

Characterising and reducing uncertainties in all-sky radiative transfer

Vasileios Barlakas

Annual Fellow Day 01.03.2021

EUMETSAT

ECMWF

 \underline{C} REATE – \underline{C} haracterizing and \underline{RE} ducing uncertainties in \underline{A} ll-sky microwave radiative \underline{T} ransf \underline{E} r

D Sensors

- \circ Sensors with frequencies up to ~183 GHz
- Ice Cloud Imager (ICI): 183.31 664 GHz

Open issues

- Three-dimensional radiative transfer is ingored
- Hydrometeor orientation and polarization are ignored
- RTTOV-SCATT accuracy
 - Two-stream delta-Eddington approximation
 - Sub-grid variability and cloud overlap scheme

- Stand–alone retrievals
- Data assimilation (DA)

 \underline{C} REATE – \underline{C} haracterizing and \underline{RE} ducing uncertainties in \underline{A} ll-sky microwave radiative \underline{T} ransf \underline{E} r

D Sensors

- \circ Sensors with frequencies up to ~183 GHz
- Ice Cloud Imager (ICI): 183.31 664 GHz

D Open issues

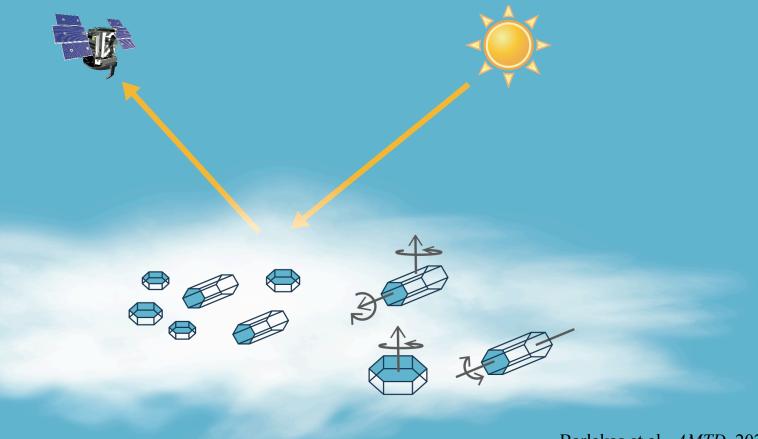
CHALMERS

- ☑ Three-dimensional radiative transfer is ingored
- Hydrometeor orientation and polarization are ignored
- RTTOV-SCATT accuracy
 - Two-stream delta-Eddington approximation
 - Sub-grid variability and cloud overlap scheme

¹Barlakas and Eriksson., Remote Sens., 2020

²Barlakas et al., *AMTD*, 2020 ²Geer, Barlakas et al., *to be submitted to GMD*, 2021 ²Barlakas et al., *in preparation, JQSRT*, 2021

- Stand–alone retrievals
- Data assimilation (DA)


1st year¹ 1st & 2nd year² 1st & 2nd year²

CHALMERS

UNIVERSITY OF TECHNOLOGY

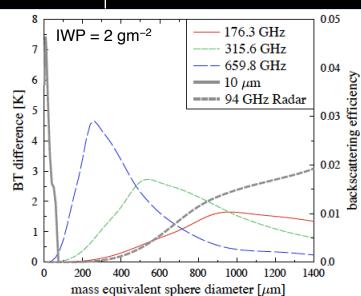
Introducing hydrometeor orientation into all-sky millimeter/sub-millimeter assimilation

Barlakas et al., *AMTD*, 2020 Geer, Barlakas et al., *to be submitted to GMD*, 2021

Motivation

Introduction

- Model uncertainties (shape and orientation).
- Why MW and sub-mm?


Why ice clouds?

