has N ’s in wi from position j on, thus the E’s have been pushed to
the left. This operation can be done in any order whatsoever, to finally obtain the
t-core of λ, λ̃. The parts of each λi appear in increasing order.

3. Cranks.

In this section we give the cranks (Theorem 2) and the cycles which give bijec-
tions for these crank classes.

Let r be a residue class of t, and consider p(tn+r). On the right side of (2.3), all

exponents of q which are equivalent to r mod t lie in the multisum. Since ~n ·~1 = 0,
we have t

2‖~n‖2 ≡ 0 mod t. Thus we have

(3.1)
∞
∑

n=0

p(tn+ r)qtn+r =
1

(qt; qt)t∞

∑

~n·~b≡r mod t
~n·~1=0
~n∈Z

t

q
t
2‖~n‖

2+~b·~n.

The symmetry groups of the quadratic forms in (3.1) have been computed by
computer for t ≤ 8 in [11]. Until now, we have assumed that the class t and residue
r are arbitrary. We shall see that the choices of 5n+4, 7n+5, and 11n+6 simplify
(3.1).

For 5n+4 we now change variables so that the symmetry group is obviously the
dihedral group D5 of order 10. The five vectors ~n for φ2(p(4)) are

(1) ~v0 = (1,−1, 0, 0, 0),
(2) ~v1 = (0, 1,−1, 0, 0),
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(3) ~v2 = (0, 0, 1,−1, 0),
(4) ~v3 = (0, 0, 0, 1,−1), and
(5) ~v4 = (1, 1, 0,−1,−1).

They form a non-planar pentagon whose center ~c = (2/5, 1/5, 0,−1/5,−2/5).

We now change variables: write ~n = α0~v0 + · · ·+α4~v4. A vector ~n ∈ Z5 satisfies

~n ·~1 = 0 and ~b ·~n ≡ 4 mod 5 if, and only if, ~n = α0v0 + · · ·+α4v4 for some ~α ∈ Z5

such that ~α ·~1 = 1.

It is easy to see that the quadratic form in (3.1) in terms of the vector ~α is

5‖~α‖2 − 5(α0α1 + α1α2 + · · ·+ α4α0)− 1.

Thus we obtain
∞
∑

n=0

a5(5n+ 4)qn+1 =
∑

~α·~1=1
~α∈Z

t

qQ(~α),

where Q(~α) = ‖~α‖2 − (α0α1 + α1α2 + · · ·+ α4α0). Clearly the dihedral group D5

is the automorphism group.

It is also clear that the 5-cycle which cyclically permutes the αi’s has no fixed
points. Any fixed point ~α must have all entries equal. Since ~α · ~1 = 1, this would
imply that the entries are not integral.

The construction of the quadratic form and the group are completely analogous
for 7n+ 5 and 11n+ 6. We collect these results in a theorem.

Theorem 1. For (t, r) = (5, 4), (7, 5) or (11, 6),

(3.2)
∞
∑

n=0

p(tn+ r)qn+1 =
1

(q ; q)t∞

∑

~α·~1=1
~α∈Z

t

qQ(~α),

where Q(~α) = ‖~α‖2 −∑t−1
i=0 αiαi+1.

It should be noted that other identities for the generating functions of p(tn+ r),
which yield Ramanujan’s congruences, have been found by others. The most famous
of these is Ramanujan’s [19, (17) p.213] identity for p(5n+4), which was considered
by Hardy in agreement with MacMahon as Ramanujan’s most beautiful identity
[19, p.xxxv]. Ramanujan [19, (18) p.213] also found an analog for p(7n+5). In fact
for t = 5α, 7α similar identities have been found by Watson [20]. Using the theory
of modular functions an analog for p(11n + 6) was found by Fine [8, (3.25)] and
extended to higher powers of 11 by Atkin [4]. However, these other identities are
of a different nature than (3.2) and do not yield obvious cranks. Further, Fine’s
identity for t = 11 and Ramanujan’s identity for t = 5 or t = 7 are dissimilar so it
is surprising that an identity like (3.2) holds for all three values t = 5, 7 and 11.

