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Abstract

This paper presents an overview and comparative analysis of our systems designed for TRECVID

2014 [1] multimedia event detection (MED) and recounting (MER) tasks, including all sub-tasks for Pre-

Specified (PS) event detection, all sub-tasks except 100Ex for Ad-Hoc (AH) event detection, and 010Ex

sub-task for both PS and AH event recounting.

Multimedia Event Detection (MED):

Our main focus for the MED task is on the study of a new zero-example system, which aims to

solve the 000Ex and SQ problems. The system can run either fully automatically or semi-automatically.

Specifically, we test the automatic run in 000Ex submission and the semi-automatic run in SQ submission.

Our 7 runs are summarized below:

- MED14Full PS 000Ex: Zero-example system with automatic semantic query generation and OCR

matching.

- MED14Full PS SQ: Zero-example system with semi-automatic semantic query generation.

- MED14Full PS 010Ex: Full system consists of visual system 010Ex, zero-example system and OCR

system. Late fusion is used to combine classifier scores from multi-SVMs and zero-example system.

The final score of a video is adjusted based on OCR matching.

- MED14Full PS 100Ex: Full system consists of visual system 100Ex, audio system and OCR system.

Late fusion is used to combine classifier scores from multi-SVMs. Same as MED14Full PS 010Ex,

video list is refined by OCR system.

- MED14Full AH 000Ex: System design is the same as MED14Full PS 000Ex.

- MED14Full AH SQ: System design is the same as MED14Full PS SQ.

- MED14Full AH 010Ex: System design is the same as MED14Full PS 010Ex.

Multimedia Event Recounting (MER):



For the 010Ex sub-tasks of both PS and AH event recounting, we design and implement a simple but

effective system to optimize the concept-to-event relevance, evidence diversity and timing of evidential

shots. We show that good performance can be achieved by only selecting the three shots with the highest

confidence.

1 Multimedia Event Detection

1.1 System Overview

In TRECVID 2014, our MED system consists of 4 sub-systems which are built on different features.

In the following, we will first describe all the used features, followed by presenting our 4 sub-systems:

visual system, audio system, zero-example system and OCR system.

1.1.1 Features

In our MED system, we first decompose each video into two-granularity levels – keyframe level and

shot level in a sense that different features require different granularity levels. For example, DCNN7

features are extracted from video frames, whereas improved dense trajectories are extracted from video

shots. Another reason is that event evidences are required to be located at shot level for MER system.

The keyframe sampling rate is set to be one frame per two seconds and the time duration of shot is set

to be five seconds. For each video, we use different methods to generate feature vector. All the features

used in our MED system are summarized in Table 1 and the detailed descriptions are given below:

Visual Features Audio Feature [2]

Low-level Features DCNN7 [3][4][5] MFCC, LSF, OBSI, LPC

Improved Dense Trajectory [6]

Semantic Indexing Concepts (SIN14.346) [1]

Research Collection Concepts

High-level Features (Research.Collection.497)

ImageNet 1000 Categories [3]

(ImageNet.ILSVRC12.1000)

Text Features Optical Character Recognition (OCR)

Table 1: Features used for MED’14 system

- DCNN7 and ImageNet.ILSVRC12.1000

Recently, deep convolutional neural networks (DCNN) have demonstrated their potential for learn-

ing image representation and classifiers simultaneously with a large number of training instances.

Inspired by the success of DCNN, we use it to generate visual representations as visual features in

our system. We use the same DCNN architecture proposed by G. Hinton in [4]. Specifically, the

used DCNN architecture can be denoted as Image − C48 − P − N − C128 − P − N − C192 −

C192 − C128 − P − F4096 − F4096 − F1000, which contains five convolutional layers (denoted

by C following the number of filters) while the last three are fully-connected layers (denoted by

F following the number of filters) ; the max-pooling layers (denoted by P ) follow the first, second

and fifth convolutional layers; local contrast normalization layers (denoted by N) follow the first

and second max-pooling layers. The parameters of DCNN are learnt on ILSVRC-2012 [7], which



is a subset of ImageNet dataset with 1.26 million training images from 1,000 categories. For each

keyframe, its representations are the neuronal responses of layer 7 (F4096), and layer 8 (F1000) by

feeding the keyframe into the learnt DCNN. We use average pooling to fuse the two kinds of DCNN

features for all the keyframes of one video to form the video-level feature vector respectively. For

simplicity, the two features are named as DCNN7 and ImageNet.ILSVRC12.1000, respectively.

