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Abstract

This paper presents an overview and comparative analysis of our systems designed for the TRECVID

2015 [1] multimedia event detection (MED) task. We submitted 17 runs, of which 5 each for the zero-

example, 10-example and 100-example subtasks for the Pre-Specified (PS) event detection and 2 runs for

the 10-example subtask for the Ad-Hoc (AH) event detection. We did not participate in the Interactive

Run. This year we focus on three different parts of the MED task: 1) extending the size of our concept

bank and combining it with improved dense trajectories; 2) exploring strategies for semantic query

generation (SQG); and 3) combining our visual classifiers with audio and/or textual classifiers. Among

our 17 submitted runs, the following runs achieved top performances:

- VIREO MED15 MED15EvalFull PS 0Ex MED p-manualfused 1: zero-example system with man-

ual SQG, fused with textual (OCR) and speech (ASR) information.

- VIREO MED15 MED15EvalFull PS 10Ex MED p-ConceptBankIDTEK0OCR 1: 10-example sys-

tem using our Concept-Bank feature fused with the improved dense trajectories and the 0Ex manual

visual system and OCR.

- VIREO MED15 MED15EvalFull PS 100Ex MED c-ConceptBankIDTJointProb 1: 100-example sys-

tem using Concept-Bank feature fused with the improved dense trajectories, using the joint prob-

ability to create the score.

1 Introduction

The main difference between TRECVID MED 2014 and 2015 is that we were allowed to provide five

runs in the Pre-Specified (PS) case and two runs in the Ad-Hoc (AH) case. With these comparison runs,

we may reasonably evaluate how each component of our system contributes to the result. Furthermore,

speech recognition information was provided by LIMSI [2]. We used these changes to conduct research that

focuses on 1) extending the size of our concept bank and combining it with improved dense trajectories;

2) exploring strategies for semantic query generation (SQG); and 3) combining our visual classifiers with

audio and/or textual classifiers. The next section explains how we use different modalities in our system.

Section 3 describes our systems and runs for the different amount of training examples, i.e., zero, ten or

hundred.



2 Modalities

In our system we use three type of modalities: visual, textual and speech.

2.1 Visual

For our visual system, we first decompose each video into two-granularity levels – keyframe level and

shot level. The keyframe sampling rate is set to be one frame per two seconds and the time duration of

shot is set to be five seconds. For each video, we generate 6 kinds of high-level concept feature and 1

kind of low-level motion feature. All the features used in our visual system are summarized as below:

- ImageNet 1000

We use the same DCNN architecture proposed by G. Hinton in [3]. Specifically, the used DCNN

architecture can be denoted as Image − C48 − P − N − C128 − P − N − C192 − C192 − C128 −
P − F4096 − F4096 − F1000, in which C are the convolutional layers followed by the number of

filters, F are the fully-connected layers, P are the max-pooling layers and N are the local contrast

normalization layers. The parameters of DCNN are learnt on ILSVRC-2012 [4], which is a subset of

ImageNet dataset with 1.26 million training images from 1,000 categories. The neural responses of

the eight layer (F1000) for each keyframe are average pooled to form the video-level feature vector.

- SIN 346 [5]

A set of 346 concept detectors fine-tuned with a DCNN structure on the TRECVID SIN 2014

dataset is applied on all keyframes and average pooled to a video level representation.

- RC 497

Similar to [6], we select 497 concepts from the MED’14 Research Collection dataset [7]. We manually

annotate at most 200 positive keyframes for each concept and fine-tuned 497 concept detectors using

DCNN architecture. As with the previous methods, we concatenate the responses of the concept

classifiers on each keyframe and average pooled the resulting feature vectors to form a video feature

representation.

- Places 205

Multimedia events usually happen in notable sceneries, e.g., “Bike Trick” contains outdoor back-

grounds such as “Park” or “Road” scenes, whereas “Cleaning an Appliance” contains indoor scenes

such as “kitchen”. To capture the scenery information for multimedia events, we fine-tune 205

scene categories on the MIT places dataset [8] using a DCNN architecture. The scenery concept

responses are extracted on each keyframe and further pooled to form video-level representation.

- FCVID 239

To capture the action/motion information of multimedia events, 239 concept detectors are trained

with an SVM on the FCVID [9] dataset, which contains 91,223 web videos. Since concepts from

this dataset are mainly action/motion concepts annotated at video-level, we extract DCNN layer

7 [3] responses from frames and pool it across the temporal domain to generate training features

and train video-level concept detectors. We concatenate the responses of 205 concept detectors of

an image.