Finally we come to the cranks. An obvious statistic, which is increased by 1
mod 5 each time the α’s are cyclically permuted is

∑4
i=0 iαi. So in terms of the ~α

basis the crank is clear, but in terms of the ~n basis (given combinatorially in §2)
the crank is not clear.
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Theorem 2. A crank statistic for partitions λ of 5n + 4, 7n + 5, or 11n + 6 is
given by the following algorithm.

(1) Find the t-core λ̃ of λ, (t = 5, 7, or 11) by Bijection 1.

(2) Find φ2(λ̃) = ~n by Bijection 2.
(3) Let crank(λ) be the following mod t linear combination:

(t = 5) 4n0 + n1 + n3 + 4n4 for 5n+ 4,
(t = 7) 4n0 + 2n1 + n2 + n4 + 2n5 + 4n6 for 7n+ 5,
(t = 11) 4n0+9n1+5n2+3n3+n4+n6+3n7+5n8+9n9+4n10 for 11n+6.

The new crank is not equal to the rank or the old crank. One can verify this on
the 5 partitions of 9 which are 5-cores: 621, 522, 51111, 33111, and 321111.

4. More cranks.

The cranks in §3 depend only upon the t-core λ̃ of λ, and thus use Bijections 1
and 2. In this section we give two simpler ways (Proposition 1 and Theorem 3) of
computing crank(λ), (one which is as a polynomial in the parts of λ), thus avoiding
Bijections 1 and 2.

First, let rk(λ) be the number of cells in the t-residue diagram of λ which are
labeled k mod t. Suppose that λ is a t-core. A relation between the rk’s and the
ni’s can be found by counting the cells in a row ending with i in region ni. It is

(4.1) rk =
t−1
∑

i=0

(n2
i /2 + niχ(i ≥ k))

where

χ(S) =

{

1/2 if S is true,

−1/2 if S is false.

It is easy to see that (4.1) implies

(4.2) nk = rk − rk+1,

so that the relation in (4.1) for r0 for t-cores becomes

r0 =
t−1
∑

i=0

(r2i − riri+1).

The cranks in Theorem 2 are defined by a linear combination of the ni’s. Using
(4.2), we can find mod t equivalent linear combinations of the rk’s.

Proposition 1. The following mod t linear combinations of the t-residue numbers
rk are crank statistics:

(1) r1 + 2r2 − 2r3 − r4 for 5n+ 4,
(2) 2r1 + r2 + r3 − r4 − r5 − 2r6 for 7n+ 5,
(3) −6r1 − 4r2 − 2r3 − 2r4 − r5 + r6 + 2r7 + 2r8 + 4r9 + 6r10 for 11n+ 6.

Proof. We already know from Theorem 2 that certain linear combinations give
the crank for t-cores, e.g. (2,−1, 1,−2) for t = 5. If we multiply this linear
combination by 3, we obtain (1) for t-cores. We reverse the sign to obtain (2), and
(3) is immediate from Theorem 2. Now consider (1)-(3) as definitions of a crank for
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any partition λ, not just t-cores. Removing a rim hook of length t from λ reduces
each rk by one. The above linear combinations do not change, since the sum of all
of the coefficients is zero. Thus the crank can be defined by Proposition 1 for all
partitions λ. �

Next, we give a definition of a crank based upon the parts of λ : λ1 ≥ λ2 ≥ · · · ≥
λm.

Theorem 3. For t = 5, 7 or 11, let pt(x) = (x − (t − 1)/2)t−3 mod t. A crank
statistic for partitions λ : λ1 ≥ λ2 ≥ · · · ≥ λm of tn + r (where r = 4, 5, and 6,
respectively) is given by

crank(λ) =
m
∑

i=1

(pt(λi − i)− pt(i− 1)) mod t.

Proof. Let ai be the coefficient of ri in Proposition 1. Recall that a1 + a2 + · · · +
at−1 = 0.

