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Abstract

In this paper, we describe the IBM Research system for
indexing, analysis, and copy detection of video as applied
to the TRECVID-2009 video retrieval benchmark.

A. High-Level Concept Detection:

This year, our focus was on global and local feature
combination, automatic training data construction from
web domain, and large-scale detection using Hadoop.

1. A_ibm.Global _6: Baseline runs using 98 types of
global features and 3 SVM learning methods;

2. A_ibm.Combine2_5: Fusion of the 2 best models
from 5 candidate models on global / local features;

3. A_ibm.CombineMore_4: Fusion of all 5 candidate
models on global / local features;

4. A_ibm.Single+08_3: Single best model from the 5
candidate models, plus the old models from 2008;

5. C_ibm.Combine2+FlkBox_2:
A_ibm.Combine2_5 with
training data from Flickr;

Combine

automatic  extracted

6. A_ibm.BOR_I: Best overall run, assembled from best
models for each concept using heldout performance.

Overall, almost all the individual components can im-
prove the mean average precision after fused with the
baseline results. To summarize, we have the following
observations from our evaluation results: 1) The global
and local features are complementary to each other, and
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their fusion results outperform either individual types of
features; 2) The more features are combined, the better
the performance, even with simple combination rules; 3)
The development data collected automatically from the
web domain are shown to be useful on a number of the
concepts, although its average performance is not compa-
rable with manually selected training data, partially be-
cause of the large domain gap between web images and
documentary video;

B. Content-Based Copy Detection:

The focus of our copy detection system this year was in
fusing 4 types of complementary fingerprints: a temporal
activity-based fingerprint, keyframe-based color correlo-
gram and SIFTogram fingerprints, and an audio-based
fingerprint. We also considered two approaches (mean-
and median-equalization) for score normalization and fu-
sion across systems that produce vastly different score dis-
tributions and ranges. A summary of our runs is listed
below:

1. ibm.v.balanced.meanBAL: Video-only submission
produced by fusing the temporal activity-based and
keyframe color correlogram-based fingerprints after
mean equalization and score normalization.

2. ibm.v.balanced.medianBAL: As above, but using the
median scores as weighting factors.

3. ibm.v.nofa.meanNOFA: Similar to the first run, but
with internal weights for our temporal method tuned
more conservatively and a higher score threshold ap-
plied to our color feature based method.

4. ibm.v.nofa.medianNOFA: Similar to the meanNOFA
run, but using the median scores for weighting.

5. ibm.m.balanced.meanFuse: For A+V runs, we used
the same 2 video only methods, plus another video



method (SIFTogram) and a temporal audio-based
method. In this run, we used the mean scores of each
constituent for weighting.

6. ibm.m.balanced.medianFuse: As in the above run,
but using median score for weighting.

7. ibm.m.nofa.meanFuse: As with the video-only runs,
we adjusted internal parameters of the temporal
methods and the thresholds for the other methods.

8. ibm.m.nofa.medianFuse: As in the m.nofa.meanFuse
run, but using the median scores for weighting.

Overall, the SIFTogram approach performed best, fol-
lowed by the correlogram approach and the temporal
activity-based fingerprint approach, while audio did not
help. With respect to score normalization and fusion, we
Sfound median equalization to be more effective than mean
equalization.

1 Introduction

This year the IBM team has participated in the TREC
Video Retrieval Track, and submitted results for the High-
Level Feature Detection and Content-Based Copy Detec-
tion tasks. This paper describes the IBM Research system
and examines the approaches and results for both tasks.

The IBM team continues its investigation on high-level
feature detection along three main directions: global / lo-
cal feature combination, large-scale learning with Hadoop
and automatic training data construction from web do-
main. First, we introduce multiple types of local SIFT-
based features in addition to the original 98 types of
global features, in view of the success of local features
in previous evaluations. To efficiently learn from such a
large pool of features, we generated the baseline results
using robust subspace bagging using Hadoop. Multiple
learning strategies have been tested. In addition, we pro-
vided a Type-C run to verify if training data automatically
downloaded and filtered from Flickr can contribute to de-
tecting concepts in the news domain. Finally, multiple
combination strategies were utilized to augment the de-
tection performance for individual concepts. The official
evaluation results show that our best run achieved 56%
improvement over the baseline run in terms of mean aver-
age precision.

For the task of copy detection, our focus was on the
design and fusion of multiple complementary types of
fingerprinting approaches. Specifically, we fuse results
from the following 4 types of fingerprinting approaches:

1. A color correlogram-based method designed for
matching very short copied segments under mild to mod-
erate transformations that are largely color-preserving
(e.g., compression, transcoding, noise, quality reduction,
etc.).