- Sports 487

487 concept detectors are trained with 3D CNN structure [10] on the Sport-1M dataset [11] contain-

ing 1 million videos. Similar to FCVID, Sports-1M are mainly action/motion concepts annotated

at video level.



To capture semantical meaning of multimedia event, we collect all the above concept features and

form a large Concept-Bank with 2,774 semantical concepts related to visual objects, background

scenery and actions.

- Improved Dense Trajectory [12]

We extract the state-of-the-art motion feature - improved dense trajectory (IDT) - at video level.

The IDTs contain the following features: histograms of oriented gradients (HOG), histograms of

oriented flow (HOF), and motion boundary histograms (MBH). For each of these three features, we

reduce the descriptor size by a factor of two using principal component analysis (PCA), and encode a

fisher vector (FV) with the use of a pre-learned Gaussian Mixture Model (k=256). Then the fisher

vectors are concatenated and normalized using the power norm and L2 norm, and subsequently

classification is performed with a linear SVM.

2.2 Textual

Tesseract OCR[13] is used to extract text from video frames. The engine is applied in a brute-force

manner with post processing on the resulting extracted texts. From a video segment, every key video

frame (roughly one per second) is decoded using the FFmpeg open-source library. All key frames are

then fed to the Tesseract engine for OCR. The resulting texts are analyzed to check whether meaningful

text is extracted from the video frame. This post-processing checks the words in the extracted text per

frame using the following rules:

1. every word has at least 3 characters,

2. every word should have at least one vowel,

3. every word should match with US-English dictionary (using Python Enchant spell-checking library).

Words that abide to all conditions are kept.

The results from Tesseract per video are fed into Lucene to index and search in the text. A manually

defined Boolean query based on the event description and Wikipedia is used in combination with the

term frequency to retrieve the positive videos.

2.3 Speech

For the speech information, we use the data provided by LIMSI [2]. A manually defined Boolean

query in combination with a PhraseQuery is used to search for relevant speech information. The standard

Dirichlet Language Model in Lucene is used to calculate the similarity between this manually defined

query and the audio file of a video and used to rank the videos.

3 Systems per Subtask

In this section, we will explain the systems used for each of the subtasks as well as which runs we

submitted.

3.1 Zero Example

For the 20 PS events, five runs are submitted for 0-Ex subtask:



- VIREO MED15 MED15EvalFull PS 0Ex MED c-automaticfused 1: zero-example system with au-

tomatic SQG, fused with textual (OCR) and speech (ASR) information.

- VIREO MED15 MED15EvalFull PS 0Ex MED c-manualvisual 1: zero-example system with man-

ual SQG using only our visual classifiers.

- VIREO MED15 MED15EvalFull PS 0Ex MED c-word2vecfused 1: zero-example system with SQG

by word2vec, fused with textual (OCR) and speech (ASR) information.

- VIREO MED15 MED15EvalFull PS 0Ex MED c-word2vecvisual 1: zero-example system with SQG

by word2vec using only our visual classifiers.

- VIREO MED15 MED15EvalFull PS 0Ex MED p-manualfused 1: zero-example system with man-

ual SQG, fused with textual (OCR) and speech (ASR) information (primary run for the 0-Ex

case).

The following subsections explain the automatic SQG, manual SQG, Word2Vec method and fusion

strategy in more detail.

3.1.1 Automatic SQG

Zero-example system aims to pick up and score the event-relevant concepts in concept bank by doing

textual mapping between event kits and concept names. This year we follow our last year’s pipeline [14].

Based on the findings last year, improvements are focused on the following two folds: 1) a large concept

bank which has 2,774 concepts that cover a broad range of topics with varying granularity; 2) a strategy

of how to wisely pick up the right concepts for each event.

An important observation we recall from last year is that by choosing only a few top concepts from

the concept bank we can achieve higher performance compared to choosing more concepts as adding more

concepts might increase the noise. This, however, does not indicate that enlarging the concept bank is

useless, because a larger concept bank increases the chance of an accurate event-to-concept match.