First we evaluate the contribution to the crank in Proposition 1 from the first
row of λ. The t-residue diagram of λ has an x ≡ λ1 − 1 mod t at the end of the
first row. Then the contribution of this row to the crank is

(4.3) a1 + a2 + · · ·+ ax.

It remains to find a polynomial whose values at x = 0, 1, . . . , t− 1 agree with (4.3)
mod t. Here are such polynomials:

(1) q5(x) = 3(p5(x)− 4) for t = 5,
(2) q7(x) = −(p7(x)− 4) for t = 7, and
(3) q11(x) = p11(x)− 4 for t = 11.

Thus we have shown that the first row contributes qt(x) ≡ qt(λ1−1)−qt(0) mod t.
Consider row i of the t-residue diagram of λ: the first entry is 1− i mod t, and

the final entry is λi − i mod t. The contribution of this row to the crank is

a1 + a2 + · · ·+ aλi−i + (at+1−i + · · ·+ at−1) ≡
a1 + a2 + · · ·+ aλi−i − (a1 + · · ·+ at−i) ≡ qt(λi − i)− qt(t− i) mod t.

Thus

crank(λ) =
m
∑

i=1

(qt(λi − i)− qt(t− i)) mod t.

Since qt(t − 1 − i) ≡ qt(i) mod t, and qt(i) is a linear function of pt(i), the result
follows. �

5. Associated q-series.
From (2.1) there is an explicit generating function for the partitions of n which

are t-cores. We investigate these functions for t = 5, 7, and 11, and give explicit
formulas for a5(n) and a7(n) in Theorems 4 and 5.

The five cycle in §3 implies that a5(5n+4) ≡ 0 mod 5. However, much more is
true,

(5.1) a5(5n+ 4) = 5a5(n).

we give two proofs of (5.1): one which is analytic, and proves more (Theorem 4),
and another which is a bijection.
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Theorem 4. Let n+1 = 5cpa1
1 · · · pas

s q
b1
1 · · · qbtt be the prime factorization of n+1

into primes pi ≡ 1, 4 mod 5, and qj ≡ 2, 3 mod 5. Then

a5(n) = 5c
s
∏

i=1

pai+1
i − 1

pi − 1

t
∏

j=1

q
bj+1
j + (−1)bj

qj + 1
.

Proof. Clearly (2.1) implies

∞
∑

n=0

a5(n)q
n =

(q5 ; q5)5∞
(q ; q)∞

.

However an identity of Ramanujan ([2, (3.46)] or [6]) is

(5.2) q
(q5 ; q5)5∞
(q ; q)∞

=
∞
∑

n=0

(

n

5

)

qn

(1− qn)2
.

where
(

a
b

)

is the Legendre symbol. Clearly the right side of (5.2) is

∞
∑

n=1

∑

d|n

(

d

5

)

n

d
qn.

so

(5.3) a5(n− 1) =
∑

d|n

(

d

5

)

n

d
.

Since
(

d
5

)

/d is multiplicative, (5.3) and [12, Theorem 265] implies that a5(n− 1) is
multiplicative. It remains to evaluate a5(p

a − 1) for primes p, which can be done
by (5.3). �

The combinatorial proof of (5.1) is explicit: given a partition λ̃ of n which is a
5-core, find five partitions θ0, θ1, θ2, θ3, θ4, of 5n + 4 which are also 5-cores. Let
φ2(λ̃) = ~m. We now give the image under φ2 of the five partitions of 5n+ 4.

(1) φ2(θ0) = (m1 + 2m2 + 2m4 + 1,−m1 − m2 + m3 + m4 + 1, 2m1 + m2 +
2m3,−2m2 − 2m3 −m4 − 1,−2m1 −m3 − 2m4 − 1),

(2) φ2(θ1) = (2m1+2m4+1+m3,−1−m2−2m3−2m4,−2m1−2m2−m4,m1+
2m2 + 2m3,−m1 +m2 +m4 −m3),

(3) φ2(θ2) = (m1 − m2 − m4 + m3, 2m2 + m4 + 1 + 2m3,−m1 − 2m4 − 1 −
2m3,−2m1 − 2m2 −m3, 2m1 +m2 + 2m4),

(4) φ2(θ3) = (−2m1−m2− 2m4,−m1− 2m2− 2m3, 2m2+2m4+1+m3,m1+
m2 −m4 − 1−m3, 2m1 + 2m3 +m4),

(5) φ2(θ4) = (−2m1 −m4 − 2m3, 2m1 + 2m2 +m3,m1 −m2 +m4 −m3,m2 +
2m4 + 1 + 2m3,−m1 − 2m2 − 2m4 − 1).

