
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/147261

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/147261
mailto:wrap@warwick.ac.uk

Features Correlation-based

Workflows for High-Performance

Computing Systems Diagnosis

by

Thuan Yew Edward Chuah

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

The University of Warwick

June 2020

Contents

List of Tables v

List of Figures viii

Abstract xii

Acknowledgements xiii

Declarations xvii

Acronyms xx

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Fault Tolerance . 2

1.2.2 Errors and Failures . 3

1.2.3 Failure Diagnosis . 3

1.2.4 A Diagnosis Scenario . 4

1.3 The Problem . 4

1.4 The Approach . 5

1.5 Contributions of this Thesis . 6

1.6 Outline of this Thesis . 7

Chapter 2 Literature Review 9

2.1 Regular Expressions . 9

2.1.1 LoGS . 9

2.1.2 SEC . 10

2.1.3 SWATCH . 11

2.1.4 Logsurfer . 11

2.2 Clustering . 12

i

2.2.1 SLCT and LogHound . 12

2.2.2 IPLoM . 12

2.2.3 Helo . 13

2.2.4 Baler . 13

2.2.5 Decentralized Online Clustering (DOC) 14

2.2.6 Handling redundancy . 16

2.3 Feature Selection . 16

2.3.1 BlueGene/L failure analysis and prediction models 17

2.3.2 Structure-of-influence graphs 18

2.3.3 Rank correlation for processor failure prediction 19

2.3.4 LogMaster . 20

2.3.5 PREdictor . 22

2.3.6 3D root-cause analysis . 23

2.4 Anomaly Detection . 23

2.4.1 Automated anomaly detection 24

2.4.2 Adaptive anomaly detector 24

2.4.3 Increasing the error handling time window 25

2.4.4 DILAF . 26

2.5 Hybrid Methods . 27

2.5.1 Error log processing for accurate failure prediction 27

2.5.2 System log pre-processing for improving failure prediction . . 28

2.5.3 LogSig . 29

2.5.4 LKE . 29

2.5.5 LogAider . 31

2.6 Similarities and Differences . 31

2.7 Summary . 33

Chapter 3 System Models, HPC Systems and Cluster Log-Data 35

3.1 System Model . 35

3.1.1 Fault Model . 36

3.1.2 System Issue . 36

3.1.3 Significant Errors on Nodes 38

3.2 Case Study HPC Systems . 38

3.2.1 Ranger . 38

3.2.2 Lonestar4 . 39

3.2.3 Stampede-1 . 39

3.3 Cluster Log-Data . 40

3.3.1 Rationalized Message Logs 40

3.3.2 Syslogs . 41

ii

3.3.3 TACC Stats Resource Use Data 41

3.3.4 Compute Node Soft Lockups 42

3.3.5 Data Collection . 43

3.4 Processing the Cluster Log-data . 44

3.4.1 Resource Use Extraction Module 45

3.4.2 Message Types Extraction Module 45

3.5 Summary . 46

Chapter 4 A Correlation-based Workflow for HPC Systems Diagnosis 48

4.1 Introduction . 48

4.1.1 Contributions . 49

4.2 System Issue and Problem Specification 50

4.2.1 System Issue . 50

4.2.2 Problem Specification . 51

4.3 CORRMEXT Framework . 52

4.3.1 Data Type Extraction . 53

4.3.2 Correlation . 54

4.3.3 Time-bin Extraction . 57

4.4 Case Study: Ranger HPC System . 58

4.4.1 NUMA and Process Memory Allocation 59

4.4.2 Lustre Filesystem and Infiniband Network 68

4.4.3 Chipset and ECC Memory System 77

4.4.4 Linux Memory Management 85

4.5 Summary . 96

Chapter 5 Generalising CORRMEXT on Multiple HPC Systems 98

5.1 Case Study Systems: Lonestar4 and Stampede-1 98

5.2 Stampede-1 HPC System . 99

5.2.1 Network Data Errors . 99

5.2.2 Storage System and Linux Process 102

5.3 Lonestar4 HPC System . 105

5.3.1 Network Data Errors and Network Software Errors 105

5.3.2 Storage System and Linux Processes 111

5.4 Summary . 118

Chapter 6 A Features Correlation-based Workflow for HPC Systems

Diagnosis 119

6.1 Introduction . 119

6.1.1 Contributions . 120

iii

6.2 System Models, Problem Specification and EXERMEST Framework 121

6.2.1 Significant Errors on Nodes 122

6.2.2 Problem Specification . 122

6.2.3 EXERMEST: Feature Extraction 123

6.2.4 EXERMEST: Correlation . 127

6.3 Case Studies on Ranger and Lonestar4 130

6.3.1 Phase 1: Identify Significant Resource Use Counters and Mes-

sages . 130

6.3.2 Phase 2: Identify Rare Error Cases 137

6.4 Summary . 151

Chapter 7 A Comparative Analysis of CORRMEXT and EXER-

MEST 153

7.1 CORRMEXT Failure Diagnosis Framework 153

7.1.1 Introduction . 153

7.1.2 Error Cases Identified by CORRMEXT 156

7.2 EXERMEST Failure Diagnosis Framework 160

7.2.1 Introduction . 160

7.2.2 Error Cases Identified by EXERMEST 163

7.3 Similarities and Differences Between CORRMEXT and EXERMEST 166

7.3.1 Features of CORRMEXT and EXERMEST 166

7.3.2 Frequent and Rare Error Cases 167

7.3.3 Integrating EXERMEST and CORRMEXT 167

7.4 Summary . 167

Chapter 8 Summary and Future Research 169

8.1 Summary of Chapters . 169

8.2 Future Research . 171

8.2.1 Preventive Maintenance . 171

8.2.2 Extension to Distributed Systems 171

8.2.3 Failure Prediction . 172

8.2.4 Feature Selection and Optimisation 172

iv

List of Tables

2.1 Comparison table for system log-file processing tools. 32

3.1 List of resource use counters monitored on the Ranger, Lonestar4 and

Stampede-1 HPC systems. 42

3.2 Summary of the data collected on Ranger, Lonestar4 and Stampede-1. 44

4.1 List of dates of log-data analysed on Ranger. 59

4.2 List of error cases identified on the Ranger HPC system. 59

4.3 Summary of correlated “segfault” and soft lockup events, and correl-

ated “general protection error” and soft lockup events on Ranger. . . 66

4.4 Hours associated with the correlated NUMA & Processes resource use

counters and correlated segmentation fault & general protection fault

error messages on Ranger. 67

4.5 Summary of z-scores. n contains the number of hours in one day of logs. 68

4.6 Summary of correlated “error occurred while communicating with”

and “soft lockup”, and correlated “failure inode” and “soft lockup”

events on Ranger. 75

4.7 Hours associated with the correlated Infiniband and Lustre I/O re-

source use counters and correlated communication and Lustre filesys-

tem errors on Ranger. 76

4.8 Summary of z-scores. n contains the number of hours in one day of logs. 77

4.9 Hours associated with the correlated CPU and memory resource use

counters and correlated chipset and ECC errors on Ranger. 84

4.10 Summary of z-scores. n contains the number of hours in one day of logs. 84

4.11 Summary of names of soft lockup processes and dates of correlated

“Pid: comm” and soft lockup on Ranger. 91

4.12 Dates of correlated file access and soft lockup on Ranger. 92

4.13 Correlation of “Pid: comm” and “system memory exhausted” events

on Ranger. 93

v

4.14 Summary of correlated “Pid: comm”, “system memory exhausted”

and soft lockup events on Ranger. 93

4.15 Hours associated with the correlated HDD and virtual memory re-

source use counters and correlated file access and process errors. . . 95

4.16 Hours associated with the correlated HDD and virtual memory re-

source use counters and correlated process errors and system memory

exhausted events. 95

4.17 Summary of z-scores. nr contains the number of hours in one day of

resource usage logs. ne contains the number of hours in one day of

system logs. 96

5.1 Dates of cluster log-data analysed. 99

5.2 List of error cases identified on Lonestar4 and Stampede-1. 99

5.3 Summary of z-scores. nr contains the number of hours in one day of

resource usage logs. 102

5.4 Summary of z-scores. nr contains the number of hours in one day of

resource use logs. 104

5.5 Hours associated with the correlated data transmission error counters

and correlated DNS lookup failures & GSIFTP error messages. . . . 110

5.6 Summary of z-scores. nr contains the number of hours in one day of

resource usage logs. ne contains the number of hours in one day of

system logs. 110

5.7 Hours associated with the correlated harddisk, filesystem I/O and

Linux processes resource use counters and correlated filesystem I/O,

process and software errors. 116

5.8 Summary of z-scores. nr contains the number of hours in one day of

resource usage logs. ne contains the number of hours in one day of

system logs. 117

6.1 Summary of resource use data and system logs. 130

6.2 List of rare error cases on Ranger and Lonestar4. 137

6.3 z-scores for correlated resource use counters and correlated messages

on Ranger. 140

6.4 List of messages and associated number of nodes on Ranger. 141

6.5 z-scores for correlated resource use counters and messages on Ranger. 144

6.6 List of messages and associated number of nodes on Ranger. 144

6.7 z-scores for correlated resource use counters and messages on Ranger. 147

6.8 List of messages and associated nodes on Ranger. 147

6.9 z-scores for correlated resource use counters and messages on Lonestar4.151

vi

6.10 List of messages and associated nodes on Lonestar4. 151

7.1 List of error cases identified on Ranger, Lonestar4 and Stampede-1. . 156

7.2 List of rare error cases on Ranger and Lonestar4. 163

7.3 Comparing features of the CORRMEXT and EXERMEST frameworks.166

7.4 Summary of error cases diagnosed using CORRMEXT and EXERMEST.167

vii

List of Figures

1.1 A summary of fault tolerance techniques. The figure was modified

using Fig. 16 in the reference [3]. 2

1.2 An illustration of errors propagating between the application, network

and file-system. 4

1.3 The workflows of the diagnostics approach. The workflow for the

CORRMEXT framework is shown on the left. The workflow for the

EXERMEST framework is shown on the right. Each module produces

a report which can be used for diagnosis. 5

3.1 An illustration of rx bytes, rx crc errors and rx frame errors resource

use counters, master network unreachable and FTP failed messages. 37

3.2 Distribution (log-scale) of soft lockup events on Ranger. 43

3.3 Distribution (log-scale) of soft lockup events on Lonestar4. 44

4.1 An illustration of the resource use counters: (i) user processor utilisa-

tion, (ii) memory pages not accessed recently and (iii) memory pages

accessed recently, and the system messages: (i) northbridge error, (ii)

ECC memory error and (iii) processor core. 50

4.2 The workflow of the CORRMEXT framework. 52

4.3 The full-circled counters were identified by Spearman-Rank correlation

only. 60

4.4 The full-circled counters were identified by Spearman-Rank correlation

only. 60

4.5 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 61

4.6 The full-circled counters were identified by Spearman-Rank correlation

only. 61

4.7 The full-circled counters were identified by Spearman-Rank correlation

only. 62

viii

4.8 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 62

4.9 The dot-circled events were identified by Pearson correlation only. . 64

4.10 Correlations of segmentation fault and general protection error events. 64

4.11 The dot-circled events were identified by Pearson correlation only. . 65

4.12 The full-circled counters were identified by Spearman-Rank correlation

only. 69

4.13 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 69

4.14 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 70

4.15 Correlation of network packets transmitted, filesystem read bytes and

filesystem write bytes. 70

4.16 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 71

4.17 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 71

4.18 The dot-circled events were identified by Pearson correlation only. . 73

4.19 Correlation of communication error and directory read error events. 74

4.20 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 78

4.21 The full-circled counters were identified by Spearman-Rank correlation

only. 78

4.22 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 79

4.23 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 79

4.24 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 80

ix

4.25 The full-circled counters were identified by Spearman-Rank correlation

only. The dot-circled counters were identified by Pearson correlation

only. 80

4.26 Correlations of northbridge error, core and ECC error events. 82

4.27 The full-circled counters were identified by Spearman-Rank correlation

only. 86

4.28 The full-circled counters were identified by Spearman-Rank correlation

only. 87

4.29 The full-circled counters were identified by Spearman-Rank correlation

only. 87

4.30 The full-circled counters were identified by Spearman-Rank correlation

only. 88

4.31 Correlation of messages read lock failed, write lock failed and Pid:

comm. 89

4.32 Correlation of messages read lock failed, write lock failed and Pid:

comm. 89

4.33 Correlation of messages read lock failed, write lock failed and Pid:

comm. 90

5.1 Correlation of data frame errors. 100

5.2 Correlation of cyclic redundancy check errors. 101

5.3 Correlation of Linux process & filesystem resource use counters. . . . 103

5.4 Correlation of Linux process & harddisk sector write resource use

counters. 104

5.5 Correlation of data frame errors. 106

5.6 Correlation of cyclic redundancy check errors. 107

5.7 Correlation of DNS lookup failures & GSIFTP messages. 108

5.8 Correlation of Linux process & filesystem resource use counters. . . . 112

5.9 Correlation of harddisk, filesystem & Linux process resource use counters.113

5.10 Correlation of filesystem error & process information messages. . . . 114

5.11 Correlation of filesystem & software error messages. 115

6.1 The workflow of the EXERMEST framework. 123

6.2 Significant resource use counters on time-bins of 1 hour on Ranger. . 131

6.3 Significant resource use counters on time-bins of 30 minutes on Ranger.131

6.4 Significant resource use counters on time-bins of 10 minutes on Ranger.132

6.5 Significant resource use counters on time-bins of 1 hour on Lonestar4. 132

6.6 Significant resource use counters on time-bins of 30 minutes on Lonestar4.133

6.7 Significant resource use counters on time-bins of 10 minutes on Lonestar4.133

x

6.8 Significant message types on time-bins of 1 hour on Ranger. 134

6.9 Significant message types on time-bins of 30 minutes on Ranger. . . 134

6.10 Significant message types on time-bins of 10 minutes on Ranger. . . 135

6.11 Significant message types on time-bins of 1 hour on Lonestar4. . . . 136

6.12 Significant message types on time-bins of 30 minutes on Lonestar4. . 136

6.13 Significant message types on time-bins of 10 minutes on Lonestar4. . 137

6.14 Correlated resource use counters on Ranger. The significant resource

use counters are “net ib0 tx dropped” and “llite /work write bytes”. 139

6.15 Correlated messages on Ranger. The significant events are “kernel IO

window” and “kernel PREFETCH window”. 140

6.16 Correlated resource use counters on Ranger. The significant resource

use counters are “cpu iowait” and “llite /work ioctl”. 142

6.17 Correlated messages on Ranger. The significant events are “connection

was lost” and “connection restored”. 143

6.18 Correlated resource use counters on Ranger. The significant resource

use counters are “vm pgfault” and “llite /share ioctl”. 145

6.19 Correlated messages on Ranger. The significant events are “kernel

get user pages” and “kernel copy strings”. 146

6.20 Correlated resource use counters on Lonestar4. The significant re-

source use counters are “ps nr threads” and “mem 0 Dirty”. 149

6.21 Correlated messages on Lonestar4. The significant messages are “failed

to close new data saved state” and “request sent has timed out”. . . 150

xi

Abstract

Analysing failures to improve the reliability of high performance computing
systems and data centres is important. The primary source of information for
diagnosing system failures is the system logs and it is widely known that finding the
cause of a system failure using only system logs is incomplete. Resource utilisation
data – recently made available – is another potential useful source of information
for failure analysis. However, large High-Performance Computing (HPC) systems
generate a lot of data. Processing the huge amount of data presents a significant
challenge for online failure diagnosis. Most of the work on failure diagnosis have
studied errors that lead to system failures only, but there is little work that study
errors which lead to a system failure or recovery on real data.

In this thesis, we design, implement and evaluate two failure diagnostics
frameworks. We name the frameworks CORRMEXT and EXERMEST. We im-
plement the Data Type Extraction, Feature Extraction, Correlation and Time-bin
Extraction modules. CORRMEXT integrates the Data Type Extraction, Correlation
and Time-bin Extraction modules. It identifies error cases that occur frequently and
reports the success and failure of error recovery protocols. EXERMEST integrates
the Feature Extraction and Correlation modules. It extracts significant errors and
resource use counters and identifies error cases that are rare. We apply the dia-
gnostics frameworks on the resource use data and system logs on three HPC systems
operated by the Texas Advanced Computing Center (TACC). Our results show that:
(i) multiple correlation methods are required for identifying more dates of groups of
correlated resource use counters and groups of correlated errors, (ii) the earliest hour
of change in system behaviour can only be identified by using the correlated resource
use counters and correlated errors, (iii) multiple feature extraction methods are re-
quired for identifying the rare error cases, and (iv) time-bins of multiple granularities
are necessary for identifying the rare error cases. CORRMEXT and EXERMEST
are available on the public domain for supporting system administrators in failure
diagnosis.

xii

Acknowledgements

I would like to thank the academics, engineers and administrators who provided

valuable support to my work. Firstly, I would like to thank my PhD supervisor,

Dr. Arshad Jhumka. He and I have collaborated on research in failure diagnosis

since 2012. He is open to new angles of research in fault tolerance and engages in

interesting discussion on research. Because of that, I can work on a research topic

that I am really interested in and collaborate with him. From 2013 – 2019, we

published 10 papers in peer-reviewed journal, conference and workshop proceedings.

I am a first author on eight papers in system failure diagnosis. Thank you, Arshad.

I would like to thank my industry collaborators at Intel Corporation. I would

like to express my heartfelt appreciation to Mr. Karl Solchenbach. During my PhD,

he introduced his engineers, Dr. Samantha Alt, Dr. Marie-Christine Sawley and

Dr. Joshua B. Fryman. They provided constructive feedback that improved my

papers significantly and suggested ideas to make my PhD work more interesting to

the industry. It led to the successful publication of my conference paper in 2017 and

two more papers in 2019. Thank you, Karl, Samantha, Marie-Christine and Joshua.

I would like to thank my collaborators at the Rutgers Discovery Informatics

Institute at Rutgers University, USA. I would like to express my gratitude to Professor

Manish Parashar. When I asked for his help, he introduced Dr. Daniel Balouek-

Thomert and Dr. J.J. Villalobos from his team who guided me on my papers. Dr.

Thomert, Dr. Villalobos and Prof. Parashar not only helped me improve the clarity

of my writing and presentation of the results, they also helped me understand what

the anonymous reviewers were asking and showed me how to address the comments.

Because of them, I can address all the concerns that were raised by the anonymous

reviewers. It led to the successful publication of my journal and conference papers

xiii

in 2019. Thank you so much, Daniel, Juanjo and Prof. Parashar.

I would like to thank Dr. William L. Barth, Dr. Tommy Minyard and Dr.

Richard T. Evans at the Texas Advanced Computing Center at The University of

Texas at Austin. Bill, Tommy and Todd granted me access to their HPC systems

and provided the important ingredient for my PhD: the system logs and resource

utilisation data. Without their data, my research would be more difficult to do.

Thank you, Bill, Tommy and Todd.

I would like to thank my advisors Dr. Victor Sanchez and Dr. He Ligang at

the Computer Science department at The University of Warwick for their helpful

comments at my annual review. I would also like to thank Dr. Theo Damoulas

(University of Warwick) for introducing the Bonferroni Correction method.

I would like to thank my examiners Dr. He Ligang and Professor Miroslaw

Malek. During my Viva, Dr. He and Professor Malek not only provided constructive

feedback which helped improve my final thesis significantly, they also offered new

research directions to extend the work I did during my PhD studies. Because of

them, I can pursue my interest in the field of fault tolerance using statistics and data

analytics for years to come. Thank you so much, Ligang and Prof. Malek.

I would like to thank the teams from Student services and Data Science

at Scale programme at The Alan Turing Institute for the strong administrative

support they have given to me during my PhD. Specially, I would like to mention

Emma Armitage, Samantha Selvaraj, Dr. Ben Murton, Dr. Donna Brown, Georgia

Koumara, Emma Levy, Dr. Helen Davies, Catherine Lawrence, Anastasia Shteyn, Dr.

Nico Guernion and Dr. Anthony Lee. I would also like to thank Sharon Howard and

Ruth Cooper for the strong administrative support they gave to me at the Computer

Science department at The University of Warwick. Without their support, I would

not be able to complete my thesis on time. Thank you all for the support.

Dr. James Clayton Browne (January 16, 1935–January 19, 2018) was Regents

Chair in Computer Sciences, Professor of Physics and Professor of Electrical and

Computer Engineering at The University of Texas at Austin. Professor Browne’s

contributions to the development of the failure diagnosis frameworks have been

crucial but unfortunately he passed away when I was working on my PhD. In 2016,

xiv

I almost gave up the PhD in Computer Science specialising in fault tolerance but

he inspired me with his positive manner, motivated me to carry on, provided me

with strong reference letters and supported me with the limited resources he had.

As such, I dedicate this thesis to the memory of Dr. James Clayton Browne.

xv

Dedication

In memory of Dr. James Clayton Browne – Mentor and teacher.

“For God so loved the world that He gave His only begotten Son, that if he believes

in Him he will not perish but have everlasting life.” – John 3:16.

xvi

Declarations

Parts of this thesis have been previously published by the author in the following:

[10] Edward Chuah, Arshad Jhumka, Samantha Alt, Theo Damoulas, Nentawe

Gurumdimma, Marie-Christine Sawley, William L. Barth, Tommy Minyard,

and James C. Browne. Enabling dependability-driven resource use and message-

log analysis for cluster system diagnosis. In Proceedings of IEEE International

Conference on High Performance Computing, Data and Analytics (HiPC),

pages 317–327, 2017. doi: 10.1109/HiPC.2017.00044

[11] Edward Chuah, Arshad Jhumka, Samantha Alt, Daniel Balouek-Thomert,

James C. Browne, and Manish Parashar. Towards comprehensive dependability-

driven resource use and message log-analysis for HPC systems diagnosis. Journal

of Parallel and Distributed Computing, 132:95–112, 2019. doi: https://doi.org/

10.1016/j.jpdc.2019.05.013

[12] Edward Chuah, Arshad Jhumka, Samantha Alt, J.J Villalobos, Joshua B.

Fryman, William L. Barth, and Manish Parashar. Using resource use data

and system logs for HPC system error propagation and recovery diagnosis.

In Proceedings of IEEE International Symposium on Parallel and Distributed

Processing with Applications (ISPA), pages 1–10, 2019

Research was performed in collaboration during the development of this thesis, but

does not form part of the thesis:

[9] Edward Chuah, Arshad Jhumka, James C. Browne, Nentawe Gurumdimma, Sai

Narasimharmuthy, and Bill Barth. Using message logs and resource use data

for cluster failure diagnosis. In Proceedings of IEEE International Conference

xvii

on High Performance Computing, Data and Analytics (HiPC), pages 232–241,

2016. doi: 10.1109/HiPC.2016.035

[6] Edward Chuah and et. al. Enabling online resource use and system log-analysis

for HPC systems vulnerability diagnosis. In Under preparation for submission

in 2020, 2020

xviii

Sponsorships and Grants

This research was supported by The Alan Turing Institute under the EPSRC, UK

grant EP/N510129/1, The Alan Turing Institute–Intel partnership, The University

of Warwick Department of Computer Science scholarship and the National Science

Foundation, USA under OCI awards #0622780, #1203604 and #1134872 to the

Texas Advanced Computing Center at The University of Texas at Austin.

xix

Acronyms

AUC Area Under Curve.

CORRMEXT CORrelating Resource use data and Message logs and EXtracting

Times.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DILAF DIstributed Log Analysis Framework.

DOC Decentralized Online Clustering.

ECC Error Correcting Code.

EXERMEST EXtracting FEatures and CoRrelating Resource Use Counters and

MESsage Types.

FSA Finite State Automaton.

GB Giga Byte.

GHz Giga Hertz.

GPF General Protection Fault.

HDFS Hadoop Distributed File System.

HELO Hierarchical Event Log Organizer.

HPC High Performance Computing.

I/O Input Output.

IBM International Business Machines.

xx

ICA Independant Component Analysis.

IPLoM Iterative Partitioning Log Mining.

LKE An unstructured log-analysis technique for anomaly detection.

LogAider A tool for mining event correlations in HPC system event logs.

LoGS A log-analysis tool that is implemented to make the administration of large

clusters more bearable.

LogSig A message based signature algorithm that generates system events from

raw textual message logs.

Logsurfer A log-file analysis tool.

MB Mega Byte.

Message Type A sequence of words where each word contains only alphabets in

the English language.

MLCS Multiple Longest Common Subspace.

MPRIME Mersenne prime number test application.

MRPC Most Relevant Principal Component.

MTE Message Template Extractor.

MTExt Message Types Extractor.

NLPCA Non-Linear Principal Component Analysis.

NUMA Non-Uniform Memory Access.

PCA Principal Component Analysis.

RAS Reliability, Serviceability and Availability.

RUExt Resource Use Extractor.

SEC Simple Event Correlator.

SIG Structure-of-Influence Graph.

SLCT Simple Log Clustering Tool.

SVM Support Vector Machine.

xxi

SWATCH A configurable log file filter and monitor.

TACC Texas Advanced Computing Centre.

TF/IDF Term Frequency/Inverse Document Frequency.

Time-bin A time-bin is a time window of one fixed time interval.

xxii

Chapter 1

Introduction

The supercomputing and dependable systems communities have shown increasing

interest in failure analysis for data centres and high-performance computing (HPC)

systems; demonstrated from publications that report large-scale analysis of hardware

failures in data centres [68] and long-term measurement and analysis of failures in

HPC systems [30]. There is a lot of research on detecting failure-inducing errors

and analysing and diagnosing system failures. A significant body of methods have

shown the value of system logs for detecting errors [50, 69], predicting failures

[14, 18, 22, 46, 52] and diagnosing failures [41, 51, 55]. However, the message

structure is known to vary widely. By vary widely, we mean that both the text and

alpha-numerical words in the message appear in no specific order. The system logs

are redundant and provide low coverage. By low coverage, we mean that the system

logs do not contain all the events needed to establish a complete causal trace path

to the failure. By redundant, we mean that only a small quantity of the system logs

is relevant to the diagnosis of a failure. Another significant body of methods have

shown the value of resource use data for detecting anomalies [28], tracking system

behaviour [61], characterising errors [5, 29], and predicting system failures [58] or

system recovery [31]. The methods show that using resource use data and system

logs separately can help system administrators manage the complexity of a HPC

system and data centre.

1.1 Motivation

Recent work that combine system logs and resource use data for detecting errors

[16, 33, 34] and diagnosing system failures [8, 72] have shown increased accuracy over

the use of system logs alone. The work by N. Gurumdimma et. al. [33, 34] show that

the time window for handling errors and the accuracy for detecting errors can be

increased by combining resource usage data and system logs. The work by Z. Zheng

1

et. al. [71] combines RAS logs (Reliability, Serviceability and Availability) and Job

logs in a large scale cluster system for identifying interesting failure characteristics.

The ANCOR framework [8] combines resource usage data and system logs in a

two-phase approach for diagnosing system failures. The first phase identifies system

usage anomalies in the resource use data to provide a partial diagnosis of node failures.

Then in the second phase, system message log-analysis is provided to give a more

detailed diagnosis. The work by S. Di et. al. [16] identifies correlations across nodes

and time in a HPC system by combining RAS logs and Job logs for detecting errors

that lead to a system failure. The error detection and failure diagnostics frameworks

presented in references [8, 16, 33, 34, 72] have identified system errors that lead to a

system failure only. However, there is little work that study errors which lead to a

system failure or recovery. Knowing when an error leads to a success or failure of

an error recovery protocol can be useful to system designers and implementors; the

knowledge can be used to improve the effectiveness of error recovery protocols.

1.2 Background

In this section, we explain fault tolerance, give the basic definition of an error and a

failure, describe failure diagnosis and give an example of a diagnostics scenario.

1.2.1 Fault Tolerance

A summary of fault tolerance techniques is shown in Figure 1.1.

Error detection
Concurrent detection

Preemptive detection

Fault Handling

Rollback

Rollforward

Compensation

Error Handling

Diagnosis

cause(s) of error(s), in terms
(Identifies and records the

Isolation

Reconfiguration

Reinitialisation

of both location and type)

being activated again)

(Eliminates errors
from the system state)

(Prevents faults from

Fault Tolerance

Error recovery

Figure 1.1: A summary of fault tolerance techniques. The figure was modified using
Fig. 16 in the reference [3].