Compared to the 1,843 concepts used in last year, this year we additionally include Sports 487,

FCVID 239, and Places 205. In Places 205 are detectors for scenes which can compensate the 1,843

concepts that for the majority consists of objects. FCVID 239 contains detectors for high-level topics

and events. Sports 487 is the dataset proven to have good contribution by CMU’s report in MED ’14 [15]

and a latter summarization on zero-example case [16]. We also observe a similar trend in performance

after necessary edits to the concept names, e.g. “charreada” is a horse riding sport. To this end, the whole

concept bank has much broader coverage with varied granularity, thus better potential in representing

an event.

While increasing the size of concept bank helps in increasing the chance of hit, it also raises the

risk of picking up noisy concepts. Therefore a good strategy is required to ensure we only select the

right concepts for event representation. From manual SQG, we find that when there already exists a

concept detector for detecting the whole event, it would be generally wise to only include concepts that

are distinctive to this event. Take the event playing fetch as an example, if a detector exactly named

“playing fetch” is found, simply adding the concept “yard” would degrade the performance as yard may

also appear in many other events, which inevitably brings noise. On the contrary, if no detector for the

whole event is found, it is beneficial to use a few accurate concepts to represent the event as concluded in

our last year’s report [14]. However, it’s difficult to require the concepts to be event-distinctive without

human knowledge. Hence, we simply ignore other concepts if a detector for the whole event is found for

automatic SQG.



3.1.2 Manual SQG

In the query phase, human subjects can be involved to refine the automatically generated semantic

query. For convenience, our manual SQG is based on the results of automatic SQG. Typically, the

automatic SQG system will loosely recommend more than 30 concepts for a human subject to perform

concept screening. Along this process, noisy concepts are expected to be removed, leaving only relevant

concepts.

This year, thanks to the involvement of FCVID concepts, many of which have similar semantics of

MED events, we basically follow the steps below for manual concept screening:

• Remove false positives by looking at the names of concepts;

• Remove concepts for which training videos appear in very different context based on human’s

common sense;

• Only carefully include concepts that are distinctive to this event if a concept detector with the same

name of the event can be found.

3.1.3 Word2Vec

For the semantic query generation with Word2Vec we use the Gensim code and the pre-trained

GoogleNews model [17] to find the similarity between the event name and each of our concept classifier

labels. This similarity is used as our weight. This weight is used in combination with the following

strategy to determine which classifiers to use:

• 1. Direct match: the classifier label has a similarity of 1.0 with our event name. We use only the

direct matches;

• 2. Indirect match: for each word in the event name a direct match with a classifier label can be

found, for example “win” and “race” in “winning a race”. Only these indirect matches are used;

• 3. Top 3: if no indirect or direct matches can be found, we use the three classifier labels with the

highest similarity to the event name.

The score of a video is the linear combination of the weighted concept detector output scores.

3.1.4 Fusion

In the fusion we combine the scores of the SQG method with the ASR and OCR output. Because

the score distributions of the ASR and OCR outputs from Lucene and the visual detectors are different,

it is hard to normalize. We, therefore, choose to implement a high precision OCR and ASR re-ranking

method, so we could use the fusion to boost the events that are almost certainly positive to the top of

the ranked list. This is done by adding the OCR and/or ASR scores of the retrieved videos to the scores

of the visual system.

3.2 Ten Example

In the ten example Pre-Specified subtask we submitted five runs and in the Ad Hoc subtask we

submitted two runs:

- VIREO MED15 MED15EvalFull PS 10Ex MED c-ConceptBank 1: 10-example system based on

our Concept-Bank feature.



- VIREO MED15 MED15EvalFull PS 10Ex MED c-ConceptBankIDT 1: 10-example system using

Concept-Bank feature fused with the improved dense trajectories.

- VIREO MED15 MED15EvalFull PS 10Ex MED c-ConceptBankIDTEK0 1: 10-example system us-

ing our Concept-Bank feature fused with the improved dense trajectories and the 0Ex manual visual

system.

- VIREO MED15 MED15EvalFull PS 10Ex MED c-ConceptBankIDTEK0OCRASR 1: 10-example

system using our Concept-Bank feature fused with the improved dense trajectories, the 0Ex manual

visual system, ASR and OCR.

- VIREO MED15 MED15EvalFull PS 10Ex MED p-ConceptBankIDTEK0OCR 1: 10-example sys-

tem using our Concept-Bank feature fused with the improved dense trajectories, the 0Ex manual

visual system and OCR.

- VIREO MED15 MED15EvalFull AH 10Ex MED c-visual 1 : 10-example ad hoc system using our

Concept-Bank feature fused with the improved dense trajectories.