- Sensitive to large and small ice hydrometeors
- Ice Cloud Imager (ICI)

CHALMERS

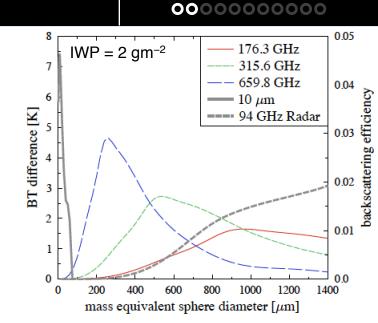
UNIVERSITY OF TECHNOLOGY

- 183–664 GHz + dual polarization
- \circ Improved ice retrievals + extend data assimilation

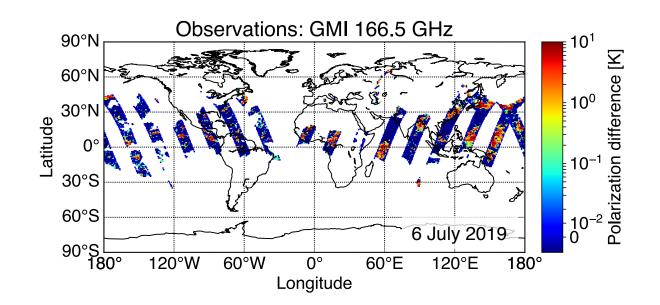
Motivation

• Why ice clouds?

CHALMERS


UNIVERSITY OF TECHNOLOGY

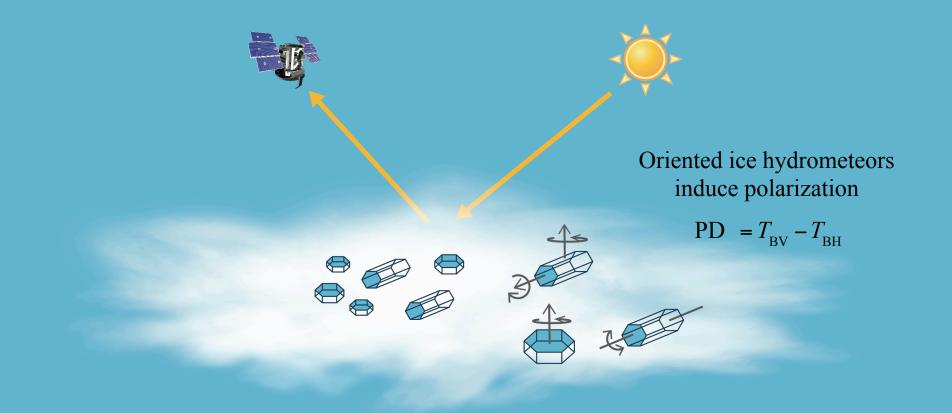
• Model uncertainties (shape and orientation).


• Why MW and sub-mm?

- Sensitive to large and small ice hydrometeors
- Ice Cloud Imager (ICI)
 - 183–664 GHz + dual polarization
 - Improved ice retrievals + extend data assimilation

+ Polarization

Introduction



D Assumptions in DA

CHALMERS

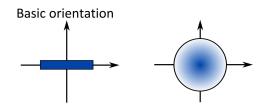
UNIVERSITY OF TECHNOLOGY

- Totally randomly oriented (TRO) hydrometeors only
- o "Scalar" simulations, i.e., V- or H-polarization
- Invariant scattering properties between V- and H-simulations

- $\circ~$ Attenuation driven by the extinction matrix
- \checkmark incident direction
- \checkmark orientation

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{K}_{11} & \boldsymbol{K}_{12} & \boldsymbol{K}_{13} & \boldsymbol{K}_{14} \\ \boldsymbol{K}_{21} & \boldsymbol{K}_{22} & \boldsymbol{K}_{23} & \boldsymbol{K}_{24} \\ \boldsymbol{K}_{31} & \boldsymbol{K}_{32} & \boldsymbol{K}_{33} & \boldsymbol{K}_{34} \\ \boldsymbol{K}_{41} & \boldsymbol{K}_{42} & \boldsymbol{K}_{43} & \boldsymbol{K}_{44} \end{pmatrix}$$

- Attenuation driven by the extinction matrix
- incident direction \checkmark
- \checkmark orientation


$$K = \begin{pmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ K_{41} & K_{42} & K_{43} & K_{44} \end{pmatrix}$$