2. A SIFTogram-based method, which is a global frame-
level histogram of quantized visual codewords based on
SIFT local features [8], designed for matching frames
under wider variety of transformations, and especially
ones that substantially perturb colors, such as gamma
correction. Our main focus for this approach was on
scalability and we show that we can still obtain significant
performance boost without the need to do matching and
spatial registration at the local interest point level, which
would make this approach orders of magnitude more
expensive.

3. A temporal visual activity-based method, designed
for matching longer sequences of copied material under
extreme compression, transcoding, and noise transforma-
tions, where weak evidence of frame-level matches can be
accumulated over time to produce a strong segment-level
match without false alarms.

4. A temporal audio activity-based method, which is sim-
ilar to the above but is based on audio energy fingerprints.
We used the color correlogram-based and the visual
activity-based methods to produce our submitted video
only runs. In the audio + video runs, we also added the
SIFTogram method (which wasn’t ready for our video-
only submission) and the audio-based method. Surpris-
ingly, our preliminary audio-based approach ended up
hurting our performance, suggesting that our audio-based
fingerprinting was too simplistic for the task. In contrast,
audio turned out to be an important factor in the A-V task
for other participants, as the best results among all partic-
ipants were obtained from purely audio-based systems.
For fusion across runs, we noted that the two tempo-
ral approaches had very different score distributions than
the two frame-based matching methods (correlogram and



SIFTogram). This was due to boosting factors in our tem-
poral sequence matching approach, which tend to gen-
erate extreme values for confident matches, similar to
a power-law distribution. Simple range normalization
was therefore not sufficient to equalize the score ranges
across all runs before fusion, and we instead use mean-
or median-equalization, followed by a modified linear fu-
sion scheme, which takes into account not only the over-
all confidence scores but also the agreement of matched
segments asserted by each method. Between the score
normalization methods, we found median-equalization to
be more effective than mean-equalization, likely due to
the fact that the median is less sensitive to outliers and
the extreme score values produced by the temporal ap-
proaches. There were only isolated instances in which the
mean equalization method outperformed the median.
Overall, in looking at the results, we were also sur-
prised at the difficulty in choosing the threshold for the
actual NDCR metric. We also note that the “balanced”
profile admits very few false alarms, and suggest that a
more truly balanced profile be included in the future.

2 High-level Feature Detection

Our concept detection system includes multiple base and
meta-level learning algorithms such as robust subspace
bagging with SVMs, cross-domain learning with web
data, and so on. It also consists of different fusion strate-
gies for leveraging multi-modal relationships. We con-
tinue improving the general SVM learning algorithms
to accommodate a larger set of global and local visual
features, and re-implement the learning algorithms on
a MapReduce-based distributed learning system called
Hadoop. The details of these components are explained
in the rest of this section.

2.1 Video Descriptors

All of our features are extracted from the representative
keyframes of each video shot. These keyframes are pro-
vided by LIG[3] and AT&T [7]. Because learning on a
rich set of low-level features has been shown to be effec-
tive in improving the concept detection performance, we
have significantly increased the number of feature types
to be 98, by means of generating 13 different visual de-

scriptors on 8 granularities (i.e., global, center, cross, grid,
horizontal parts, horizontal center, vertical parts and verti-
cal center)'. The relative performance within a given fea-
ture modality (e.g., color histogram vs color correlogram)
is typically consistent across all concepts/topics, but the
relative importance of one feature modality vs. another
varies from one concept to the other.

We apply cross validation on the development data to
evaluate the generalizability of each individual feature.
In the following, we have listed a sample set of descrip-
tors that achieved top overall performance for the concept
modeling task:

e Color Histogram (CH)—global color represented as
a 166-dimensional histogram in HSV color space.

e Color Correlogram (CC) — global color and struc-
ture represented as a 166-dimensional single-banded
auto-correlogram in HSV space using 8 radii depths.

e Color Moments (CM) — localized color extracted
from a 5x5 grid and represented by the first 3 mo-
ments for each grid region in Lab color space as a
normalized 225-dimensional vector.

e Wavelet Texture (WT)—Ilocalized texture extracted
from a 3x3 grid and represented by the normalized
108-dimensional vector of the normalized variances
in 12 Haar wavelet sub-bands for each grid region.

e Edge Histogram (EH)—global edge histograms with
8 edge direction bins and 8 edge magnitude bins,
based on a Sobel filter (64-dimensional).