- Improved Dense Trajectory [6]

We extract the state-of-the-art motion feature – improved dense trajectory – at shot level. Specif-

ically, trajectory feature, histogram of oriented gradients (HOG), histogram of flow (HOF), and

motion boundary histogram (MBH) are computed for each trajectory obtained by tracking points

in video shots. We separately reduce the dimension of trajectory, HOG, HOF and MBH descriptors

by a factor of two using Principal Component Analysis (PCA) and then concatenate them into

one raw feature vector. After that, Fisher vector encoding is used to quantize the raw features

and create a shot representation. For each video, the feature representation is obtained by average

pooling the Fisher vectors of video shots. Finally, L2 normalization is applied to generate the video

representation.

- SIN14.346 [8]

346 concept detectors trained on SIN’14 dataset are used to predict on all video keyframes. By

concatenating 346 concept detectors’ responses, each keyframe is represented by a 346 dimension

feature vector. Then, a video level concept representation is obtained by average pooling the

responses of keyframes. We name this feature as SIN14.346.

- Research.Collection.497

Similar to [9], we select 497 concepts from the MED’14 Research Collection dataset [10], manually

annotate at most 200 positive keyframes for each concept, and train 497 concept detectors using

SVM. Similar, we concatenate the responses of 497 concept classifiers on each keyframe and fur-

ther pool the keyframe level feature vectors to form a video feature representation. It is named

Research.Collection.497.

- Audio Features

For audio features, the following 12 features are used: line spectral frequency (LSF), octave band

signal intensity (OBSI), line predictor coefficients (LPC), MFCC and their first and second deriva-

tives. We extract the audio features from the audio signals and quantize them into BoWs. After

that, a Fisher vector is used to encode the audio features without dimensionality reduction.

- OCR

We use Tesseract OCR [11] to extract OCR (English) from video keyframes.

1.1.2 Visual System

We develop visual systems for 010Ex and 100Ex task separately.

- Visual System 010Ex

SIN14.346, Research.Collection.497, ImageNet.ILSVRC12.1000 features and DCNN7 features are

used in visual system 010Ex. Specifically, we concatenate SIN14.346, Research.Collection.497 and

ImageNet.ILSVRC12.1000 features to one feature vector, and then train event classifiers using Chi-

Square SVM. For DCNN7, event classifiers are trained using Chi-Square SVM as well. Average

fusion is used to directly combine classifier scores of multiple SVMs described above.



- Visual System 100Ex

Besides the features used in visual system 010Ex, the improved dense trajectory feature is also

involved in visual system 100Ex. The setting of classifier training is the same as that used in visual

system 010Ex on the common features. In addition, event classifiers are trained using linear SVM

on the improved dense trajectory feature. Finally, fusion by standard averaging is used to combine

prediction scores from multiple SVMs described above.

1.1.3 Audio System

For the the audio feature, event classifiers are trained using linear SVM.

1.1.4 Zero-Example System

Our zero-example system aims to pick up the event-relevant concepts in concept store by doing textual

mapping between event kits and concept names. It also scores the selected concepts by their concept-to-

event similarities. Therefore, given the event query and responses of concept detectors, the system can

perform event search without the need of training examples.

In preprocessing, we generate a metadata store with 1843 concepts in total, which are collected from

SIN14.346, Research.Collection.497 and ImageNet.ILSVRC12.1000 [3]. In addition, 5784 documents

are collected from Wikipedia and indexed in the metadata store for measuring the inverse document

frequency (IDF). These documents are collected by querying Wikipedia for all stemmed nouns and verbs

and combination of nouns and verbs from the snippet texts in the MED’14 Research Collection dataset.