1

- Total random orientation (TRO)
- **X** favored direction
- × orientation

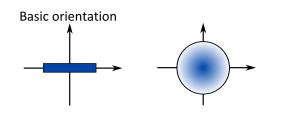
$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{K}_{11} & 0 & 0 & 0 \\ 0 & \boldsymbol{K}_{11} & 0 & 0 \\ 0 & 0 & \boldsymbol{K}_{11} & 0 \\ 0 & 0 & 0 & \boldsymbol{K}_{11} \end{pmatrix}$$

 K_{11} , extinction cross section

- Attenuation driven by the extinction matrix
- ✓ incident direction

CHALMERS

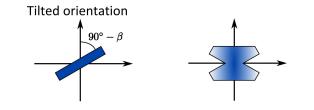
UNIVERSITY OF TECHNOLOGY


 \checkmark orientation

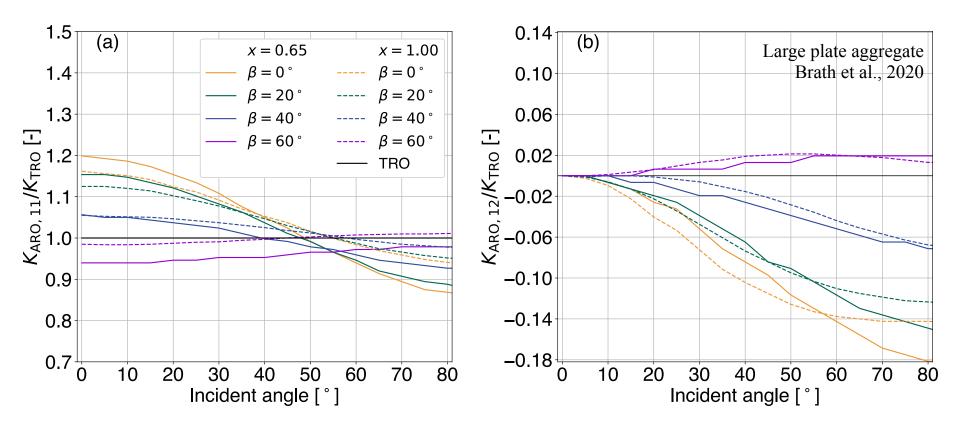
$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{K}_{11} & \boldsymbol{K}_{12} & \boldsymbol{K}_{13} & \boldsymbol{K}_{14} \\ \boldsymbol{K}_{21} & \boldsymbol{K}_{22} & \boldsymbol{K}_{23} & \boldsymbol{K}_{24} \\ \boldsymbol{K}_{31} & \boldsymbol{K}_{32} & \boldsymbol{K}_{33} & \boldsymbol{K}_{34} \\ \boldsymbol{K}_{41} & \boldsymbol{K}_{42} & \boldsymbol{K}_{43} & \boldsymbol{K}_{44} \end{pmatrix}$$

- Total random orientation (TRO)
- ✗ favored direction
- × orientation

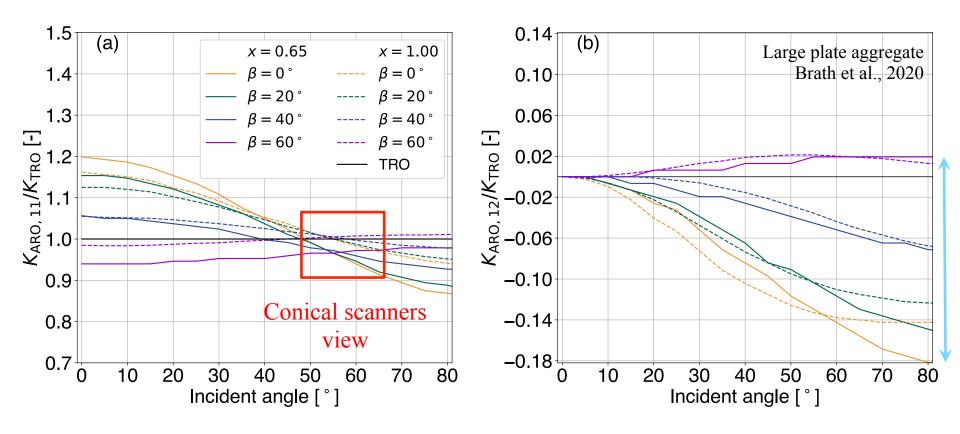
$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{K}_{11} & 0 & 0 & 0 \\ 0 & \boldsymbol{K}_{11} & 0 & 0 \\ 0 & 0 & \boldsymbol{K}_{11} & 0 \\ 0 & 0 & 0 & \boldsymbol{K}_{11} \end{pmatrix}$$