We delete the verification of this claim. In fact, these five partitions θi form an
orbit under the five cycle, and

crank(θi) ≡ 3i mod 5.
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We denote by γn the 5− to− 1 map from the set of 5-cores of 5n+ 4 to the set of
5-cores of n, γn(θi) = λ̃ for 0 ≤ i ≤ 4.

For t = 7, we have a7(7n + 5) ≡ 0 mod 7. It is not true that a7(7n + 5) =
7a7(n). There are however two multiplicative functions here. The identity which is
analogous to (5.2) is due to Ramanujan [8, p. 159]

(5.4) 8q2
(q7 ; q7)7∞
(q ; q)∞

+ q(q7 ; q7)3∞(q ; q)3∞ =
∞
∑

n=1

(

n

7

)

qn(1 + qn)

(1− qn)3
.

Let a′(n), b(n), c(n) denote the coefficient of qn in the expansion of each of the
three functions in (5.4) so that

8a7(n) = a′(n+ 2),

a′(n) + b(n) = c(n).

We will give in Lemmas 1 and 2 explicit formulas for b(n) and c(n), resulting in an
explicit formula for a7(n) in Theorem 5.

The proof of Theorem 4 analogously establishes the multiplicativity of c(n). We
delete the details. The resulting explicit formula is given in Lemma 1.

Lemma 1. If n = 7cpa1
1 · · · pas

s q
b1
1 · · · qbtt is the prime factorization of n into primes

pi ≡ 1, 2, 4 mod 7, and qj ≡ 3, 5, 6 mod 7, then

c(n) = 72c
s
∏

i=1

p2ai+2
i − 1

p2i − 1

t
∏

j=1

q
2bj+2
j + (−1)bj

q2j + 1
.

To establish the multiplicativity of the sequence b(n), we apply the theory of
modular forms.

Proposition 2. The sequence b(n) is multiplicative, moreover

b(pm) = b(p)b(pm−1)−
(

p

7

)

p2b(pm−2)

for any prime p and integer m ≥ 2.

Proof. If q = e2πiz, the generating function B(z) for b(n) (see (5.4)) can be con-
sidered a function of z in the upper half plane. In terms of the classical η-function
it is B(z) = (η(z)η(7z))3, which is a cusp form of level 7, weight 3, and character
χ(n) =

(

n
7

)

[14, Prob. 12, 13, p.145]. Since this space of cusp forms is one-
dimensional, B(z) must be an eigenform for the Hecke operators Tn. This proves
the multiplicativity of b(n), and the three term recurrence follows from the Euler
product for the associated Dirichlet series [14, p. 160 (5.11)]. �

To find an explicit formula for b(n), we need only find b(p) for all primes p. The
three term recurrence in Proposition 2 gives b(pm), and multiplicativity gives b(n)
for all n. The next proposition gives the values of b(p).
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Proposition 3. Suppose p is an odd prime. If p ≡ 3, 5 or 6 mod 7, then b(p) = 0.
If p ≡ 1, 2 or 4 mod 7, let p = x2 +7y2, where x and y are positive integers. Then
b(p) = 2(x2 − 7y2).

Remark. The result also holds for p = 2 except in this case x = y = 1
2 .

Proof. From Jacobi’s identity for (q ; q)3∞ [12, Thm 357] we find that

b(p) =
∑

m,n≥0
(2m+1)2+7(2n+1)2=8p

(−1)m+n(2m+ 1)(2n+ 1).