We also generated 4 types of local SIFT-based features
using the feature extraction tool provided by University
of Amsterdam [11], e.g., SIFT, C-SIFT, RG-SIFT and
Opponent-SIFT. For each type of local features, we cre-
ated a 4000-dimensional codebook by clustering 1 mil-
lion local features using k-means, and converted each
keyframe into bag-of-word representations [10]. In par-
ticular, we used the Harris-Laplace interest point detector
and soft bin assignment with a sigma parameter of 90.

The final number of features is slightly smaller than expected be-
cause some of the visual descriptors are only generated on a selected set
of granularities



2.2 Baseline Methods

We used the annotations officially provided by the col-
laborative annotation forum organized by LIG [3]. In the
learning process, the development data are randomly par-
titioned into three collections: 70% as the training set,
15% as the validation set, and 15% as the held-out set.
Most of our following algorithms are learned on the train-
ing and validation data, while the fusion strategies are de-
termined based on the held-out data.

For each type of features, we applied both the baseline
SVM learning algorithm without any data sampling, as
well as an efficient ensemble approach called “robust sub-
space bagging” (RB-SBag), which enjoys several advan-
tages over SVMs such as being highly efficient in learn-
ing/prediction, robustly performing with theoretical guar-
antee, and easy to parallelize on a distributed learning sys-
tem [12]. From the training data, the algorithm first learns
N base models, each of which is constructed from a bal-
anced set of bootstrapped samples from the positive data
and the negative data with sample ratio r4, unless the sam-
ple size is larger than data size. On the feature side, if the
training data contains multiple feature descriptors, such
as color correlogram, edge histogram, etc., each descrip-
tor is iteratively selected. Then the algorithm can either
use the entire descriptor space, or further sample a subset
of features with a rate of 7. The default parameters for r4
is 0.2 and r¢ is 1. Each model is associated with its 2-fold
cross validation performance, where average precision is
chosen in this case.

To minimize the sensitivity of the parameters for each
base model, we choose the SVM parameters based on a
grid search strategy. In our experiments, we build the
SVM models with different values on the RBF kernel
parameters, the relative cost factors of positive vs. neg-
ative examples, the feature normalization schemes, and
the weights between training error and margin. The op-
timal learning parameters are selected based on the per-
formance measure on the same 2-fold cross validation on
training data. For each low-level feature, we select one
optimal configuration to generate the concept models.

To reduce the risk of overfitting, we control the strength
and correlation of the selected base models by adding a
forward model selection step. In more details, we reserve
a portion of the labeled training data to serve as a vali-
dation set V. for forward model selection. The algorithm
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Figure 1: Illustration of the Map-Reduce implementation
for Robust Subspace Bagging.

iteratively selects the most effective base model from the
model pool, adds it to the composite classifier without
replacement, and evaluates its average precision on V..
Finally, it outputs the ensemble classifier with the high-
est average precision, where the number of selected base
models ¢ is usually much smaller than N. This selection
step is very fast, and typically prunes more than 70-80%
base models in practice.

2.3 Distributed Learning with MapReduce
and Hadoop

The need for distributed computing is apparent for mod-
eling semantic concepts on massive multimedia data,
which can range anywhere from tens of gigabytes, to ter-
abytes or even perabytes. Inspired by the map and re-
duce functions commonly used in functional program-
ming, Dean and Ghemawat [4] introduced a parallel com-
putation paradigm called MapReduce. Its popular open-
source implementation, Hadoop [1], has been success-
fully deployed to process hundreds of terabytes of data
on at least 10,000 processors. Compared with other par-
allel programming frameworks, MapReduce provides the
necessary simplicity by making the details of paralleliza-
tion, fault-tolerance, data distribution and load balancing
transparent to users. Also, this model is easily applica-
ble to a wide range of data-intensive problems, such as
machine learning, information extraction, indexing, graph
construction and so on [4].