Fault tolerance is a property that enables a computer system to continue

operating properly in the event of a failure of some of its components. If the operating

2

quality of the computer system decreases, the decrease is proportional to the severity

of the failure. A computer system that is designed to be fault tolerant can continue

its intended operation, possibly at a reduced level, rather than failing completely,

when some part of the system fails. Within the scope of a HPC system or data

centre, fault tolerance can be achieved by anticipating exceptional conditions and

building the system to cope with them.

1.2.2 Errors and Failures

An error is defined as the part of the total state of the system that may lead to its

subsequent failure [3]. An error is detected if its presence in indicated by an error

message or error signal. An error can also be present but not detected; these are

called latent errors. A failure is defined as an event that occurs when the state of the

system deviates from the expected one. Some errors do not lead to a system failure

but some errors do reach the external state of the system and cause a failure. A

system failure occurs when an error propagates from one component to another until

it has reached the system boundary. Errors can propagate to the system boundary

if error recovery mechanisms fail or there is a lack of recovery mechanisms.

1.2.3 Failure Diagnosis

Failure diagnosis is a process of tracing a fault, i.e., the cause of a failure by means

of its symptoms, applying knowledge and analysing test results [25]. Error detection

assumes prior knowledge about the fault model. Differently to error detection,

failure diagnosis assumes no prior knowledge about fault models. Accurate diagnosis

of failures in HPC systems and data centres requires: (i) collecting information

from sensors, (ii) processing the information using advanced data preprocessing

techniques, and (iii) extracting the required features for efficient identification of

faults. When the cause of a failure is identified, remedial actions can be taken to

increase productivity and reduce maintenance in the HPC system and data centre.

Machine learning methods (e.g., feature extraction) and statistical techniques can be

used for developing tools which can aid the system administrators in their day-to-day

task of managing a complex HPC system or data centre.

Error detection: Error detection is the detection of errors caused by noise or other

impairments introduced into data while it is transmitted from source to destination.

When an error message or error signal is indicated, the error is detected. When an

error is present but not detected, the error is called a latent error. Error recovery is

the ability to resume operation after encountering the error. The ability to detect

an error and reconstruct the original error-free state is called error correction. This

thesis focuses on HPC systems diagnosis.

3

1.2.4 A Diagnosis Scenario

A diagnosis scenario between an application and a remote file-system is illustrated

in Figure 1.2.

File−system Network Application

Make request for dataReceives request

Forwards requestReceives request

! Error reading dir

Sends error message Receives error message

! Error occurred while

communicating with fs

Receives error messageForwards error message

Figure 1.2: An illustration of errors propagating between the application, network
and file-system.

When an application sends a request for data that is stored on a networked

filesystem, the filesystem will respond to the client. In most cases, the filesystem

will retrieve the data and send the data to the client. However, in some cases the

filesystem may encounter a directory read error. It is unable to access the directory

to read the data. The filesystem will generate an error message and send it to the

client. Then, the client will send another request to the filesystem. There are many

reasons for read errors to occur on a filesystem. Possible causes for filesystem read

errors include bad blocks on the harddisk or another client has obtained a lock on

the directory that holds the data. Some filesystem read errors are recoverable. If the

read error is caused by an application holding a lock on a directory, when the lock is

released, the filesystem is able to access the directory, read the data and send it to

the client. If the read error is caused by bad blocks on the harddisk, then the data

stored on the disk is lost.

1.3 The Problem

Modern day data centres and HPC systems suffer from occurrence of errors and

failures. The data centres and HPC systems are comprised of different combinations

of processors, networks, operating system processes, memory and storage systems.

When new technologies and software deploying in HPC systems and data centres

grow, the nature of computing systems can change rapidly. The computing systems

are capable of generating a lot of data and different types of data. However, the

data are not necessarily structured. Therefore, it is a challenging task to find the

4

right types of data and analyse the data to quickly diagnose system problems. For

the system administrators, managing these complex computing systems is a labour

intensive day-to-day task. Therefore, it is important to address the challenge by

providing tools that can help the system administrators identify where, when and

why the error recovery protocol failed or succeeded. In this thesis, we are interested

in capturing the frequent error cases and the rare error cases.

1.4 The Approach

In this thesis, we design, implement and evaluate two system diagnostics workflows

as shown in Figure 1.3.

Message Logs

Data Type
Extraction

Correlated
events

Correlated resource
use counters

Correlation

CorrelatorCorrelator
Extractor
Feature

Extractor
Feature

Feature Extraction

Correlated
events

Validation Validation

Time−bins of correlated
resource use counters

Time−bins of
correlated events Validation Validationdates

No. of

dates
No. of

MTExtRUExt

Resource
Use Data

Date

Resource use
data matrix data matrix

Message types

List of resource
use counters

List of message
types

Resource use counters Message types

Correlation

CorrelatorCorrelator

Correlated resource
use counters

Significant Significant

L
is

t
o
f

re
so

u
rc

e
u
se

 c
o
u
n
te

rs

L
is

t
o
f

m
es

sa
g
e

ty
p
es

Time−bin
Extraction

Variance Extractor Variance Extractor

(CORRMEXT) (EXERMEST)

Figure 1.3: The workflows of the diagnostics approach. The workflow for the
CORRMEXT framework is shown on the left. The workflow for the EXERMEST
framework is shown on the right. Each module produces a report which can be used
for diagnosis.

5

The first diagnostics framework – we called CORRMEXT (CORrelating

Resource use data and Message logs and EXtracting Times) – integrates data type

extraction, correlation and time-bin extraction methods. It identifies frequently

occurring error cases. CORRMEXT uses both TACC Stats [17] resource usage data

and system logs in its analyses. The second diagnostics framework – we called

EXERMEST (EXtracting FEatures and CoRrelating Resource Use Counters and

MESsage Types) – integrates feature extraction and correlation methods. Differently

to CORRMEXT, EXERMEST identifies rare error cases. CORRMEXT can be used

to identify error cases that occur frequently. EXERMEST can be used to identify

error cases that are rare.

1.5 Contributions of this Thesis

The techniques for achieving fault tolerant HPC systems and data centres are

presented in Figure 1.1. Failure diagnosis – a fault removal technique – is one way to

achieve a fault tolerant HPC system. There are many frameworks that identify errors

that lead to a system failure, but there is little work that study errors which lead to a

system failure or recovery on real data. Existing failure diagnosis techniques correlate

a given error event (for example, a file-access error) to a system failure and return

the most likely cause of the failure. While information like these can provide some

details on the likely cause of the failure, capturing the propagation paths of errors

and recovery attempts provide more details. A diagnosis such as “A DNS lookup

failure was caused by a DNS software configuration error. The configuration error

actually resulted in the DNS lookup failure which led to the FTP software failure”

provides more details than “A DNS lookup failure caused the FTP software failure”.

In the former, the diagnosis tells the system administrator that the fault lies in the

DNS software configuration. Therefore, they can fix the problem by configuring the

DNS software correctly. In this thesis, we design, implement and evaluate two new

workflows for system diagnosis. We obtain the resource use data and system logs

on three different HPC systems and conducted extensive experiments to validate

the workflows. Our results show that: (i) we require multiple correlation methods

to identify more dates of groups of correlated resource use counters and groups

of correlated errors, (ii) we require both the correlated resource use counters and

correlated errors to identify the earliest hour of change in system behaviour, (iii) we

require multiple feature extraction methods to identify the rare error cases, and (iv)

we require multiple granularities of time-bins to identify the rare error cases.

• We design, implement and evaluate a new failure diagnostics framework –

called CORRMEXT – that combines analyses of resource use data and system

6

logs for detailed dependability-oriented system failure diagnosis. CORRMEXT

evaluates multiple correlation algorithms. We show that: (i) multiple correlation

algorithms are required to identify more dates of groups of correlated resource

use counters and correlated errors, (ii) both the correlated resource use counters

and correlated errors are required for identifying the earliest hour of change in

system behaviour. We study different error cases on the Ranger HPC system.

We report this contribution in Chapter 4 of this thesis.

• We show that the CORRMEXT framework generalises to multiple HPC systems.

We: (i) confirm that more dates of groups of correlated resource use counters

and groups of correlated errors can only be identified by applying multiple

correlation algorithms, and (ii) confirm that the earliest times of change in

system behaviour can only be identified by analysing both the correlated

resource use counters and correlated errors. We study different error cases on

Lonestar4 and Stampede-1. We report this contribution in Chapter 5 of this

thesis.

• We develop a new workflow for identifying rare error cases on multiple HPC

systems. The workflow is implemented in a framework called EXERMEST.

The EXERMEST framework evaluates three feature extraction algorithms and

shows that we require multiple feature extractors to identify the significant

resource use counters and errors associated with the rare error cases. By

significant, we mean the highest scores that the feature extractors assign to

the resource use counters and errors. We study different error cases on Ranger

and Lonestar4. We report this contribution in Chapter 6 of this thesis.

1.6 Outline of this Thesis

The remainder of this thesis is structured as follows:

Chapter 2 presents a detailed survey of system log-file processing tools. It describes

the main techniques developed by the tools. The techniques are: (i) regular expres-

sions, (ii) clustering, (iii) feature selection, (iv) anomaly detection, and (v) hybrid

method. A hybrid method uses two or more techniques. The chapter highlights the

similarities and differences between the system log-file processing tools.

Chapter 3 presents the problems that we solve in this thesis. It introduces the

system model, fault model and system issues. It describes: (i) Ranger, Lonestar4

and Stampede-1 HPC systems operated by the Texas Advanced Computing Center

at The University of Texas at Austin, (ii) cluster log-data generated on these HPC

systems, and (iii) implementation details for the data preprocessing modules. Parts

7

of the chapter use material in the conference paper [10] and journal paper [11].

Specifically, it uses:

• the system model reported in [8], the fault model and data preprocessing

modules reported in [10].

• the system issue reported in [10, 11].

Chapter 4 presents CORRMEXT to identify frequently occurring error cases and

report the rates of success and failure of error recovery protocols. It describes the

data type extraction, correlation and time-bin extraction modules and presents five

different error cases identified on the Ranger HPC system. Parts of the chapter use

material in the conference paper [10] and journal paper [11]. Specifically, it uses

the problem specification, data type extraction, correlation and time-bin extraction

modules, and five error cases identified on the Ranger HPC system.

Chapter 5 shows that CORRMEXT generalises to multiple HPC systems. It

presents several new findings and failure patterns, gives the details of two different

error cases on Lonestar4 and one error case on Stampede-1, and describe the benefit

of combining analysis of resource use data and system logs for HPC systems diagnosis.

Parts of the chapter use material in the journal paper [11]. Specifically, it uses the

two error cases reported in [11].

Chapter 6 presents a features correlation-based workflow called EXERMEST. It

describes the feature extraction and correlation modules in the framework and

presents three rare error cases identified on Ranger and one rare error case on

Lonestar4. Parts of the chapter use material in the conference paper [12]. Specifically,

it uses the problem specification, feature extraction and correlation modules, and

three error cases reported in [12].

Chapter 7 presents a comparative analysis of CORRMEXT and EXERMEST.

It discusses the functions and types of errors diagnosed by CORRMEXT and

EXERMEST. We refer the reader to this chapter for comparing the diagnostics

capabilities of CORRMEXT and EXERMEST.

Chapter 8 summarises this thesis and provides a number of suggestions for future

research.

8

Chapter 2

Literature Review

When a system failure occurs, the first place that the system administrator goes

to to identify the cause of a failure are the system logs. The system logs contain

streams of system events generated by the operating system, filesystem and system

software. The system events are interleaved in time and only a small fraction of the

events are relevant to the diagnosis of a given failure. In this chapter, we present a

detailed survey of system log-file processing tools.

We structure this chapter according to the main techniques developed by the

tool. The techniques are: (i) regular expressions (Section 2.1), (ii) clustering (Section

2.2), (iii) feature selection (Section 2.3), (iv) anomaly detection (Section 2.4), and

(v) hybrid method (Section 2.5). In Section 2.6, we highlight the similarities and

differences between the system log-file processing tools and conclude with a summary

in Section 2.7.

2.1 Regular Expressions

In this section, we present the tools that develop regular expressions as the main

technique for processing textual system event logs. The tools are LoGs [54], Simple

Event Correlator [56, 65], SWATCH [37] and LogSurfer [53].

2.1.1 LoGS

LoGS [54] is a log-analysis tool that is implemented to make the administration

of large clusters more bearable. It has a log-analysis engine which consists of five

different components. The components of the log-analysis engine are: messages, rules,

rulesets, actions and contexts. Messages can be a single line from a syslog file. Rules

match messages and trigger actions based upon those matches. A rule consist of

seven optional components: match function, no-match function, delete-rule function,

9

no-delete-rule function, absolute timeout, continue value and a list of actions. A

ruleset shares many properties of rules and a ruleset can match messages. When a

ruleset matches a message, the rules inside a ruleset are checked against the message.

This functionality allows a ruleset to be organised in a tree and it reduces the number

of comparisons that must be made to determine if a message is interesting. An action

define what is to be done with a message or context of messages. An action can be

triggered when a rule matches a message, a ruleset matches a message or a context

exceeding its limits. Actions are Common Lisp functions. Contextual information

are used by LoGS to gather and store related messages for potential use. Related

messages may be analysed as a group.

2.1.2 SEC

The Simple Event Correlator (SEC) [56, 65] is a real-time log-file analysis tool

that is developed to provide support for recognising the temporal component of log

analysis. SEC receives input events from a file-stream and produces output events

by executing user-specified shell commands. The input events include regular files,

named pipes and standard input. The input events are handled as regular expressions

and configuration files that contain rules can be created and stored.

The rule types that are supported include Single, SingleWithScript, SingleWith-

Suppress, Pair, PairWithWindow, SingleWithThreshold, SingleWith2Threshold, Sup-

press and Calendar. The Single rule type matches an input event and executes a

list of actions. The SingleWithScript rule type matches an input event and executes

a list of actions if an external script or program returns certain exit values. The

SingleWithSuppress matches an input event and executes a list of actions but it will

ignore the matching events which follow for a specified number of seconds. The rule

Pair matches an input event and executes a list of actions, ignore the matching

events which follow for a specified number of seconds and then match a second event

and execute another list of actions. The rule PairWithWindow executes the rule

type Pair within a given time-window. The rule type SingleWithThreshold counts

matching input events within a given time-window and executes a list of actions if a

given threshold has exceeded. The rule type SingleWith2Thresholds executes the rule

type SingleWithThreshold two times within two time-windows and two threshold

values. The rule type Suppress suppresses a matching input event and the rule type

Calendar executes a list of actions at specified times.

SEC supports a comprehensive list of actions and the list of actions include

log a message, write a line to a file, execute an external shell script or program, and

generate a new input event that can be matched by other rules.

10

2.1.3 SWATCH

SWATCH [37] is a configurable log file filter and monitor that monitors log files,

filters out unwanted data and takes user-specified actions based upon the patterns

in the log. SWATCH can be used in three different ways. The first way is to make a

single pass through a file. The second way is to look at messages that are appended

to a file as the file is being updated. The third way is to examine the standard

output of a program. It has three basic parts. The first part is a configuration file.

The second part is a library of actions and the third part is a controlling program.

A non-comment line in a configuration file is made up of a pattern expression, a list

of actions to be performed if the expression is matched, an optional time interval

and the location of a timestamp.

The list of actions SWATCH understands include echo, bell, ignore, write and

mail, and pipe and exec. The action echo echos the line to SWATCH’s controlling

terminal. The action bell sends a bell signal to the controlling terminal. The action

ignore ignores the current line of input and proceeds to the next line. The actions

write and mail sends a copy of the line to the user via the write and mail commands.

The action pipe matches lines as input to a particular command on the system. The

action exec runs a command on the system with the option of using selected fields

from the matched lines as arguments to the command.

2.1.4 Logsurfer

Logsurfer [53] is a log-file analysis tool that examines messages in a log file in terms of

how they relate to other messages. There are four different components in Logsurfer.

The components are messages, rules, actions, and contexts. Messages are pieces of

incoming data from a single data source. Rules match messages and trigger actions

based on those matches. Actions are triggered when a rule matches a message or

when a context is closed. Actions can also create new rules, create new contexts

and delete unneeded contexts. Contexts gather and store messages in memory. A

logsurfer rule specification is made up of seven fields. The first field specifies a

regular expression that indicates which messages the rule is matched. The second

field specifies a regular expression that indicates exceptions to the first field. The

third field specifies a regular expression that indicates when a rule is to be deleted.

The fourth field specifies a regular expression that indicate exceptions to the third

field. The fifth field specifies the amount of time in seconds a rule can be active.

The sixth field can be used to indicate when a rule matches a message, subsequent

rules should also try to match the message. The seventh field specifies an action to

be taken when a rule matches a message.

11

Seven action types are supported by Logsurfer. The action ignore disregards

a message and it is often used to filter out messages that need not be acted upon.

The action exec executes an external program. The action pipe executes an external

program with the current message or context as its standard input. The action open

opens a new context. The action delete deletes a context. The action rule creates a

new rule.

A single message is often not enough to tell whether there is a problem.

Logsurfer employs contexts that collect and store messages in memory and it uses a

pair of regular expressions to determine which messages are added to a context. The

first regular expression in the pair specifies the messages to add to the context, and

the second regular expression specifies exceptions to the first regular expression.

2.2 Clustering

In this section, we present the tools that develop clustering as the main technique

for processing the textual system event logs. The tools are SLCT [66], IPLoM [48],

HELO [23], Baler [49], Decentralized Online Clustering [52] and Handling redundancy

[32].

2.2.1 SLCT and LogHound

SLCT (Simple Log Clustering Tool) [66] is a data clustering algorithm that is

developed for analysing textual event logs. Each log line in the event log is viewed

as a data point with categorical (non-numeric) attributes. SLCT groups data points

into clusters such that the data points in a cluster are similar to each other, and

data points that do not fit in any cluster are categorised as outliers. SLCT uses a

density-based algorithm that identifies dense regions in the data space and forms

clusters from them. The author also discussed about the traditional distance-based

clustering approach. SLCT does not use the distance-based clustering approach

because defining a distance function for categorical data is not trivial and the notion

of distance becomes meaningless in a high-dimensional data space. LogHound uses a

frequent itemset mining algorithm to discover frequent patterns in event logs.

2.2.2 IPLoM

The reference in [48] presents a novel algorithm called IPLoM (Iterative Partitioning

Log Mining) for mining clusters in event logs. IPLoM finds frequent event type

patterns and works through a 3-step hierarchical clustering process. The hierarchical

clustering process partitions the event logs by token count, token position and

search for bijection. A token is a sequence of characters with no space. Step 1 of

12

the algorithm creates partitions of log messages where each partition contains log

messages that have the same token length. Step 2 of the algorithm finds the position

of a token which has the least unique values in a partition and uses the token position

to split the partition. Step 3 of the algorithm finds 1-to-1 relationships between

tokens in a partition and splits the log messages that contain these tokens into a

separate partition. The final step in the algorithm discovers cluster descriptions in

each partition. If a partition contains one unique token, the token name is used to

describe the cluster. On the other hand, if a partition contains two or more unique

tokens, a wildcard is used to describe the cluster. The authors compared IPLoM

with SLCT, LogHound and Teiresias. IPLoM achieved an average F-measure of 78%

when the closest other algorithm achieved an F-measure of 10%.

2.2.3 Helo

HELO [23] is a novel unsupervised clustering engine that accurately mines event type

patterns from log-files generated by large supercomputers. It has two different parts:

Offline classification and online classification. The first part, offline classification,

finds events in log-files and uses the events to create the first template set. The

algorithm uses a 2-step hierarchical process to group events according to their message

description. In the first step of the process, the best split column for each cluster is

searched. In the second step of the process, the clusters are divided. A split column

represents a word position in the message description and the word position in the

message is used to divide the cluster into different groups.

The second part, online classification, groups messages as they are being

generated by the system. The input to the online classification part is given by the

groups obtained from the offline process on the initial dataset. On receiving a new

message, the online component checks the description of the message and finds the

most appropriate group templates. A new message is added to a group if it fits the

exact description of a group. A new message that does not have an exact match

with any of the groups is added to a group if the message does not decrease the

cluster goodness under a threshold. If the cluster goodness of all groups decrease, a

new group is formed and the message is added to the group. The authors compared

HELO with five tools. The tools are IPLoM, StrApp, LogHound, SLCT and MTE.

HELO was shown to outperform the tools on precision, recall and F-measure.

2.2.4 Baler

Baler [49] is a deterministic, lossless log message clustering tool that is developed

to handle large datasets, the quality of result patterns and explore the results. The

13

Baler log-clustering engine has two processing phases: An initial processing phase

and a clustering phase. It tokenises the data and performs clustering based on the

token attributes. The methodology processes the input data using only a single

pass and processes new log-files incrementally. In the initial processing phase, the

input message is parsed using a grammar that comprises of five non-terminals. The

non-terminals are alpha-numeric, white space, colon, bracket and other symbol. Each

of the non-terminals is described using regular expressions. The input message is

then tokenised into a sequence of symbol tokens, with each token having a token-id.

The token attributes are token ID, token type, string value and integer value. When

a token is parsed, its string value is checked against a mapping for an existing token.

If the token exists, its ID is pushed into a sequence of integers that represent the

message. If the token does not exist, a new token is created and a new ID and token

attributes are assigned. The new token ID is inserted into the sequence of integers.

Nine token types are defined. The token types are ENGLISH, NUMBER, ALPHA-

NUMERIC, SPACE, COLON, BRACKET, OTHER, SEQ and KLEEN STAR. The

token type SEQ is a sequence of tokens. The token type KLEEN STAR is a container

of tokens. The token type OTHER is other symbol.

The log-clustering engine uses English terms to determine message patterns.

It uses a heuristic to extract patterns from a parsed log message. A pattern is

inserted into the pattern hash, where the pattern key is a sequence of ids of the

pattern tokens. In the clustering phase, the similarity between pairs of 1-patterns is

evaluated. Levinstein distance measure is used to infer the similarity between pattern

tokens. Two criteria that assess the similarity are defined. In the first criteria, two

1-patterns are considered to be similar when the number of changes is less than

a given threshold. In the second criteria, the ratio of the changes count and the

minimal length of the 1-patterns is used to determine the similarity.

The authors compared Baler with Teiresias, SLCT, Loghound and IPLoM

on three conditions of interest that occurred in a cluster system at Sandia National

Laboratories. The conditions of interests are CPU stuck, oom-killer and EDAC

memory error. Baler identified more patterns for the conditions of interests than

Teiresias, SLCT, Loghound and IPLoM.

2.2.5 Decentralized Online Clustering (DOC)

A. Pelaez et. al. [52] present a solution for predicting compute node soft lockups via

online anomaly detection using a decentralised online clustering algorithm. Resource

anomalies in resource usage logs have been found in faulty nodes and reported in

the reference [8]; this means that detecting anomalies in node resource usage at

runtime can be used for predicting compute node soft lockups. The Decentralized

14

Online Clustering algorithm has been developed for distributed system monitoring.

The rationalized message logs collected on the Ranger supercomputer at the Texas

Advanced Computing Center is used for evaluating the effectiveness of the solution.

The solution has three main components. The first component, called DOC,

is responsible for distributing points to the nodes and implements the clustering

algorithm. The points are the resource usage features. The second component

extracts anomalies from the clusters generated by DOC. It also keeps track of the

logs and extracts the relevant features from the logs for invoking DOC with the correct

data. The third component makes predictions based on the anomalies identified in

the second component. It also uses multiple time bins and multiple clustering for

improving the accuracy of the predictions.

DOC is designed to run in a distributed setting on data that is also distributed.

The data is usually generated on the nodes and then the data is input into DOC.

DOC applies a density-based clustering approach. Clusters are detected by evaluating

the relative density of points within the information space. The information space

is subdivided dynamically into regions and each region is assigned to a particular

processing node using a content-based Distributed Hash Table that uses a Peano-

Hilbert space-filling curve. The Peano-Hilbert space-filling curve gives a mapping

between 1-Dimensional and 2-Dimensional space that preserves locality and is used

to assign processing nodes to regions. The Distributed Hash Table is used to get

resource usage features to the processing nodes within each region in a scalable way.

DOC is designed to be flexible to changes in topology. Because the topology of

cluster systems is stable, distributing the resource usage features and performing

cluster data aggregation is sped up by adding a caching layer to DOC. The range

of addresses that a node is responsible for is returned when a lookup operation

for a resource usage feature in the distributed hash table is resolved. The address

range and the node identifier are saved in the local cache. When another point that

belongs to the same address range is to be inserted, no lookup will be performed; the

insertion request is sent directly to the node found in the cache which reduces the

communication overhead required during each lookup. The resource usage feature is

inserted only if it belongs to the node’s information space region; this guarantees the

coherence of the cache. Two complementary strategies are developed for improving

the precision of the approach. In the first strategy, multiple time bins - a time bin

is an interval of time where resource usage data is collected - were experimented.

From the experiments, it was observed that pairs of five and ten minute time bins

increased the precision of the approach. In the second strategy, multiple clustering

was performed on different subsets of features including the original feature set. It

was observed that outliers present in multiple clustering runs are more correlated to

15

soft lockups.

The authors used two dimensions for testing the usefulness of the approach.

The two dimensions are accuracy of the prediction and scalability and performance.

In the first dimension, the rationalized message logs for the first week of March 2012

was collected and the solution is evaluated against PCA and DBSCAN using the

collected logs. The results show that the approach outperformed PCA and DBSCAN

in terms of job precision by 0.2 and node precision by 0.47. In the second dimension,

the Stampede supercomputer was used to perform all the runs of the solution and

the time measurements were split into two parts. The first part measured the time

DOC took to redistribute all the resource usage features to the processing nodes.

The second part measured the time DOC took to find all the outliers and report

the results back to the processing node. The results show that the clustering time

accounted for only 9.5% of the total time. For 5k nodes, the total time that the

solution took is just slightly more than three minutes.

2.2.6 Handling redundancy

N. Gurumdimma et. al. [32] develop a novel generic log compression technique for

addressing the problem of redundant messages in cluster system logs. The technique

uses iterative clustering. It computes the Leveinstein distance metric to measure

the difference between two strings. The technique has two steps: Tokenisation and

parsing, and filtering. In the first step, the logs are parsed to obtain the event types

and event attributes. Tokens containing alpha-numeric words and English-only words

are kept while tokens containing only numbers are removed. In the second step, the

distance between tokens is measured using the Leveinstein distance metric. The

reason for measuring the distance between tokens instead of measuring the distance

of characters between event types is it reduces the computational overhead that is

normally required. The approach is compared with the normal filtering technique on

three different log-files collected on two different cluster systems. The results show

that the iterative clustering technique achieved higher precision rates and recall rates

over the normal filtering technique.

2.3 Feature Selection

In this section, we present the tools that implemented feature selection techniques to

process the textual system event logs. Feature selection involves choosing a subset

of features to reduce the dimensionality of the data [63]. There are four key steps in

feature selection [38]. The steps are: (i) subset generation, (ii) subset evaluation,

(iii) stopping criterion and (iv) results validation. Here, the tools we survey are: (i)

16

BlueGene/L failure analysis and prediction models [45], (ii) Structure-of-Influence

(SIG) graphs [51], (iii) rank correlation for processor failure prediction [58], (iv)

LogMaster [21], (v) PREdictor [20] and (vi) 3D root-cause analysis [72].

2.3.1 BlueGene/L failure analysis and prediction models

The work reported in reference [45] study RAS (Reliability, Serviceability and Avail-

ability) event logs from an IBM BlueGene/L cluster system. The study investigates

the characteristics of fatal failure events and the correlation between fatal events and

non-fatal events in the event logs. Each record in the BlueGene/L event logs has eight

attributes. The attributes are RECID, EVENT TYPE, FACILITY, SEVERITY,

EVENT TIME, JOB ID, LOCATION and ENTRY DATA. The attribute FACILITY

denotes the component (e.g., HARDWARE, KERNEL, APP) where the event is

flagged. The attribute SEVERITY denotes the level of severity of the event. The

levels of severity include INFO, WARNING, SEVERE, ERROR, FATAL or FAIL-

URE. The attributes RECID denotes the record ID, EVENT TYPE denotes the

mechanism through which the event is logged, EVENT TIME contains the timestamp

of the event, JOB ID denotes the job that detected the event, LOCATION denotes

where an error took place, and ENTRY DATA contains a description of the event.