We need to determine all of the solutions (m,n) to

(p1) 8p = (2m+ 1)2 + 7(2n+ 1)2,

where m,n ≥ 0. Clearly the right side is a quadratic residue mod 7, so if p ≡ 3, 5
or 6 mod 7, there are no solutions (m,n) to (p1) and b(p) = 0.

Thus we can assume that p ≡ 1, 2 or 4 mod 7. We first show in this case that
p has a unique representation p = x2 + 7y2 for positive integers x, y. We work

in K = Q(
√
−7), whose ring of algebraic integers, OK = Z[ 1+

√
−7

2 ], is a unique
factorization domain [12, Th. 246]. Since

1 =

(

p

7

)

=

(−7

p

)

(by quadratic reciprocity),

p divides a2+7 for some integer a. Since p does not divide a±
√
−7, p is not prime.

Thus p splits
p = ββ̄,

where β = x + y
√
−7 is prime in OK and x, y > 0. Now, x, y ∈ Z, otherwise

x = m + 1
2 , y = n + 1

2 (for some m,n ∈ Z), p = m(m + 1) + 7n(n + 1) + 2 which

is even and contradicts the assumption that p was odd. Hence p = ββ̄ = x2 + 7y2

for some positive integers x, y. The uniqueness of the representation follows from
unique factorization, and the only units being ±1.

We next show that (p1) always has two solutions (m,n), whose contribution to
b(p) is 2(x2 − 7y2). (p1) is equivalent to 2p = γγ̄, where

γ = (2m+1)+(2n+1)
√
−7

2 = x1+y1

√
−7

2 , x1, y1 > 0.

Let
2 =

(

1+
√
−7

2

)(

1−
√
−7

2

)

= ππ̄.

It follows that 2p factors as

2p = (πβ)(π̄β̄) = (πβ̄)(π̄β) = γγ̄.

By unique factorization we must have γ = ±πβ, ±π̄β, ±π̄β̄, or γ = ±πβ̄. This
allows eight possible solutions (x1, y1), six of which violate x1, y1 > 0. The two
solutions can be explicitly given, depending upon which of the three inequalities
0 < y < 7y < x, 0 < x < y < 7y, or 0 < y < x < 7y occur. In each of these three
cases we find b(p) = 2(x2 − 7y2) as required. �

For p ≡ 1, 2 or 4 mod 7 note that Proposition 3 implies that b(p) 6= 0, since
b(p) = 0 would imply that x2 = 7y2, and thus p = 14y2 ≡ 0 mod 7. We also note
that b(p) = 2(x2−7y2) = β2+ β̄2 where p = ββ̄, β = x+y

√
−7 and x, y > 0. Using

the three term recurrence in Proposition 2 and the value of b(p) in Proposition 3,
the value of b(pm) is easily found. It is given in the next lemma.
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Lemma 2. Let n = 7cpa1
1 · · · pas

s q
b1
1 · · · qbtt be the prime factorization of n into

primes pi ≡ 1, 2, 4 mod 7, and qj ≡ 3, 5, 6 mod 7. Let pi = x2i + 7y2i for some
positive integers xi, yi in the case when pi is odd and x1 = y1 = 1

2 for the case
p1 = 2. Then

b(n) = 0 if some bj is odd,

b(n) = (−7)c
s
∏

i=1

β2ai+2
i − β̄2ai+2

i

β2
i − β̄2

i

t
∏

j=1

q
bj
j otherwise,

where βi = xi + yi
√
−7.

Note that Lemma 2 implies that b(pm) = 0 if, and only if, p ≡ 3, 5 or 6 mod 7
and m is odd. We can now state the explicit formula for a7(n).

Theorem 5. Let n+2 = 7cpa1
1 · · · pas

s q
b1
1 · · · qbtt be the prime factorization of n+2

into primes pi ≡ 1, 2, 4 mod 7, and qj ≡ 3, 5, 6 mod 7, then

a7(n) =
1

8
(c(n+ 2)− b(n+ 2)).

where c(n) and b(n) are given in Lemmas 1 and 2 respectively.