 K_{11} , extinction cross section

- Azimuthal random orientation (ARO)
- \checkmark orientation based on tilt angle β
- × orientation in the azimuth


$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{K}_{11} & \boldsymbol{K}_{12} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{K}_{12} & \boldsymbol{K}_{11} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{K}_{11} & \boldsymbol{K}_{34} \\ \boldsymbol{0} & \boldsymbol{0} & -\boldsymbol{K}_{34} & \boldsymbol{K}_{11} \end{pmatrix}$$

 K_{12} , cross section for linear polarisation K_{34} , cross section for circular polarisation



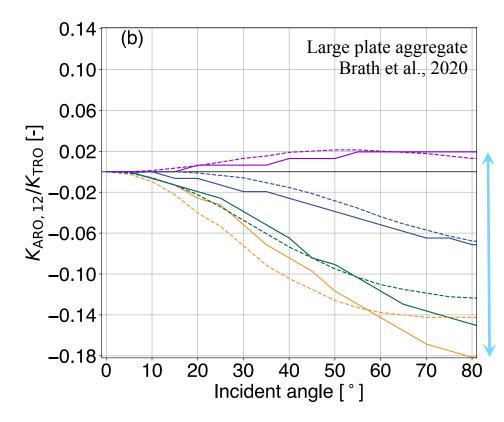
D TRO vs ARO

TRO vs ARO

- Extinction cross section, $K_{11} => \operatorname{At} \theta_{\operatorname{inc}} \sim 55^{\circ}$, the differences are close to 0.
- Linear polarization cross section, $K_{12} \Rightarrow$ Large differences up to 18 % between V & H

Barlakas et al., AMTD, 2020

Orientation approximation


• The parameterization is governed by the polarization ratio ρ :

$$\rho = \frac{\tau_{\rm H}}{\tau_{\rm V}} = \frac{\tau_{\rm TRO} \left(1 + \alpha\right)}{\tau_{\rm TRO} \left(1 - \alpha\right)},$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

- α is a correction factor approximating the cross section for linear polarization, i.e., K_{12}
- * Control (current framework): $\rho (\alpha = 0) = 1$

Barlakas et al., *AMTD*, 2020 Geer, Barlakas et al., *to be submitted to GMD*, 2021

Based on the IFS¹ of ECMWF²

Setup

Passive monitoring experiments

 Sensors: GMI³

CHALMERS

UNIVERSITY OF TECHNOLOGY

Duration: Jun. – Jul. 2019

Which is the best ρ ?

- 2) Cycled DA experiments
 o Sensors: AMSR-2⁴, GMI³, SSMIS⁵
 - Duration: Febr. May 2019 & Jun. – Aug. 2019

•

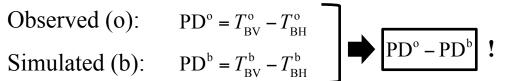
What is impact of ρ on the forecast?

• Microphysical setup following:

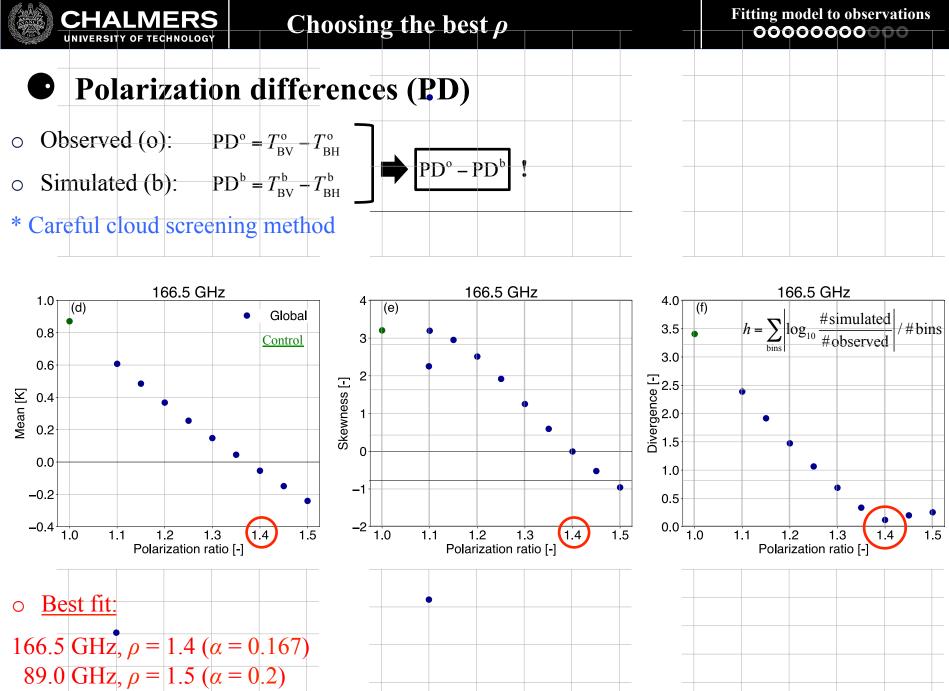
Geer, to be submitted to AMT, 2021

¹Integrated Forecast System ²European Centre for Medium-Range Weather Forecasts ³Global Precipitation Mission microwave imager ⁴Advanced Microwave Scanning Radiometer-2 ⁵Special Sensor Microwave Imager/Sounder

Barlakas et al., *AMTD*, 2020 Geer, Barlakas et al., *to be submitted to GMD*, 2021



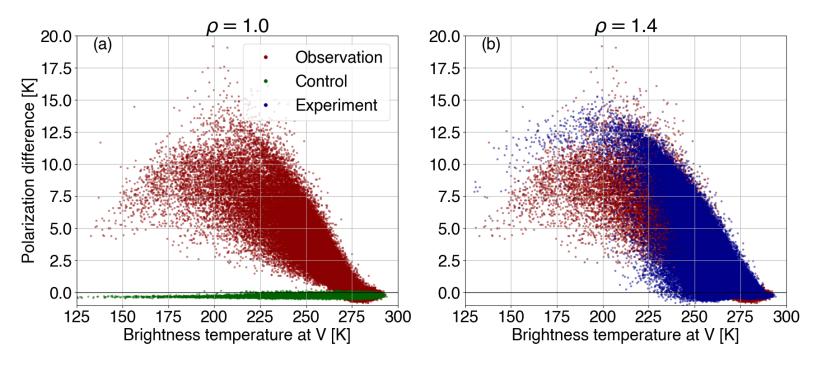
Polarization differences (PD)