The event logs contain a lot of records and many of the records are repeated

and redundant. To isolate the unique failures, the authors developed a filtering tool

that has three steps. In the first step, records that contain the severity levels FATAL

or FAILURE are extracted. Using information from the ENTRY DATA attribute,

the failures are classified into five types. The types are memory failures, network

failures, application I/O failures, midplane switch failures, and node card failures.

In the second step, failures that occur within the same sub-system and reported

at the same location and by the same job are grouped together in a cluster if the

time-window between the failure events is within five minutes; this step is called

temporal compression at a single location. In the third step, failures that occur

below a time-window of five minutes and reported by the same job but at multiple

different locations are removed; this step is called spatial compression across multiple

locations.

The authors developed three prediction algorithms. The first prediction

algorithm is based on the time-between-failures. The second prediction algorithm is

based on spatial skewness. The third prediction algorithm is based on the occurrence

of non-fatal events. The results show that the prediction algorithms predicted around

80% of network and memory failures, and 47% of the application I/O failures.

17

2.3.2 Structure-of-influence graphs

A. Oliner et. al. [51] propose a method for identifying the sources of problems in

complex production systems. The method infers the influences among components

in a system by looking for pairs of components with time-correlated anomalous

behaviour. The influences are summarised in a structure called Structure-of-Influence

Graphs or SIGs. A pair of components in a system is defined as two components

share an influence when their anomaly signals are correlated. The correlation arises

from interactions between the components and the interactions may include direct

communication or resource contention between the component s. However, not all the

interactions are instantaneous. Hence, effect delays are used to establish the direction

of influence. An effect delay is defined as how long an anomaly in one component

takes to manifest itself in another component. A SIG encodes the influence as an

edge between components and uses the effect delay as a direction of influence.

A Structure-of-Influence graph is constructed using a process that has four

steps. In the first step, two models are chosen for producing SIGs. The two models

are timing model and entropy model. The timing model is based on message timing

where timing behaviour and the classes of events are important. The timing model

keeps track of past inter arrival time. The entropy model is based on the information

content of message terms where logging is highly selective and ad-hoc. The entropy

model keeps track of the distribution of message contents. In the second step, the

behaviour of components in terms of surprise, i.e., anomaly signal, is computed. To

compute an anomaly signal, the histogram of a recent window of behaviour to the

entire history of behaviours for a component is compared. The Kullback-Leibler

divergence produces a weighted average of how much the fraction of measurements

in a recent distribution differs from the historical distribution. The anomaly signal

is produced using the Kullback-Leibler divergence. In the third step, the Pearson

correlation coefficient of the anomaly signals of two components with a delay of t

time-steps is computed. Then, two matrices are constructed. One matrix is the

correlation matrix that contains the correlation coefficients of pairs of components.

The second matrix is the delay matrix that contains the offsets of pairs of components.

In the fourth step, a SIG is constructed. A SIG is defined as a graph that contains

one vertex per component and edges that represent influences. The edges in a SIG

indicates the delay associated with the influences, and the delay may be undirected,

directed or bi-directional. The correlation matrix and delay matrix are used to

construct a SIG.

The authors evaluated the SIGs by using simulation experiments on idealised

systems that consist of linear chains of components. The simulations use three types

of components. The components are sources, tasks and resources. The component

18

sources generates data and the component tasks processes data. The components

sources and tasks require resources to generate data and process data. Results from

the simulation experiments show that SIGs are robust against uniform message loss,

it degrades gracefully when timing measurements are noisy, and it does not depend

on clean training data to detect influences.

The authors applied SIGs to diagnose problems in the STANLEY and JUNIOR

autonomous vehicles and the Thunderbird supercomputer. A component shared

by the lasers on the autonomous vehicle was identified as a cause of the vehicle

swerving and a bug was traced to a buffer shared by the lasers. On the Thunderbird

supercomputer, the SIG identified a bug in the Linux kernel that caused it to skip

interrupts under heavy network activity. The bug caused the kernel to believe that

the clock frequency had changed which led the kernel to generate a CPU error. The

results showed that the error shared an influence with other nodes in the same job

scheduling group.

2.3.3 Rank correlation for processor failure prediction

F. Salfner et. al. [58] propose an architecture for monitoring cores across a chip

for dependable process management in chip-multiprocessing machines. A trend in

the design of commodity processors is combining multiple execution units on one

chip. It becomes more likely that a single execution unit on a processor can fail.

To anticipate hardware failures, the processor performance counters are analysed

using a statistical rank-sum test. The cores on a chip monitor each other and predict

upcoming failures by analysing hardware event sampling data.

First, correlations among the counters available are analysed and the counters

that exhibit similar behaviour to other counters are removed. The Spearman-Rank

correlation is used because it has the advantage of not assuming any frequency

distribution of the variables. Events observed as monotonically increasing would be

exhibiting similar behaviour and removed. The result is a list of unique event-type

pairs that can be monitored during run-time. Second, two sampling approaches are

considered. The sampling approaches are time-based sampling and workload-based

sampling. Modern processors do not have a fixed timing behaviour because of

frequency scaling, pipelining, and out-of-order execution, and the Pentium time-

stamp counter does not guarantee a constant rate for some processor models. On

the other hand, the workload-based sampling approach gives a constant scale with

respect to the execution of the load application. As such, the workload-based

sampling approach was chosen. Third, the Wilcox-Rank sum test is used as the

failure prediction approach. It compares a test data set to a reference data set to

determine whether the median is about the same. The reference data set contains

19

CPU counter values that were measured and stored during normal operation without

failures. The test data set contains samples that were measured during run-time.

The one-sided version of the test is applied. Since no assumption is made about

the form of the distribution of the counter values, the one-sided test is considered

appropriate for the environment.

The authors performed the experiments with an Intel Core2 Quad CPU

(Q6600) with 2.40GHz, 2GB memory and a Linux 2.6 64-bit operating system. A

fault injection technique and workload generation is applied to trigger erroneous

hardware behaviour. The fault injection technique involved setting the CPU core

voltage to a level below normal operation. Overclocking the processor can cause

permanent damage to the hardware so it was not used. The workload was generated

on the monitored cores using the Mersenne prime number test application MPRIME.

31 performance counters with unique behaviour were investigated and 30 failures

for each counter were collected. The area-under-the-curve or AUC metric is used

to evaluate the predictors. A perfect predictor would achieve an AUC value of 1

and a random predictor would achieve an AUC value of 0.5. The experimental

work showed that there are three groups of event-types. The first group consists

of 24 out of 31 counters - this group of counters behaved like purely random

predictors. The second and third groups of counters performed better than the

first group of counters. In the second group of counters, 5 out of the 31 counters

belonged to this group. The AUC values for the counters in the second group are:

AUCmin = 0.23, AUCmedian = 0.56, AUCmax = 0.84. While the counters show high

variability in their AUC scores, by inverting the output of the predictor with AUC

= 0.23, good predictions could be obtained. 2 out of the 31 counters belonged in

the third group. In this group, the counters showed better AUC scores. The scores

are: AUCmin = 0.68, AUCmedian = 0.79, AUCmax = 0.91. While the counters in the

third group showed better AUC scores, the variability is still quite high. The authors

posed an open question as to whether or not these counters can be turned into good

predictors.

2.3.4 LogMaster

LogMaster [21] is a set of innovative algorithms that mines event correlations that

have multiple attributes for fast failure prediction. Examples of the attributes

include node-id, application-id, event type and event severity. LogMaster proposes

two algorithms. The first algorithm, named Apriori-LIS and its improved version

Apriori-simiLIS mine event rules. The event rules are represented by the second

algorithm called Events correlation graphs. LogMaster was validated on the system

event logs on an IBM BlueGene/L system, a 260-node Hadoop cluster system and a

20

HPC cluster system.

The LogMaster architecture has three major components. The components

are Log agent, Log server and Log database. The Log agent collects, preprocess

and filters repeated events and periodic events on each node. The Log server mines

event rules from events sent by the Log agent to the Log server. The Log server also

constructs the event correlation graphs which are used to predict events or failures.

A Log database stores the event rules.

A 3-step approach was implemented to mine the event correlations. In the

first step, the logs are preprocessed and filtered. Logs in different formats are parsed

into a sequence of events where each event is identified by a nine-tuple. Repeated

events are identified when the events are recorded by different sub-systems and when

the events occur repeatedly in a short time window. Periodic events are identified

when the events occur with a fixed interval. Then, repeated events and periodic

events are removed. In the second step, the Apriori-LIS and Apriori-simiLIS event

correlation mining algorithms are proposed. The Apriori algorithm uses the apriori

property which states that any subset of frequent itemset must be frequent. However,

log entries that are represented by event sequences with timing orders are different.

Mining for event correlations between log entries with the apriori algorithm can

increase the analysis time. To improve the efficiency of the apriori algorithm, an

event filtering policy is applied before mining the event correlations. The event

filtering policy reduces the number of events that has to be analysed by extracting

events that occur in the same nodes, the same application or have the same event

types. In the third step, event correlation graphs for representing event rules is

proposed. An event correlation graph is a directed acyclic graph where a vertex

represents an event and an edge represents the correlation of two events linked by

the edge. Vertices can be dominant or recessive. For a 2−ary event rule, the vertices

A and B that represent two events are dominant. In the case when events A and B

occurred and event B occurred after event A, the vertex A ∧B is a recessive vertex.

Edges link vertices and edges can be dominant or recessive. An edge is dominant if

the two vertices that are linked by the edge are dominant. Otherwise, the edge is

recessive. Three main steps are used in constructing an event correlation graph. In

the first step, a group of event correlation graphs based on event rules found during

single-node analysis is constructed. In the second step, event correlation graphs that

represent event correlations found during multiple-node analysis are constructed. In

the third step, indices that record the positions of events in the event correlation

graphs are saved. The indices are used to locate the events in the event correlation

graphs.

The authors applied LogMaster to analyse three real logs generated by an IBM

21

BlueGene/L cluster system, a Hadoop cluster system and a HPC cluster system. To

evaluate the algorithms, three evaluation metrics are defined. The first metric is the

average analysis time, the second metric is the average prediction time, and the third

metric is the precision and recall. The results from event preprocessing and filtering

show that a compression rate of above 90% is achieved on the Hadoop and IBM

BlueGene/L logs, and a compression rate of 69.4% is achieved on the HPC cluster

system logs. The results from event rules mining show that the Apriori-simiLIS

algorithm significantly improves the time efficiency of the Apriori-LIS algorithm

with small rule loss. The results from prediction show that the precision rates of the

Apriori-simiLIS algorithm is higher than the Apriori-LIS algorithm, and the recall

rates of the Apriori-simiLIS algorithm is lower than the Apriori-LIS algorithm. The

reason for the high precision rates and low recall rates is due to keeping a richer set

of log information without spatial filtering. The results from average prediction time

of the three logs show that the Apriori-simiLIS algorithm has a shorter prediction

time than the Apriori-LIS algorithm.

2.3.5 PREdictor

The work reported in reference [20] presents the development of two models for

predicting failures in coalition systems. The first model is a spherical covariance

model and the second model is a stochastic model. The spherical covariance model

has an adjustable timescale parameter and it is used to quantify the temporal

correlation among failure events. The distance in time between two failures is used to

calculate their covariance value and the timescales for calculating the covariances can

be adjusted for different types of failures. The probabilistic distribution of failures is

used in the stochastic model to compute the spatial covariance among failures. A

framework called PREdictor is implemented to explore correlations among failures

and forecast the time-between-failure of future instances.

The failure prediction framework has a multi-layer prediction architecture for

analysing the correlations of failure instances in different scopes of a coalition system.

The framework has node-wide, cluster-wide and system-wide failure predictors. The

node-wide failure predictor keeps track of the new events recorded to the local event

logs since its last operation, extracts failure records, creates formatted failure reports,

monitors the performance dynamics of executing applications and measures the

resource utilisation. The cluster-wide failure predictor collects failure reports from

the compute nodes managed by the master node, statistically processes and analyses

the failure events, predicts prospective failures and generates system availability

reports for the resource scheduler and system administrator. The system-wide failure

predictor receives failure reports from master nodes of clusters and forecasts the

22

failure dynamics of the entire coalition environment for system management.

The performance of the prediction framework in both offline and online

prediction modes was evaluated on the Los Alamos HPC traces and in an institute-

wide clusters coalition environment. The results show that the prediction framework

can achieve an accuracy of more than 76% in offline prediction and more than 70%

accuracy in online prediction.

2.3.6 3D root-cause analysis

Z. Zheng et. al. [72] present an automated root-cause diagnosis mechanism for

large-scale HPC systems. The diagnosis mechanism provides fine grained root-

cause analysis by pinpointing the failure layer, the time and location of the event

that caused the failure. The authors evaluate their diagnosis mechanism on real

RAS (Reliability, Serviceability, Availability) logs collected from a production IBM

BlueGene/P system at Oak Ridge National Laboratory.

The diagnosis mechanism is comprised of four interrelated steps. The steps

are: (i) preprocessing, (ii) information fusion, (iii) layer identification and (iv)

time and location identification. The preprocessing step tackles the challenge of

data volume by removing redundant records and noise from the RAS logs. The

information fusion step synthesizes the information from RAS, job and environmental

logs. The layer identification step reduces the search space by co-analysing multiple

logs on the application, system software and hardware layers. The time and location

identification layer pinpoints the event which triggered the failure by tracing the

event that occurred days before the failure.

The authors presented four case studies identified using the diagnosis mech-

anism. The case studies are a hardware BPC clock failure, an application out of

memory failure, a network torus sender failure and a kernel panic. A node power

error was identified as a trigger event for the BPC clock failure. An insufficient

memory error was identified as a trigger event for the application out of memory

error. An invalid memory address error was identified as a trigger event for the

network torus sender failure. A machine check error was identified as a trigger event

for the kernel panic.

2.4 Anomaly Detection

In this section, we present anomaly detection tools that implement feature extraction

as the main technique for processing system usage logs, textual event logs or both

system usage logs and textual event logs. The tools are: (i) automated anomaly

detection [44], (ii) adaptive anomaly detector [27], (iii) increasing error handling

23

time-window [33] and (iv) DILAF [2].

2.4.1 Automated anomaly detection

The work reported in reference [44] present an automated mechanism for node-level

anomaly identification in large cluster systems. The mechanism is comprised of a

set of techniques that analyse data collected from many sensors. It transforms the

data into a form suitable for feature extraction, extracts features from the data

and identifies anomalous nodes in an unsupervised manner. Two feature extraction

techniques are compared. The techniques are Principal Component Analysis (PCA)

and Independent Component Analysis (ICA). The authors implemented a prototype

and injected a variety of faults into a production system at the National Center for

Supercomputing Applications to evaluate the prototype.

A total of 19 features were collected per node for the experiments. The

features that were collected include CPU, memory, I/O and network metrics. To

evaluate the PCA and ICA-based anomaly detector, the authors defined two sets

of metrics. The first metric, sensitivity, measures the proportion of correct faulty

classifications to the number of actual faulty nodes. The second metric, specificity,

measures the proportion of correct non-faulty classifications to the number of actual

normal nodes.

The authors conducted two sets of tests. The tests are a single-fault test

and multifault test. In the single-fault test, one type of faults is injected into 0 to

20 randomly selected nodes. Then, the PCA-based and ICA-based implementation

is assessed as to whether it can correctly identify the faulty nodes. The authors

compared results obtained on the PCA, ICA and no feature extraction based methods.

Their results show that the feature extraction based methods achieve better sensitivity

and specificity than the no-feature extraction based method. Their results also show

that the ICA-based method achieves the best sensitivity and specificity. In the

multifault test, different types of faults are simultaneously injected into 0 to 20

randomly selected nodes. The pairs of faults include memory and CPU, CPU and

network, I/O and network. The results obtained show that the ICA-based method

achieves a specificity of above 0.94 and a sensitivity of 1. The ICA-based method

outperforms both the PCA-based method and the no-feature extraction based method

in terms of specificity and sensitivity.

2.4.2 Adaptive anomaly detector

The work reported in reference [27] present an adaptive anomaly detection mechanism

that develops Principal Component Analysis (PCA) to identify anomalous behaviour

24

in cloud computing systems. The anomaly detection mechanism integrates cloud

performance metric analysis with filtering techniques to extract the most relevant

principal components of different types of failures. The authors implement a prototype

of the anomaly detector and conduct experiments using traces obtained on a Google

data centre.

The adaptive anomaly detection mechanism is comprised of two algorithms.

The first algorithm, called Most Relevant Principal Component (MRPC), identifies

a set of principal components that have strong correlation with failures. It uses

neural networks to compute the principal components from normalised values of

cloud performance metrics in a rolling time window. The second algorithm, called

Adaptive Anomaly Identification, identifies anomalies using MRPCs by leveraging

adaptive Kalman filters.

The authors conducted experiments on a cloud testbed that consists of 362

servers. Third party monitoring tools such as sysstat and perf were used to collect

runtime performance data on the hypervisor and virtual machines. The authors

also develop a fault injection program to inject a variety of faults into the cloud

testbed. They studied four types of failures identified by the MRPC algorithms. The

failure cases are memory related failures, disk related failures, CPU related failures

and network related failures. The MRPC-based anomaly detector is compared with

decision tree, Bayesian network, support vector machine (SVM) and PCA-based

anomaly detectors. Their results show that the MRPC-based detector achieves the

best performance, with a true positive rate of 91.4% and false positive rate of 3.7%.

2.4.3 Increasing the error handling time window

N. Gurumdimma et. al. [33] address a fundamental question, that is, increasing the

error handling time window in large-scale distributed systems by using resource usage

logs and system failure logs. The resource usage logs are used to track anomalous

resource usage and the system message logs are used to identify the root-causes

of system failures. An anomaly-based detection algorithm is developed to identify

anomalous resource usage in the system.

The methodology has two phases. The first phase identifies events that are

correlated with frequently occurring failures. Fault events that are regarded as causes

of system failures are extracted from large logs of cluster systems using an existing

fault diagnostics tool reported in reference [7]. In the second phase, an approach

that extracts anomalous running jobs believed to be pointers to problems in the

cluster system and correlated in the event logs is explained. The approach has

three steps. In the first step, the counters for each job on each node within a given

time are extracted from the resource usage logs. Then, a Resource Usage Feature

25

Matrix is generated. The resource use counters are represented by the columns of the

matrix and the jobs on each node are represented by the rows of the matrix. In the

second step, an unsupervised approach based on Principal Component Analysis is

introduced. In the approach, the outlierness of a job is determined by the variation

in the dominant principal direction. The variation is computed by subtracting the

cosine similarity between two leading principal directions by 1. A job and an earliest

time when the anomaly occurred are saved when the variation exceeds a specified

threshold. The authors showed that PCA can identify anomalous jobs in the resource

usage logs but it could not identify relationships among the resource use counters.

In the third step, the Maximal Information Coefficient is applied to understand the

relationships between the resource use counters. Then, the error event lead time is

defined. It records the time when the earliest anomalous job is detected to the time

when the fault is logged.

The authors evaluated their approach using the resource usage logs and

system message logs collected on the Ranger supercomputer at the Texas Advanced

Computing Center. Their results show that the lead time to failure can be extended

by up-to 55 minutes.

2.4.4 DILAF

DILAF [2] is a framework for distributed analysis of large scale system event logs

for anomaly detection. The framework is comprised of three main processes which

facilitate log parsing, feature extraction and machine learning activities. DILAF

distinguishes itself from existing tools by not requiring the availability of source codes

in the analysed system and performing all the processes in a distributed manner to

support scalable analysis.

The architecture of DILAF is comprised of four processes. They are: (i)

log parsing, (ii) feature extraction, (iii) normalisation and (iv) machine learning.

The log parsing process transforms the free-form log messages into structured and

featured events. The feature extraction process constructs numerical feature vectors

and creates a primary message count vector utilising the identifier and message type

information, which are extracted by the log parsing process. The normalisation

process applies Term Frequency/Inverse Document Frequency (TF/IDF) technique

that measures the importance of a message type for an identifier and generates a

feature matrix. The machine learning process applies Principal Component Analysis

that filters repeating patterns in the feature matrix to identify anomalous patterns.

The authors implement PCA using the Bulk Synchronous Parallel computation

model to distribute the computational workload among participating processes. To

ensure the accuracy of the anomaly detector, they use Apache’s Spark Resilient

26

Distributed Datasets to recover a partition in the event of a crash.

The authors conducted experiments on a Hadoop Distributed File System

(HDFS) log dataset and the Thunderbird supercomputer logs. On the HDFS dataset,

the DILAF framework achieved 99.8% accuracy for anomaly detection. On the HDFS

dataset, DILAF achieved a performance increase of 65% over the log parsing method

reported in reference [69]. On the Thunderbird supercomputer dataset, DILAF

achieved a performance that scales linearly with respect to the size of the logs; the

Thunderbird supercomputer dataset is 20 times larger than the HDFS dataset.

2.5 Hybrid Methods

In this section, we present the tools that develop hybrid techniques for processing the

textual system event logs. The tools are: (i) Error log processing [57],(ii) System log

pre-processing [70], (iii) LogSig [47], (iv) LKE [19] and (v) LogAider [16]. A hybrid

technique uses two or more methods from regular expressions, clustering, correlation

and feature extraction.

2.5.1 Error log processing for accurate failure prediction

F. Salfner and S. Tschirpke [57] propose three algorithms that show that data prepar-

ation is an important step to achieve accurate error-based online failure prediction.

The first algorithm assigns error IDs to error messages by using Levenshteins edit

distance. The second algorithm groups similar error sequences by using a sequence

clustering technique. The third algorithm filters statistical noise by using a filtering

algorithm. The algorithms were evaluated on error logs derived from a commercial

telecommunications system. Their results show that the failure prediction accuracy

drops by up-to 45% when the original logs are used.

The first algorithm automatically assigns error IDs to error messages using

Levenshteins edit distance. The error ID captures the type of error message. For

example, in the following error log process 1534: end of buffer reached the number

1534 relates to the source rather than the type of message. All numbers and log-

record specific data such as IP-addresses are replaced by placeholders. A copy of the

original error log is kept to maintain the information. However, a 100% replacement

of all record-specific data is infeasible because there are many typographical errors.

To address this issue, the Levenshteins edit distance is computed between all pairs

of error messages that appear in the logs. The method of substituting numbers by

placeholders produced a reduction in the number of original messages by 99.26%. The

Levenshteins edit distance method produced a reduction in the number of original

messages by 99.92%.

27

The second algorithm uses a method called Tupling [64] to group similar

error sequences. The Tupling method groups error events that occur within a time

interval (temporal tupling) or error events that refer to the same location (spatial

tupling). For the telecommunications system being studied, spatial tupling is not

considered because it works only for systems with strong fault containment regions.

The tupling method groups all errors that show an interarrival time less than a

predefined threshold. The authors use three parameters to extract the sequences.

The parameters are lead time, data window size and margins for non-failure sequences.

The first parameter, lead time, extracts failure sequences that precede the failure

occurrence by a time of 5 minutes. The second parameter, data window size,

determines the length of each sequence by a maximum time of 5 minutes. The

third parameter, margins for non-failure sequences, extracts non-failure sequences

when the system is fault free and applies a ban period of 20 minutes before and

after a failure. The failure sequence tuples are used to train a hidden semi-markov

model and obtain a dissimilarity matrix. Then, hierarchical clustering methods are

applied to the dissimilarity matrix and obtain groups of similar sequences. The

actual number of groups is determined by visually inspecting the banner plots.

The third algorithm removes unrelated events in the groups of similar se-

quences produced by the second algorithm. Unrelated events in the group of sequences

occur mainly due to system processes which execute concurrently to produce the log

messages. The filtering method is implemented using a test of goodness of fit. It is

based on the notion that indicative events occur more frequently within a failure

sequence by the same failure mechanism than within other failure sequences. In

failure sequences of the same cluster, each error is checked for significant deviation

from the prior using a test variable defined as the non-squared standardised difference.

When the test is less than a predefined threshold, the error is eliminated from the

failure sequence.

2.5.2 System log pre-processing for improving failure prediction

Z. Zheng et. al. [70] present a system log pre-processing method for preserving

important failure patterns that are crucial for failure analysis. The pre-processing

method consists of three integrated steps. The steps are: (i) event categorisation,

(ii) event filtering and (iii) causality-related filtering. The effectiveness of the pre-

processing method is demonstrated on real failure logs collected on a Cray XT4

system and an IBM BlueGene/L cluster.

The pre-processing method addresses three issues of system log pre-processing.

The issues are: (i) finding important failure patterns, (ii) identifying events with

multiple spatial locations, and (iii) characterising different aspects of a failure. The

28

first step, event categorisation, uses regular expressions to classify various events

into a hierarchical set of event categories. The second step, event filtering, uses an

improved temporal and spatial filtering method that keeps track of event start and

the end times, event count and event location. The third step, causality-related

filtering, adopts apriori association rules to track causal correlations among events.

The authors conducted experiments on failure logs collected on a Cray XT4 system

and an IBM BlueGene/L cluster. The results show that their pre-processing method

effectively preserves failure patterns and improves failure prediction by up-to 174%,

with a compression rate of more than 90%.

2.5.3 LogSig

LogSig [47] is a message based signature algorithm that generates system events

from raw textual message logs. It categorises log messages into a set of event

types by searching for the most representative message signatures, and it is able to

incorporate human domain knowledge to achieve a high performance. The goal of

LogSig is to identify the event type of each log message according to a set of message

signatures. To achieve this, a metric called Match Score is proposed to determine

which signature best matches a log message. The metric computes the Multiple

Longest Common Subspace (MLCS) between multiple sequences. However, the

Multiple Longest Common Subspace is known to be a NP-hard problem. The authors

proved by contradiction that the MLCS problem can be reduced to the Longest

Common Subspace problem between two sequences, and proved by contradiction

that the Longest Common Subspace problem can be solved in polynomial time with

a polynomial time solution.

The authors present an approximated version of MLCS and the LogSig

algorithm. The LogSig algorithm is comprised of three steps. In the first step,

every log message is separated into several pairs of terms. In the second step, a

search strategy is used to find groups of log messages where each group share many

common pairs. In the third step, message signatures based on identified common

pairs in each message group is constructed. The authors compared LogSig with seven

algorithms on five different system logs. The algorithms are IPLoM, VectorModel,

Jaccard, StringKernel, StringMatch, semi-StringKernel and semi-Jaccard. LogSig

outperformed the seven algorithms in terms of overall performance.

2.5.4 LKE

The work reported in reference [19] propose an unstructured log-analysis technique

for anomaly detection. In the technique, a novel algorithm that converts free form

29

text messages in log-files to log-keys is proposed. The algorithm does not rely heavily

on knowledge of the application-domain. After the messages have been converted

to log-keys, a Finite State Automaton (FSA) is learnt to present the normal work

flow for each system component. A performance measurement model is then learnt

to characterise normal execution performance based on the timing information in

the log messages. The authors applied their technique on the Hadoop and SILK

distributed computing systems and showed that their algorithm can detect running

anomalies effectively.

The technique consists of two processes: (i) the learning process, and (ii) the

detection process. The learning process obtains models that represent the normal

execution behaviour of the system from logs produced by normally completed jobs.

The learning process consists of three steps: (1) log message sequences are converted

into log key sequences, (2) a Finite State Automaton is derived to model the execution

path of the system, and (3) the execution time of each state transition is counted

and a performance measurement model is obtained through statistical analysis. The

reason to convert log message sequences into log key sequences is to address the

problem of mining high dimensional data when directly considering log messages as

a whole. The log key is defined as the common content of all log messages which are

printed by the same log-print statement in the source code; in other words, a log key

is equal to the free form text string of the log-print statement minus any parameters.

A clustering approach based on measuring the similarity of two raw log keys is

implemented. The approach clusters the raw log keys into initial groups, followed by

splitting the groups. The position of words in the raw log keys are used to measure

the similarity of two raw log keys because most programmers tend to write text

messages first then the parameters are added later. The raw log keys similarity is

measured by the weighted edit distance in which the sigmoid similar function is used

to compute weights at different positions. A threshold is determined to automatically

connect pairs of raw log keys together. The k-means algorithm is used to cluster all

distances into two groups. The distances correspond to the inter-class and inner-class

distances. The largest distance from the inner-class distance group is selected as

the threshold. An existing algorithm is applied to learn a FSA from sequential log

sequences. Each transition in the learned FSA corresponds to a log key and a state

is represented by a log message.