We state relations which are corollaries of Theorems 4 and 5.

Corollary 1. The following relations hold:

(1) a5(5
αm− 1) = 5αa5(m− 1) ≡ 0 mod 5α,

(2) a7(7
αm− 2) ≡ 0 mod 7α,

(3) a7(49n+ 19) = 49a7(7n+ 1),
(4) a7(49n+ 33) = 49a7(7n+ 3),
(5) a7(49n+ 40) = 49a7(7n+ 4).

Proof. (1)–(5) are immediate from Theorems 4 and 5. �

For a11(n) there are identities for cusp forms which prove

(5.5) a11(11
αm− 5) = 0 mod 11α

and

(5.6) a11(43n− 5) = 0 mod 44 for (n, 43) = 1.

We delete the proofs of (5.5) and (5.6).

6. A crank for p(25n+ 24).
We can define a group G which acts on the set of partitions of tn+r: G = G1×St,

where G1 is the automorphism group of the quadratic form in Bijection 2, and St

is the symmetric group on t letters. For example, for 5n+ 4, G = D5 × S5, where
D5 is the dihedral group of order 10. We have concentrated on the action of G1 for
congruences. We can also use St for congruences, and do so in this section to find
a crank for

(6.1) p(25n+ 24) ≡ 0 mod 25.

The group G = D5 × S5 for 5n + 4 contains two commuting five cycles which
generate a subgroup of order 25. If each five cycle has no fixed points, then G will
have no fixed points, and the orbits of G will have size 25. We have seen that the
five cycle inside D5 has no fixed points. Since the five cycle in S5 could have fixed
points, we consider two cases to define the crank, which will be an ordered pair of
integers, each between 0 and 4. This ordered pair could be considered as the base
5 expansion for a number between 0 and 24.
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Theorem 6. A crank statistic for partitions λ of 25n+24 is given by the following
algorithm.

(1) Find φ1(λ) = (λ̃, λ0, λ1, λ2, λ3, λ4) given by Bijection 1.
(2) Let crank(λ) be the following ordered pair of integers:

Suppose that λ0 = λ1 = λ2 = λ3 = λ4, so that λ̃ is a partition of 25s+24 for
some s. Let µ1 = γ5s+4(λ̃) and µ2 = γs(µ1) be partitions of 5s+4 and s respectively
(see §5). Put

(i) crank(λ) = (crank(µ1), crank(µ2)).

Suppose that some λi 6= λj, so that the five cyclic permutations of (λ0, λ1, λ2, λ3,λ4)
are distinct. Order these five tuples in lex order, and define the crank of the i th
tuple to be i− 1. Put

(ii) crank(λ) = (crank(λ̃), crank((λ0, λ1, λ2, λ3, λ4))).

Proof. The vectors γn(θi) = λ̃ in §5 form an orbit under C5 ≤ G1, so that the
cranks of these five partitions are {0, 1, 2, 3, 4}.

The second part of the definition similarly interprets C5 × C5, as a subgroup of
G. �

In Theorem 6(2)(ii) the lex order crank can be replaced by using following statis-
tic. Find φ1(λ), and if

|λ0|+ |λ1|+ |λ2|+ |λ3|+ |λ4| ≡ 0 mod 5,

define the crank as in Theorem 6(2)(i). Otherwise define

crank(λ) = (crank(λ̃), |λ1|+ 2|λ2|+ 3|λ3|+ 4|λ4| mod 5).

It is clear that the five cyclic permutations of the λi will give five distinct cranks
for the second component.

7. Self-conjugate partitions.

In this section we consider the restriction of Bijections 1 and 2 to self-conjugate
partitions. Let asct(n) be the number of t-cores which are self-conjugate.

In Bijection 1, suppose that λ is self-conjugate. Then λ̃ must be self-conjugate,
and λ′i = λt−i−1, 0 ≤ i ≤ t − 1. Since (−q ; q2)∞ is the generating function for
self-conjugate partitions, the self-conjugate version of (2.1) is

(7.1a) (−q ; q2)∞ =
1

(q2t ; q2t)
t/2
∞

∞
∑

n=0

asct(n)q
n for t even,

and

(7.1b) (−q ; q2)∞ =
(−qt ; q2t)∞

(q2t ; q2t)
(t−1)/2
∞

∞
∑

n=0

asct(n)q
n for t odd.