Ο

UNIVERSITY OF TECHNOLOGY

Ο

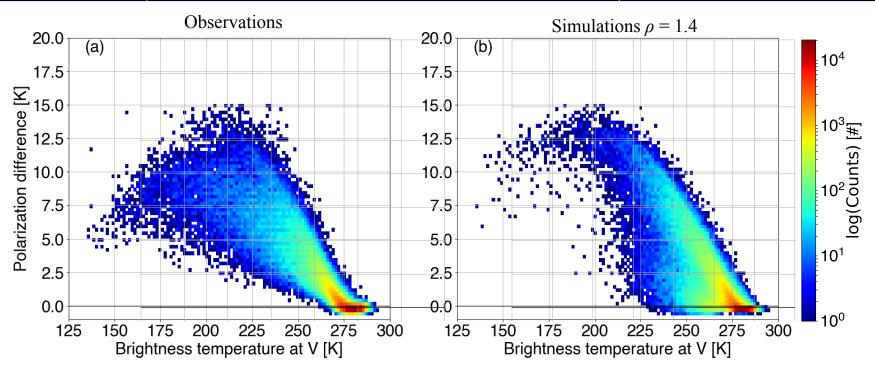
* Careful cloud screening method



Barlakas et al., AMTD, 2020

Global performance of $\rho = 1.4$

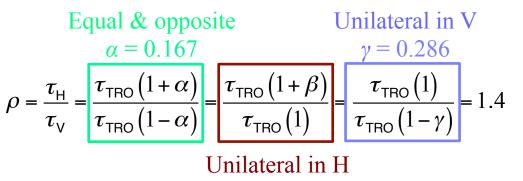
Fitting model to observations



- Universal arch-like shape of relation
- Control run completely fails to reproduce it
- \circ A ρ of 1.4 gives a reasonable representation of such relation

Barlakas et al., AMTD, 2020

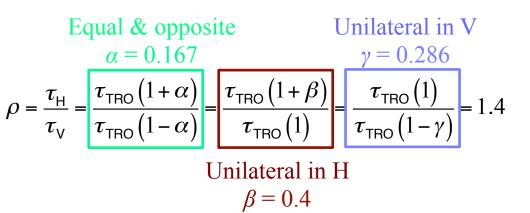
Fitting model to observations



- Universal arch-like shape of relation
- Control run completely fails to reproduce it
- \circ A ρ of 1.4 gives a reasonable representation of such relation

Forecast quality $-\rho = 1.4$

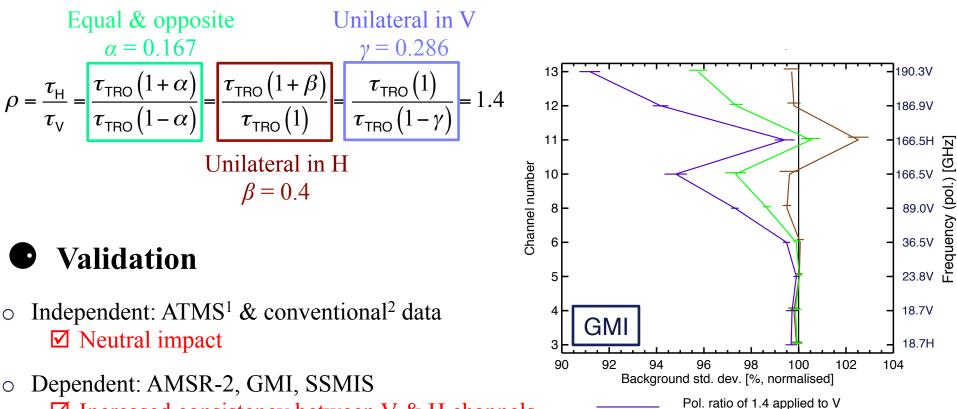
Forecast impact


 $\beta = 0.4$

¹Advanced Technology Microwave Sounder ²Winds at 850 hPa, AMSUA (53.7H GHz), geostationary H₂O radiances

Barlakas et al., AMTD, 2020

Forecast quality $-\rho = 1.4$


- Validation
- Independent: ATMS¹ & conventional² data
 ☑ Neutral impact

¹Advanced Technology Microwave Sounder ²Winds at 850 hPa, AMSUA (53.7H GHz), geostationary H₂O radiances

Barlakas et al., AMTD, 2020

Forecast impact

☑ Increased consistency between V & H channels
 ☑ Increased consistency between instruments

+ Tuning the overall level of scattering

Pol. ratio of 1.4 applied to V and H Pol. ratio of 1.4 applied to H

100% =

Control

¹Advanced Technology Microwave Sounder ²Winds at 850 hPa, AMSUA (53.7H GHz), geostationary H₂O radiances

• Final configuration of RTTOV-SCATT v13.0

- Minor software adaption and no calculation burdens
- \circ Maximum modeling errors are reduced by 10–15 K
- \circ Errors are now ~ symmetrical

CHALMERS

UNIVERSITY OF TECHNOLOGY

o Neutral forecast impact, with increasing consistency between instruments

3rd year

 \circ Polarization ratio of 1.4 in RTTOV-SCATT v13.0 + future IFS cycle

Outlook

- Polarization correction scheme
 - Cross-track sounders
 - Radar backscattering
 - Ice retrievals, e.g., in GMI
- Frequencies above 183 GHz, i.e., Ice Cloud Imager