A performance measurement model is derived to characterise the performance

of the normally completed jobs. Each log key sequence is first converted to its

corresponding state sequence. Then the state time-stamp is specified by the time-

stamp of its corresponding log key in the log key sequence. Two performance models

are defined to measure low performance problems. The first model called transition

30

time measurement model measures the time interval that a system component takes

to transit from one state to the next state which takes much longer than normal

cases. The second model called circulation numbers measurement model counts the

number of circulations in a loop structure. The transition time between adjacent

states and the circulation numbers of all loop structures are used to characterise the

normal performance of jobs.

2.5.5 LogAider

S. Di et. al. [16] develop a tool called LogAider for mining event correlations in

HPC system event logs. LogAider reveals three types of potential correlations. The

correlations are: across-field, spatial and temporal correlation. LogAider’s design

architecture is comprised of four layers. The layers are: user interface layer, analysis

engine layer, log parsing layer and log data layer.

The log data layer includes system RAS and job logs. The system logs are

stored in a relational database. The log parsing layer performs preliminary processing

of the log data, which includes reading the schema information to recognise the

meaning of each field and filtering out duplicate messages. The analysis engine layer

performs across-field, spatial and temporal correlation. The across-field correlation

engine computes: (i) the prior probability distribution based on various metrics or

fields in the logs, and (ii) the posterior probability based on any combination of

fields set by the user. The spatial correlation engine mines potential correlations

across multiple components using an optimised K-means algorithm. The temporal

correlation engine mines potential correlations using similarity analysis of events

that occur close in time. The user interface layer provides templates for specifying

the key fields for performing across-field, spatial and temporal correlation analysis

to the user.

The authors performed experiments on one year worth of RAS and job logs

obtained on the Mira supercomputer at Argonne Leadership Computing Facility.

Their results show that: (i) across-field correlation analysis achieved precision and

recall rates of 99.9%, and (ii) temporal correlation analysis achieved an accuracy of

95%.

2.6 Similarities and Differences

In this section, we summarise the similarities and differences between the system log-

file processing tools surveyed. A comparison table for the system log-file processing

tools is given in Table 2.1.

31

Table 2.1: Comparison table for system log-file processing tools.

Tool reference Resource System Feature Feature

use data logs selection extraction

[54] No Yes No No

[56, 65] No Yes Yes No

[37] No Yes No No

[53] No Yes Yes No

[66] No Yes No No

[48] No Yes No No

[23] No Yes No No

[49] No Yes No No

[52] No Yes Yes Yes

[32] No Yes No No

[45] No Yes Yes No

[51] No Yes Yes No

[58] Yes No Yes No

[21] No Yes Yes No

[20] No Yes Yes No

[72] Yes Yes Yes No

[33] Yes Yes No Yes

[44] Yes No No Yes

[27] Yes No No Yes

[2] No Yes No Yes

[57] No Yes No No

[70] No Yes No No

[47] No Yes No No

[19] No Yes No No

[16] No Yes Yes No

The similarities between the system log-file processing tools reviewed are

given as follows:

• All the tools develop pre-processing steps which can be summarised into two

activities. The first activity tokenises the system log messages by extracting

sequences of words in the free form text in the system log message. The second

activity applies some method to measure the similarity between the system log

messages.

• Each tool implements pre-processing that comprises multiple steps. In each

pre-processing step, the messages in the system log-files are grouped into initial

groups. Then, the messages in each of the initial groups are further grouped

into smaller groups.

• All the tools extract sequences of English-only words in the free form text

32

in the system message logs and discard tokens that contain only numbers or

alpha-numeric words.

The differences between the system log-file processing tools reviewed are given

as follows:

• Each tool develop a different technique. The techniques can be divided into

five groups. The groups are: (i) regular expressions, (ii) clustering, (iii) feature

selection, (iv) anomaly detection, and (v) hybrid method. A hybrid method

combines two or more techniques.

• Majority of the tools surveyed target general system event log-processing. By

general, we mean that the tool does not specifically focus on a dependability-

centric issue such as failure prediction.

• Differently to the generic system log-file processing tools, the tools reported

in references [14, 15, 20, 21, 45, 52, 57, 58, 70] develop methods that target

failure prediction. The work reported in references [2, 27, 44] have developed

system logs or resource usage data processing methods that target detection

of faulty nodes. N. Gurumdimma et. al. [33] developed a methodology for

increasing the error handling time-window. A. Oliner et. al. [51] and Z. Zheng

et. al. [72] developed different methods for diagnosing cluster system failures.

S. Di et. al. [16] developed LogAider that targets propagation of errors that

lead to system failures.

In Chapters 4, 5 and 6, we present two new system diagnosis workflows. The

workflows are:

• We developed the CORRMEXT and EXERMEST frameworks for HPC systems

diagnosis.

• CORRMEXT integrates data type extraction, correlation and time-bin extrac-

tion methods. It identifies frequently occurring error cases.

• EXERMEST integrates multiple feature extraction and correlation methods.

It identifies rare error cases.

2.7 Summary

We presented a detailed survey of system log-file processing tools. We identified three

similarities between the tools and showed that the pre-processing steps implemented

in all the tools can be summarised according to two activities. The first activity

33

tokenised system log messages by extracting sequences of English-only words in the

free form text of the textual message logs. The second activity applied a method to

measure the similarity between system log messages. We highlighted the similarities

and differences between the system log-file processing tools.

In the next chapter, we will describe the system and fault models, explain

the system issues, give an overview of the Ranger, Lonestar4 and Stampede-1 HPC

systems and the log-data on these HPC systems, and describe the implementation

details for the cluster log-data preprocessing modules.

34

Chapter 3

System Models, HPC Systems

and Cluster Log-Data

Modern day data centres and high performance computing (HPC) systems are made

up of complex combinations of processors, networks, operating system processes,

memory and storage systems. When new technologies are introduced, the behaviour

of these computing systems can change rapidly. The computing systems generate

a lot of data and different types of data. For the system administrators, manually

scanning the system logs to identify the cause of a system failure is a labour intensive

task. In this chapter, we present the problem and describe the HPC systems and

cluster log-data.

We structure this chapter as follows: In Section 3.1, we describe the system

model for which the CORRMEXT and EXERMEST frameworks can be applied.

In Section 3.2, we introduce the Ranger, Lonestar4 and Stampede-1 HPC systems

operated by the Texas Advanced Computing Center. In Section 3.3, we describe the

TACC Stats resource use data [17], Rationalized message logs [36] and Syslogs [40].

In Section 3.4, we give the implementation details for the data preprocessing module.

3.1 System Model

A general HPC systems model is specified in [8] and we describe the system model here.

The CORRMEXT and EXERMEST frameworks can be applied to a generic HPC

system model as follows: A HPC system S is comprised of X jobs J1...JX , Y nodes

N1...NY and Z production time-bins T1...TZ . A HPC system uses a job scheduler

JS for: (i) allocating jobs to nodes and communicating paths between nodes, and

(ii) setting job production times. The HPC system executes a heterogeneous system

software stack that is comprised of a filesystem FS, operating system OS, network

35

software NS and operating system processes OS−PS. We assume that all the nodes

in the HPC system synchronise their clocks and each node maintains its own clock.

System logs may be written to containers U1...Un by each job, node, job scheduler

and system software. System resources that are used by the nodes, jobs and system

software may be written to containers W1...Wm as resource use logs. Data may be

transferred to and from the nodes, jobs, system software and filesystem.

The privacy policies of a data centre may not allow access to software codes.

Therefore, we assume that there is no access to software codes in a data centre.

However, a data centre may allow access to system logs and resource use data.

The system logs contain system and failure events. The resource use data contains

system resource utilisation counters. For the objective of diagnosing failures, i.e., to

determine where, when and why the system crashed, the data centre may grant access

to the system logs, resource use data and system administrators for validating the

diagnoses. However, a data centre may not grant access to the system maintenance

records due to security reasons. Therefore, we assume that the operation context

of the HPC system is not available. Our HPC system model covers both open

source Linux-based computational facilities as well as bespoke computing systems,

for example IBM BlueGene systems.

3.1.1 Fault Model

When the system output deviates from the expected one, a system failure occurs.

We define a system failure as a node crash or operating system hang-up. In order

to increase the dependability of the system, it is important to tolerate those errors

that exist shortly before a system failure. Tolerating errors mean to detect them

and then to correct them, if possible. However, typically before a system failure, an

error has propagated beyond the interface of a source component to affect multiple

components. Thus, knowledge about these errors can be useful to system designers

and implementors for improving the effectiveness of error recovery protocols.

We assume faults can occur at any level in the system, at the lowest level, for

example, register level to the highest level such as operating systems. When these

faults are executed, it will lead to errors which may lead to a system failure if the

error is not handled. Our objective is to identify error cases without prior knowledge

of the fault models.

3.1.2 System Issue

Figure 3.1 shows an illustration of resource use counters and error messages by time.

The resource use counter rx_bytes records the amount of network data received.

36

The resource use counter rx_crc_errors records the amount of CRC errors received.

The resource use counter rx_frame_errors records the amount of frame errors

received. In the resource use data, we observe that rx_bytes and rx_crc_errors

are correlated. Furthermore, we observe that rx_bytes and rx_frame_errors are

correlated. The message log master network unreachable indicates a DNS lookup

failure. The message log FTP failed indicates a file transfer protocol failure. In

the system logs, we observe that master network unreachable and FTP failed

are correlated.

Resource
use data

Message
logs

0

0

0

0

0

0

0

0

0

0
FTP failed

rx_bytes

rx_frame_errors

errors
rx_crc_

unreachable
master network

Time

Figure 3.1: An illustration of rx bytes, rx crc errors and rx frame errors resource
use counters, master network unreachable and FTP failed messages.

Capturing these correlations is important as these can provide insights into

the behaviour of the system. From Figure 3.1, the resource use counters r1 and r2

may capture the existence of two errors in the system while another counter r3 may

capture the normal behaviour of the system. A correlation between r1 and r3 and a

correlation between r2 and r3 shows that the two errors were triggered following a

normal system behaviour. Similarly, a correlation between different event groups will

provide insights into the system state. However, understanding the occurrence of

groups of errors from system logs alone is challenging. In this thesis, we capture the

notion of an error when: (i) a message is logged and the message captures a state of

the program that deviates from expectation, and (ii) there are groups of resource

use and error message patterns as illustrated in Figure 3.1. In Chapters 4 and 5, we

will present the CORRMEXT framework that seeks to determine the occurrence of

these patterns to study errors which lead to a system failure or recovery.

37

3.1.3 Significant Errors on Nodes

Let S be a HPC system with n distinct nodes and all the nodes in the system S are

linked together by a network. We capture the significant errors by first defining a

set NSi = {n1, n2, ..., ni|ni ∈ Nodestate}, where 1 ≤ i < x, x is the number of nodes,

Nodestate = {nfault, nerror, nfailed}, nfault = a node on which a fault is triggered,

nerror = a node that contained an error, nfailed = a node that crashed. Thus, an

error can occur within one node or occur on two or more nodes.

Due to the possibility that errors are associated with a large number of

nodes, finding the significant errors is challenging. In Chapter 6, we will present the

EXERMEST framework that investigates the use of feature extraction methods to

identify the significant errors and the nodes associated with the identified errors.

3.2 Case Study HPC Systems

In this section, we present the Ranger, Lonestar4 and Stampede-1 HPC systems

operated by the Texas Advanced Computing Center at The University of Texas at

Austin.

3.2.1 Ranger

The Ranger HPC system1 was a Linux-based cluster that consisted of 4,048 nodes

featuring AMD quad-core Opteron processors. It was operated from 2007 to 2013. All

the nodes were linked together via a high-speed Infiniband network. Job scheduling

and resource management were provided by the Sun Grid Engine2. High speed file

access was provided by the Lustre filesystem3.

Each node of Ranger generated its own resource use data and rationalised

messages. Ranger was the first HPC system operated at a United States academic

institution that deployed TACC Stats [35] and Rationalized message logs [36]. The

TACC Stats resource usage monitor is a job-oriented and logically structured version

of the conventional Sysstat system performance monitor. The Rationalized message

logs incorporates a logical structure and additional content such as job-identification

(rationalisation) to the POSIX formatted logs. The resource usage and rationalized

messages generated on the Ranger HPC system nodes were sent to a centralised

logging system. The resource use logs were combined and interleaved in time. The

Rationalized message logs were combined and interleaved in time. Ranger used

UDP (User Datagram Protocol) as its primary communications protocol for all the

1https://www.tacc.utexas.edu/-/ranger-supercomputer-begins-new-life
2http://web.njit.edu/alltopics/HPC/sge.html
3http://lustre.org/

38

http://lustre.org/
https://www.tacc.utexas.edu/-/ranger-supercomputer-begins-new-life
http://web.njit.edu/all topics/HPC/sge.html

processes that ran on its nodes. The reason for using UDP are lower bandwidth

overhead and latency.

3.2.2 Lonestar4

The Lonestar4 HPC system4 was a Linux-based cluster that consisted of 1,888

compute nodes, with two Intel 6-Core processors per node, for a total of 22,656

cores. It was configured with 44TB of total memory and 276TB of local disk space.

Lonestar4 was operated from 2009 to 2015. All the nodes were interconnected

with Infiniband technology in a fat-tree topology with a 40Gbit/sec point-to-point

bandwidth. All Lonestar4 nodes ran Linux Centos 5.5 and supported batch services

through the Sun Grid Engine. Global, data intensive I/O was supported by a Lustre

filesystem, while home directories were serviced by an NSF filesystem with global

access.

Each node of Lonestar4 generated its own TACC Stats resource use data

and standard Linux syslogs. The resource usage and Linux Syslogs were sent to a

centralised logging system. The resource use logs were combined and interleaved in

time. The Linux Syslogs were combined and interleaved in time. Lonestar4 used

UDP (User Datagram Protocol) as its primary communications protocol for all the

processes that ran on its nodes.

3.2.3 Stampede-1

The Stampede-1 HPC system5 was a Linux-based cluster that consisted of 6,400

nodes featuring Intel Xeon E5 Sandy Bridge host processors and the Intel Knights

Corner (KNC) co-processor. It was configured with 260TB of total memory, 14PB

of shared disk space, and 1.6PB of local disk space. Stampede-1 was operated from

2012 to April 2018. In the Sandy Bridge cluster, all the nodes were interconnected

with Infiniband technology in a fat-tree topology of eight core-switches and over

320 leaf switches. All nodes in the Sandy Bridge cluster ran Linux CentOS 6.3 and

were managed with batch services through the Slurm workload manager6. Global

HOME, WORK and SCRATCH storage areas were supported by three Lustre parallel

distributed filesystems with 76 I/O servers. In the KNC cluster, all the nodes were

interconnected with a separate Intel OmniPath network. All nodes in the KNC

cluster ran Linux CentOS 7.

Each node of Stampede-1 generated its own TACC Stats resource use data.

The resource usage were sent to a centralised logging system. The resource use logs

4https://portal.tacc.utexas.edu/archives/lonestar4
5https://www.tacc.utexas.edu/systems/stampede
6https://slurm.schedmd.com/

39

https://slurm.schedmd.com/
https://www.tacc.utexas.edu/systems/stampede
https://portal.tacc.utexas.edu/archives/lonestar4

were combined and interleaved in time. Stampede-1 used UDP (User Datagram

Protocol) as its primary communications protocol for all the processes that ran on

its nodes.

3.3 Cluster Log-Data

In this section, we describe the TACC Stats resource use data [17], Rationalized

message logs [36] and Syslogs [40].

3.3.1 Rationalized Message Logs

The Rationalized message log [36] incorporates additional content such as job-

identification (rationalisation) and a logical structure to the POSIX formatted

logs. Rationalising log messages helps improve the effectiveness of log-based failure

analysis of open-source HPC systems. The Rationalized message logs provide: (1)

easy comprehension of unstructured log messages, (2) simple parsing and (3) direct

mapping of errors and failures to jobs. The structure of a rationalized log message is

shown below:

time:1273001236

host:i175-110

jobid:1366122

prog:kernel

0:<3>spurious soft lockup detection on CPU#\%d

1:17

...

The header of a rationalized log message has four main fields. They are: (i)

time, (ii) host, (iii) jobid and (iv) prog. The time field contains a value that tells

the total number of seconds that have elapsed since 1 January 1972 00:00:10. In

this example the value is 1273001236. The host field contains the node. In this

example the node is i175-110. The jobid field contains each executed job through

an assigned numerical number. In this example the job number is 1366122. The

prog field contains the protocol name. In this example the name of the protocol

is kernel. The 0: field contains the key event that occurred at the recorded time

and on the recorded node and job. In this example the key event is a soft lockup

of a central processing unit. The remaining fields provide additional information

associated with the key event.

40

3.3.2 Syslogs

Syslog [40] is a general system and program messages logging system in the Linux

environment. The Syslog service is comprised of the system log daemon, where

Linux and its programs can send kernel and program messages to. The logs handled

by Syslog is available in the /var/log/ directory on a Linux system. Among the

logs in the /var/log/ directory, the most common one is /var/log/messages that

stores the kernel system message as well as kernel module core dumps. Thus,

the /var/log/messages is the main log-file to examine for problem diagnosis and

monitoring on Linux-based systems. The POSIX [40] standard for logging system

events allows the freedom for formatting logs. As such, the structure of a log message

can vary. An example of a Syslog is shown below:

Jan 12 15:24:55 oss5 kernel: LustreError: 0:0:(ldlm_lockd.

c:249:waiting_locks_callback()) ### lock callback timer

expired after 254s: evicting client at *.*.*.*@o2ib

We observe that the above Syslog is comprised of five fields. The fields are:

(i) timestamp, (ii) node-id, (iii) system-id, (iv) application-id and (v) error message.

Columns one to three contain the date and time. In this example the date and time

is Jan 12 15:24:55. Column four contains the node-id. In this example the node is

oss5. Column five contains the system-id. In this example the system is the Linux

kernel. Column six contains the application name. In this example the application

is the Lustre filesystem. The remaining columns contain the error message.

3.3.3 TACC Stats Resource Use Data

TACC Stats [17] is a job-oriented and logically structured version of the conventional

Sysstat system resource usage monitor. TACC Stats provides online monitoring of

system resources and it records all the values on all the system metrics it monitors

at all time-intervals. TACC Stats will only reset the system metrics values to zero if

an actual reset on a node is performed. An example of a TACC Stats resource use

log is given below:

2066522 Aug 11 12:50:01 i150-412 eth0 rx_bytes 302345 ..

In a TACC Stats resource use log, the first column contains the job number.

In this example the job number is 2066522. The second to fourth columns contain

the date and time. In this example the date and time is Aug 11 12:50:01. The

fifth column contains the node-id. In this example the node is i150-412. The sixth

column contains the component identifier. In this example the component is eth0.

41

The pairs that follow after the component identifier contains the name of the resource

use counter and its value. In this example the resource use counter is rx_bytes and

its value is 302345. The list of resource use counters is given in Table 3.1.

Table 3.1: List of resource use counters monitored on the Ranger, Lonestar4 and
Stampede-1 HPC systems.

Metric group Qty. Resource use counters

Lustre network 6 tx msgs, rx msgs, rx msgs dropped, tx bytes, rx bytes,

rx bytes dropped

Lustre /work, 23 read bytes, write bytes, direct read, direct write, dirty pages hits,

Lustre /share, 23 dirty pages misses, ioctl, open, close, mmap, seek, fsync, setattr,

Lustre /scratch 23 truncate, flock, getattr, statfs, alloc node, setxattr, getxattr,

listxattr, removexattr, inode permission

Virtual 21 pgpgin, pgpgout, pswpin, pswpout, pgalloc normal, pgfree,

memory pgactivate, pgdeactivate, pgfault, pgmajfault, pgrefill normal,

pgsteal normal, pgscan normal, pgscan direct normal, pginodesteal,

slabs scanned, kswapd steal, kswapd inodesteal, pageoutrun,

allocstall, pgrotated

Block md0, 11 rd ios, rd merges, rd sectors, rd ticks, wr ios, wr merges, wr sectors,

Block hdd 11 wr ticks, in flight, io ticks, time in queue

Cpu 0 to 15 112 user, nice, system, idle, iowait, irq, softirq

Mem 0 to 3 80 MemTotal, MemFree, MemUsed, Active, Inactive HighTotal,

HighFree, LowTotal, LowFree, Dirty, Writeback, FilePages, Mapped,

AnonPages, PageTables, NFS Unstable, Bounce, Slab,

HugePages Total, HugePages Free

Net ib0, 23 collisions, multicast, rx bytes, rx compressed, rx crc errors,

Net lo, 23 rx dropped, rx errors, rx fifo errors, rx frame errors, rx length errors,

Net eth0, 23 rx missed errors, rx over errors, rx packets, tx aborted errors,

tx bytes, tx carrier errors, tx compressed, tx dropped, tx errors,

tx fifo errors, tx heartbeat errors, tx packets, tx window errors

Numa 0 to 3 24 numa hit, numa miss, numa foreign, interleave hit, local node,

other node

Ps 7 ctxt, processes, load 1, load 5, load 15, nr running, nr threads

3.3.4 Compute Node Soft Lockups

Compute node lockups are one of the most frequent source of problems for the system

administrators at the Texas Advanced Computing Center. A soft lockup is a bug

which causes the Linux operating system kernel to loop without giving other tasks

a chance to run. In a system message log, a soft lockup event can be identified by

scanning the message for the keywords soft lockup. The soft lockups occur more

than 1,000 times in one day. Figure 3.2 shows the number of soft lockups reported

in three months worth of Rationalized message logs collected on the Ranger HPC

system. Figure 3.3 shows the number of soft lockups reported in two months worth

42

of Syslogs collected on the Lonestar4 HPC system.

(a) June 2011

(b) July 2011

(c) August 2011

Figure 3.2: Distribution (log-scale) of soft lockup events on Ranger.

3.3.5 Data Collection

In Section 3.2, we reported that: (i) each node on Ranger, Lonestar4 and Stampede-1

generated its own resource use data, and (ii) each node on Ranger and Lonestar4

generated its own system logs. The Ranger, Lonestar4 and Stampede-1 HPC systems

record 410 resource use counters across nine groups of system metrics (see Table 3.1).

The resource use on Ranger, Lonestar4 and Stampede-1 were sampled at 10-minute

intervals. The system logs generated on Ranger and Lonestar4 contain messages

produced by the Linux operating system kernel, the Lustre filesystem and Linux

43

(a) February 2013 (b) March 2013

Figure 3.3: Distribution (log-scale) of soft lockup events on Lonestar4.

processes. There are no system message logs available on Stampede-1. A summary

of the resource use data and system logs analysed in this thesis is given in Table 3.2.

Table 3.2: Summary of the data collected on Ranger, Lonestar4 and Stampede-1.

Ranger

Resource use data Rationalized message logs

Month Size Qty. lines Size Qty. messages

June 2011 29.8 GB 88,821,351 2.7 GB 10,021,516

July 2011 29.3 GB 92,425,427 9.6 GB 64,822,682

August 2011 29.9 GB 91,502,909 14.5 GB 114,745,476

Lonestar4

Resource use data Syslogs

Month Size Qty. lines Size Qty. messages

February 2013 24.9 GB 111,424,271 966 MB 8,993,154

March 2013 46.6 GB 207,068,692 1.3 GB 12,267,629

Stampede-1

Resource use data Syslogs

Month Size Qty. lines Size Qty. messages

February 2017 128.9 GB 236,509,583 N/A N/A

3.4 Processing the Cluster Log-data

The CORRMEXT and EXERMEST diagnostics frameworks target processing of

TACC Stats resource use data, Rationalized message logs and Syslogs. The resource

use data contain hundreds of different resource use counters. The system logs contain

thousands of message types. The system message logs may be ambiguous and

unstructured. To address the problem, we describe two data preprocessing modules.

The modules are: (i) Resource Use Extractor, (ii) Message Types Extractor.

44

3.4.1 Resource Use Extraction Module

Currently, the Resource Use Extractor (RUExt) module extracts resource use counters

from TACC Stats resource use data. We present the resource use counters in a form

on which standard analysis algorithms can be applied. RUExt generates a data

matrix DRtimebins that contain counts of resource use counters by time-bins. The

time-bins are one hour, 30 minutes and 10 minutes. In a resource use counter data

matrix, each row represents a resource use counter name, each column represents one

time-bin and each cell contains the count of a resource use counter name within the

time-bin. Currently, RUExt generates three different types of resource use counter

data matrices of one hour, 30 and 10 minute time-bins. We generate the resource

use counter data matrices using a process. The process is given below:

• Step 1: Split one day worth of resource usage logs into individual hours.

• Step 2: Split the hourly resource usage logs into 30 minutes.

• Step 3: Split the hourly resource usage logs into 10 minutes.

• Step 4: For each log entry in the individual hour resource usage logs, extract

the resource use counter name and store it in a list.

• Step 5: Identify the unique resource use counter name in the list and obtain

the list of resource use counters.

• Step 6: For each resource use counter name in the hourly resource usage log

which matches the resource use counter name in the given list of resource use

counter names, if the values associated with the resource use counter name of

two consecutive hourly resource usage logs are different, obtain the difference

and add the difference to the value obtained in the preceding operation and

store the value.

• Step 7: Repeat Step 6 for the 30 minutes resource usage logs.

• Step 8: Repeat Step 6 for the 10 minutes resource usage logs.

3.4.2 Message Types Extraction Module

The Message Types Extractor (MTExt) module extracts message types from large

quantities of system logs. We define a message type as a sequence of words that

contain only alphabets in the English language. MTExt extracts message types from

the error message part of a system log and presents the message types in the form of

a data matrix that contain counts of message types by time-bins. The time-bins are

45

one hour, 30 minutes and 10 minutes. Currently, MTExt generates three different

message types data matrices of one hour, 30 and 10 minute time-bins. In a message

types data matrix, each row represents a message type, each column represents one

time-bin and each cell contains the count of a message type within the time-bin. The

data matrix provides a form on which standard analysis algorithms can be applied.

We generate the message types data matrices using a process. The process is given

below:

• Step 1: Split one day worth of system logs into logs of individual hours.

• Step 2: Split the hourly system logs into logs of 30 minutes.

• Step 3: Split the hourly system logs into logs of 10 minutes.

• Step 4: For each log message in the hourly system logs, extract the message

type part and store it in a list.

• Step 5: Identify the unique message type in the list and obtain the list of

message types.

• Step 6: Given a list of message types obtained on one day worth of system logs,

count the number of message types by hour and obtain the hourly message

types data matrix.

• Step 7: Given a list of message types obtained on one day worth of system

logs, count the number of message types using the 30 minutes system logs and

obtain the 30 minutes message types data matrix.

• Step 8: Given a list of message types obtained on one day worth of system

logs, count the number of message types using the 10 minutes system logs and

obtain the 10 minutes message types data matrix.

3.5 Summary

In this chapter, we described the system model, fault model and system issues,

introduced the Ranger, Lonestar4 and Stampede-1 HPC systems operated by the

Texas Advanced Computing Center at The University of Texas at Austin, described

the TACC Stats resource use data, Rationalized message logs and Syslogs, and gave

the implementation details for the Resource Use Data and Message Types Data

preprocessing modules.

In Chapters 4, 5 and 6, we present two system diagnosis workflows that

are based on the system model, fault model and system issues described in this

46

chapter. In Chapter 4, we present the CORRMEXT framework to identify frequently

occurring error cases. In Chapter 5, we show that CORRMEXT generalises on

multiple HPC systems. In Chapter 6, we present the EXERMEST framework that

uses the resource use data matrices and message types data matrices to identify rare

error cases. We apply EXERMEST on multiple HPC systems.

47

Chapter 4

A Correlation-based Workflow

for HPC Systems Diagnosis

Combining system logs with resource utilisation data have been shown to increase

the accuracy of failure diagnosis. Most of the work on failure diagnosis have focused

on identifying errors that lead to system failures only, but there is little work that

study errors which lead to a system failure or recovery on real data.

We structure this chapter as follows: In Section 4.1, we introduce the COR-

RMEXT (CORrelating Resource use data and Message logs and EXtracting Times)

framework. In Section 4.2, we illustrate the system issue and describe the problem

specification. In Section 4.3, we present the details of the Data Type Extractor,

Correlation and Time-bin Extraction modules. In Section 4.4, we present the analyses

from CORRMEXT through five error cases identified on the Ranger HPC system

and conclude with a summary and a recommendation in Section 4.5.