On the other hand, the keyframes are extracted uniformly from the video at the rate of one frame

every two seconds. The detection responses of all 1843 concepts are predicted on all the keyframes of

test videos. Then, max pooling is used to fuse the responses of keyframes from an identical video and

generate a 1843 dimensional video representation. Each dimension denotes the confidence score of the

corresponding concept detector for the video with respect to the dataset from which the detector is

learned.

There are two main steps in the zero-example system: semantic query generation and event search.

A. Automatic Semantic Query Generation

In the query phase, our system takes the event description from each event kit as query. The queries

are then parsed by Stanford CoreNLP parser [12] which analyzes the structure of sentences in terms of

phrases and verbs. We excluded the event explications as complex sentences are too difficult to be well

parsed. We also enforce lemmatization on both queries and concept names. The following steps are

subsequently executed to generate the semantic query per event:

- Concepts are automatically selected by performing exact word-by-word matching between concept

names and the query. These selected concepts are weighted by considering the term frequency in

the query, term IDF, term relevance to the query, and term specificity. We refer to the weight as

the importance of the concept. Specifically, given a concept name ci and a phrase from the query

qj , we denote the common words between them as u. A similarity matrix S can be obtained by

calculating the similarity for each (ci, qj) pair, given

sim(ci, qj) = max(tu × log su) (1)

where tu is the TF-IDF weights, in which TF (term frequency) represents the frequency appearance

of words u in the text query, and IDF (inverse document frequency) is estimated based on a



collection of Wikipedia pages downloaded from the Web. su is the word specificity vector defined

by the minimum depths of words u in WordNet hierarchy. Then, for a phrase qj , we only retain the

concepts with the maximum similarity to the phrase. This similarity is considered as the importance

to the query.

- All the selected concepts are ranked by the importance. The top 8 concepts are picked up for each

event. The concepts ranked after the 8th are picked as well if their importance is equal to the

importance of the 8th concept. This would normally result in 8 - 10 concepts finally chosen for each

event. These chosen concepts form the semantic query automatically generated by our system.

B. Semi-automatic Semantic Query Generation

In the query phase, human subjects can be involved to refine the automatically generated semantic

query. Basically, the zero-example system will recommend more than 30 concepts automatically for a

human subject to perform concept screening. Along this process, noisy concepts are expected to be

removed, leaving only relevant concepts. This would usually result in around 10 concepts chosen for each

event.

C. Event Search

In the search phase, for each event, we simply rank all the test videos based on the weighted sum of

classifiers’ confidence scores and the concept importance.

1.1.5 OCR System

The OCR system extracts text from video frames using the Tesseract OCR engine [11]. The engine

is applied in a brute-force manner with post processing on the resulting extracted texts. From a video

segment, every key video frame (roughly one per second) is decoded using the FFmpeg open-source

library. All key frames are then fed to the Tesseract engine for OCR. The resulting texts are analysed to

check whether meaningful text is extracted from the video frame. This post-processing checks the words

in the extracted text per frame using the following rules:

1. every word has at least 3 characters

2. every word should have at least one vowel

3. every word should match with US-English dictionary (using Python Enchant spell-checking library)

Words that abide to all conditions are kept.

Keyword matching is performed between the keywords selected from event description and OCR

extracted from videos. The matching score is calculated based on TF-IDF.