The programming model of MapReduce is as follows.
Its basic data structures are a set of (key,value) pairs



with user-specific interpretation. Two individual func-
tions are needed for any computation, called Map and Re-
duce. The Map function first reads a list of input keys
and associated values, and produces a list of intermediate
(key,value) pairs. After grouping and shuffling inter-
mediate pairs with the same keys, the Reduce function is
applied to perform merge operations on all intermediate
pairs for each key, and to output pairs of (key, value)?.
This model provides sufficient high-level information for
parallelization, where the Map function can be executed
in parallel on non-overlapping data partitions, and the Re-
duce function can be executed in parallel on intermediate
pairs with the same keys. Its abstraction can be summa-
rized by the following pseudo-code,

(k‘l, Ul) — liSt(kﬁg, ’UQ),
(]{32, list(’l)g)) — liSt(k‘g, ’U3).

map

reduce

Because of its ensemble structure, RB-SBag can be
straightforwardly transformed into a two-stage MapRe-
duce process. Figure 1 illustrates the main idea of
the MapReduce implementation for RB-SBag based on
Hadoop. The first MapReduce job only contains a train-
ing map function, designed to generate and store the pool
of base models, without using any reduce functions. The
abstraction for its input and output key-values can be writ-
ten as,

([iv t]v Lt?‘ai”) - ([Za t]a Lh)v

where ¢ is concept index, ¢ is the bag index and their joint
vector [¢, t] forms the mapping keys. For values, Ly qin
is the location of training data, and L;, is the location of
the output base model h. After all the base models are
produced, the next MapReduce job computes the predic-
tion results on the validation set V using a validation map
function, conducts forward model selection and combines
multiple models into composite classifiers using a fusion
reduce function. Its abstraction can be written similarly,

mapy

mapy ([Zv t]v Lh) — liSt(ia [th LZred])v
reduce (i,list[Lp, Lzmd]) — (i, Lei),
where Lgre 4 Tefers to the location of prediction results on

V, and L¢; refers to the final composite classifiers.

2Note that the input and output {(key, value) pairs can have different
formats
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Figure 2: Random walk re-ranking of noisy Flickr data

2.4 Automatic Training Data Construction
from Web Domain

In this section we consider the feasibility of leverag-
ing open source multimedia data from various web re-
sources. Online channels provide rich sources for multi-
media training data. User-generated and user-tagged mul-
timedia content can help us understand the visual seman-
tics through crowd-sourcing, and improve the process of
high-level feature detection in terms of cross-domain ap-
plicability and robustness. In particular, we consider im-
ages downloaded from Flickr as our main data source.

However, a large amount of noisy labels might be intro-
duced if we simply use top-ranked examples from Flickr
as the positive examples. Therefore, we applied a random
walk model to automatically filter out the outlier images,
while keeping the image diversity for the following learn-
ing step. Figure 2 shows the overview of our proposed
model. The system takes a textual query ¢ as input and
downloads the top I images from Flickr. Following that,
the association matrix among images M;; is built based
on visual similarity between images ¢ and j, and a ran-
dom walk is performed over it. Finally, we re-rank the set
of images based on the random walk result and return the
top IV re-ranked images as the most relevant and diverse
images for the given query.

Specifically, our basic model is based on the observa-
tion that if an image has more similar images in the ini-
tial Flickr list, it is more likely to be relevant. Therefore,
we compute a random walk over the relevant images for
query ¢, and measure the probability p¥ that a random



Description Run Type | MAP
Global A_ibm.Global_6 A 0.07925
Global + Local, Best 2 models A_ibm.Combine2_5 A 0.11845
Global + Local, All best models A_ibm.CombineMore_4 A 0.11995
Global + Local + TRECOS, Single best model | A_ibm.Single+08_3 C 0.08515
A_ibm.Combine2_5 + Flickr C_ibm.Combine2+FlkBox_2 C 0.0879
Best Overall Run A_ibm.BOR_1 C 0.12355

Table 1: IBM TRECVID 2009 High level Feature Detection Task — Submitted Runs

surfer will end up at image ¢ after k steps. Let P* denote
the probability vector over all images at step k. Initially,
the probability to choose image ¢ is equal for all images,
while for subsequent steps, we perform a random walk
using affinity matrix M:

PFY— M. PR 0 =1/1 1)

In this case, the affinity matrix is calculated based on
visual similarity between pairs of images. Given two im-
ages 4 and j and their feature vectors v; and v;, we firstly
reduce the vector length by removing the vector positions
where both vectors’ value is 0. Assume the new vectors
are vg and v;, we calculate their cos-similarity as follows:

/ /
v; * U

wimeoslPh ) = Tl il
i J

(©))

The final similarity between two images is the aver-
age cos-similarities over the color_correlogram_global,
wavelet_texture_global, and edge_histogram_global fea-
tures.

A standard result of linear algebra (e.g. [5]) states that
if M is a symmetric matrix, and v is a vector not orthog-
onal to the principal eigenvector of the matrix, A1 (M),
then the unit vector in the direction of M*v converges to
A1(M) as k increases to infinity. Here the affinity metric
M is symmetric, and P is not orthogonal to Ay (M), so
the sequence PF converges to a limit P*, which signals
the termination of our model.