4.1 Introduction

There are many frameworks that have shown that combining system logs with

resource utilisation data increases the accuracy of error detection [33, 34] and failure

diagnosis [8, 9, 72]. The diagnostics framework developed by Z. Zheng et. al. [72]

uses RAS and job logs to identify application and hardware failures and in [71]

they show that interesting failure characteristics can be identified by combining job

and RAS logs. The ANCOR framework [8] uses resource usage data to identify

anomalous nodes and then uses system logs to diagnose the cause of system failures.

The CRUMEL framework [9] identifies correlations of resource use counters and

errors to system failures. The approach developed by N. Gurumdimma et. al. [33]

shows that the error handling time window can be increased by combining system

48

logs with resource usage data. CRUDE [34] shows that error detection accuracy can

be increased by 85% over current state-of-the-art error detection techniques. The

diagnostics frameworks reported in references [8, 9, 72] correlate errors to system

failures only, but there is little work which study errors leading to a system failure

or recovery.

Knowing when an error leads to a system failure is important. Consider the

following diagnosis: (1) “An inode on the Lustre filesystem failed which led to a

communication error between the Lustre client and server”, and (2) “The Lustre

client failed to communicate with the Lustre server”. If diagnosis number 2 is only

available to the system administrator, they may decide to change the Lustre filesystem

configuration and increase the number of retries. However if diagnosis number 1

is also available, then the system administrator may decide against increasing the

number of retries and choose to terminate the job because an inode failure cannot

be recovered. Diagnosis number 1 provides more information about the underlying

cause of the communication error, i.e., a corrupted inode. Thus, detailed knowledge

about the error can help the system administrator make the right decision to solve

the problem.

In this chapter, we introduce a new framework to provide more detailed

system diagnosis. We name the framework CORRMEXT. CORRMEXT combines

a resource monitoring system called TACC Stats [17] and system logs based on

message-log rationalization [36]. CORRMEXT identifies and links groups of resource

use counters and system events on a given date. It applies multiple correlation

algorithms. We implement a three-phase approach where: (i) CORRMEXT extracts

groups of correlated resource use counters on the resource use data, (ii) CORRMEXT

extracts groups of correlated messages on the system logs, and (iii) CORRMEXT

extracts the variance on the time-bins of the groups of correlated resource use

counters and groups of correlated messages. We show that CORRMEXT provides a

pathway to the root-cause of successful and failed error recovery mechanisms which

alternative diagnostics tools can not provide.

4.1.1 Contributions

In this chapter, we make the following contributions:

• We design, implement and evaluate a new framework that combines resource

utilisation data with system logs for detailed HPC systems diagnosis. We name

this framework CORRMEXT.

• We demonstrate that CORRMEXT can: (i) identify frequently occurring error

cases, and (ii) report the success and failure of error recovery protocols.

49

• We show that more dates of groups of correlated resource use counters and

groups of correlated errors can only be identified by applying multiple correla-

tion algorithms.

• We include a detailed statistical validation step to ensure accurate system

diagnosis. We show that all the correlations are statistically significant by

applying the Bonferroni correction.

• We show that both the correlations of resource use counters and correlations

of errors are required for identifying the earliest times of change in the system

behaviour on all dates.

4.2 System Issue and Problem Specification

In this section, we illustrate the system issue and describe the problem specification.

4.2.1 System Issue

In Figure 4.1, we illustrate resource use counters and error messages by time.

message logs
Rationalized

Resource
use data

Time

00

0

0

0

0

ECC error

core

Northbridge error

0
0user

CPU

0 0

0 0

MEM Inactive

MEM Active

Figure 4.1: An illustration of the resource use counters: (i) user processor utilisation,
(ii) memory pages not accessed recently and (iii) memory pages accessed recently,
and the system messages: (i) northbridge error, (ii) ECC memory error and (iii)
processor core.

CPU user, MEM Inactive and MEM Active are resource use counters. CPU user

records CPU usage by a user. MEM Inactive records the number of memory pages

that are not accessed recently. MEM Active records the number of memory pages that

are accessed recently. We observe that CPU user and MEM Inactive are correlated.

We observe that CPU user and MEM Active are correlated. Northbridge Error,

50

ECC error and core are system messages. Northbridge Error indicates a mother-

board chipset error. ECC error indicates a ECC memory error. core indicates a

processor core message. We observe that Northbridge Error, ECC error and core

are correlated.

In the above example, an error in the system may be captured by a resource

use counter r1 and a recovery procedure may be captured by another resource use

counter r2. When r1 and r2 are correlated, it shows that the error triggered a

recovery procedure. Similarly, when groups of different events are correlated, the

correlations provide an insight into the state of the system. Therefore, to provide

an insight into the system behaviour it is important to capture these correlations.

However, the system logs provide low coverage. By low coverage, we mean that the

system logs do not contain all the information required for establishing a causal

path to the failure. In this chapter, we present the CORRMEXT framework that

combines resource utilisation data with system logs to determine the occurrence of

these patterns.

4.2.2 Problem Specification

The problem that we address in this chapter is specified in [10] and we describe the

problem as follows: Given (i) a set of resource use data, (ii) a set of system logs, (iii)

a list of resource use counter names, (iv) a list of message types, (v) a failure event,

and (vi) a list of dates, then:

1. Identify groups of resource use counters that are strongly correlated by time-bins

on the specified dates,

2. Identify groups of errors that are strongly correlated by time-bins on the

specified dates,

3. Identify errors that are:

(a) Strongly correlated to a specified failure event,

(b) Weakly correlated to the specified failure event,

4. Identify the time-bins that are associated with the correlated resource use

counters and correlated error groups on the dates specified.

The date specified captures the date where deeper insights are sought. To

achieve this, we have developed the CORRMEXT (CORrelating Resource use

data and Message logs and EXtracting Times) framework as shown in Figure 4.2.

The CORRMEXT framework is composed of three modules. The modules are: (1)

51

Message Logs

Data Type
Extraction

Correlated Resource
use counters

Correlated
events

Validation Validation

Time−bins of correlated
resource use counters

Time−bins of
correlated events

use counter
names

List of resource List of
message types

MTExtRUExt

Resource
Use Data

Resource use
counters

Message types

Unique Unique

Correlation

CorrelatorCorrelator

Time−bin
Extraction

Variance Extractor Variance Extractor

List of dates

Failure event

Figure 4.2: The workflow of the CORRMEXT framework.

Data Type Extraction, (2) Correlation and (3) Time-bin Extraction. The workflow

automatically process the resource use and system logs through the Data Type

Extraction, Correlation and Time-bin Extraction modules. Each module produces

a report. The reports can be used for diagnosis. CORRMEXT is available for

download at https://diag-toolkits.github.io/CORRMEXT/.

In the next section, we describe in detail the Data Type Extraction, Correla-

tion and Time-bin Extraction modules used within the CORRMEXT framework.

4.3 CORRMEXT Framework

We have implemented a failure diagnostics framework called CORRMEXT to identify

error cases that occur frequently and to report the success and failure of error recovery

protocols. The framework is comprised of three-phases and we summarise it here.

The three-phases are: (i) identifying resource use counter groups that are correlated,

(ii) identifying error groups that are correlated, and (iii) identifying the earliest hour

52

https://diag-toolkits.github.io/CORRMEXT/

of change associated with the correlated resource use counter groups and correlated

error groups. Then, we validate that all the correlation coefficients of the correlated

resource use counters and correlated errors are significant.

4.3.1 Data Type Extraction

Currently, the Data Type Extractor (DTE) module processes TACC Stats resource

use data [17], Rationalized message logs [36] and Syslogs [40]. TACC Stats [17] is

an online job-oriented system resource usage monitor. It monitors 410 resource use

counters online and records all the resource use counters at intervals of 10-minutes

(refer to Table 3.1 for the list of system metrics). When a node is reset, the readings

on the node will be set to zero. An example of a resource use log is given as follows:

2066522 Aug 11 12:50:01 i150-412 eth0 rx_bytes 302345 ... The resource

use log contains: (i) 2066522 it is the job number, (ii) Aug 11 12:50:01 it is the

date and time, (iii) i150-412 it is the node, (iv) eth0 it is the component identifier

and (v) rx_bytes 302345 it is a key-value pair. The key-value pair contains the

name of the resource use counter and its value.

The Rationalized message log [36] is a special type of system log that incorpor-

ates a logical structure and additional content such as job-identification. An example

of a Rationalized message log is given as follows: 2055415 Aug 3 00:00:03 i120-306

kernel GSIFTP: failed. The Rationalized message log contains: (i) 2055415 it is

the job number, (ii) Aug 3 00:00:03 it is the date and time, (iii) i120-306 it is

the node, (iv) kernel it is the software identifier and (v) GSIFTP: failed it is the

message. A message is a sequence of English-only words. Here, the message is a

GSIFTP failure.

A Linux syslog contains a date and time, node, software identifier and message.

A Linux syslog typically does not contain a job number. Furthermore, the format

of a system log on another HPC system may be different. Having said that, most

system logs contain three basic fields. The fields are: (i) date and time, (ii) node and

(iii) message. Therefore, we have implemented a log-reformator to convert system

logs that contain the three basic fields to a standard format. If a system log does

not contain a field in the standard formatted log, then a placeholder is used. The

standard formatted log contains the following fields:

job number, month, day, time-stamp (Hour:Minute:Second), node, software

identifier, application name, message.

The resource use data contain hundreds of different resource use counters.

The Rationalized message logs and Syslogs contain thousands of different message

types. Further, the resource use counters and system logs are collected at different

53

times. For example, the system resources used by a job are recorded at a regular time

interval while a message is recorded in the system log only when an error is reported

by the job. Therefore, we need a standardise way to represent the resource use

counters and message types by time. To address the problem, we implemented two

sub-modules within the Data Type Extractor. The sub-modules are: (i) a Resource

Use Extractor (RUExt) and (ii) a Message Types Extractor (MTExt). The Resource

Use Extractor organises the resource use counters. It receives a resource use log-file

and outputs a data matrix DRtimebins. The data matrix contains counts of resource

use counters by time-bins of one hour. The Message Types Extractor organises

the message types. It receives a standard form log-file and outputs a data matrix

DMtimebins. The data matrix contains counts of message types by time-bins of one

hour.

4.3.2 Correlation

The Correlation module receives the time-bin data matrices that were generated by

the Data Type Extractor. The Correlation module computes:

• The correlation coefficients for all the resource use counters and extracts a

smaller set of resource use counters for analysis.

• The correlation coefficients for all the message types and extracts a smaller set

of messages for analysis.

Our Correlation module currently evaluates two correlation methods. They

are: (i) Pearson correlation, and (ii) Spearman-Rank correlation. The TACC Stats

system resource use monitor monitors all the instantaneous values for all system

metrics at all time intervals. Any change in the resource use counter readings can

be tracked by summing up all changes between consecutive time intervals. When

the counts for a pair of resource use counters increase gradually, the Spearman-

Rank correlation method can be used for capturing a monotonically increasing

relationship between the resource use counters. The messages in the system logs are

only instantaneous values. The counts for a pair of messages may increase gradually

or fluctuate over time. Hence, the Pearson and Spearman-Rank correlation methods

can be used for capturing message patterns which change over time. We use Pearson

correlation to identify linear patterns of resource use counters and messages. We

use Spearman-Rank correlation to identify monotonically increasing patterns of

resource use counters and messages. Other methods are available. However, those

methods assume that the variables in the data are independent and identically

distributed. Therefore, the Pearson and Spearman-Rank correlation algorithms are

54

suitable methods. We implemented the Pearson and Spearman-Rank correlation

methods into the Correlation module.

The Pearson correlation algorithm [67] assumes that the relationship between

the data of two variables is linear and a line of best fit is drawn through the data of

the two variables. Pearson’s correlation coefficient, r is defined as the mean of the

products of the standard scores, i.e.,

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
(4.1)

where
(
xi−x̄
sx

)
is the standard score of x,

(
yi−ȳ
sy

)
is the standard score of y, x

and y are two datasets containing n values of a pair of resource use counters or

a pair of events, sx =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation of x,

sy =
√

1
n−1

∑n
i=1(yi − ȳ)2 is the sample standard deviation of y, x̄ and ȳ is the

sample mean of x and y.

The Spearman-Rank correlation algorithm [67] assumes that the relationship

between the data of two variables is monotonic. A monotonic relationship does

one of the following: (i) when the value of one variable increases the value of the

other variable increases, (ii) when the value of one variable remains the value of

the other variable remains. Spearman-Rank’s correlation coefficient, ρ is defined as

the Pearson correlation coefficient between a pair of ranked variables. To rank the

variables, we implemented a standard technique that is called the tied rank average

method [67]. We describe the ranking process as follows:

• Rank order the values in the dataset x with the smallest value getting a rank

of 1.

• If more than one value has the same rank in dataset x, assign the average rank

to these values.

• Rank order the values in the dataset y with the smallest value getting a rank

of 1.

• If more than one value has the same rank in the dataset y, assign the average

rank to these values.

The resource use data is generated at regular time intervals and the system

logs are generated only if an error output statement in the code is triggered. Because

of this, the resource use logs and system logs contain timestamps that are different.

As a result, different numbers of data points are contained in the resource use

counters and message types datasets. Both Pearson and Spearman-Rank correlation

55

algorithms require the same number of data points on the x-axis in the datasets. As

such, we do not correlate a resource use counter and message type. Having said that,

our objective is to identify correlations of resource use counters and correlations

of system events. Therefore, we apply the Correlation module separately to the

resource use data and system logs as shown in Figure 4.2.

After we have obtained the correlation matrices, we generate the lists of

strong positive correlated resource use counters and strong positive correlated system

events. We have configured the Correlation module using a process given in [8] and

we describe the process as follows: ∀r<m,n> ∈MTXr where MTXr is a correlation

matrix, r<m,n> is a correlation coefficient in the correlation matrix MTXr, m is the

correlation matrix row index, n is the correlation matrix column index, if there are

the most number of correlations such that r<m,n> of each correlation is the same,

and r<m,n> lies between 0.8 and 1 (inclusive), then rth = r<m,n>,m 6= n. We use

the following rules to interpret the strength of the correlation coefficient. The rules

are [1]: (a) 0.8 to 1: Strong positive correlation, (b) 0.3 to 0.79: Moderate positive

correlation, (c) 0.1 to 0.29: Weak positive correlation.

Our Correlation module extracts: (i) the resource use counters that are strong

positive correlated, and (ii) the system events that are strong positive correlated.

However, we also need to know if the system has recovered from an error. Because

of this, the Correlation module extracts system events that are weakly correlated to

a system failure event.

Validation

We test the significance of all the correlation coefficients by applying a standard

technique called Fisher’s z-transform. Fisher’s z-transform is given by the equation

[67]:

F (r) =
1

2
ln

(
1 + r

1− r

)
(4.2)

where r is a correlation coefficient. We have defined the null (H0) and alternate

(Ha) hypotheses as follows: (i) H0r that a pair of resource use counters are weakly

positive correlated, (ii) Har that a pair of resource use counters are strongly positive

correlated, (iii) H0e that a pair of system events are weakly positive correlated, and

(iv) Hae that a pair of system events are strongly positive correlated. Then, we

obtain the z-score for all correlation coefficients. The z-score is given by the equation

[67]:

z =
F (r)− uz

SE
= (F (r)− F (H0))×

√
n− 3 (4.3)

where n is the number of time-bins, SE = 1√
n−3

is the standard error, and under

56

the null hypothesis uz = F (H0). When z ≥ 2.64 at 99% confidence level, we reject

the null hypothesis in favour of the alternate hypothesis. We are interested in: (i)

resource use counters that are strong positive correlated, and (ii) system events that

are strong positive correlated. For all the hypotheses, we use the significance level,

α = 0.01 and apply a one-sided test to obtain all the P -values. A P -value less than

0.01 indicates that it is highly unlikely the result would be observed under the null

hypothesis.

Handling False Positive

When we are given d number of hypotheses, the probability to observe one significant

result due to chance is 1− (1−P)d where P is the p-value obtained from each test. If

we need to test only one hypothesis and obtain a P -value of 0.01, then the probability

that this is a false positive is 1%. If we need to test more hypotheses, for example

we have 26 hypotheses to test and obtain a P -value of 0.01 for each test, then the

probability that there is at least one false positive is 1−(1−0.01)26 = 1−0.9926 = 0.22

or 22%. The Bonferroni correction accounts for the inflation in false positive [26].

The Bonferroni correction works as follows: For each test, we apply the Bonferroni

correction on the unadjusted P -value to obtain an adjusted P -value. We multiply

the unadjusted P -value by d and obtain the adjusted P -value.

Implementation of Significance Testing

We describe the process we implemented for testing the significance of all the

correlation coefficients: We use RUExt and MTExt to generate the number of hours

for each date of the logs and use the Data Type Extractor (DTE) to generate the

number of dates. Given the total number of hours in each date of logs and the

correlation coefficients, the validation sub-components in the Correlation module

use the correlation coefficients and number of hours to compute Fishers z-scores for

all correlation coefficients – the flow is shown in Figure 4.2. Then, we map all the

z-scores to P -values by using a Z-table – the P -values obtained are the unadjusted

P -values. We implemented the Z-table in the Correlation module. Then, we multiply

the unadjusted P -value by the total number of dates and obtain the adjusted P -value

for all hypotheses.

4.3.3 Time-bin Extraction

The Time-bin Extraction module receives the data matrices that contain the re-

source use counters that are strongly correlated and system events that are strongly

correlated. We generated the data matrices by:

57

• Mapping the names in the list of strongly correlated resource use counters

to the names of the resource use counters in the resource use counters data

matrix, and obtain a smaller resource use counters data matrix.

• Mapping the names in the list of strongly correlated messages to the names

of the message types in the message types data matrix, and obtain a smaller

message types data matrix.

The Time-Bin Extraction module obtains the variance for the correlated

resource use counters and correlated system events at every hour to identify the hour

that has the highest variance. The variance is given by the equation [67]:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (4.4)

where n is the sample size of x, x̄ is the sample mean of x. Our objective is to

identify the earliest hour of change in the system behaviour. To achieve this, we

implemented a process for extracting the variance associated with the time-bins. We

describe the process as follows:

1. Store the variance for each time-bin in a list lvar.

2. Obtain the difference in the variance between two consecutive time-bins and

store the difference in a list lvardiff .

3. Sort lvardiff in descending order with the first element the largest difference in

variance.

4. The time-bin that has the highest variance is the earliest hour of change in the

system behaviour during the day.

4.4 Case Study: Ranger HPC System

In this section, we study error cases within the context of the Ranger HPC system

and then we will apply CORRMEXT to identify error cases on Lonestar4 and

Stampede-1 in Chapter 5. The Ranger HPC system was operated by the Texas

Advanced Computing Center at The University of Texas at Austin from 2007 – 2013.

On Ranger, we collected three months worth of resource usage data and Rationalized

message logs. In the reference [36], J. Hammond et. al. found that there is a lead

time of six hours to a compute node crash when an error is first reported on Ranger.

A compute node crash can be identified by searching the system log-message for

the keywords soft lockup. To extract the dates when compute nodes crashed, we

58

implemented a function to scan the system logs for soft lockup keywords. When

we find a soft lockup message, we extract the date associated with the soft lockup

message. In the Rationalized message logs, we identified 26 dates of soft lockup

events. The dates of resource usage data and Rationalized message logs analysed are

given in Table 4.1.

Table 4.1: List of dates of log-data analysed on Ranger.

Month Dates

June 2011 3, 5, 14, 15, 16, 21, 22

July 2011 5, 6, 7, 11, 18, 19, 23, 24, 25, 26, 27, 31

August 2011 3, 4, 11, 22, 24, 30, 31

We obtain the diagnostics reports generated by CORRMEXT. The diagnostics

reports contain the lists of correlated resource use counters and correlated events. In

the reports, we identified five error cases on the Ranger HPC system. The error cases

are: (i) memory allocation and memory leaks, (ii) communication and filesystem

I/O errors, (iii) chipset and memory errors, (iv) file access and process errors, and

(v) process errors and memory exhaustion. All the error cases are different. We

summarise the error cases in Table 4.2.

Table 4.2: List of error cases identified on the Ranger HPC system.

Component Error No. of dates

NUMA & process memory allocation Memory allocation & memory leaks 10

Lustre filesystem & Infiniband Communication & Lustre I/O errors 11

Chipset & ECC memory Chipset & memory errors 13

Linux virtual memory File access & process errors 8

Linux virtual memory Process errors & memory exhaustion 2

4.4.1 NUMA and Process Memory Allocation

In this error case, we determine: (i) correlations between NUMA and Linux process

resource use counters, and (ii) correlations between application memory leaks. We

use the correlations to diagnose NUMA memory allocation problems. Then, we

assess the system reliability.

Phase 1: Correlated NUMA & Process Resource Use Counters

When a node runs out of memory pages (an error occurs) but a process makes a

request for memory pages on that node, the resource use counter named numa miss

is incremented. When a process requests memory pages on the out-of-memory node

but ends up being allocated memory pages on another node (a recovery from the

59

error), the resource use counter named numa foreign is incremented. When a Linux

process is created, the resource use counter named ps processes is incremented.

When a context switch occurs between the CPUs, the resource use counter named

ps ctxt is incremented. The resource use counters that record NUMA and Linux

processes activities can be used to see what happens when a Linux process makes a

request for memory on a node that has run out of free memory pages.

Figure 4.3 shows the correlations between the resource use counters NUMA

miss, Linux process and context switch in June 2011.

Figure 4.3: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.4 shows the correlations between the resource use counters NUMA

miss, Linux process and context switch in July 2011.

Figure 4.4: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.5 shows the correlations between the resource use counters NUMA

60

miss, Linux process and context switch in August 2011.

Figure 4.5: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.3, Figure 4.4 and Figure 4.5, we observe there is a strong

positive correlation between NUMA miss, Linux processes created and context

switches. We identified: (i) correlations of numa miss and ps processes with scores

ranging from 0.93 to 1 on 25 dates, and (ii) correlations of numa miss and ps ctxt

with scores ranging from 0.93 to 1 on 23 dates. There are small changes in the

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one hour.

Figure 4.6 shows the correlations between the resource use counters NUMA

foreign, Linux process and context switch in June 2011.

Figure 4.6: The full-circled counters were identified by Spearman-Rank correlation
only.

61

Figure 4.7 shows the correlations between the resource use counters NUMA

foreign, Linux process and context switch in July 2011.

Figure 4.7: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.8 shows the correlations between the resource use counters NUMA

foreign, Linux process and context switch in August 2011.

Figure 4.8: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.6, Figure 4.7 and Figure 4.8, we observe that there is a

strong positive correlation of NUMA foreign, Linux processes created and context

switches. We identified: (i) correlations of numa foreign and ps processes with

scores ranging from 0.93 to 1 on 21 dates, and (ii) correlations of numa foreign and

ps ctxt with scores ranging from 0.93 to 1 on 21 dates. There are small changes in

the correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

62

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one hour.

On August 4 and 30, we found that the correlated NUMA & processes resource

use counters were identified only by Pearson correlation. However, we also found

that on 17 dates the correlated NUMA miss & Linux processes resource use counters

were identified only by Spearman-Rank correlation. On 16 dates the correlated

NUMA foreign & Linux processes resource use counters were identified only by

Spearman-Rank correlation. If we use only the Pearson correlation method, then the

correlated NUMA & processes resource use counters would not be identified on more

dates. If we use only the Spearman-Rank correlation method, then the correlated

NUMA & processes resource use counters would not be identified on August 4 and

30. Our results show that:

• Both the Pearson and Spearman-Rank correlation methods are required. On

August 4 and 30, correlations of NUMA memory allocation and Linux process

resource allocations were identified only by Pearson correlation. On 16 dates,

correlations of NUMA foreign and Linux process resource allocations were

identified only by Spearman-Rank correlation. On 17 dates, correlations of

NUMA miss and Linux process resource allocations were identified only by

Spearman-Rank correlation.

• The system attempted a recovery when a process made a request for memory

pages on a node that had run out of memory. The system recovers by allocating

memory pages on another node for the process. We observed that context

switching occurs when memory pages are allocated on another node.

In the second phase, we will use the correlations of two different groups of

error events to diagnose application memory leaks.

Phase 2: Correlated Segmentation Faults & General Protection Errors

A program that attempts a read or write operation in a protected memory location will

cause the operating system to report a segmentation fault. When a program accesses

a memory location that is protected, a general protection fault (GPF) interrupt is

issued by the processor. When a GPF is issued, the operating system removes the

program, issues a signal to the user and continues executing other programs. In most

cases, the operating system catches the general protection fault interrupt. However,

in some cases the operating system may fail to catch the GPF. If the operating

system fails to catch the GPF, the processor issues a second GPF. However, in a

rare case the operating system may fail to catch the second GPF. If the operating

system fails to catch the second GPF, the processor stops working and it will only

63

respond to a reset. A segmentation fault can be identified in a system message-log

containing the keywords segfault. A memory access violation can be identified in

a system message-log containing the keywords general protection error.

Figure 4.9 shows the correlation of segmentation fault and general protection

error events in June 2011.

Figure 4.9: The dot-circled events were identified by Pearson correlation only.

Figure 4.10 shows the correlation of segmentation fault and general protection

error events in July 2011.

Figure 4.10: Correlations of segmentation fault and general protection error events.

Figure 4.11 shows the correlation of segmentation fault and general protection

error events in August 2011.

64

Figure 4.11: The dot-circled events were identified by Pearson correlation only.

From Figure 4.9, Figure 4.10 and Figure 4.11, we observe that there is a strong

positive correlation between segmentation fault and general protection error events.

On 10 dates, we identified correlations of segfault and general protection error

events with scores ranging from 0.98 to 1. There are small changes in the correlation

scores obtained on time-bins of 20 and 40 minutes but the correlation scores are

within 0.8 to 1. Therefore, we focus on the correlations obtained on time-bins of one

hour. The dates coincide with all the dates of correlated NUMA miss and Linux

process resource use counters, and correlated NUMA foreign and Linux process

resource use counters (see Section 4.4.1). We found that the correlated segmentation

faults and general protection errors were identified only by Pearson correlation on

June 21 and August 22.

Next, we identify which program caused the segmentation fault. To identify

the faulty program, we implemented a function that scans the system message-

log for the keywords general protection error and segfault. We obtained the

segmentation fault and general protection error messages and extract the program

name. The name of the program is appended at the back of the message. We identified

10 programs. The programs are: enzo.exe, preplot, charmm, fft_x, siesta_test,

lx, phParAdapt, openGR, vasp_acml and mpmc. enzo.exe is an executable for a

cosmology simulation program. preplot is used by analysis programs to reformat

the output for plotting in GNUplot. charmm is the name for a molecular simulation

program. fft_x is a fast Fourier transform algorithm. siesta_test is a unit testing

tool for JavaScript. phParAdapt is a program that simulates multiphase flows using

a parallel adaptive mesh method. openGR is a program that supports large numerical

simulations in general relativity. vasp_acml is a Vienna Ab initio simulation package

65

and AMD core maths library. mpmc is a Massively Parallel Monte Carlo method

package.

Correlations with failures: Next, we determine the correlation strength of:

(i) segfault and soft lockup events, and (ii) general protection error and

soft lockup events. We implemented a function to scan the list of correlated events

and a summary is provided in Table 4.3.

Table 4.3: Summary of correlated “segfault” and soft lockup events, and correlated
“general protection error” and soft lockup events on Ranger.

Error event Failure event Date pCorr sRank

segfault (charmm) soft lockup July 6 0.99 1

general protection error (charmm) soft lockup July 6 1 1

segfault (phParAdapt) soft lockup July 23 0.99 1

general protection error (phParAdapt) soft lockup July 23 0.99 1

From Table 4.3, we observe that: (i) charmm and phParAdapt programs are

associated with both segmentation fault and general protection errors, and (ii) there

is a strong positive correlation of segfault and general protection error events

to soft lockup events on July 6 and 23. Our results show that memory access violation

by the charmm and phParAdapt programs led to soft lockups on July 6 and 23. On

the other eight dates, we found that the segmentation fault and general protection

error events are weakly correlated.

Detailed diagnosis: During a system recovery that was caused by a NUMA miss,

several programs violated the protected memory location policy and caused the

Linux operating system to report a segmentation fault. On eight of ten dates the

faulty program was removed by the operating system. This represents a recovery

rate of 80%. However, on two dates the general protection fault triggered by two

programs were not caught by the Linux operating system which led to failure.