- VIREO MED15 MED15EvalFull AH 10Ex MED p-visualtextual 1: 10-example ad hoc system us-

ing our Concept-Bank feature fused with the improved dense trajectories, the 0Ex manual visual

system and OCR.

The following subsections explain the training of the visual classifiers, the combination of the Concept-

Bank feature with the improved dense trajectories (IDT) and the fusion of the 10-Ex system with the

0Ex system. The fusion method with ASR and OCR is the same as explained in the previous section.

3.2.1 Visual Classifiers

The Concept-Bank features, i.e., ImageNet 1000, SIN 346, RC 497, Places 205, FCVID 239 and

Sports 487, are first concatenated to one feature vector and then used to train an event classifier us-

ing Chi-Square SVM.

For the event classifiers based on the improved dense trajectory feature, we follow the standard pipeline

as in [12] and train the classifier with linear SVM.

3.2.2 Fusion

To properly fuse results of different system, we empirically design three stages of fusion strategy for

10-Ex system summarized as below:

• Concept-Bank + IDT

Average fusion is used to directly combine scores of Concept-Bank based SVM and IDT SVM. This

output is named as Visual-System.

• Visual-System + 0-Ex

Average fusion is used to combine output scores of Visual System and 0-Ex System. This output

is named as Visual-Zero System.

• Visual-Zero + OCR/ASR

We use similar strategy presented in section 3.1.4 to fuse OCR/ASR system with Visual-Zero

system.



3.3 Hundred Example

In the hundred example Pre-Specified subtask we submitted five runs:

- VIREO MED15 MED15EvalFull PS 100Ex MED c-ConceptBank 1: 100-example system using only

our Concept-Bank feature.

- VIREO MED15 MED15EvalFull PS 100Ex MED c-ConceptBankIDT 1: 100-example system us-

ing our Concept-Bank feature fused with the improved dense trajectories.

- VIREO MED15 MED15EvalFull PS 100Ex MED c-ConceptBankIDTJointProb 1: 100-example sys-

tem using Concept-Bank feature fused with the improved dense trajectories, using the joint prob-

ability to create the score.

- VIREO MED15 MED15EvalFull PS 100Ex MED c-ConceptBankIDTOCRASR 1: 100-example sys-

tem using both our Concept-Bank feature fused with the improved dense trajectories and the OCR

and ASR information.

- VIREO MED15 MED15EvalFull PS 100Ex MED p-ConceptBankIDTOCR 1: 100-example system

using both our Concept-Bank feature fused with the improved dense trajectories and the OCR in-

formation (primary run for the 100Ex).

The following subsection explain the score generation with joint probability. The other methods are

already explained in the section of the ten examples.

3.3.1 Joint Probability

In Visual-System, the standard fusion strategy is averaging prediction scores obtained by different

features, i.e. Concept-Bank and IDT. This strategy could achieve reasonable results, but in our exper-

iments we show that using a joint probability instead of the standard fusion strategy we could obtain

better performance. The main reason is that ranking list of different features are quite different and with

an average fusion strategy a low score of one type of classifier downgrades a possibly relevant video. By

using the joint probability, only videos that receive a low score from both classifiers will be put at the

bottom of the list. The formulas of average fusion and joint probability are separately shown below:

ave =
PCB + PIDT

2
(1)

JointProb = 1 − (1 − PCB) × (1 − PIDT ) (2)

Where, PCB , PIDT denote prediction scores obtained by Concept-Bank feature and IDT feature.

4 MED Results and Analysis

In this section we will explain the results per subtask, emphasizing our main research objectives.

4.1 Zero Example

Figure 1 shows comparison of manual/automatic SQG system with different similarity measurements

on the evaluation set:

• manualfused : our primary run for manually picked concepts fused with OCR and ASR;
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Figure 1: Comparison runs on the MED15-EvalFull set for PS 0-Ex task

• manualvisual : a comparison run for manually picked concepts only, without fusion of OCR/ASR;

• word2vecfused : concepts are weighted by word2vec similarity in automatic SQG and the results are

fused with OCR and ASR;

• word2vecvisual : a comparison run for word2vec-based automatic SQG only, without fusion of

OCR/ASR;

• automaticfused : concepts are weighted by our last year’s automatic SQG system, but the concept

selection strategy is the same as in the word2vecfused.