Intuitively, the basic model above is able to improve the
relevance of the image list with the given query, however,
it tends to generate near-duplicated images in the final re-
turned list, which is useless in many applications includ-
ing image classification. To penalize the near-duplication
and improve the diversity, we further propose an absorb-
ing random walk framework as shown bellow.

e Loop until top NV images are found:

1. Find top image 7, by random walk over M
2. Set M (i, *) = 0 and repeat.

2.5 Fusion Methods

We applied ensemble fusion methods to combine all con-
cept detection results generated by different modeling
techniques or different features. In particular, we used
a heuristic weighted linear fusion approach to merge the
models. When more than one models are combined, the
best model (according to the AP on the validate set) is as-
signed with a combination weight of 1, and the weight of
a sub-optimal model is determined from the ratio of its
AP to the AP of the best model. If the ratio is larger than
0.95, the sub-optimal model is assigned with weight 1.
Similarly, we assigned weight 0.75 when 0.75 < ratio <
0.95; 0.5 when 0.5 < ratio < 0.75; and dropped models
with ratio < 0.5.

To generate submission runs, we first apply the above
ensembe fusion within the individual approaches and then
fuse detection results as described below and in Table 1.

1. Global: Learning with global visual features using
baseline SVM methods with RBF kernel, RB-SBag
with RBF and x?2 kernels;

2. Local: Learning with local features using RB-SBag
with RBF and x? kernels;

3. Flickr: Learning from auto-cleaned Flickr examples;

4. TRECOS8: The prediction results from the best IBM
TRECVID’2008 runs on 10 overlapping concepts;

5. BOR: Best overall run by compiling the best models
based on heldout performance for each concept.



2.6 Submitted Systems and Results

We have generated multiple runs of detection results
based on the approaches presented before. A number of
runs are submitted to NIST for official evaluation with
their submission name shown. The mean inferred aver-
age precision is used as the measure of the overall per-
formance of the systems. Table 1 lists the performance
of the submitted runs. As can be observed, the baseline
global run offers a reasonable starting performance for the
following combination, but local features clearly provide
considerable and complementary benefits to the predic-
tion results using global features. Selecting and fusing
the two best models from 5 models based on global and
local features can improve the detection performance of
Global baseline by 50%. Fusing more models can pro-
duce slightly higher performance, evidenced by the higher
MAP of A_ibm.CombineMore_4. It is somewhat sur-
prising that the automatically selected web data does not
give any improvement over the original training data. This
clearly shows the large domain gap between web images
and documentary videos. Finally, the best overall run
brings consistent improvement in MAP over runs of all
flavors and raise the MAP to 0.123, or equivalently, 56%
performance improvement over Global baseline.

3 Copy Detection

For the copy detection task, our focus was on the design
and fusion of multiple complementary types of finger-
printing approaches. The overall processing flow is illus-
trated in Figure 3. We considered both frame-based and
temporal sequence-based fingerprinting methods in visual
and audio domains. We also considered two approaches
for score normalization and fusion across systems that
produce vastly different score distributions and ranges,
and we used a novel fusion scheme that incorporates
cross-detector agreement into the confidence-based fu-
sion process. Finally, we leveraged approximate nearest-
neighbor query techniques, and a sophisticated matching
process, for improving scalability without increasing false
alarm rates.

3.1 Fingerprinting Methods

We used two distinct methods for fingerprinting videos—
one based on extracting temporal activity-based finger-
prints over sequences of visual or audio frames; the other
based on fingerprinting of individual frames. The frame-
based approach is designed to detect very short segments
of copied material, where strong matches at the frame
level can be sufficient to infer segment duplication with-
out false alarms. The temporal sequence-based approach
on the other hand is designed to catch copied segments,
where individual frames may not match strongly enough
but weak consistent matches over a longer temporal se-
quence can accumulate enough evidence to declare a seg-
ment match without false alarms. The two approaches
were designed to be complementary, although we note
that due to the design of the TRECVID CBCD task itself,
the frame-based approach performs much better since the
copied segments in the synthetically generated TRECVID
CBCD queries are generally very short (i.e., between 3
sec and 1 min).