1.2 MED Results and Analysis

1.2.1 Feature Comparison

In this section, we present the individual feature performance on MED14-Test. As the experimental

results shown in Table 2 and Table 3, we can easily observe that DCNN7 feature always gets the highest

MAP in both 010Ex and 100Ex among all the low level features, indicating the effectiveness of DCNN

architecture. Furthermore, we also observe that the DCNN7 feature outperforms concept-level feature

when the number of concepts is small, e.g., 497 concepts of Research.Collection, 346 concepts of SIN14,



Figure 1: OCR text extracted: “HOWTO: CREATE A CELL PHONE INTERCEPTOR uwu householdhacker

can ”

Feature MAP Feature MAP

Audio 0.042997 Research.Collection.497 0.163506

Improved Dense Trajectory 0.134402 SIN14.346 0.164958

DCNN7 0.225104 ImageNet.ILSVRC12.1000 0.19521

All concept sets 0.242445

(Research.Collection.497

SIN14.346, ImageNet.ILSVRC12.1000)

Table 2: MED PS 100Ex: Mean AP of single feature on MED14-Test

Feature MAP Feature MAP

Audio 0.007861 Research.Collection.497 0.087166

Improved Dense Trajectory 0.03762 SIN14.346 0.086318

DCNN7 0.114501 ImageNet.ILSVRC12.1000 0.106746

All concept sets 0.129228

(Research.Collection.497

SIN14.346, ImageNet.ILSVRC12.1000)

Table 3: MED PS 010Ex: Mean AP of single feature on MED14-Test

1000 concepts of ImageNet.ILSVRC12. However, when we combine all these concepts and create a large

vocabulary with 1843 concepts, concept-level feature (from all concept sets) can outperform DCNN7

feature, which basically indicates the advantage of exploiting a large number of concepts.

1.2.2 010Ex/100Ex Performance

Table 4 shows the performance comparison of each sub-system on Pre-Specified 100Ex and Pre-

Specified 010Ex. An interesting observation is that visual system 100Ex by additionally utilizing improved

dense trajectory on PS 100Ex sub-task leads to better performance. In contrast, the performance of visual

system 100Ex decreased on PS 010Ex sub-task. Since audio system has a very low MAP on PS 010Ex,

we don’t involve audio system in full system for PS 010Ex.

For PS 100Ex, we evaluate our full system consisting visual system 100Ex, audio system and OCR

system on MED14-Test and the MAP can achieve 0.3020. For PS 010Ex, our full system consists of visual

system 010Ex, zero-example system and OCR system and the MAP can reach 0.155831 on MED14-Test.

The observation is similar to [13], which also states that the performance of PS 010Ex is approximately
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Figure 2: Performance comparison on MED14-Test among different methods for zero-example system

half of that of PS 100Ex.

Visual System 010Ex Visual System 100Ex Audio System

PS-100Ex 0.2563 0.2588 0.0430

PS-010Ex 0.1369 0.1251 0.0079

Table 4: MAP of sub systems for PS-100Ex and PS-010Ex on MED14-Test

1.2.3 Zero-Example Performance

For zero-example system, we mainly focus on solving the main difficulty – how to accurately and

reliably select concepts from the concept store and score their relevance?

In selecting the concepts, a simple and straightforward mapping method is the exact matching, which

requires at least one term in a concept name matches with the event description. We also test the ontology-

based mapping using WordNet and ConceptNet. This is based on the intuition that the ontology-based

mapping would be helpful especially when there were only a small number of exactly matched concepts.

However, in practice, WordNet/ConceptNet fails terribly in MED.

Figure 2 shows the performance comparison between exact maching (EM) and WordNet mapping

(WordNet) on MED14-Test set. We use the WUP similarity as a typical method of WordNet mapping.

For most events, EM significantly outperforms WordNet. Some are more than 10 times better. The mean

average precision (MAP) over all events confirms this observation: EM achieves 5.0% of MAP versus 1.9%

of MAP by WordNet. We don’t include the performance of ConceptNet here because ConceptNet shows

result similar to the WordNet. Compared to the more sophisticated mapping, the result demonstrates a

clear advantage of the exact matching, which is by far much simpler.