The manualfused run ranks at the top of the five, which is not a surprise. But interestingly we see our

automatic SQG (automaticfused) does not drop the performance by much compared to the manual SQG

(manualfused). For some individual events, e.g. E021, E027 and E037, it even performs better than

the manual runs. In these particular events, the number of concepts that are picked up manually is

significantly more than those picked up automatically. For example, in the event bike trick, automatic

SQG simply picks two concepts with a same name “bike trick” from FCVID 239 and RC 497 respectively

while manual SQG additionally includes a variety of bikes, e.g. off-road mountain bike and motorcycle.

We conclude that these additional concepts only increase recall but decrease precision for the events. On

the other hand, the runs using word2vec as similarity measurement basically fall in the same scale of

performance compared to the similarity measurement we used in the last year.

4.2 Ten Examples

In this section, we first present performance of individual feature and fusion strategy for PS 10-Ex

on MED14-Test dataset, then, we will report and analysis the performance of our systems for PS 10-Ex

and AH 10-Ex on MED15-EvalFull/Sub data set.

4.2.1 Results on MED14-Test dataset

Table 1 shows individual feature performance on MED14-Test for 10-Ex task. As is shown, we

can easily observe that Concept-Bank achieves the highest MAP in 10-Ex among small-scale concept

features and IDT, indicating that our large-scale concepts pool works pretty well for multimedia event



Feature PS 10-Ex PS 100-Ex

MAP MAP

ImageNet 1000 0.117892 0.200446

SIN 346 0.07411 0.152399

RC 497 0.097898 0.194238

Places 205 0.071228 0.119576

FCVID 239 0.121821 0.176341

Sports 487 0.150613 0.19892

Improved Dense Trajectory 0.122318 0.25525

Concept-Bank 0.216718 0.310635

Table 1: MED PS 10/100-Ex: Mean AP of single feature on MED14-Test

Fusion System MED14-Test MED14-EvalSub MED15-EvalFull

MAP MAP MAP

Baseline

( Concept-Bank ) 0.216718 0.229 0.163

Visual-System

( Concept-Bank + IDT ) 0.24243 0.231 0.168

Visual-Zero

( Visual-System + 0-Ex ) 0.258491 0.265 0.202

Full-System V1

( Visual-Zero + OCR + ASR) – 0.277 0.208

Full-System V2

( Visual-Zero + OCR) 0.310107 0.278 0.213

Table 2: MED PS 10-Ex: Mean AP of fusion strategies on MED14-Test/EvalSub/Full

detection. Inspiringly, the vocabulary size of our Concept-Bank is only 2,774, which still has potential

to be further expanded. Table 2 shows the effects of fusion strategy with three stages. Our observations

are shown below:

• The fusion of Concept-Bank feature with IDT feature improves the MAP from 0.217 to 0.242,

indicating the complementary of high-level Concept-Bank feature with low-level IDT feature.

• The fusion of Visual-System and 0-Ex system improves the MAP from 0.242 to 0.258, which in-

dicates that textual information makes up for visual information especially when only 10 positive

exemplars are provided.

• Since not all positive videos contain OCR/ASR information, our designed high-precision OCR/ASR

system boosts relevant videos in the ranking list and improves the overall MAP from 0.258 to 0.310.

4.2.2 Results on MED15-EvalFull/Sub dataset

To further verify our fusion strategy with three stages, we submitted 5 PS 10-Ex runs for the MED15-

EvalFull/Sub dataset. The returned results are shown in Table 2. Our three stages of fusion almost works

well for large-scale test set MED15-EvalFull/Sub, except that adding ASR drops the overall performance



a bit. This is due to that the precision of our ASR system is not as high as our OCR system. The 0-Ex

and OCR system does really improve the overall MAP with a relative of 20% on Visual-System.

For PS 10-Ex, our primary run (Full-System V2) ranks 1st among 16 teams on MED14-EvalSub

dataset and 2nd among 7 teams on MED15-EvalFull dataset, which outperforms last year’s best results

by 2.1% on MED14-EvalSub dataset and 1.9% on MED15-EvalFull dataset.

For AH 10-Ex, we submitted two runs: Visual-System and Full-System V2, which share the same

settings as our PS 10-Ex. Our primary run (Full-System V2) ranks 4th among 7 teams on MED15-

EvalFull. Compared with our PS 10-Ex results, the MAP of AH 10-Ex results are lower. The possible

reason might be that our Concept-Bank is still not large enough, relevant concepts to AH Events are not

sufficient which will have negative impact on our Visual-System and 0-Ex System.