3.1.1 Temporal Sequence-Based Fingerprints

This method is based on extracting feature vectors from
short overlapping subsequences of variable length. We
scan the video as a time series and detect interesting
“events” along the time series, which form starting and
ending points for each feature vector. The local minima
and maxima of a frame-global energy feature are used as
proxies for identifying these events. We select a mini-
mum and maximum sequence duration, which are glob-
ally fixed constraints, and generate sets of overlapping
event boundary-aligned segments spanning one or more
events. We partition each of the generated segments into
a fixed number of equi-sized regions, compute an over-
all energy measure for each region, and produce a fixed
length vector which represents the time sequence. Each
vector is normalized with respect to its mean and range,
and indexed into a bracket with other vectors of the same
temporal span for nearest neighbor lookup later. This pro-
cess results in many overlapping fingerprint sequences of
varying lengths, from the minimum to the maximum se-
quence duration. The temporal method is designed to be
robust with respect to color transforms, blur, noise, com-
pression and geometric transforms such as flipping and
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Figure 3: Overview of fingerprinting approaches and generated runs for TRECVID 2009 CBCD task.

rotation. It is however dependent on having a sufficiently
long matched segment. We applied this technique for ex-
tracting temporal activity-based fingerprints both from the
visual and audio domains using energy-based elemental
features from each domain.

3.1.2 Frame-Based Color Fingerprints

With the frame-based methods, we sample video frames
at a regular interval of 1 frame per second, and extract
visual descriptors from each frame.®> The first descriptor
we considered was the color correlogram [6], which cap-
tures the local spatial correlation of pairs of colors, and
is essentially a second-order statistic on the color distri-
bution. The color correlogram is rotation-invariant and
was designed to tolerate moderate changes in appearance
and shape due to viewingpoint changes, camera zoom,
noise, compression, and to some extent, shifts, crops,
resizing and aspect ratio changes. We use a “cross’-
layout formulation of the correlogram which extracts the
descriptor from two horizontal and vertical central im-
age stripes, emphasizing the center portion of the im-
age and disregarding the corners. The cross formula-
tion doubles the dimensionality of the descriptor but im-
proves robustness due to text/logo overlay, borders, small
crops and shifts, etc. It is also invariant to horizontal

3We did not bother reducing the number of frames by applying a
keyframe detector since we wanted to oversample frames for better ro-
bustness, and did not want to depend on the accuracy of a keyframe
detector.

or vertical flips, while still capturing some spatial lay-
out information. We extract an auto correlogram in a
166-dimensional quantized HSV color space, resulting in
a 332-dimensional overal descriptor length for the cross
color auto- correlogram feature vector. De-bordering and
filtering blank frames as a preprocessing step avoids de-
generate and / or useless feature vectors, and we use a
contrast-limited histogram equalization to normalize con-
trast and gamma. The reference vectors are then in-
dexed for nearest neighbor lookup later. The correlogram
fingerprint performs well against mild to moderate geo-
metric transforms, resampling, noise, and linear intensity
changes but does not handle non-linear gamma correction
changes or hue/saturation transforms, which lead to dram-
matic changes in color.

3.1.3 Frame-Based SIFTogram Fingerprints

SIFT features have been found to be very powerful de-
scriptors for image retrieval |[8]. However, computation-
ally, it is very difficult to scale local point matching
against a large reference set of video frames and cor-
responding image patches. For example, a typical im-
age will generate on the order of 500 interest points
and corresponding SIFT features, which would result
in roughly 700M image patch fingerprints for our ref-
erence set of 1.4M frames extracted from the 400-hour
TRECVID CBCD reference set. Instead, we use the “bag-
of-words” approach [10] to leverage the retrieval power
and color-, rotation-, shift-, and scale-invariance of lo-



cal features while balancing computation time. Follow-
ing this method, we extract SIFT local features from the
reference videos and generate a codebook of representa-
tives by clustering 1M sample SIFT features into 1000
clusters. The centroids of these clusters become visual
codewords, which are used to quantize any SIFT feature
into a discrete visual word. For each sampled frame in the
reference and query video sets, we then compute a his-
togram of the codewords, making a global feature from
the set of local ones. The number of codewords is the
dimensionality of the feature vector, in our case, 1000.
We made use of the “Color Descriptor” software from the
University of Amsterdam [11]. In particular, we used the
Harris-Laplace interest point detector, the plain SIFT de-
scriptor, and soft bin assignment with a sigma parameter
of 90. Once extracted, reference set features are placed
into a nearest neighbor index for retrieval later. Query
videos are processed using the same pre-generated code-
book. This “SIFTogram” feature is robust with respect to
changes in colors, gamma, rotation, scale, shift, borders
and a certain amount of crop or overlaid text/graphics.