We attribute this result to two causes: First, in our experiment on MED14-Test, on average there

are 48 concepts, ranging from 20 to 110, that can be exactly matched to an event. We claim that the

number is enough for describing an event. Second, the concepts discovered by WordNet/ConceptNet are

mostly noisy or irrelevant to the event, the merely useful ones being the synonyms. Blindly matching

words using WordNet or ConceptNet without the event context can easily divert to wrong concepts. For
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Figure 3: Top k concept selection for exact matching on MED14-Test

example, the concept “dog” in dog show is – according to WordNet – correlated to cat, horse and other

animals which are not relevant to the dog show.

In addition, we also observe that the performance does not depend on the number of concepts being

selected. Normally only the first few (around 8) can work very well. Selecting more concepts will only

degrade the performance. We do experiment by choosing only the top few concepts using exact matching

and then examining the MAP. As shown in Figure 3, both the overall MAP and MAP on last year’s AH

events comply with this conclusion.

Furthermore, we implemented query expansion methods using ConceptNet[14] and Wikipedia. The

difference between this method and the previously mentioned ConceptNet method is that we apply this

method on a different level in the process. Whereas the previous method is applied on the level of

matching a word, found in the textual description, to the concept detector, this method used ConceptNet

to find related concepts instead of the textual description. Within ConceptNet 5[14] all IsA relations to

the event name are selected and used to expand our concept selection. The event name is also used as

input for Wikipedia. Results show that both query expansion methods have no higher performance than

the method using the textual description with EM. If the results from ConceptNet and Wikipedia are

fused with the current Semantic Query Generation method, performance does not increase significantly.

This finding supports our previous findings that concepts discovered from external web sources may be

noisy or irrelevant because they do not include the context of the event.

Aside from these findings, we are experimenting with adding temporal relations between two concepts.

The temporal relations between images or frames might be of great value, because it distinguishes video

from a set of images. In procedural events such as doing a bike trick temporal relations might be very

helpful in distinguishing between the event and a false positive. In this research the temporal relations

before, immediately before and while are used, but the results have not yet shown a significant improvement

in performance. Temporal relations are, therefore, not included in the system.

We implement the exact matching as a good baseline for the zero-example system. By only selecting

the top 8 to 10 concepts for each event, combined altogether with the term frequency in the query, term

IDF, term relevance to the query, and term specificity, we achieve the best zero-example MAP 7.0% on

MED14-Test set compared to other combinations or without top concept selection. The EM-TOP in

Figure 2 shows the performance of our final system.



1.2.4 Threshold Learning

For Pre-Specified evaluation, in order to calculate metric Minimum Acceptable Recall R0, a threshold

score Tq is required for every event. For an event, positive and negative videos should theoretically have

different distributions in view of their prediction scores. Similar to [13], we applied maximum entropy

theory to set the threshold. Based on our experiments, maximum entropy theory is able to set appropriate

threshold which helps to produce a large R0. The threshold can be obtained by maximize the following

formula.

H(Tq) = −

Tq
∑

xi=0

C(xi)log











C(xi)
Tq
∑

xi=0

C(xi)











−

1
∑

xi=Tq

C(xi)log











C(xi)
1
∑

xi=Tq

C(xi)











xi is the prediction score of a video, C(xi) is the count number of xi. Table 5 shows our R0 results for

MED14-Test.

PS 100Ex PS 010Ex

R0 0.4615 0.2089

Table 5: R0 results for PS 100Ex and PS 010Ex on MED14-Test

2 Multimedia Event Recounting

2.1 System Design

The VIREO’s MER system mainly utilizes the semantic query generated for 010Ex task as input and

takes advantage of 1843 concept indexing for evidence localization. The key criterions to be considered

here are the importance of evidence and user experience. Specifically, how fast a user can declare a

video is relevant by reading the presented evidences? General speaking, the general goal is to display the

minimal amount of evidences in the shortest possible time. To optimize both criterions, we will consider

three aspects of information: (1) concept-to-event relevance which prioritizes the importance of concepts

to events, (2) evidence diversity which avoids redundancy by suggesting evidences of diverse content,

and (3) the shorter the better which recommends only snippets that are just sufficient and necessary to

evidence the presence of event.