While there are congruences for q0(n), the number of self-conjugate partitions of
n, e.g. q0(125n+ 99) ≡ 0 mod 5, it is not obvious how to prove these congruences
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from this approach. Nevertheless, for t = 5 there is a nice Lambert series, and a
theorem analogous to Theorems 4 and 5.

The Lambert series is

(7.2) q(−q ; q2)∞
(q10 ; q10)2∞
(−q5 ; q10)∞

=
∞
∑

n=1

χ20(n)
qn

1− qn
,

where

χ20(n) =

{

0 if (n, 10) > 1,

(−1)
1
2 (n−1) otherwise.

Thus only odd n occur in (7.2), and the appropriate signs for odd n mod 20 are
+− 0−+−+0+−. (7.2) follows from the 6ψ6 summation formula [2, (3.1)]. The
identity (7.2) also follows from an identity of Ramanujan [21, (1) p.60] and Jacobi’s
formula for r2(n), the number of representations of n as a sum of two squares [12,
Thm 278]. The functions r2(n) and asc5(n) are related by

(7.3) r2(n)− r2(
n

5
) = 4asc5(n− 1).

As before we obtain from (7.2) the following theorem.

Theorem 7. Let n + 1 = 2c5dpa1
1 · · · pas

s q
b1
1 · · · qbtt be the prime factorization of

n+ 1 into primes pi ≡ 1 mod 4, and qj ≡ 3 mod 4. Then

asc5(n) =
s
∏

i=1

(ai + 1)
t
∏

j=1

(1 + (−1)bj )/2.

A surprising corollary results.

Corollary 2. The following relations hold:

(1) asc5(2n+ 1) = asc5(n),
(2) asc5(5n+ 4) = asc5(n),
(3) asc5(n) = 0 if and only if there exists a prime q ≡ 3 mod 4 and an odd

integer b such that qb exactly divides n+ 1.

There is a nice combinatorial proof of Corollary 2(2). Suppose λ̃ is a self-
conjugate partition of 5n+ 4 which is a 5-core. It is easy to see that only θ0 of §4
is self-conjugate. Thus, the restriction of the map γn to self-conjugate partitions is
a bijection.

A similar bijection exists for Corollary 2(1). Just replace (n1, n2) in (7.4) by
(−n1 + n2,−n1 − n2 − 1). We do not have a combinatorial proof of Corollary 2(3).

In Bijection 2, clearly we have ni = −nt−1−i, so the generating function becomes

(7.4)

∞
∑

n=0

asct(n)q
n =

∑

~n∈Z⌊t/2⌋

qt‖~n‖
2+~c·~n.

where

~c =

{

(2, 4, · · · , t− 1) for t odd,

(1, 3, · · · , t− 1) for t even,

and ⌊t/2⌋ is the integral part of t/2. Using (7.4) dissections of (−q ; q2)∞ due to
Kolberg [16] can be easily derived.
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8. Partitions with distinct parts.

A bijection analogous to Bijection 1 for partitions with distinct parts has been
given by Morris and Yaseen [17]. In this section we give the appropriate version of
Bijections 1 and 2 for these partitions.

We begin with notation. Let pd(n) be the number of partitions λ of n with
distinct parts. Given such a λ, the shifted Ferrers diagram of λ, S(λ), is the Ferrers
diagram of λ with the i th row shifted to the right by i − 1 cells. The doubled
partition of λ, denoted λλ, is defined by adding λi cells to the i − 1 st column
of S(λ). For example, if λ = 31, then λλ = 43 1. We let DD denote the set of
doubled distinct partitions λλ. We define the t-core of λλ as the usual t-core of
λλ. Let DDt−core be the set of partitions which are t-cores of doubled distinct
partitions, and let addt(n) be the number of these which are partitions of n. We
state without proof that DDt−core ⊂ DD, thus addt(n) = 0 if n is odd.