The benefit of combining analysis of NUMA and Linux process resource use

counters with program memory leaks is as follows: When on the same day, Linux

process and NUMA resource use counters are correlated and segmentation fault and

general protection error events are also correlated, it shows that memory errors are

generated by memory allocation activities. Therefore, we can: (i) use the correlation

of NUMA and Linux process resource use counters to monitor the state of memory

allocation, and (ii) use the correlation of segmentation fault and general protection

error events to identify the program that caused the memory leak.

66

Phase 3: Earliest Hour of Change

Table 4.4 shows the earliest hour of change in the correlated NUMA & Linux process

resource use counters and correlated segmentation fault and general protection error

events.

Table 4.4: Hours associated with the correlated NUMA & Processes resource use
counters and correlated segmentation fault & general protection fault error messages
on Ranger.

Correlated Jun Jun Jun Jun Jul Jul Jul Jul Aug Aug

counters 3 14 21 22 6 11 23 26 3 22

NUMA & 1 1 3 10 12 7 5 5 1 1

processes PM PM AM AM PM PM AM PM PM AM

Correlated Jun Jun Jun Jun Jul Jul Jul Jul Aug Aug

errors 3 14 21 22 6 11 23 26 3 22

Segfaults & 1 7 11 5 2 11 5 7 4 10

GPF errors PM AM AM AM PM PM PM PM AM AM

On all the dates, we observe that the earliest hour of change is different. On

six dates, the earliest hour of change is associated with the correlated NUMA & Linux

process resource use counters. On three dates, the earliest hour of change is associated

with the correlated segmentation fault & general protection error events. On one

date, the earliest hour of change is associated with both the correlated resource use

counters and correlated errors. If we use only the correlated segmentation faults and

general protection error events, the earliest hour of change on six dates would not

be identified. If we use only the correlated NUMA & Linux process resource use

counters, the earliest hour of change on three dates would not be identified. Our

results show that we require both the correlated resource use counters and correlated

errors for identifying the earliest hour of change in the system behaviour on all the

dates. We found that there are different time-windows between the hours of change

on all the dates. The time-window ranges from one hour to 12 hours.

Validation

Next, we test the significance of the correlation coefficient of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of error events that

are strong positive correlated. We tested all the correlation coefficients against the

null hypothesis. We obtained the z-scores for all the correlation coefficients and a

summary is given in Table 4.5.

From Table 4.5, we observe that the z-scores for all the correlation coefficients

range from 6.15 to 10.68. At the 99% confidence level, under the null hypothesis

67

Table 4.5: Summary of z-scores. n contains the number of hours in one day of logs.

Correlated groups June 2011 July 2011 Aug 2011

NUMA & Processes resource zr = 10.68 6.15 ≤ zr ≤ 10.68 zr = 10.68

use counters (n = 24)

Segmentation fault & GPF errors ze = 10.68 9.08 ≤ ze ≤ 10.68 9.08 ≤ ze ≤ 10.68

(15 ≤ n ≤ 24)

z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour of the

alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value to determine the

probability of rejecting the null hypothesis when it is true. Table 4.5 summarises

the z-scores for all the correlation coefficients. We observe that the smallest z-

score is 6.15. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 6.15 in the standard normal distribution, or

P (Z > 6.15) = 1− P (Z ≤ 6.15) = 1− 0.99999 = 0.00001. To account for inflation

in false positive due to multiple independent tests, we obtain the adjusted P -value

0.00001× 25 = 0.00025 where 25 is the number of dates. The adjusted P -value is

less than 0.01, indicating it is highly unlikely this result would be observed under the

null hypothesis. From Table 4.5, we observe that all the z-scores are greater than

or equal to 6.15. Therefore, the adjusted P -value for all the z-scores are less than

0.01, indicating it is highly unlikely these results would be observed under the null

hypothesis.

4.4.2 Lustre Filesystem and Infiniband Network

In this error case, we determine: (i) correlations between the Infiniband network

and Lustre filesystem resource use counters, and (ii) correlations between Lustre

filesystem and Infiniband network communication errors. We use the correlations to

diagnose problems on the Lustre filesystem and Infiniband network. Then, we assess

the reliability of the Lustre filesystem inodes and Infiniband network.

Phase 1: Correlated Infiniband Network & Lustre Filesystem Resource

Use Counters

When network packets are dropped on the Infiniband network, the resource use

counter named net ib0 tx_dropped is incremented. When network packets are

transmitted on the Infiniband network, the resource use counter named net ib0

tx_packets is incremented. When data is being read on the Lustre filesystem share

partition, the resource use counter named llite /share read_bytes is incremented.

68

When data is being written to the Lustre filesystem share partition, the resource

use counter named llite /share write_bytes is incremented. The Infiniband

network packet drop and network packets transmitted, and Lustre filesystem read

and write resource use counters can be used to see what happens when the network

and filesystem are heavily used.

Figure 4.12 shows the correlations between the resource use counters network

packet drop, filesystem read and write bytes in June 2011.

Figure 4.12: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.13 shows the correlations between the resource use counters network

packet drop, filesystem read and write bytes in July 2011.

Figure 4.13: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

Figure 4.14 shows the correlations between the resource use counters network

packet drop, filesystem read and write bytes in August 2011.

69

Figure 4.14: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.12, Figure 4.13 and Figure 4.14, we observe that there is a

strong positive correlation between: (i) network packet drop and filesystem read bytes,

and (ii) network packet drop and filesystem write bytes. We identified: (i) correlations

between net ib0 tx_dropped and llite /share read_bytes with scores ranging

from 0.81 to 1 on 20 dates, and (ii) correlations between net ib0 tx_dropped

and llite /share write_bytes with scores ranging from 0.82 to 0.99 on 12 dates.

There are small changes in the correlation scores obtained on time-bins of 20 and 40

minutes but the correlation scores are within 0.8 to 1. Therefore, we focus on the

correlations obtained on time-bins of one hour.

Figure 4.15 shows the correlations between the resource use counters network

packets transmitted, filesystem read and write bytes in June 2011.

Figure 4.15: Correlation of network packets transmitted, filesystem read bytes and
filesystem write bytes.

70

Figure 4.16 shows the correlations between the resource use counters network

packets transmitted, filesystem read and write bytes in July 2011.

Figure 4.16: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

Figure 4.17 shows the correlations between the resource use counters network

packets transmitted, filesystem read and write bytes in August 2011.

Figure 4.17: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.15, Figure 4.16 and Figure 4.17, we observe that there is a

strong positive correlation between: (i) network packets transmitted and filesystem

read bytes, and (ii) network packets transmitted and filesystem write bytes. We identi-

fied: (i) correlations between net ib0 tx_packets and llite /share read_bytes

with scores ranging from 0.94 to 1 on 22 dates, and (ii) correlations between

net ib0 tx_packets and llite /share write_bytes with scores ranging from

0.80 to 0.99 on 16 dates. There are small changes in the correlation scores obtained

71

on time-bins of 20 and 40 minutes but the correlation scores are within 0.8 to 1.

Therefore, we focus on the correlations obtained on time-bins of one hour.

On five dates, the correlated net ib0 tx_dropped and llite /share read_

bytes, net ib0 tx_dropped and llite /share write_bytes, and net ib0 tx

_packets and llite /share write_bytes were identified only by Pearson correla-

tion. On 18 more dates, the correlated net ib0 tx_packets, net ib0 tx_dropped,

llite /share read_bytes and llite /share write_bytes were identified only

by Spearman-Rank correlation. If we use only the Pearson correlation method, then

the correlated Infiniband and Lustre filesystem resource use counters on 18 dates

would not be identified. If we use only the Spearman-Rank correlation method, then

the correlated Infiniband and Lustre filesystem resource use counters on five more

dates would not be identified. Our results show that:

• There is a strong relationship of Infiniband network packets transmitted,

Infiniband network packet dropped, Lustre filesystem read bytes and Lustre

filesystem write bytes on 24 dates.

• Both the Pearson and Spearman-Rank correlation methods are required. On

five dates, the correlated Infiniband network and Lustre filesystem activities

were identified only by Pearson correlation. On 18 more dates, the correlated

Infiniband network and Lustre filesystem activities were identified only by

Spearman-Rank correlation.

In the second phase, we will use the correlations between two different groups

of error events to diagnose communication and Lustre filesystem errors.

Phase 2: Correlated Communication & Lustre Filesystem Errors

In the system logs, we identify a communication error by searching for a message-log

that contains the keywords error occurred while communicating with ... We

identify Lustre filesystem errors by searching the system logs for a message-log that

contains either failure inode or error reading dir. In a Unix-style filesystem,

the attributes about a file and the location of disk blocks where the file is stored are

contained in a data structure called an inode. Inodes provide clients the information

they need in order to access files that are stored in a storage server. When an

inode is corrupted, the information stored in the inode is lost. If a client accesses

a corrupted inode, it is unable to obtain the information for locating the file. A

corrupted filesystem partition or faulty hard drive can result in inode failures.

Figure 4.18 shows the correlations between Infiniband network communication

error and Lustre filesystem inode failure events in June and July 2011.

72

(a) June 2011.

(b) July 2011.

Figure 4.18: The dot-circled events were identified by Pearson correlation only.

From Figure 4.18, we observe that there is a strong positive correlation

between Infiniband communication errors and Lustre inode failures. We identi-

fied: (i) correlations between error occurred while communicating with .. and

failure inode events with scores ranging from 0.81 and 1 on 10 dates. There are

small changes in the correlation scores obtained on time-bins of 20 and 40 minutes

but the correlation scores are within 0.8 to 1. Therefore, we focus on the correlations

obtained on time-bins of one hour.

Figure 4.19 shows the correlations between Infiniband network communication

error and Lustre filesystem directory read error in August 2011. We observe that

there is a strong positive correlation between Infiniband communication error and

73

Figure 4.19: Correlation of communication error and directory read error events.

Lustre filesystem directory read error. We identified: (i) correlations between

error occurred while communicating with .. and error reading dir events

with a score of 1 on August 3. There are small changes in the correlation scores

obtained on time-bins of 20 and 40 minutes but the correlation scores are within 0.8

to 1. Therefore, we focus on the correlations obtained on time-bins of one hour.

On 11 dates, we found that the dates of correlated communication and

filesystem errors coincide with all the dates of correlated Lustre filesystem and

Infiniband network resource use counters. On the 11 dates, we found that the

correlated communication and filesystem errors were identified by Pearson correlation.

However, the correlated communication and filesystem errors were identified by

Spearman-Rank correlation only on six out of the 11 dates. Our results show that

the correlated communication and filesystem errors were identified only by the

Pearson correlation method.

To determine the cause of the communication error, we implemented a function

to scan the error occurred while communicating with .. message for keywords

failed with Lustre and failed with client.c. If the keywords failed with

Lustre and failed with client.c are contained in the communication error mes-

sage, then it shows that the communication error is associated with the Lustre filesys-

tem. On 10 dates, we found that the failed with Lustre and failed with client

.c keywords are contained in the error occurred while communicating with ..

messages. The communication error message is correlated to failure inode on all

the 10 dates. This shows that the communication error was caused by an inode

failure.

Correlations with failures: Next, we determine the correlation strength between

communication errors, filesystem inode failures and soft lockup events. We implemen-

74

Table 4.6: Summary of correlated “error occurred while communicating with” and
“soft lockup”, and correlated “failure inode” and “soft lockup” events on Ranger.

Error event Failure event Date pCorr sRank

error occurred while communicating with soft lockup June 21 1 -

failure inode soft lockup June 21 1 -

error occurred while communicating with soft lockup July 23 0.99 -

failure inode soft lockup July 23 0.99 -

ted a function to scan the list of correlated events for the error occurred while

communicating with ..., failure inode and soft lockup messages. Table 4.6

provides a summary of the correlated events. From Table 4.6, we observe that: (i)

there is a strong positive correlation between communication errors and soft lockup

events on June 21 and July 23, and (ii) there is a strong positive correlation between

inode failure and soft lockup events also on June 21 and July 23. We found that the

communication error, inode failure and soft lockup events were weakly correlated on

eight dates.

Detailed diagnosis: On 10 dates in June and July 2011, some inodes on the Lustre

filesystem became corrupted. Because of this, the remote client was unable to access

a file on Lustre. On 8 of 11 dates, the inode failure did not cause the remote client

to hang. This represents a recovery rate of 72%. However, on 2 of 11 dates the inode

failure led to a remote client hang, representing a failure rate of 18%.

We found that there is a strong positive correlation between error occurred

while communicating with ... and error reading dir events – the correlation

score is 1 (see Figure 4.19). We scanned the error occurred while communicating

with ... message and identified the keywords failed with Lustre and failed

with client.c in the message. We scanned the list of correlated events to determine

the correlation strength between the communication error, error reading directory

and soft lockup events. We found that error occurred while communicating

with ... and error reading dir events were weakly correlated to soft lockup

event.

Detailed diagnosis: On August 3, a remote client made a directory access request

on the Lustre filesystem. When the client attempted to read the directory, the

Lustre filesystem generated a directory read error and communicated the error to

the remote client. The directory read error did not cause the remote client to hang.

Combining analysis of Lustre filesystem and Infiniband network resource use

counters and errors provides the following benefit: When on the same day, we observe:

(i) Lustre I/O and Infiniband network resource use counters are strongly positive

correlated, and (ii) Lustre filesystem and communication error events are strongly

positive correlated, it shows that Lustre filesystem and communication errors were

75

generated by Lustre I/O and Infiniband network activities. Therefore, we can use

the correlations between Lustre I/O and Infiniband network resource use counters to

monitor the state of Lustre and Infiniband.

Phase 3: Earliest Hour of Change

Table 4.7 provides the earliest hour of change in the correlated Lustre I/O and

Infiniband resource use counters and correlated Lustre filesystem and communication

errors.

Table 4.7: Hours associated with the correlated Infiniband and Lustre I/O resource
use counters and correlated communication and Lustre filesystem errors on Ranger.

Correlated Jun Jun Jun Jul Jul Jul Jul Jul Jul Jul Aug

counters 3 21 22 6 7 11 18 19 23 26 3

Infiniband & 12 10 11 12 12 11 7 1 7 6 11

Lustre I/O PM AM AM PM PM PM AM PM AM AM AM

Correlated Jun Jun Jun Jul Jul Jul Jul Jul Jul Jul Aug

errors 3 21 22 6 7 11 18 19 23 26 3

Communica- 8 10 5 11 12 11 10 9 6 3 3

tion & Lustre FS PM PM PM PM PM PM PM PM PM PM AM

On all the dates, we observe that there are different hours of change. On

eight dates, the earliest hour of change is associated with the correlated Infiniband

and Lustre I/O resource use counters. On one date, the earliest hour of change is

associated with the correlated communication and Lustre filesystem errors. On two

dates, the earliest hour of change is associated with both the correlated resource use

counters and correlated errors. If we use only the correlated error events, then the

earliest hour of change on eight dates would not be identified. If we use only the

correlated resource use counters, then the earliest hour of change on one date would

not be identified. Our results show that we require both the correlated resource

use counters and correlated errors for identifying the earliest hour of change in the

system behaviour on all dates. We found that the time-window between the hours

of change on all the dates are different. The time-window ranges from one-hour to

15-hours.

Validation

Next, we test the significance of the correlation coefficient of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of error events that

are strong positive correlated. We tested all the correlation coefficients against the

null hypothesis. We obtained the z-scores for all the correlation coefficients and a

summary is provided in Table 4.8.

76

Table 4.8: Summary of z-scores. n contains the number of hours in one day of logs.

Correlated groups June 2011 July 2011 Aug 2011

Infiniband & Lustre I/O 3.71 ≤ zr ≤ 10.68 3.58 ≤ zr ≤ 10.68 6.51 ≤ zr ≤ 10.68

resource use counters (n = 24)

Communication & filesystem 3.71 ≤ ze ≤ 10.68 5.29 ≤ ze ≤ 10.68 ze = 10.68

errors (n = 24)

From Table 4.8, we observe that the z-scores for all the correlation coefficients

range from 3.58 to 10.68. At the 99% confidence level, under the null hypothesis

z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour of the

alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value for determining the

probability of rejecting the null hypothesis when it is true. Table 4.8 summarises

the z-scores for all the correlation coefficients. We observe that the smallest z-

score is 3.58. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 3.58 in the standard normal distribution, or

P (Z > 3.58) = 1 − P (Z ≤ 3.58) = 1 − 0.999828 = 0.000172. To account for the

inflation in false positive due to multiple independent tests, we obtain the adjusted

P -value 0.000172 × 24 = 0.0041 where 24 is the number of dates. The adjusted

P -value is less than 0.01, indicating it is highly unlikely this result would be observed

under the null hypothesis. From Table 4.8, we observe that all the z-scores are

greater than or equal to 3.58. Therefore, the adjusted P -value for all the z-scores

are less than 0.01, indicating it is highly unlikely these results would be observed

under the null hypothesis.

4.4.3 Chipset and ECC Memory System

In this error case, we determine: (i) correlations between CPU and memory resource

use counters, and (ii) correlations between chipset and ECC memory errors. We use

the correlations to diagnose memory errors. Then, we assess the reliability of the

ECC memory system.

Phase 1: Correlated CPU & Memory Resource Use Counters

When a user application is using the CPU, the resource use counter named CPU user

is incremented. When a system application is using the CPU, the resource use

counter named CPU system is incremented. When a memory page has not been

accessed recently in the main memory, the resource use counter named MEM Inactive

is incremented. When a memory page is recently accessed in the main memory, the

77

resource use counter named MEM Active is incremented. The CPU and memory

resource use counters can be used to see what happens when CPU and memory

activities occur.

Figure 4.20 shows the correlations between the resource use counters CPU

user, memory active and memory inactive in June 2011.

Figure 4.20: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

Figure 4.21 shows the correlations between the resource use counters CPU

user, memory active and memory inactive in July 2011.

Figure 4.21: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.22 shows the correlations between the resource use counters CPU

user, memory active and memory inactive in August 2011.

78

Figure 4.22: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.20, Figure 4.21 and Figure 4.22, we observe that there is a

strong positive correlation between CPU user and memory access. We identified:

(i) correlations between CPU user and MEM Inactive with scores ranging from 0.81

to 0.93 on five dates, and (ii) correlations between CPU user and MEM Active with

scores ranging from 0.80 to 0.97 on six dates. There are small changes in the

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one hour.

Figure 4.23 shows the correlations between the resource use counters CPU

system, memory active and memory inactive in June 2011.

Figure 4.23: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

79

Figure 4.24 shows the correlations between the resource use counters CPU

system, memory active and memory inactive in July 2011.

Figure 4.24: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

Figure 4.25 shows the correlations between the resource use counters CPU

system, memory active and memory inactive in August 2011.

Figure 4.25: The full-circled counters were identified by Spearman-Rank correlation
only. The dot-circled counters were identified by Pearson correlation only.

From Figure 4.23, Figure 4.24 and Figure 4.25, we observe that there is a

strong positive correlation between CPU system and memory access. We identified:

(i) correlations between CPU system and MEM Inactive with scores ranging from 0.84

to 0.97 on eight dates, and (ii) correlations between CPU system and MEM Active

with scores ranging from 0.81 to 0.97 on seven dates. There are small changes in the

80

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one hour.

We found that the correlated resource use counters were only identified by

Pearson correlation on June 16, July 23, August 04 and 11. We found that the

correlated resource use counters were only identified by Spearman-Rank correlation

on seven different dates. If we use only Pearson correlation, then the correlated CPU

and memory access resource use counters on June 05 and 22, July 06, 11 and 24,

August 22 and 30 would not be identified. If we use only Spearman-Rank correlation,

then the correlated CPU and memory access resource use counters on June 16, July

23, August 04 and 11 would not be identified. Our results show that:

• There is a strong relationship of CPU user, CPU system, Memory Active and

Memory Inactive resource use counters on 13 dates.

• Both Pearson and Spearman-Rank correlation methods are required. On

four dates, the correlated CPU and memory access resource use counters were

identified only by Pearson correlation. On seven more dates, the correlated CPU

and memory access resource use counters were identified only by Spearman-

Rank correlation.

In the second phase, we will use the correlations between two different groups

of error events to diagnose ECC memory errors.

Phase 2: Correlated Chipset & ECC Memory Errors

The northbridge is a chip in the core logic chipset architecture on a computer mother-

board. The CPU, memory and graphics controller communicate via the northbridge

chip which is connected directly to the CPU. ECC memory is used in computers

where internal data corruption can not be tolerated under any circumstances. When

the CPU attempts to access corrupted data stored in ECC memory, the northbridge

reports an error by generating a Northbridge error message, a CPU core core

message that contains the CPU number that attempted to access the data and an

ECC error ECC error message.

From Figure 4.26a, Figure 4.26b and Figure 4.26c, we observe that there is a

strong positive correlation of northbridge, CPU core and ECC errors. We identified:

(i) correlations between Northbridge error and ECC error events with scores

ranging from 0.99 to 1 on 26 dates, and (ii) correlations between Northbridge error

and core events with scores ranging from 0.99 to 1 on 26 dates. We observe that

the dates of correlated northbridge error, core and ECC memory errors coincide

with the dates of correlated CPU and memory access activity. There are small

81

(a) June 2011.

(b) July 2011.

(c) August 2011.

Figure 4.26: Correlations of northbridge error, core and ECC error events.

82

changes in the correlation scores obtained on time-bins of 20 and 40 minutes but

the correlation scores are within 0.8 to 1. Therefore, we focus on the correlations

obtained on time-bins of one hour.

We found that the correlated events were identified by both Pearson and

Spearman-Rank correlation methods on all the 26 dates. When both Pearson

and Spearman-Rank correlation methods identify the correlated events, Pearson

correlation can be used as the primary method. Our results show that internal data

corruption occurred daily on the Ranger HPC system.

Correlations with failures: Next, we determine the correlation strength of north-

bridge, CPU core and ECC memory errors to soft lockup events. We implemented

a function that scans the list of correlated events for Northbridge error, core,

ECC error and soft lockup. We found that the Northbridge error, core and

ECC error events were weakly correlated to soft lockup events on all the 26 dates.

This represents a recovery rate of 100%.

Combining analysis of CPU and memory access resource use counters with

ECC memory errors provides the following benefit: When on the same day, CPU

and memory access resource use counters are correlated and northbridge, CPU core

and ECC error events are also correlated, it shows that CPU and memory access

activities are associated with the generation of ECC memory errors. Therefore,

we can use the correlated CPU and memory access resource use counters with the

correlated CPU core, ECC and northbridge error events to monitor the state of the

ECC memory recovery protocol.

Phase 3: Earliest Hour of Change

Table 4.9 shows the earliest hour of change in the correlated CPU and memory access

resource use counters and correlated northbridge, ECC error and CPU core events.

On all the dates, we observe that there are different earliest hour of change. On five

dates, the earliest hour of change is associated with the correlated CPU and memory

access resource use counters. On seven dates, the earliest hour of change is associated

with the correlated chipset and ECC errors. On one date, the earliest hour of change

is associated with both the correlated resource use counters and correlated errors .

If we use only the correlated chipset and ECC error events, then the earliest hour

of change on five dates would not be identified. If we use only the correlated CPU

and memory access resource use counters, then the earliest hour of change on seven

dates would not be identified. Our results show that we require both the correlated

CPU and memory access resource use counters and correlated chipset and ECC error

events for identifying the earliest hour of change in the system behaviour on all the

dates. We found that there are different time-windows between the hour of change

83

Table 4.9: Hours associated with the correlated CPU and memory resource use
counters and correlated chipset and ECC errors on Ranger.

Correlated Jun Jun Jun Jun Jul Jul Jul Jul Jul

counters 5 15 16 22 6 11 23 24 27

CPU & 7 12 6 8 2 12 4 12 10

memory PM AM AM PM PM PM AM PM PM

Correlated Jun Jun Jun Jun Jul Jul Jul Jul Jul

errors 5 15 16 22 6 11 23 24 27

Chipset & 12 1 6 2 4 12 12 2 5

ECC errors AM PM PM AM AM PM AM PM PM

Correlated Aug Aug Aug Aug

counters 4 11 22 30

CPU & 2 12 5 1

memory PM PM AM PM

Correlated Aug Aug Aug Aug

errors 4 11 22 30

Chipset & 8 2 2 6

ECC errors AM PM AM PM

identified on all the dates. The time-window ranges from one hour to 19 hours.

Validation

Next, we test the significance of the correlation coefficient of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of error events that

are strong positive correlated. We tested all the correlation coefficients against the

null hypothesis. We obtain the z-scores for all the correlation coefficients and a

summary is provided in Table 4.10.

Table 4.10: Summary of z-scores. n contains the number of hours in one day of logs.

Correlated groups June 2011 July 2011 Aug 2011

CPU & Memory 3.74 ≤ zr ≤ 5.86 3.74 ≤ zr ≤ 8.16 4.17 ≤ zr ≤ 6.18

counters (n = 24)

Chipset & ECC errors ze = 10.68 ze = 10.68 ze = 10.68

(23 ≤ n ≤ 24)

From Table 4.10, we observe that the z-scores for all the correlation coefficients

range from 3.74 to 10.68. At the 99% confidence level, under the null hypothesis

z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour of the

alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value for determining the

probability of rejecting the null hypothesis when it is true. Table 4.10 summarises

84

the z-scores for all the correlation coefficients. We observe that the smallest z-

score is 3.74. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 3.74 in the standard normal distribution, or

P (Z > 3.74) = 1 − P (Z ≤ 3.74) = 1 − 0.99992 = 0.00008. To account for the

inflation in false positive due to multiple independent tests, we obtain the adjusted

P -value 0.00008 × 26 = 0.00208 where 26 is the number of dates. The adjusted

P -value is less than 0.01, indicating it is highly unlikely this result would be observed

under the null hypothesis. From Table 4.10, we observe that all the z-scores are

greater than or equal to 3.74. Therefore, the adjusted P -value for all the z-scores

are less than 0.01, indicating it is highly unlikely these results would be observed

under the null hypothesis.

4.4.4 Linux Memory Management

In this error case, we determine: (i) the correlations between hard disk and virtual

memory resource use counters, (ii) the correlations between file access and process

errors, and (iii) the correlations between process errors and system memory exhaustion

events. We use the correlations to diagnose Linux memory management problems.

Then, we assess the reliability of Linux memory management.

Phase 1: Correlated Harddisk and Virtual Memory Resource Use Coun-

ters

When a harddisk executes I/O write operations, the resource use counter named

block hda wr_ios is incremented. When a number of sectors are written on the

harddisk, the resource use counter named block hda wr_sectors is incremented.

When a minor page fault occurs, the resource use counter named vm pgfault is

incremented. When a major page fault occurs, the resource use counter named

vm pgmajfault is incremented. The hard disk and virtual memory resource use

counters can be used to see what happens when secondary storage (i.e., the hard

disk) is used as memory by the Linux operating system.

Figure 4.27a, Figure 4.27b and Figure 4.27c show the correlations of the

resource use counters harddisk I/O write, minor and major page-fault in June, July

and August 2011 respectively. From Figure 4.27a, Figure 4.27b and Figure 4.27c, we

observe that there is a strong positive correlation between the resource use counters

harddisk I/O write, minor and major page-fault. We identified: (i) correlations

between block hda wr_ios and vm pgmajfault with scores ranging from 0.8 to

0.99 on 19 dates, and (ii) correlations between vm pgfault and block hda wr_ios

with scores ranging from 0.8 to 1 on 25 dates. There are small changes in the

85

(a) Correlated harddisk I/O write, minor and major page-fault resource use counters in June
2011.

(b) Correlated harddisk I/O write, minor and major page-fault resource use counters in July
2011.

(c) Correlated harddisk I/O write, minor and major page-fault resource use counters in
August 2011.

Figure 4.27: The full-circled counters were identified by Spearman-Rank correlation
only.

86

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1.

Figure 4.28 shows the correlations of the resource use counters that record

harddisk sector write, minor page-fault and major page-fault in June 2011.

Figure 4.28: The full-circled counters were identified by Spearman-Rank correlation
only.

Figure 4.29 shows the correlations of the resource use counters that record

harddisk sector write, minor page-fault and major page-fault in July 2011.

Figure 4.29: The full-circled counters were identified by Spearman-Rank correlation
only.