Photo: Airbus

0.0 Output of the second secon

Barlakas et al., *AMTD*, 2020 Geer, Barlakas et al., *to be submitted to GMD*, 2021

Model inter-comparison in all-sky millimeter/sub-millimeter radiative transfer

Barlakas et al., in preparation, JQSRT, 2021

Objectives:

- Are there any systematic or random errors?
- Where does the two-stream delta-Eddington "falls apart"?
- $\circ~$ Most studies focus on clear-sky or frequencies below ~90 GHz
- Prepare RTTOV–SCATT for ICI

Model inter-comparison in all-sky millimeter/sub-millimeter radiative transfer

Barlakas et al., in preparation, JQSRT, 2021

Objectives:

- Are there any systematic or random errors?
- Where does the two-stream delta-Eddington "falls apart"?
- \circ Most studies focus on clear-sky or frequencies below ~90 GHz
- Prepare RTTOV–SCATT for ICI

ARTS vs RRTOV (-SCATT):

- o Clear–sky
- All-sky (i.e. snow, ice, rain)

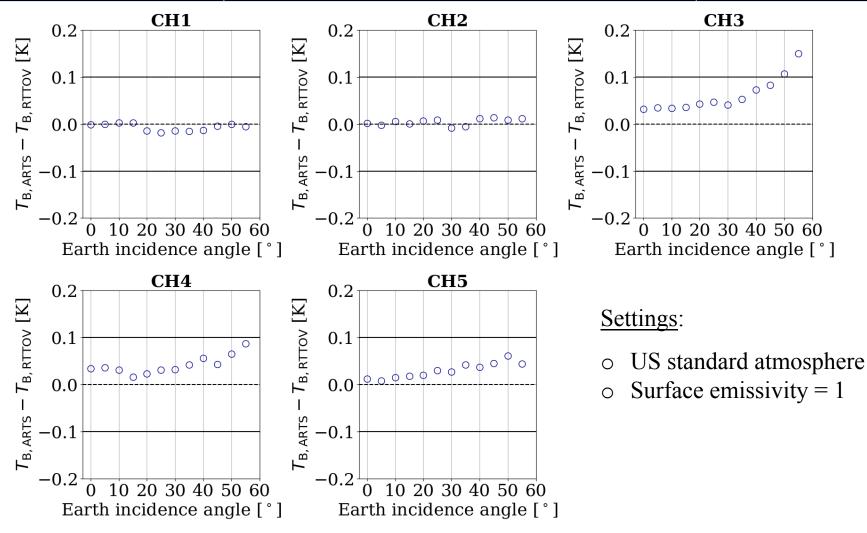
Sensors:

- Advanced Microwave Sounding Unit A (AMSUA)
- Microwave Humidity Sounder (MHS)
- Ice Cloud Imager (ICI)