4.3 One Hundred Examples

In this section, we first present performances of individual features and fusion strategies for PS 100-Ex

on MED14-Test dataset, then, we will report and analyze the performance of our systems for PS 100-Ex

on MED15-EvalFull/Sub dataset.

4.3.1 Results on MED14-Test dataset

Fusion System MED14-Test MED14-EvalSub MED15-EvalFull

MAP MAP MAP

Baseline

( Concept-Bank ) 0.310635 0.301 0.23

Visual-System

( Concept-Bank + IDT ) 0.352886 0.323 0.251

Visual-System with Joint Prob

( Concept-Bank + IDT ) 0.354844 0.338 0.267

Full-System V1

( Visual-System + OCR + ASR) – 0.327 0.254

Full-System V2

( Visual-System + OCR) 0.360628 0.325 0.256

Table 3: MED PS 100-Ex: Mean AP of fusion strategies on MED14-Test/EvalSub/Full

Table 1 shows individual feature performance on MED14-Test for 100-Ex task. Same conclusion as

10-Ex can be drawn: Concept-Bank performs best.

Table 3 shows the effects of fusion strategies. The fusion strategy we designed for 100-Ex task have

two differences from 10-Ex task. Firstly, we give up fusing 0-Ex results, due to 0-Ex results barely help

100-Ex results in our internal test. Secondly, we tested fusion strategy with joint probability instead of

average fusion.

For PS 100-Ex on MED14-Test, joint probability is slightly better than average fusion in overall MAP,

but when tested with larger-size dataset (MED15-EvalFull/Sub), the improvement is larger. Adding IDT,

ASR/OCR feature, we observe expected improvement as PS 10-Ex on MED14-Test.

To further verify our fusion strategies, we submit 5 PS 100-Ex runs for MED15-EvalFull/Sub dataset.

The returned results are shown in Table 3. Similar to 10-Ex, our ASR system drops overall performance

a bit. The IDT, OCR and joint probability bring expected improvements to our baseline.



Our primary run (Full-System V1) on PS 100-Ex ranks 2nd among 6 teams on MED14-EvalSub datset

and 1st among 2 teams on MED15-EvalFull dataset.

5 Conclusion and Discussion

For the TRECVID Multimedia Event Detection task results of 2015, we can conclude that our bigger

Concept-Bank and our efforts in combining different features and classifiers as well as a good strategy

for the 0Ex pay out in a much higher performance compared to 2014 and even top ranked performance

for 0Ex and 10Ex. Adding both IDT and OCR to the visual features improves performance on each

task, whereas ASR surprisingly decreases performance on the evaluation. For the 10Ex task, the fusion

of the system trained on the ten visual examples and the 0Ex system boosts performance with relatively

20%. For the 100Ex task, using the joint probability of the Concept-Bank features and IDT surprisingly

improves performance on the evaluation set.
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Abstract

This paper presents an overview and comparative analysis of our system designed for TRECVID 2015

[1] video hyperlinking (LNK) task. The application scenario for video hyperlinking is to satisfy the needs

of users to find further information on the content of interest contained within an anchor. The task here

is given an anchor to generate a ranked list of video segments relevant to the name entities extracted

from the anchor. Our four runs are summarized below:

- tf-idf : The subtitles of video segments are indexed with Lucene [2] and more like this (MLT) query

is adopted for tf-idf based retrieval.

- word2vec: Each video segment is represented by uniformly summing the vector representations

of words in subtitles using Word2Vec [3, 4] and the relevant segments are ranked based on cosine

similarity.

- weighted word2vec: The words in subtitles are weighted by document frequency and a video

segment is represented by summing the weighted vector representations.

- linear tf-idf weighted word2vec: The relevant segments are ranked based on average fusion of

tf-idf and weighted word2vec.

1 System Overview

The dataset is composed of 3,518 BBC videos. The videos are accompanied by archival metadata

(e.g., subtitles, list of popular UK celebrities) and automatic annotations (e.g., speech transcripts, shot

segmentation, face detection, multiple versions of concept detectors). Among these rich information, we

only explore the usage of subtitles to investigate the effectiveness of name entities for hyperlinking. The

system consists of three stages: scene extraction based on topic detection (1.1), name entity detection

(1.2) and hyperlinking with word vectors (1.3).