From Figure 4.28, Figure 4.29 and Figure 4.30, we observe that there

is a strong positive correlation between the resource use counters harddisk sec-

tor write, minor and major page-fault. We identified: (i) correlations between

block hdd wr_sectors and vm pgmajfault with scores ranging from 0.8 to 0.99

on 20 dates, and (ii) correlations between vm pgfault and block hdd wr_sectors

87

Figure 4.30: The full-circled counters were identified by Spearman-Rank correlation
only.

with scores ranging from 0.8 to 1 on 25 dates. There are small changes in the

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one-hour.

We found that only the Spearman-Rank correlation method identified the

correlated harddisk I/O write, harddisk sector write, minor and major page-fault

resource use counters on all dates. If Spearman-Rank correlation alone identified

the correlations on all the dates, then it can be used as the primary method. Our

results show that:

• When the Linux operating system uses the hard disk as memory, there is a

strong positive correlation between the resource use counters harddisk I/O

write, harddisk sector write, minor page-fault and major page-fault.

• The Spearman-Rank correlation method can be used as the primary method

to identify patterns of Linux system memory paging. It identified patterns of

page-fault and harddisk I/O activities that follow a monotonically increasing

function.

Phase 2: Correlated File Access and Process Errors

We identify file access errors by searching the system logs for messages that contain

the keywords read_lock_failed and write_lock_failed. Information about a

process state, name, memory address and running CPU is provided in a Pid: comm

message. We implemented three functions to search and retrieve file access errors

and process messages. When multiple processes access the same file, the filesystem

88

uses read and write locks to prevent other processes from writing to the same file.

This is to ensure that the consistency of the file is maintained. In most cases, the

process will complete its file I/O activity. It releases the lock and give it to the next

process. If a process hanged while it is writing to the file, then the process may

fail to release the lock. When another process attempts to access the same file, a

deadlock can occur.

Figure 4.31 shows the correlations of the error messages read lock failed, write

lock failed and process information in June 2011.

Figure 4.31: Correlation of messages read lock failed, write lock failed and Pid:
comm.

Figure 4.32 shows the correlations of the error messages read lock failed, write

lock failed and process information in July 2011.

Figure 4.32: Correlation of messages read lock failed, write lock failed and Pid:
comm.

89

Figure 4.33 shows the correlations of the error messages read lock failed, write

lock failed and process information in August 2011.

Figure 4.33: Correlation of messages read lock failed, write lock failed and Pid:
comm.

From Figure 4.31, Figure 4.32 and Figure 4.33, we observe that there is a strong

positive correlation between file access errors and process messages. We identified:

(i) correlations between read_lock_failed and Pid: comm with scores ranging from

0.82 and 1 on eight dates, and (ii) correlations between write_lock_failed and

Pid: comm with a score of 1 on three dates. There are small changes in the correlation

scores obtained on time-bins of 20 and 40 minutes but the correlation scores are

within 0.8 to 1. Therefore, we focus on the correlations obtained on time-bins of one

hour.

We found that all the dates of the correlated file access errors and process

messages coincide with the dates of correlated harddisk and virtual memory page-fault

resource use counters. On the eight dates, we found that both Pearson and Spearman-

Rank correlation methods identified: (i) the correlated read_lock_failed and

Pid: comm events, and (ii) the correlated write_lock_failed and Pid: comm events.

If both Pearson correlation and Spearman-Rank correlation methods identified the

correlations on all the dates, then Pearson correlation can be used as the primary

method. Our result shows that both Pearson and Spearman-Rank correlation

identified the correlated file access and process errors on all the eight dates. Hence,

Pearson correlation can be used as the primary method.

We manually scanned the Pid: comm and soft lockup messages to identify

the name of the process. The name of the process in both Pid: comm and soft lockup

messages are: ipoib, tacc_stats, sge_execd and sh. ipoib defines how IP packets

90

are sent over an Infiniband network. tacc_stats is a job-oriented and logically

structured resource use monitor. sge_execd controls the job queues local to the

machine and runs the jobs sent by the Sun Grid Engine master on the local queues.

sh is a Linux operating system command-line interpreter.

Correlations with failures: We determine: (i) the process name in the soft lockup

message that is strongly positive correlated to the name in the process message,

and (ii) the dates read and write lock failed events are strongly positive correlated

to the soft lockup events. We manually scanned the list of correlated events to

identify: (i) the correlation score between the process and soft lockup messages, and

(ii) the correlation score between the read and write lock failed events and soft lockup

message. We summarise the correlations in Tables 4.11 and 4.12.

Table 4.11: Summary of names of soft lockup processes and dates of correlated “Pid:
comm” and soft lockup on Ranger.

Process error soft lockup Date pCorr sRank

Pid: comm (ipoib) ipoib June 5 0.99 0.97

July 25 0.99 nil

Aug 3 1 0.99

Aug 22 1 1

Aug 30 1 1

Aug 31 1 1

Pid: comm (tacc stats) tacc stats June 16 1 1

Aug 31 1 1

Pid: comm (sge execd) sge execd July 31 1 1

Aug 22 1 1

Pid: comm (sh) sh Aug 30 1 1

Aug 31 1 1

From Table 4.11, we observe that the process name in all the soft lockup

messages matched the name of the process in all the process messages. Further, we

observe that all the soft lockup message dates matched all the dates of correlated

file access errors and process messages. We found that only the Pearson correlation

method identified these correlations on all the dates. Hence, Pearson correlation can

be used as the primary method.

From Table 4.12, we observe that the dates of soft lockups matched all the

dates of correlated file access errors and process messages. We found that only the

Pearson correlation method identified these correlations on all the dates. Hence,

Pearson correlation can be used as the primary method.

Detailed diagnosis: When a process attempt to read or write data to the filesystem

but the read or write locks have not been released, the process generates a “Pid:

comm” error message. On a total of eight dates in June, July and August 2011,

91

Table 4.12: Dates of correlated file access and soft lockup on Ranger.

File-access error soft lockup Date pCorr sRank

read lock failed ipoib June 5 0.85 0.87

July 25 0.99 nil

Aug 3 0.99 0.99

Aug 22 1 1

Aug 30 0.99 1

Aug 31 0.99 nil

write lock failed ipoib Aug 22 1 1

read lock failed tacc stats June 16 1 1

Aug 31 0.99 1

write lock failed tacc stats June 16 1 1

read lock failed sge execd July 31 0.99 1

Aug 22 1 1

write lock failed sge execd Aug 22 1 1

read lock failed sh Aug 30 1 1

Aug 31 1 1

the processes failed to recover from the filesystem read and write lock failures. Our

result shows that when the filesystem read or write lock is not released, the process

was unable to access data on the filesystem which led to compute node soft lockup

on eight out of eight dates. This represents a failure rate of 100%.

The benefit of combining analyses of hard disk and virtual memory resource

use counters with file access and process errors is given as follows: When correlations

of hard disk I/O and virtual memory page-faults and correlations of file access and

process errors occur on the same day, it shows that the Linux operating system

memory paging activities are associated with the generation of file access errors and

process messages. Therefore, we can use the correlations to monitor the state of

Linux memory usage.

Phase 2: Correlated Process Errors and System Memory Exhaustion

We identify system memory exhaustion by searching the system logs for keywords

system memory exhausted. When a process is created, the operating system al-

locates memory to the process. In most cases, memory is allocated to the process

successfully. However, in a rare case another process can be created when there is no

more memory available. The operating system is no longer able to allocate memory

for the new process. The operating system starts to move data from memory to

harddisk to make memory available for the new process.

From Table 4.13, we observe that there is a strong positive correlation between

the process message and system memory exhausted events. We identified correlations

92

Table 4.13: Correlation of “Pid: comm” and “system memory exhausted” events on
Ranger.

Pid: comm event Error event Date pCorr sRank

bash system memory exhausted June 5 0.99 -

sshd system memory exhausted June 21 1 1

between Pid: comm and system memory exhausted events with scores ranging from

0.99 to 1 on two dates. The correlated process and system memory exhausted events

coincide with two dates of correlated harddisk and virtual memory page-fault resource

use counters. There are small changes in the correlation scores obtained on time-bins

of 20 and 40 minutes but the correlation scores are within 0.8 to 1. Therefore, we

focus on the correlations obtained on time-bins of one hour. We found that only the

Pearson correlation method identified the correlated process message and system

memory exhausted event on the two dates. If Pearson correlation alone identified

the correlations on all the dates, then it can be used as the primary method. Our

result shows that Pearson correlation identified the correlated process message and

system memory exhausted event on the two dates. Hence, Pearson correlation can

be used as the primary method.

We manually scanned the Pid: comm messages and identified the process

names. They are: sshd and bash. sshd provides secure encrypted communication

between two clients in an unsecured network. bash is the default command-line

interpreter in the Linux operating system.

Correlations with failures: Next, we manually scanned the list of correlated events

to determine the correlation strength between: (i) the Pid: comm and soft lockup

events, and (ii) system memory exhausted and soft lockup events. A summary is

given in Table 4.14.

Table 4.14: Summary of correlated “Pid: comm”, “system memory exhausted” and
soft lockup events on Ranger.

Error event soft lockup Date pCorr sRank

Pid: comm (bash) bash June 5 0.99 -

system memory exhausted bash June 5 1 -

Pid: comm sshd June 21 0.99 1

system memory exhausted sshd June 21 1 1

From Table 4.14, we observe that: (i) the processes bash and sshd are strongly

correlated to soft lockup events with scores that range between 0.99 to 1, and (ii) the

system memory exhausted events are strongly correlated to soft lockup events with

scores that range between 0.99 to 1. We found that only the Pearson correlation

method identified correlations of process and system memory exhausted events with

93

soft lockup events on the two dates. Our result shows that Pearson correlation can

be used as the primary method.

Detailed diagnosis: When the Linux operating system is unable to allocate memory

for a process, a system memory exhausted message is generated. We showed that

process error messages and system memory exhaustion messages are strongly positive

correlated to soft lockup messages. Our result shows that when a process requested

for memory on a system exhausted of memory, the system was unable to allocate

memory to the process which led to compute node soft lockup on two out of two

dates. This represents a failure rate of 100%.

The benefit of combining analyses of hard disk I/O and virtual memory

resource use counters with process errors and system memory exhaustion messages is

given as follows: When correlations of hard disk I/O and virtual memory resource use

counters and correlations of process errors and system memory exhaustion messages

occur on the same day, it shows that Linux O/S memory paging activities are

associated with the generation of process errors and system memory exhaustion

messages. Therefore, we can use the correlations to monitor the state of Linux

memory usage.

Phase 3: Earliest Hour of Change

Table 4.15 shows the earliest hour of change in the correlated harddisk write and

page fault resource use counters and the correlated file access errors and process

messages. On all the dates, we observe that the earliest hour of change is different.

On four dates, the earliest hour of change is associated with the correlated harddisk

write and page fault resource use counters. On three dates, the earliest hour of

change is associated with the correlated file access errors and process messages. If we

use only the correlated harddisk write and page fault resource use counters, then the

earliest hour of change in system behaviour on three dates would not be identified.

If we use only the correlated file access errors and process messages, then the earliest

hour of change in system behaviour on four dates would not be identified.

Table 4.16 shows the earliest hour of change in the correlated harddisk write

and page fault resource use counters and the correlated process error and system

memory exhausted events.

From Table 4.16, we observe that the earliest hour of change is associated

with the correlated errors on June 5. The earliest hour of change is associated with

the correlated resource use counters on June 21. Our results show that we require

both the correlated resource use counters and correlated errors to identify the earliest

hour of change on eight out of nine dates. We found that there are different time

windows between the hour of change on seven dates. The time-window ranges from

94

Table 4.15: Hours associated with the correlated HDD and virtual memory resource
use counters and correlated file access and process errors.

Ranger

Correlated June 5 June 16 July 25 July 31

counters

HDD I/O & 1 12 12 6

virtual memory AM AM PM AM

Correlated June 5 June 16 July 25 July 31

errors

File-access & 1 3 3 4

process errors AM PM PM AM

Correlated Aug 3 Aug 22 Aug 30 Aug 31

counters

HDD I/O & 12 10 12 12

virtual memory PM PM PM PM

Correlated Aug 3 Aug 22 Aug 30 Aug 31

errors

File-access & 5 9 7 4

process errors AM AM PM PM

Table 4.16: Hours associated with the correlated HDD and virtual memory resource
use counters and correlated process errors and system memory exhausted events.

Ranger

Correlated counters June 5 June 21

HDD I/O & virtual memory 1 AM 9 PM

Correlated errors June 5 June 21

Process errors & system 12 AM 10 PM

memory exhausted

one hour to 15 hours.

Validation

Next, we test the significance of the correlation coefficient of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of error events that

are strong positive correlated. We tested all the correlation coefficients against the

null hypothesis. We obtained the z-scores for all the correlation coefficients and a

summary is given in Table 4.17. We observe that the z-scores for all the correlation

coefficients range from 5.31 to 12.13. At the 99% confidence level, under the null

hypothesis z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour

of the alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value to determine the

95

Table 4.17: Summary of z-scores. nr contains the number of hours in one day of
resource usage logs. ne contains the number of hours in one day of system logs.

Ranger

Correlated June 2011 July 2011 Aug. 2011

counters

HDD I/O & virtual 5.31 ≤ zr 5.31 ≤ zr 5.31 ≤ zr

memory (nr = 24) ≤ 12.13 ≤ 12.13 ≤ 12.13

Correlated errors June 2011 July 2011 Aug. 2011

File access & process 6.72 ≤ ze ze = 12.13 ze = 12.13

errors (17 ≤ ne ≤ 24) ≤ 12.13

Process errors & system ze = 12.13 - -

memory exhaustion (ne = 24)

probability of rejecting the null hypothesis when it is true. Table 4.17 summarises

the z-scores for all the correlation coefficients. We observe that the smallest z-

score is 5.31. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 5.31 in the standard normal distribution, or

P (Z > 5.31) = 1− P (Z ≤ 5.31) = 1− 0.99999 = 0.00001. To account for inflation

in false positive due to multiple independent tests, we obtain the adjusted P -value

0.00001× 26 = 0.00026, where 26 is the total number of days of Ranger’s log-data.

The P -value is less than 0.01, indicating it is highly unlikely this result would be

observed under the null hypothesis. From Table 4.17, we observe that all the z-scores

are greater than or equal to 5.31. Therefore, the adjusted P -value for all the z-scores

are less than 0.01, indicating it is highly unlikely these results would be observed

under the null hypothesis.

4.5 Summary

In this chapter, we presented the CORRMEXT framework that correlated both

the resource use data and system logs to identify: (i) frequently occurring error

cases, (ii) report the success and failure of error recovery protocols. The main

technical contribution is a new systems diagnostics framework that integrated data

type extraction, multiple correlation methods and time-bin variance extraction.

We applied CORRMEXT on the TACC Stats resource use data and Rationalized

message logs on the Ranger HPC system. CORRMEXT diagnosed five error cases

and extracted the variance in the times of the correlated resource use counter groups

and correlated error groups to identify the earliest occurrences of the problem. To

ensure diagnostics accuracy, CORRMEXT used the Bonferroni correction and showed

that all the correlations are significant. We showed that CORRMEXT can identify

the error cases that occurred frequently and report the success and failure of error

96

recovery protocols.

Here, we provide our recommendation on what one should look for in the

resource use data and system logs. In the resource use data, we can use the following

types of resource use counters to do the following: (i) amount of NUMA miss,

amount of NUMA foreign, number of Linux processes created and number of context

switching to monitor memory allocation when a new Linux process is created, (ii)

number of network packets dropped, number of network packets transmitted, number

of bytes read on the filesystem and number of bytes written to the filesystem to

monitor usage of the network and filesystem, (iii) amount of CPU resources consumed

by a user application, amount of CPU resources consumed by a system application,

amount of active memory pages and amount of inactive memory pages to monitor

CPU consumption and memory access, (iv) number of harddisk I/O writes, number

of harddisk sectors written, number of minor page-faults and number of major

page-faults to monitor Linux memory management.

In the system logs, we can use the following types of messages to do the

following: (i) segmentation fault and general protection error messages to identify a

memory leak caused by a faulty program, (ii) error communicating with, failure inode

and directory read error messages to identify a cause of Lustre filesystem and Lustre

client communication error, (iii) northbridge error, ECC error and core messages

to identify occurrences of data corruption in memory, (iv) read lock failed, write

lock failed and information about a system process to identify a hung process caused

by a lock on the filesystem, (v) system memory exhausted and information about a

system process to identify a hung process caused by system memory exhaustion.

97

Chapter 5

Generalising CORRMEXT on

Multiple HPC Systems

In this chapter, we apply the CORRMEXT framework described in Chapter 4 on

multiple HPC systems. We combine analysis of system logs with resource utilisation

data and present several new findings and failure patterns. There are no system

logs available on Stampede-1. Therefore, on Stampede-1 we focus on the resource

use data. We identified one error case and one resource usage activity case on

Stampede-1. We identified two error cases on Lonestar4.

We structure the remainder of this chapter as follows: In Section 5.1, we

describe the cluster log-data and error cases on the Lonestar4 and Stampede-1 HPC

systems. In Section 5.2, we present the analysis for the error and activity cases

on Stampede-1. one In Section 5.3, we present the analyses for two error cases on

Lonestar4. In Section 5.4, we conclude with a summary and a recommendation.

5.1 Case Study Systems: Lonestar4 and Stampede-1

We conduct studies of frequently occurring error cases on the Lonestar4 and Stampede-

1 HPC systems. The Lonestar4 HPC system was a 1,888 node Linux-based cluster.

The Stampede-1 HPC system was a 6,400 nodes Linux-based cluster. The Lonestar4

and Stampede-1 HPC systems were operated by the Texas Advanced Computing

Center at The University of Texas at Austin. We collected 26 days worth of resource

use data and system logs on Lonestar4. We collected 28 days worth of resource use

data on Stampede-1. The TACC Stats resource use data was sampled at intervals of

10 minutes on Lonestar4 and Stampede-1. The dates of log-data analysed are given

in Table 5.1.

When the Linux operating system kernel goes into a loop, i.e., Linux hanged,

98

Table 5.1: Dates of cluster log-data analysed.

Lonestar4

Month Dates (26 days)

February 2013 3 to 28

Stampede-1

Month Dates (28 days)

February 2017 1 to 28

a soft lockup event is generated. To identify the soft lockup event, we scan the

system logs for a message containing the keywords soft lockup. We implemented a

function in CORRMEXT to search the system logs for soft lockup events and extract

the dates of soft lockups. In the reference [36], it is reported that there is a lead time

of six hours from the occurrence of an error to a soft lockup event. We identified

three dates of soft lockup events in the Lonestar4 syslogs. There are no system logs

available on Stampede-1. The system logs generated on Lonestar4 contain messages

generated from the Linux operating system kernel, Lustre filesystem and Linux

processes.

We obtain the diagnostics reports generated by CORRMEXT. The diagnostics

reports contain the lists of correlated resource use counters and correlated events.

All the error cases are new ones and have not heretofore been reported in Chapter 4.

The error cases are: (i) network data errors, (ii) network data and software errors,

and (iii) filesystem, process and software errors. A list of the error cases is given in

Table 5.2.

Table 5.2: List of error cases identified on Lonestar4 and Stampede-1.

System Component Error No. of

dates

Stampede-1 Infiniband network Network data 27

Stampede-1 Storage system & Linux processes – 27

Lonestar4 Infiniband network Network data & software 6

Lonestar4 Storage system & Linux processes Filesystem, process & software 6

5.2 Stampede-1 HPC System

5.2.1 Network Data Errors

In this error case, we determine the correlations between the Infiniband network and

compute node network interface resource use counters. We use the correlations to

identify network data errors. Then, we assess the system reliability.

99

Phase 1: Correlated Infiniband and Compute Node Network Interface

Resource Use Counters

When a compute node receives data on the network, TACC Stats increments the re-

source use counter named net eth0 rx_bytes and the resource use counter named

net eth0 rx_packets. “eth0” is the identifier for a compute node network in-

terface card. When the Infiniband switch receives data on the network, the re-

source use counter named net ib0 rx_bytes and the resource use counter named

net ib0 rx_packets are incremented. “ib0” is the identifier for the Infiniband

switch. In most cases, both the compute node and Infiniband switch receive the data

correctly. If the switch or a network card is faulty or wrongly configured, then it may

not receive the data correctly. When the Infiniband switch receives corrupted data,

the resource use counter named net ib0 rx_frame_errors and the resource use

counter named net ib0 rx_crc_errors are incremented. When a compute node re-

ceives corrupted data, the resource use counter named net eth0 rx_frame_errors

and the resource use counter named net eth0 rx_crc_errors are incremented.

The Infiniband and compute node network interface card resource use counters can

be used to see what happens when data errors occur on the network.

Figure 5.1 shows the correlation of data frame errors and network data

received by the Infiniband switch and compute nodes on Stampede-1.

Figure 5.1: Correlation of data frame errors.

We observe that there is a strong positive correlation between the resource use

counters that record network data frame errors and network data received. We identi-

fied: (i) correlations of net ib0 rx_frame_errors to net eth0 rx_bytes and net

eth0 rx_packets with a score of 1 on 26 dates in February 2017, and (ii) correlations

100

of net eth0 rx_frame _errors to net ib0 rx_bytes and net ib0 rx_packets

with a score of 1 on 27 dates in February 2017. We found that only the Spearman-

Rank correlation method identified the correlated resource use counters on all 27

dates. There are small changes in the correlation scores obtained on time-bins of 20

and 40 minutes but the correlation scores are within 0.8 to 1. Therefore, we focus

on the correlations obtained on time-bins of one-hour.

Figure 5.2 shows the correlation of cyclic redundancy check errors and network

data received by the Infiniband switch and compute nodes on Stampede-1.

Figure 5.2: Correlation of cyclic redundancy check errors.

We observe that there is a strong positive correlation between the resource use

counters that record network data CRC errors and network data received. We iden-

tified: (i) correlations of net ib0 rx_crc_errors to net eth0 rx_bytes and net

eth0 rx_packets with a score of 1 on 26 dates in February 2017, and (ii) correlations

of net eth0 rx_crc_errors to net ib0 rx_bytes and net ib0 rx_packets with

a score of 1 on 27 dates in February 2017. We found that only the Spearman-Rank

correlation method identified the correlated resource use counters on all 27 dates. If

Spearman-Rank correlation alone identified the correlations on all the dates, then

it can be used as the primary method. There are small changes in the correlation

scores obtained on time-bins of 20 and 40 minutes but the correlation scores are

within 0.8 to 1. Therefore, we focus on the correlations obtained on time-bins of

one-hour. Our results show that:

• The Infiniband switch received data frame errors and CRC errors on 26 out of

28 days in February 2017, representing 92% of the dates.

101

• The compute nodes received data frame errors and CRC errors on 27 out of 28

days in February 2017, representing 96% of the dates.

• The Spearman-Rank correlation method can be used as the primary method

to identify network data errors. It identified patterns of network data errors

that follow a monotonically increasing function.

Validation

Next, we test the significance of the correlation coefficients of groups of resource use

counters that are strong positive correlated. We tested all the correlation coefficients

against the null hypothesis. We obtain the z-scores for all the correlation coefficients

and a summary is provided in Table 5.3.

Table 5.3: Summary of z-scores. nr contains the number of hours in one day of
resource usage logs.

Stampede-1

Correlated counters Feb 1 to 28, 2017

Infiniband & compute node (nr = 24) zr = 12.13

From Table 5.3, we observe that the z-scores for all the correlation coefficients

are 12.13. At the 99% confidence level, under the null hypothesis z0r = 2.64 and

z0e = 2.64. Hence, we reject the null hypothesis in favour of the alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value to determine the

probability of rejecting the null hypothesis when it is true. Table 5.3 summarises

the z-scores for all the correlation coefficients. We observe that all the z-scores

is 12.13. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 12.13 in the standard normal distribution, or

P (Z > 12.13) = 1 − P (Z ≤ 12.13) = 1 − 0.99999 = 0.00001. To account for

inflation in false positive due to multiple independent tests, we obtain the adjusted

P -value 0.00001 × 28 = 0.00028 where 28 is the number of days. All the z-scores

are equal to 12.13. Therefore, the adjusted P -value for all the z-scores are less than

0.01, indicating it is highly unlikely these results would be observed under the null

hypothesis.

5.2.2 Storage System and Linux Process

In this activity case, we determine the correlations of harddisk, filesystem and Linux

processes resource use counters. We use the correlations to identify activities between

the storage system and Linux operating system processes.

102

Phase 1: Correlated Harddisk, Filesystem and Linux Process Resource

Use Counters

When a Linux process sends data to be read or written to the harddisk, three steps are

executed to perform the operation. In the first step, the filesystem allocates an inode.

TACC Stats increments the resource use counter named llite /work alloc_inode

which records the number of inodes allocated on the work partition of the filesystem.

In the second step, it performs a seek operation. TACC Stats increments the resource

use counter named llite /work seek which records the number of seek operations

on the work partition on the filesystem. In the third step, the data is written to the

harddisk. TACC Stats increments the resource use counter named md0 wr_sectors

which records the number of sectors data is written to the harddisk. The resource

use counter named ps processes records the number of Linux process created. The

resource use counter named ps ctxt records the number of context switches across

all the CPUs. The harddisk, filesystem and Linux process resource use counters can

be used to see what happens when Linux processes write to the storage system.

Figure 5.3 shows the correlation of Linux process and filesystem resource use

counters.

Figure 5.3: Correlation of Linux process & filesystem resource use counters.

From Figure 5.3 and Figure 5.4, we observe: (i) strong positive correl-

ations of md0 wr_sectors to ps processes and ps ctxt with a score of 1 on

27 dates, and (ii) strong positive correlations of ps processes and ps ctxt to

llite /work alloc_inode and llite /work seek with a score of 1 on 27 dates.

There are small changes in the correlation scores obtained on time-bins of 20 and 40

minutes but the correlation scores are within 0.8 to 1. Therefore, we focus on the

103

Figure 5.4: Correlation of Linux process & harddisk sector write resource use counters.

correlations obtained on time-bins of one hour. We found that only the Spearman-

Rank correlation method identified the correlated resource use counters on all the

dates. Our results show that:

• When a Linux process writes to the storage system, a strong correlation of

harddisk and Lustre filesystem activities is generated.

• The Spearman-Rank correlation method can be used to identify activities on

the harddisk and Lustre filesystem. It identified patterns of harddisk, filesystem

and Linux process that follow a monotonically increasing function.

Validation

Next, we test the significance of the correlation coefficient of groups of resource use

counters that are strong positive correlated. We tested all the correlation coefficients

against the null hypothesis. We obtained the z-scores for all the correlation coefficients

and a summary is given in Table 5.4.

Table 5.4: Summary of z-scores. nr contains the number of hours in one day of
resource use logs.

Stampede-1

Correlated counters Feb 1 to 28, 2017

HDD, filesystem & Linux process (nr = 24) zr = 12.13

From Table 5.4, we observe that the z-scores for all the correlation coefficients

is 12.13. At the 99% confidence level, under the null hypothesis z0r = 2.64 and

z0e = 2.64. Hence, we reject the null hypothesis in favour of the alternate hypothesis.

104

Next, for all hypothesis tests we use the significance level, α = 0.01 and apply

a one-sided test to obtain a P -value. We use the P -value to determine the probability

of rejecting the null hypothesis when it is true. We observe that all the z-scores is

12.13. The P -value is P (Z > 12.13) = 1− P (Z ≤ 12.13) = 1− 0.99999 = 0.00001.

To account for inflation in false positive due to multiple independent tests, we obtain

the adjusted P -value 0.00001× 28 = 0.00028, where 28 is the number of days. All

the z-scores are equal to 12.13. Therefore, the adjusted P -value for all the z-scores

are less than 0.01, indicating it is highly unlikely these results would be observed

under the null hypothesis.

5.3 Lonestar4 HPC System

5.3.1 Network Data Errors and Network Software Errors

In this error case, we determine the correlations between: (i) the Infiniband network

and compute node network interface resource use counters, and (ii) the correlations

between DNS lookup failure and GSIFTP software messages. We use the correlations

to diagnose network problems. Then, we assess the system reliability.