3.2 Indexing

To enable us to do experiments quickly, and substantially
reduce our query processing time, we used an approxi-
mate nearest neighbor index for querying the reference
set features. Specifically, for the temporal sequence-based
descriptors, we used the ANN library* [2] for approxi-
mate nearest-neighbor searching, and for the frame-based
descriptors, we used the Fast Library for Approximate
Nearest Neighbor (FLANN) package5 [9]. Both are open-
source, and of the two, FLANN is more recent and in-
cludes tools for automating indexing algorithm and pa-
rameter selection based on the data set being indexed,
which ultimately lead to better performance.® We found
that with the correlogram based visual method, FLANN
sped up our query times by a factor of 50 without having
a significant effect on accuracy.

“http://www.cs.umd.edu/ mount/ ANN/

Shttp://www.cs.ubc.ca/ mariusm/index.php/FLANN/FLANN

6We used two libraries for approximate nearest-neighbor search due
to pre-existing legacy code, which was based on the older ANN library.
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3.3 Fusion

Each of our submissions was the result of fusing together
two or more of our four methods. For the video-only
task submissions, we fused the results from the tempo-
ral sequence method and the cross color correlogram (or
“visual”) method. For the audio+video task, we fused
those two along with the SIFTogram and temporal au-
dio sequence methods. We used a relatively simple fu-
sion process, dividing the score from each component’s
best match by either the mean or median score from the
2008 data for that component. We found that the me-
dian worked better, due to the fact that outliers on the
high end of scores (very positive matches) would raise the
mean, causing the scores from that component method to
be deemphasized in the fused result, if that inflated mean
was used as a normalization factor. We also added a bonus
to a fused match based on the F1 score of the combined
result. We note that better performance could likely be
achieved, particularly in a truly balanced-cost profile, if
we considered fusion of secondary results as well as the
highest-scoring results from each method.
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3.4 CBCD Results

For our video-only submissions, we used just the tempo-
ral and color correlogram based methods. For the later
submissions in the audio+video task, we also added the
SIFTogram and audio-temporal methods. We focused
the tuning of our system performance on the transforma-
tions that we felt were most likely to be encountered on
the web, in live copy detection systems. This comprised
transforms three through six: insertions of a pattern, reen-
coding, change of gamma, and decrease in quality. These
transformations can occur as users copy and share videos
without even intending to transform the video. We antic-
ipated that our system, with its exclusive use of frame-
global features, would be unlikely to do well on the
picture-in-picture transform or on some of the heavy post-
production type of transforms, and we simply focused on
eliminating false alarms for those cases.

3.4.1 A Note on Application Profiles

Our discussion of results focuses on the “no false alarms”
profile. We have found that zero false alarms is a highly
desired feature in systems for commercial deployment.

Additionally, for the CBCD task, the “balanced” profile
is actually very similar to the NOFA profile. The Normal-
ized Detection Cost Ratio is computed as

NDCR = Pyss + 8% Rpa
where
B=CFA/(Cpiss * Riarget) = 2

for the balanced profile. The false alarm rate R4, is
defined as

Rpa = FP/TqueM'es

where Tqyeries /= 7.3 hours for the 201 queries in the
2009 dataset. Therefore,

NDCR = Ppiss +0.28 « FP

This means that each false alarm increases NDCR by
0.28. Since we can obtain a trivial NDCR of 1.0 by sub-
mitting an empty result set, the balanced profile is essen-
tially a “3-false-alarm profile”.

Furthermore, in our analysis of the reported results, we
focus on the optimal NDCR metric, rather than consider-
ing the actual submitted thresholds. This is due to the fact
that nearly universally, the thresholds submitted by par-
ticipants resulted in NDCR scores greater than 1.0 (i.e.,
at least 1 false alarm), which would be worse than a triv-
ial empty submission. Figure 4 shows the actual NDCR
scores for submitted thresholds for the NOFA profile of
the video-only task. Although the IBM runs did achieve
an actual NDCR slightly less than 1, we think these re-
sults underscore the fact that the difficulty of threshold
selection is an interesting problem by itself. One possi-
ble explanation for this poor generalization of threshold
by nearly all participants could be due to the fact that the
transformation parameters used in the TRECVID 2009
CBCD task were slightly changed from those in 2008.
Therefore, using the 2008 training dataset to optimize pa-
rameters and select thresholds did not generalize to the
2009 data. It may be that a deployed copy detection sys-
tem would have to determine its operating thresholds in-
situ, as queries are processed, and feedback is manually
entered into the system.
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3.4.2 Discussion of Results