1.1 Scene Cutting

Since the dataset only provides “shot” segmentations and we actually want to work on “scene” level,

we adopt TextTiling [5] to split the subtitles of videos into multi-paragraph subtopics, where each subtopic

corresponds to a scene segment. The discourse cues for identifying major subtopic shifts are patterns of

lexical co-occurrence and distribution. The algorithm has been proven to be useful for many text analysis

tasks, including information retrieval and summarization [5]. We also constrain the algorithm to avoid



Table 1: P@N and MAP results for video hyperlinking

P@5 P@10 P@20 MAP

word2vec 0.366 0.321 0.207 0.105

weighted word2vec 0.338 0.344 0.227 0.126

tf-idf 0.462 0.406 0.300 0.180

linear tf-idf weighted word2vec 0.436 0.423 0.313 0.190

splitting the consecutive speeches from the same speaker. Finally, a total of 100,917 scene segments are

extracted.

1.2 Name Entity Detection

To facilitate the detection of hyperlinking targets, we extract name entities from the subtitles of each

scene segment. Here, we adopt the Stanford Name Entity Recognizer (NER) [6] and a total of 98,601

distinctive name entities are detected. These name entities are classified into four categories – person,

organization, location and others. We filter the noisy name entities based on document frequencies. The

name entities with document frequency less than 10 are removed as noises and totally 8,168 name entities

are retained. During indexing and retrieval, each name entity is treated as one single word.

1.3 Hyperlinking with Word Vectors

Word vector representation [3, 4] has shown great performance in measuring syntactic and semantic

word similarities. Hence, different from the previous works, which usually enrich the text information

with synonyms or conceptually connected words [7] or visual concepts [8], we directly represent each

scene segment with word vector representation. As mentioned in [3], each scene segment is represented

by summing all the words in the subtitle. The vector representation for each word is finetuned on the

GoogleNews model1. The model contains 300-dimensional vectors for 3 million words and phrases. When

finetuning, each word is initialized based on GoogleNews model and the name entities are initialized by

summing the words. Since name entities are not very frequent, we adopt the skip-gram architecture with

hierarchical softmax. Sub-sampling of the frequent words is also used for improving accuracy and speed.

In addition to uniformly summing all the word vectors as representation, we also want to measure the

importance of different words. Here, we use document frequency (df) as weight. To further investigate

the effectiveness of the vector representation, we further compare with tf-idf based retrieval and linearly

combine the scores of these two measures.

2 Evaluation Results

Table 1 presents the evaluation results of our four runs, where P@N are precision-oriented metrics

at different cutoff points and MAP is mean average precision. From the table, we can easily observe

that the fusion of tf-idf and weighted word2vec achieves the best performance. But it is surprise that

tf-idf achieves better performance than both word2vec and weighted word2vec. By observing the results,

we find that word2vec and weighted word2vec perform better when the anchors contains name entities,

such as person names “James Humbert Craig” and locations “Cartley Hole”. This is mainly due to the

1https://code.google.com/p/word2vec/
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Figure 1: Results of four submitted runs in comparison with median perfromance

fact that word2vec can better represent the name entities by considering the context information. For

example, the locations “Cartley Hole” is surrounded by words such as “house”, “castle” and “garden”

and the vector representation will be closely related to these words. However, tf-idf is attempting to

retrieve the segments containing the exactly same entity, often resulting in lower recall. On the other

hand, word vector representation also introduces semantic noises. For example, video segments about the

traffic network is retrieved for the anchor showing tennis game the word “net” is mentioned. Since most

of the anchors do not contain definite entities, the semantic noises degrade the performance of word2vec

and weighted word2vec. The linear combination achieving the best performance is in consistent with our

observation, in which that the vector representation can be complementary to tf-idf by extending the

keyword semantically.

We also compare our four runs with the median performance of other teams. As shown in Figure 1,

tf-idf and linear tf-idf weighted word2vec consistently performs better than median performance in all of

the four measurements. Based on the previous observation, the performance of word2vec can be further

improved through representing the segments with interesting words, such as nouns, verbs and name

entities.

3 Summary

We submitted four runs mainly based on the word2vec representation. The word2vec indeed semanti-

cally extends the keywords for hyperlinking. However, some noises are introduced and as a result degrade

the average performance. In the future, we are targeting to locate “interesting” words and representing

the video segments based on the intensity of interest rather than document frequency. In addition, we

will also consider visual entities such as faces and objects for hyperlinking.
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