ARTS scattering database

- 34 freq.: 1-886.4 GHz
- 34 particle models (PM)
- 35-45 sizes per PM

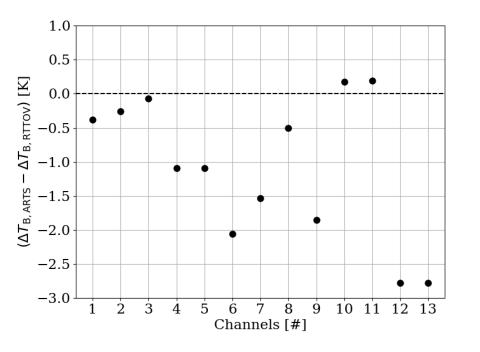
Eriksson et al., ESSD, 2018

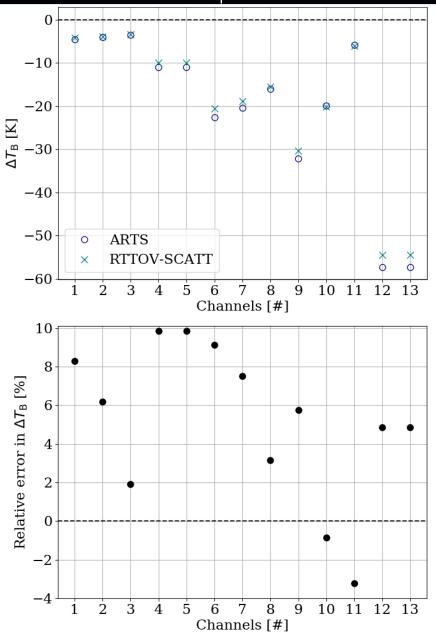


MHS: Clear–sky comparison

- An excellent agreement is found ± 0.1 K
- \circ Exceptions: ICI at 243.2 GHz (~0.2 K) and 448 GHz (~0.4 K)

Correct spectroscopy! Ongoing by Met Office

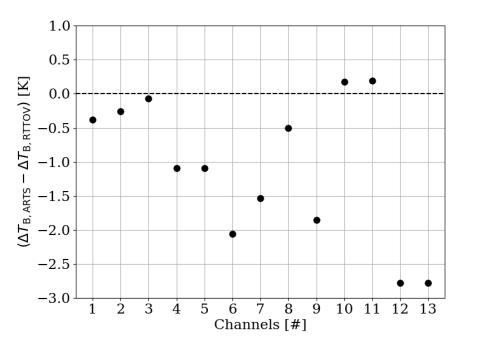

Barlakas et al., in preparation, JQSRT, 2021

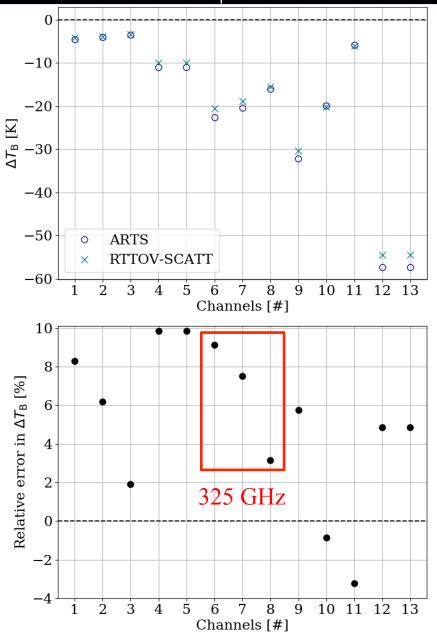


Settings:

- Gaussian cloud: 9-11 km
- Large plate aggregate habit
- Field et al., 2007 PSD

$$\Delta T_{\rm B} = T_{\rm B, cloudy} - T_{\rm B, clear}$$


Barlakas et al., *in preparation*, JQSRT, 2021



Settings:

- Gaussian cloud: 9-11 km
- Large plate aggregate habit
- Field et al., 2007 PSD

$$\Delta T_{\rm B} = T_{\rm B, cloudy} - T_{\rm B, clear}$$

Barlakas et al., *in preparation*, JQSRT, 2021

Performance of RTTOV-SCATT

• Clear–sky conditions

CHALMERS

- \circ An excellent agreement is found (±0.1 K). For ICI, there is still some ongoing work.
- All–sky conditions
 - ICI: $\Delta T_{\rm B} \sim 3$ K, with a relative error up to $\Delta T_{\rm B} \sim 10$ %
 - MHS and AMSUA: $\Delta T_{\rm B} \sim 7$ K, with a relative error up to $\Delta T_{\rm B} \sim 15$ %

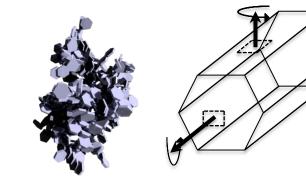
Outlook

- Where does the two-stream delta-Eddington "falls apart"?
- Finalize the manuscript
- Sub-grid variability and cloud overlap scheme.

Conclusions

3rd year

Polarized correction scheme


Year 3

• Cross-track sounders

CHALMERS

- Radar backscattering
- Ice cloud retrievals (ongoing)

- Finalize the intercomparison (ongoing)
- Sub-grid variability and cloud overlap scheme.

Thank you for your attention !