We tested each of the methods we developed or improved
for TRECVID 2009 on the TRECVID CBCD 2008 data
and obtained the results shown in figure 5. Figure 5 also
shows our results from our 2008 submissions for compar-
ison. Finally, figure 5 also shows the fused runs which
combine the results of the temporal, color and SIFTogram
methods. These fused runs are labeled in the figure 5 as
2008 Multimodal and 2009 Multimodal. The “2008 Mul-
timodal” run was a fusion of the 2008 temporal method
and the 2008 visual method. The run labeled “2009 Multi-
modal” fused together the 2009 temporal, 2009 visual and
SIFTogram methods. By tuning our fusion parameters,
we were able to generate a fused run (“2009 Multimodal”)
which outperformed each single component run on the
2008 data. Figure 6 shows the corresponding results for
the 2009 methods on the 2009 data. It turned out that for
the 2009 data set, the fusion method was not always su-
perior. In fact, when a single optimal NDCR threshold is
selected for all transforms, instead of per-transform, the
minimal NDCR for the SIFTogram alone is significantly
better than the same measure for the fused runs which
we submitted, as can be seen in figure 7. In that fig-

Figure 7: A+V Results for various IBM Runs on 2009
Data

ure, “medFuseVisTempSiftAudio” refers to our submit-
ted audio+visual run, which was produced by fusing to-
gether component scores, using the median score value
as a normalizing factor. The line labeled “SIFTogram”
shows the results for just that component. After receiving
the ground truth for the 2009 results, we still found it diffi-
cult to improve on the SIFTogram result solely by fusing
with different normalizing parameters. The run “tuned-
FuseSIFTVisTemp” represents a fusion of the video tem-
poral, color and SIFTogram methods that slightly outper-
forms the SIFTogram-only method, but the difference is
negligible.

In comparing our submitted runs with those of other
participants, we are pleased to report leading performance
for our ibm.m.nofa.medFuse run on transform 6 in the au-
dio+video task, which we had targeted. In figure 9 we
show the optimal NDCR for the T6-related AV transforms
alongside other submissions with an NDCR less than 1.
Transform 6 consisted of 3 transformations chosen ran-
domly from the following: blur, change of gamma (T4),
frame dropping, contrast, compression (T3), ratio, and
addition of white noise. As can be seen from figure 6,



our performance on this transform is due largely to the
SIFTogram component. We did not have the SIFTogram
component of our system ready for the video-only run
submission, but we later computed the results of this
method on the 2009 video-only queries, and they are
shown in 8. Figure 8 shows the optimal NDCR for a
single optimal threshold chosen for all the query videos
transformed with T3, T4, TS5 and T6. Our SIFTogram run
would have outperformed our component fusion runs on
this measure, as well as the runs submitted by other par-
ticipants, on these 4 transforms. We also note that our
system achieved a high degree of performance consider-
ing the CPU time used, as can be seen in figure 10. This
graph shows the CPU time consumed per query video
plotted against the optimal NDCR achieved over all the
video-only queries for all of the participants. The IBM
runs are marked in blue, while other runs are red. There
was a wide range of reported CPU times, so we have
used a log scale on the horizontal axis. Points closest to
the origin are preferred, and by this metric our submitted
ibm.m.nofa.medFuse run is surpassed by only one other
institution. We also include 3 runs in figure 10 which were
not submitted. They are the color frame based method and
the SIFTogram method alone, along with a fusion of the
two. The SIFTogram performs best, but at a higher com-
putational cost. The reported times are for a quad-core,
parallel implementation.

In summary, our system makes use of frame-global fea-
tures in a focused effort to trade off some limitations to
achieve higher speed. The system still manages to do very
well on transforms related to quality degradation which
are common online.

4 Conclusions

IBM Research team participated in the TREC Video
Retrieval Track Concept Detection and Copy Detection
tasks. In this paper, we have presented results and experi-
ments for both tasks. For Concept Detection, we found
global and local features to be complementary to each
other, and their fusion results outperform either individual
types of features. We also note that the more features are
combined, the better the performance, even with simple
combination rules. Finally, development data collected
automatically from the web domain are shown to be use-
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Figure 8: Video-Only Results for T3-T6 queries in ag-
gregate. We show an “unofficial” run of our SIFTogram
method compared with the fused runs we submitted and
other participants.

ful on a number of the concepts. On Content Based Copy
Detection, the SIFTogram method with approximate near-
est neighbor indexing proved to be particularly efficient
and highly accurate on the targeted transforms.
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