The concept-to-event relevance is the most important concern in our system design, given that the

key evidence should not only reflect the existence of chosen concepts, but also its relevance regarding

the event. Therefore, the constraints are two-fold: On the one hand, certain concepts listed in the

semantic query should appear in the evidential shot; on the other hand, the content of the shot should

be event-relevant. Simply achieving only one of the two would be biased. For example, an evidential

shot showing a boy playing a ball is insufficient to support the event “playing fetch” even though the

important concept ball shows up in high confidence. In addition, this scenario is very much associated

to the new MER workstation interface: Judges will be asked to score on both aspects, one being the

concept-snippet correctness, the other being the snippet-event correctness.

To approach a high concept-to-event relevance, we first select candidate shots that are most relevant

to an event. The selection is based on the weighted sum of concept-to-event similarities and concept

detectors’ responses for all concepts in the semantic query. Therefore, the concept-to-event relevance is
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Figure 4: VIREO MER system performance (percentage of agree and strongly agree) compared to other teams.

constrained by votes from all event-relevant concepts rather than a single concept. Then, in the second

step, we do concept-to-shot alignment which associates the most important concept to the candidate shot

as the representative concept.

In optimizing the evidence diversity and viewing time, our recent study on MED 2012 training set

shows that there are more than 50% of five-second shots, among the positive videos, can be considered as

evidence. Randomly picking any three of the shots from a positive video can already achieve more than

60% of precision. As a result, basically we only select three most confident shots per positive video as

key evidence, leaving the rest shots as non-key evidence. On the other hand, as we observe in MED 2012

training set that the evidential shots are highly redundant, we also enforce the criterion that the selected

evidential concepts should be diverse. Specifically, in concept-to-shot alignment, we recount each shot

with a unique concept different from other shots.

2.2 MER Results

We submitted both PS and AH event recountings of 010Ex task. Despite the simplicity of our strategy,

the system works pretty well. The performance is showing in Figure 4. Basically, we achieve the second

place among all teams concerning the quality of key evidence, and our query conciseness lies in good range

as well. There are 28% (27%) of judges strongly agreeing that our submitted queries (key evidence) are

concise (convincing), which ranks our system at the 1st position among all teams. Currently, we only use

the visual concept detectors. The evidential shots are inferred from the candidate keyframes. But our

system can be easily scaled to other types of detectors, e.g. motion-based concept detectors which indicate

the window of time more precisely, and audio concept detectors which are the essential complements to

the visual concept detectors.

3 Summary

For MED with training examples, we use the DCNN feature, concept feature, improved dense trajec-

tory feature and audio feature to train event classifiers and draw two conclusions. The DCNN feature

outperforms human-defined low level features, and the concept feature outperforms the DCNN feature

when the vocabulary size of concepts is increased to 1843. Reviewing the sub-systems’ performances for

PS 010Ex and PS 100Ex on MED14-Test, we find that improved dense trajectory brings very little or no

improvement (for PS 010Ex, involving improved dense trajectory even reduces MAP of MED14-Test),

this may be due to a hidden technical bug.

For MED with no training example, we build a large concept store with 1843 concepts and focus

on solving the difficulty of how to accurately and reliably select concepts and score their relevance.



Compared to the exact matching, we share the insights of why ontology-based mapping using WordNet

and ConceptNet fails terribly in MED. In the end, we come up with a system which only chooses a few

top concepts by exact matching. With several other improvements on scoring the concepts, we achieve a

reasonable overall performance, which can be treated as a good baseline.

For MER, we implement a baseline system which makes use of 1843 concept indexing for evidence

localization. Our strategy for system design, from the most important to least, is to optimize the concept-

to-event relevance, evidence diversity and viewing of evidential shots, which aligns to what the new MER

workstation interface wants to feature this year. Based on our recent study on MED 2012 training set, for

each video, our system selects only three most confident shots as key evidence, and aligns the concepts

diversely for each selected shot. This scheme, although simple, has demonstrated its effectiveness in event

recounting.
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