By restricting Bijection 1, we find a bijection for doubled distinct partitions. We
must take the conjugate of the λ0 in φ1 to find λ0 for φ3.

Bijection 3. There is a bijection φ3 : DD → DDt−core ×DD × P × · · · × P ,

φ1(λλ) = (λ̃λ, λ0, λ1, . . . , λt−1),

such that 2|λ| = |λλ| = |λ̃λ|+ t
∑t−1

i=0 |λi|, and λt−i = λ′i, for 1 ≤ i ≤ t− 1.

The generating function identities equivalent to Bijection 3 is

(8.1a)
∞
∑

n=0

pd(n)q2n =
(−q2t; q2t)∞

(q2t; q2t)
(t−1)/2
∞

∞
∑

n=0

addt(n)q
n for t odd.

and

(8.1b)
∞
∑

n=0

pd(n)q2n =
(−qt; qt)∞

(q2t; q2t)
(t−2)/2
∞

∞
∑

n=0

addt(n)q
n for t even.

Bijection 4. There is a bijection φ4 : DDt−core → {~n = (n0, n1, . . . , nt−1) : ni ∈
Z, n0 = 0, ni = −nt−i, 1 ≤ i ≤ t− 1}, where

|λ̃λ| = t‖~n‖2/2 +~b · ~n, ~b = (0, 1, · · · , t− 1).

The generating function identity equivalent to Bijection 4 is

(8.2)
∞
∑

n=0

addt(n)q
n =

∑

~n∈Z⌊(t−1)/2⌋

qt‖~n‖
2+~d·~n.

where

~d =

{

(1, 3, · · · , t− 2) for t odd,

(2, 4, · · · , t− 2) for t even.
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9. Remarks.

Naturally it is desirable to prove the general congruence for powers of 5, 7, and
11 found in [4, 20]. It would be natural to assume that the symmetry group of the
quadratic form for t = 5a7b11c contains a cycle of the appropriate length. We have
not been able to find this cycle. Our crank for p(25n+24) was inspired by Bailey’s
([6], [2, p. 465]) proof of Ramanujan’s congruence for p(5n + 4). In fact Bailey’s
method also yields the congruence for p(25n + 24). It may be possible to extend
our methods to obtain a crank for p(49n + 47) and p(121n + 116). First we need
to find a crank for a7(49n + 47) and a11(121n + 116). Our present method does
not succeed in these cases since there is no analog of (5.1). It may be easier to
find a mod 49 crank for p(49n+ 19), p(49n+ 33), p(49n+ 40) in view of Corollary
1(3),(4),(5).

In [11] the symmetry groups of the forms associated with p(tn+ r) for t ≤ 8 and
all r were computed. The symmetry groups for p(11n + r) for r 6= 6 need to be
found. There is reason to believe these groups are larger than C2. It seems that an
unusually high proportion of the coefficients of a11(n) are divisible by 11 so there
may be more 11-cycles. A higher proportion of the coefficients are divisible by 5.
In fact, using modular forms which appear in an analog of (5.4) for t = 11, we can
prove the following theorem.

Theorem 8. If
(

n
11

)

= 1 and n not divisble by 5, then a11(n− 5) = 0 mod 5.

We can prove by a bijection from (7.4) that

(9.1) asc7(4n+ 6) = asc7(n).

Further, by utilizing Gauss’ result for sums of three squares [12, p.311] it can be
shown that

(9.2) asc7(n) = 0 if and only if n+ 2 = 4a(8m+ 1).

(This observation was made by Doug McDoniel.)
Kolberg [15, 16] has given several infinite products for dissections of p(n), q(n)

and q0(n). Many of these results (for q(n) and q0(n)) follow easily from (7.4), (8.2)
and the Jacobi triple product formula.

John Stembridge informed the authors of the existence of [17, 18] for distinct
partitions. It should be noted that the definition of t-core given in §8 for t-even
does not agree with [17, 18].
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