Phase 1: Correlated Infiniband and Compute Node Network Interface

Resource Use Counters

When a compute node receives data on the network, TACC Stats increments the re-

source use counter named net eth0 rx_bytes and the resource use counter named

net eth0 rx_packets. “eth0” is the identifier for a compute node network in-

terface card. When the Infiniband switch receives data on the network, the re-

source use counter named net ib0 rx_bytes and the resource use counter named

net ib0 rx_packets are incremented. “ib0” is the identifier for the Infiniband

switch. In most cases, both the compute node and Infiniband switch receive the data

correctly. If the switch or a network card is faulty or wrongly configured, then it may

not receive the data correctly. When the Infiniband switch receives corrupted data,

the resource use counter named net ib0 rx_frame_errors and the resource use

counter named net ib0 rx_crc_errors are incremented. When a compute node re-

ceives corrupted data, the resource use counter named net eth0 rx_frame_errors

and the resource use counter named net eth0 rx_crc_errors are incremented.

The Infiniband and compute node network interface card resource use counters can

be used to see what happens when data errors occur on the network.

Figure 5.5 shows the correlation of resource use counters that record data

frame errors and network data received by the Infiniband switch and compute nodes.

105

Figure 5.5: Correlation of data frame errors.

We observe that there is a strong positive correlation between the resource use

counters data frame errors and network data received. We identified: (i) correlations

of net ib0 rx_frame_errors to net eth0 rx_bytes and net eth0 rx_packets

with scores ranging from 0.95 to 1 on 24 dates in February 2013, and (ii) correlations

of net eth0 rx_frame_errors to net ib0 rx_bytes with a score of 1 on February

28 2013. We found that only the Spearman-Rank correlation method identified

the correlated resource use counters on 25 dates. There are small changes in the

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one-hour.

Figure 5.6 shows the correlation of resource use counters that record cyc-

lic redundancy check (CRC) errors and network data received by the Infiniband

switch and compute nodes. We observe that there is a strong positive correlation

between the resource use counters CRC errors and network data received. We

identified: (i) correlations of net ib0 rx_crc_errors to net eth0 rx_bytes and

net eth0 rx_packets with scores ranging from 0.95 to 1 on 24 dates in February

2013, and (ii) correlation between net eth0 rx_crc_errors and net ib0 rx_bytes

with a score of 1 on February 28 2013. We found that only the Spearman-Rank

correlation method identified the correlated resource use counters on 25 dates. There

are small changes in the correlation scores obtained on time-bins of 20 and 40 minutes

but the correlation scores are within 0.8 to 1. Therefore, we focus on the correlations

obtained on time-bins of one-hour. Our results show that:

• The Infiniband switch received data frame errors and CRC errors on 24 out of

106

Figure 5.6: Correlation of cyclic redundancy check errors.

26 days in February 2013, representing 92% of the dates.

• The compute nodes received data frame errors and CRC errors on 1 out of 26

days in February 2013, representing 4% of the dates.

• The Spearman-Rank correlation method can be used as the primary method

to identify network data errors. It identified patterns of network data errors

that follow a monotonically increasing function.

Next, we will use the correlations of two different groups of error events to

diagnose a networking software problem.

Phase 2: Correlated DNS Lookup Failure and GSIFTP Software Mes-

sages

The BIND (Berkeley Internet Name Domain) protocol is the most widely used DNS

software on the Internet. The process by which one node locates another node

on the basis of its name is specified in the DNS protocol. Usually the nodes on

the network locate the destination node address and resolve its name successfully.

In a rare occasion, the DNS software may be wrongly configured, for example a

network supports only IPv4 addresses but the DNS software is configured for only

IPv6 addresses. When the DNS software is configured with the wrong settings,

then the node in the network is unable to locate the destination node address and

resolve its name. When a DNS lookup failure occurs, an error message named

master network unreachable resolving is recorded in the system logs. The

error message master network unreachable resolving can be used to see what

happens when a node attempts to locate another node on the network.

107

Figure 5.7 shows the correlation of DNS lookup failure and GSIFTP software

messages.

Figure 5.7: Correlation of DNS lookup failures & GSIFTP messages.

The messages START: gsiftp, EXIT: gsiftp and FAIL: gsiftp provide

the state of the GSIFTP software. GSIFTP is the standard File Transfer Protocol

enhanced with Grid Security Infrastructure (GSI). GSI is a specification for secret,

tamper-proof, delegatable communication between software in a grid computing

environment. We observe that there is a strong positive correlation between the DNS

lookup failure and GSIFTP software state messages. We identified correlations of

master network unreachable resolving to START: gsiftp, EXIT: gsiftp and

FAIL: gsiftp with scores ranging from 0.82 to 0.99 on six days in February 2013.

There are small changes in the correlation scores obtained on time-bins of 20 and

40 minutes but the correlation scores are within 0.8 to 1. Therefore, we focus on

the correlations obtained on time-bins of one-hour. The dates of correlated DNS

lookup failure and GSIFTP software messages coincide with the dates of correlated

network data received and network data errors. We found that Pearson correlation

identified the correlations on all six dates but Spearman-Rank correlation identified

the correlations only on one date. If Pearson correlation alone identified the correlated

DNS lookup failure and GSIFTP software messages on all the dates, then it can be

used as the primary method. Our results show that Pearson correlation identified

the correlated DNS lookup failures and GSIFTP software messages on all six days in

February 2013. Hence, Pearson correlation can be used as the primary method.

Correlations with failures: From Figure 5.7, we observe that there is a strong pos-

itive correlation of DNS lookup failure message to the start (START: gsiftp) and exit

(EXIT: gsiftp) status of the GSIFTP software on February 3, 11 and 20 2013. This

showed that the DNS lookup failure did not cause the GSIFTP software to fail. Next,

we scan the list of correlated events to determine the correlation strength between

108

master network unreachable resolving and BUG: soft lockup, START: gsiftp

and BUG: soft lockup, and EXIT: gsiftp and BUG: soft lockup. We found that

the DNS lookup failure, GSIFTP start and exit messages were weakly correlated to

soft lockups on February 3 2013. Our result shows that DNS lookup failure and the

GSIFTP software did not cause a compute node crash on Lonestar4. This represents

a recovery rate of 100%.

From Figure 5.7, we observe that there is a strong positive correlation of DNS

lookup failure to GSIFTP status fail (FAIL: gsiftp) messages on February 13, 22

and 28 2013. This showed that the GSIFTP software failed on three dates when DNS

lookup failures occurred. We found that there are no soft lockup failures reported on

February 13, 22 and 28 2013. Our result shows that a configuration error in BIND

caused a DNS lookup failure which led to the GSIFTP software failure. The DNS

lookup failure and GSIFTP software failure did not cause a compute node crash on

Lonestar4.

Detailed diagnosis: When the GSIFTP software is executed, it uses the DNS

software to locate the destination node and identify its name. The DNS software was

unable to locate the destination node on six dates in February 2013. The DNS lookup

failure generated an error message master network unreachable resolving which

was recorded in the system logs. On three of the six dates, the DNS lookup failure

occurred but the GSIFTP software started and exited normally. On the other three

dates, the DNS lookup failure occurred and led to the GSIFTP software failure. Our

result shows that the DNS software was unable to locate the destination node and

resolve its name, which led to the GSIFTP software failure on those three dates. On

the three dates, we found that the GSIFTP software failure did not cause a compute

node crash on Lonestar4. This represents a recovery rate of 100%.

The benefit of combining analyses of Infiniband and compute node network

interface counters and DNS lookup failures and FTP software errors is as follows:

When on the same day, Infiniband and compute node network resource use counters

are correlated and DNS lookup failure and FTP software messages are also correlated,

it shows that network data transmission errors are associated with the generation

of DNS lookup failure and network software messages. Therefore, we can use these

correlations for monitoring the state of the network system.

Phase 3: Earliest Hour of Change

Table 5.5 shows the earliest hour of change in the correlated Infiniband and compute

node network interface resource use counters and correlated DNS lookup failure and

GSIFTP messages for the six dates on Lonestar4. On the six dates, we observe that

the earliest hour of change is different. On four dates, the earliest hour of change

109

Table 5.5: Hours associated with the correlated data transmission error counters and
correlated DNS lookup failures & GSIFTP error messages.

Lonestar4

Correlated Feb Feb Feb Feb Feb Feb

counters 3 11 13 20 22 28

Infiniband & 10 2 2 9 3 8

compute node AM PM AM PM AM AM

Correlated Feb Feb Feb Feb Feb Feb

errors 3 11 13 20 22 28

DNS lookup failures 4 9 3 3 1 12

& GSIFTP errors AM PM AM PM PM PM

is associated with the correlated Infiniband and compute node network interface

resource use counters. On two dates, the earliest hour of change is associated with

the correlated DNS lookup failure and GSIFTP messages. If the correlated resource

use counters were used as the only data source, then the earliest hour of change on

two dates would not be identified. If the correlated errors were used as the only data

source, then the earliest hour of change on four dates would not be identified. Our

results show that we require both the correlated resource use counters and correlated

errors to identify the earliest hour of change on all six dates. We found that there

are different time windows between the hour of change on all six dates. The time

window ranges from one hour to 10 hours.

Validation

Next, we test the significance of the correlation coefficients of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of errors that are

strong positive correlated. We tested all the correlation coefficients against the null

hypothesis. We obtain the z-scores for all the correlation coefficients and a summary

is provided in Table 5.6.

Table 5.6: Summary of z-scores. nr contains the number of hours in one day of
resource usage logs. ne contains the number of hours in one day of system logs.

Lonestar4

Correlated Feb Feb Feb Feb Feb Feb

counters 3 11 13 20 22 28

Infiniband & compute zr = zr = zr = zr = zr = zr =

node (nr = 24) 12.13 12.13 12.13 12.13 12.13 12.13

Correlated Feb Feb Feb Feb Feb Feb

errors 3 11 13 20 22 28

DNS lookup failures ze = ze = ze = ze = ze = ze =

& GSIFTP errors 5.23 5.06 12.13 4.02 4.02 8.35

110

From Table 5.6, we observe that the z-scores for all the correlation coefficients

range from 4.02 to 12.13. At the 99% confidence level, under the null hypothesis

z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour of the

alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value to determine the

probability of rejecting the null hypothesis when it is true. Table 5.6 summarises

the z-scores for all the correlation coefficients. We observe that the smallest z-

score is 4.02. Since this is a one-sided test, the P -value is equal to the probability

of observing a value greater than 4.02 in the standard normal distribution, or

P (Z > 4.02) = 1− P (Z ≤ 4.02) = 1− 0.99995 = 0.00005. To account for inflation

in false positive due to multiple independent tests, we obtain the adjusted P -value

is 0.00005× 26 = 0.0013 where 26 is the total number of days. The P -value is less

than 0.01, indicating it is highly unlikely this result would be observed under the

null hypothesis. All the z-scores are greater than or equal to 4.02. Therefore, the

adjusted P -value for all the z-scores are less than 0.01, indicating it is highly unlikely

these results would be observed under the null hypothesis.

5.3.2 Storage System and Linux Processes

In this error case, we determine: (i) the correlations of harddisk, filesystem and

Linux processes resource use counters, and (ii) the correlations of filesystem, Linux

process and software errors. We use the correlations to diagnose problems in the

storage system. Then, we assess the system reliability.

Phase 1: Correlated Harddisk, Filesystem and Linux Process Resource

Use Counters

When a Linux process sends data to be read or written to the harddisk, three steps are

executed to perform the operation. In the first step, the filesystem allocates an inode.

TACC Stats increments the resource use counter named llite /work alloc_inode

which records the number of inodes allocated on the work partition of the filesystem.

In the second step, it performs a seek operation. TACC Stats increments the resource

use counter named llite /work seek which records the number of seek operations

on the work partition on the filesystem. In the third step, the data is written to the

harddisk. TACC Stats increments the resource use counter named md0 wr_sectors

which records the number of sectors data is written to the harddisk. The resource

use counter named ps processes records the number of Linux process created. The

resource use counter named ps ctxt records the number of context switches across

111

all the CPUs. The harddisk, filesystem and Linux process resource use counters can

be used to see what happens when Linux processes write to the storage system.

Figure 5.8 shows the correlation of Linux process and filesystem resource use

counters.

Figure 5.8: Correlation of Linux process & filesystem resource use counters.

We observe: (i) strong positive correlations of ps processes and ps ctxt to

llite /work alloc_inode with scores ranging from 0.8 to 1 on 21 dates, and (ii)

strong positive correlations of ps processes and ps ctxt to llite /work seek

with scores ranging from 0.8 to 1 on 19 dates. There are small changes in the

correlation scores obtained on time-bins of 20 and 40 minutes but the correlation

scores are within 0.8 to 1. Therefore, we focus on the correlations obtained on

time-bins of one hour. We found that only the Spearman-Rank correlation method

identified the correlations on all the dates.

Figure 5.9 shows the correlation of Linux process, harddisk and filesystem

resource use counters. We observe: (i) strong positive correlations of md0 wr_sectors

to llite /work alloc_inode and llite /work seek with scores ranging from

0.8 to 1 on 18 dates, and (ii) strong positive correlations of md0 wr_sectors to

ps processes and ps ctxt with scores ranging from 0.95 to 1 on 24 dates. There

are small changes in the correlation scores obtained on time-bins of 20 and 40

minutes but the correlation scores are within 0.8 to 1. Therefore, we focus on the

correlations obtained on time-bins of one hour. We found that only the Spearman-

Rank correlation method identified the correlations on all the dates. Our results

show that:

• When a Linux process writes to the storage system, a strong correlation of

112

Figure 5.9: Correlation of harddisk, filesystem & Linux process resource use counters.

harddisk and Lustre filesystem activities is generated.

• The Spearman-Rank correlation method can be used to identify activities on

the harddisk and Lustre filesystem. It identified patterns of harddisk, filesystem

and Linux process that follow a monotonically increasing function.

Phase 2: Correlated Filesystem, Process and Software Errors

We identify a filesystem I/O error by searching the system logs for a message

that contains the keywords Filesystem: xfs_log _force: error returned. A

harddisk can degrade when it is heavily used over a period of time. When a harddisk

starts to fail, it will produce bad sectors. If a bad sector is detected on a harddisk,

the bad sector will be marked and the filesystem is informed not to write to that

sector. In most cases, the filesystem will locate a good sector on the harddisk and

execute its I/O operation successfully. However, in a rare occasion, if the filesystem

is unable to locate a good sector on the harddisk, then it fails to execute its I/O

operation.

From Figure 5.10, we observe: (i) a strong positive correlation of Filesystem:

...: error returned to a process message Pid: comm calc_du with a score of

0.99 and BUG: soft lockup message with a score of 0.98 on February 3 2013, and (ii)

a strong positive correlation between Pid: comm calc_du and BUG: soft lockup

with a score of 0.99 on February 3 2013. The dates of the correlated errors coincide

with the dates of correlated Linux processes, harddisk and filesystem I/O resource

use counters. There are small changes in the correlation scores obtained on time-bins

of 20 and 40 minutes but the correlation scores are within 0.8 to 1. Therefore, we

113

Figure 5.10: Correlation of filesystem error & process information messages.

focus on the correlations obtained on time-bins of one hour. We found that only the

Pearson correlation method identified the correlated filesystem error, process and

soft lockup messages. Our results show that:

• Filesystem I/O errors are associated with process errors and soft lockup events

as observed from the correlations of Filesystem: ...: error returned,

Pid: comm calc_du and BUG: soft lockup messages shown in Figure 5.10.

• The Pearson correlation method can be used to identify the correlated filesystem

error, process and soft lockup messages. It identified patterns of filesystem error,

process information and soft lockup messages that follow a linear function.

From Figure 5.10, we observe: (i) a strong positive correlation between

Filesystem: ...: error returned and Pid: comm with a score of 0.87 on Febru-

ary 12 2013, and (ii) a strong positive correlation between Pid: comm and Pid: comm

ptlrpc with a score of 0.99 on February 12 2013. The date of the correlated errors

coincide with the date of correlated harddisk, filesystem I/O and Linux process

resource use counters. There are small changes in the correlation scores obtained on

time-bins of 20 and 40 minutes but the correlation scores are within 0.8 to 1. We

found that only the Pearson correlation method identified the correlated filesystem

error and process message. Hence, Pearson correlation can be used as the primary

method. There are no soft lockup messages reported on February 12 2013.

From Figure 5.11, we observe that there is a strong positive correlation of

the error message Filesystem: ... : error returned to: (i) two software error

messages, (ii) one filesystem recovery protocol message, and (iii) one memory leak

error message. The correlation scores range from 0.81 and 0.97 on four dates. The

dates of the correlated errors coincide with the dates of correlated harddisk, filesystem

114

Figure 5.11: Correlation of filesystem & software error messages.

I/O and Linux processes resource use counters. The software error messages contain

the keywords smith-waterman and NVRM: failed. The filesystem recovery protocol

message contains the keywords a client was evicted and the memory leak error

message contains the keyword segfault. smith-waterman is associated with the

smith-waterman algorithm that performs local sequence alignment for determining

similar regions between two strings of nucleic acid sequences or protein sequences.

NVRM: failed is associated with the NVIDIA graphics card. The message indicated

that the NVIDIA graphics card driver failed. a client was evicted is associated

with the Lustre filesystem Evict/RPC protocol. The message indicated that the

Lustre filesystem removed an unresponsive client. The error message segfault

indicated that a program suffered a memory leak.

Correlation with failures: There were no soft lockup events reported on February

13, 22 and 25 2013. Soft lockup events were reported on February 23 2013. Next,

we manually scan the list of correlated events obtained for February 23 2013 to

determine if the filesystem error and software error messages are strongly correlated

to soft lockup events. We found that Filesystem: ...: error returned and

smith-waterman were weakly correlated to soft lockup events on February 23 2013.

We found that only the Pearson correlation method identified the correlated errors

on all the dates. Hence, Pearson correlation can be used as the primary method.

Detailed diagnosis: When the filesystem encountered an I/O error, the process

or software that was writing files to the filesystem generated an error message. We

showed that the filesystem error messages are strongly positive correlated to process

and software error messages. Our result shows that when a filesystem I/O error

occurred, the process and software were unable to obtain I/O access which led to

process and software errors. On five out of six days in February 2013, the filesystem

recovered from the I/O errors. This represents a recovery rate of 83%. However, on

115

February 3 2013 the filesystem failed to recover from the I/O error which led to a

compute node soft lockup. This represents a failure rate of 17%.

The benefit of combining analyses of harddisk, filesystem I/O and Linux

processes resource use counters with filesystem I/O, process and software errors is

given as follows: When correlations of harddisk, filesystem I/O and Linux processes

resource use counters and correlations of filesystem I/O, process and software errors

occur on the same day, it shows that harddisk, filesystem I/O and Linux processes

activities are associated with the generation of filesystem I/O, process and software

errors. Therefore, we can use the correlations to monitor the health of the storage

system.

Phase 3: Earliest Hour of Change

Table 5.7 shows the earliest hour of change in the correlated harddisk, filesystem

I/O and Linux processes resource use counters and correlated filesystem I/O, process

and software errors.

Table 5.7: Hours associated with the correlated harddisk, filesystem I/O and Linux
processes resource use counters and correlated filesystem I/O, process and software
errors.

Lonestar4

Correlated Feb Feb Feb Feb Feb Feb

counters 3 12 13 22 23 25

HDD, filesystem 5 1 4 4 3 7

& processes AM AM AM PM PM AM

Correlated Feb Feb Feb Feb Feb Feb

errors 3 12 13 22 23 25

Filesystem, process 4 12 3 1 12 12

& software errors AM AM AM PM PM PM

On all the dates, we observe that the earliest hour of change in the system

behaviour is different. On February 25 2013, the earliest hour of change is associated

with the correlated harddisk, filesystem I/O and Linux processes resource use counters.

On five dates, the earliest hour of change is associated with the correlated filesystem

I/O, process and software errors. If we use only the correlated harddisk, filesystem

I/O and Linux processes resource use counters, then the earliest hour of change in

the system behaviour on five dates would not be identified. Having said that, if we

use only the correlated filesystem I/O, process and software errors, then the earliest

hour of change in the system behaviour on February 25 2013 would not be identified.

Our results show that we require both the correlated resource use counters and

correlated errors to identify the earliest hour of change in the system behaviour on

116

all six dates. We found that there are different time windows between the hour of

change on all six dates. The time window ranges from one to five hours.

Validation

Next, we test the significance of the correlation coefficient of: (i) groups of resource

use counters that are strong positive correlated, and (ii) groups of error events that

are strong positive correlated. We tested all the correlation coefficients against the

null hypothesis. We obtained the z-scores for all the correlation coefficients and a

summary is given in Table 5.8.

Table 5.8: Summary of z-scores. nr contains the number of hours in one day of
resource usage logs. ne contains the number of hours in one day of system logs.

Lonestar4

Correlated Feb Feb Feb Feb Feb Feb

counters 3 12 13 22 23 25

HDD, filesystem & zr = zr = zr = zr = zr = zr =

processes (nr = 24) 6.25 6.56 4.86 12.13 3.84 9.49

Correlated Feb Feb Feb Feb Feb Feb

errors 3 12 13 22 23 25

Filesystem, process & software ze = ze = ze = ze = ze = ze =

errors (20 ≤ ne ≤ 24) 9.55 4.72 4.08 8.61 4.98 3.75

From Table 5.8, we observe that the z-scores for all the correlation coefficients

range from 3.75 to 12.13. At the 99% confidence level, under the null hypothesis

z0r = 2.64 and z0e = 2.64. Hence, we reject the null hypothesis in favour of the

alternate hypothesis.

Next, for all hypothesis tests we use the significance level, α = 0.01 and

apply a one-sided test to obtain a P -value. We use the P -value to determine the

probability of rejecting the null hypothesis when it is true. We observe that the

smallest z-score is 3.75. Since this is a one-sided test, the P -value is equal to the

probability of observing a value greater than 3.75 in the standard normal distribution,

or P (Z > 3.75) = 1− P (Z ≤ 3.75) = 1− 0.9999 = 0.0001. To account for inflation

in false positive due to multiple independent tests, we obtain the adjusted P -value

0.0001× 26 = 0.0026, where 26 is the number of dates. The P -value is less than 0.01,

indicating it is highly unlikely this result would be observed under the null hypothesis.

We observe that all the z-scores are greater than or equal to 3.75. Therefore, the

adjusted P -value for all the z-scores are less than 0.01, indicating it is highly unlikely

these results would be observed under the null hypothesis.

117

5.4 Summary

In this chapter, we applied CORRMEXT on multiple HPC systems. CORRMEXT

generated the analyses focused on the correlated groups of resource use counters and

correlated groups of errors, and diagnosed three new error cases and one resource

activity case. It identified the earliest occurrences of the problem by extracting the

variance in the times of the correlated resource use counter groups and correlated

error groups. CORRMEXT applied Fisher’s z-score and the Bonferroni correction

and showed that all the correlations are significant.

We provide our recommendation on what one should look for in the resource

use data and system logs. In the resource use data, we can use the following types

of resource use counters to do the following: (i) bytes received on the network,

number of network packets transmitted, number of network data frame errors and

number of network data CRC errors to identify network data errors, (ii) number of

Linux processes created, number of context switching, number of inodes allocated,

number of filesystem seek operations and number of harddisk sector writes to monitor

activities between Linux processes, harddisk and filesystem.

In the system logs, we can use the following types of messages to do the

following: (i) DNS lookup failure, FTP software start, FTP software exit and FTP

software failure to identify a configuration error in the DNS software, (ii) filesystem

I/O error, process information and software error to identify a cause of filesystem

I/O execution failure.

118

Chapter 6

A Features Correlation-based

Workflow for HPC Systems

Diagnosis

There is little work which show that multiple feature extraction methods are required

to identify more system messages and resource use counters associated with rare

error cases. In this chapter, we present a new workflow that combines resource use

data matrices and message types data matrices for identifying rare error cases. We

named the workflow EXERMEST (EXtracting FEatures and CoRrelating Resource

Use Counters and MESsage Types). EXERMEST extracts the nodes associated

with the identified errors. There are no message types data matrices available on

Stampede-1. Therefore, we focus on the resource use data matrices and message

types data matrices available on Ranger and Lonestar4.

We structure this chapter as follows: In Section 6.1, we introduce the EX-

ERMEST framework. In 6.2, we describe the system models, problem specification

and details for the modules used within the EXERMEST framework. In 6.3, we

evaluate the feature extractors and present our analyses from EXERMEST for a

series of error cases on the Ranger and Lonestar4 HPC systems and conclude with a

summary in 6.4.

6.1 Introduction

There is a large body of research on detecting errors [16, 33, 34] and diagnosing

failures [8–10, 72] that showed that combining system logs and resource use data

can improve error detection and failure diagnosis over using system logs alone.

The methods developed by N. Gurumdimma et. al. [33, 34] focus on improving

119

error detection. Their method presented in [33] showed that the error handling time

window can be increased by up–to 50 minutes by combining system logs with resource

use data. An approach called CRUDE [34] showed that the error detection accuracy

can be improved, on average by 85% over NodeInfo [62], by combining resource use

data and system logs. The technique developed by Z. Zheng et. al. [71] focus on

identifying characteristics of system failures. They combine RAS and Jobs logs on a

HPC system to identify interesting failure characteristics. The ANCOR framework

[8] developed a two-phase approach where: (i) in the first phase, anomalous nodes are

identified on resource use data to provide a partial diagnosis, and (ii) in the second

phase, errors that are correlated to system failures on the anomalous nodes are

identified on system logs to provide a more detailed diagnosis. A tool called LogAider

that is developed by S. Di et. al. [16] focus on identifying error propagation that

lead to system failures. They combine RAS and Job logs to identify correlations of

system events and failures across space and time on a HPC system. The diagnostics

frameworks reported in references [8, 9, 16, 72] have correlated errors to system

failures only.

The anomaly detection frameworks reported in references [8, 27, 34] have

applied only Principal Component Analysis to identify the significant system metrics

in resource usage data. The anomaly detection framework reported in reference [44]

have evaluated PCA-based and ICA-based anomaly detection. They showed that

ICA-based anomaly detection is more effective than PCA-based anomaly detection.

However, there is little work which show that multiple feature extraction methods are

required for identifying more system messages and resource use counters associated

with rare error cases. To bridge this gap, we implement and evaluate a new workflow

– called EXERMEST – that combines resource use data matrices with message types

data matrices. EXERMEST identifies significant resource use counters and messages.

In the EXERMEST workflow, multiple feature extraction algorithms are evaluated.

We implemented a two-phase approach where: (i) in the first phase, different feature

extractors are applied to identify significant errors and resource use counters, (ii)

in the second phase, the significant resource use counters are correlated to other

resource use counters and the significant system events are correlated to other events.

Then, the significance of all the correlation coefficients are validated. By significant,

we mean resource use counters and system events which are assigned highest scores

by the feature extractors.

6.1.1 Contributions

The main contributions of this chapter include:

120

• A new workflow called EXERMEST that combines resource use data matrices

and message types data matrices for HPC systems diagnosis. EXERMEST

identifies significant system messages and resource use counters associated with

rare error cases.

• A demonstration that EXERMEST improves failure diagnosis over previous

research. EXERMEST show that multiple feature extraction methods are

required to identify the significant system messages and resource use counters

associated with the rare error cases.

• Identification of: (i) significant Infiniband network packet drops and Lustre

filesystem I/O resource use counters that are correlated to Lustre filesystem I/O

errors, (ii) significant CPU I/O and Lustre filesystem I/O resource use counters

that are correlated to hard disk and Lustre filesystem I/O errors, (iii) significant

Linux virtual memory resource use counters and Lustre filesystem I/O resource

use counters that are correlated to Linux memory management errors, and

(iv) significant Linux process threads and dirty memory resource use counters

that are correlated to data and network synchronisation errors. The Infiniband

network packet drop, Lustre filesystem I/O, CPU I/O, Linux virtual memory,

Linux threads and dirty memory resource use counters are potential flags for

online detection of Lustre filesystem I/O errors, hard disk I/O errors, Linux

memory management errors and data and network synchronisation errors.

• That 10 minutes, 30 minutes and 1-hour time-bins are required for identifying

the correlated system errors and correlated resource use counters.

• A detailed statistical validation step to ensure an accurate assessment of the

diagnosis. EXERMEST uses the Bonferroni correction to show that it is highly

unlikely all the correlations would be observed under the null hypothesis.

6.2 System Models, Problem Specification and EXER-

MEST Framework

The system model to which the EXERMEST framework can be applied is described

in Chapter 3.1; we summarise the system model here. A HPC system is comprised of

a job scheduler, system software stack and sets of nodes and jobs. The job scheduler,

nodes, jobs and system software stack generate system logs - they contain system

events and failure data. The nodes, jobs and system software stack generate resource

usage logs - they currently contain 410 system resource use counters (refer to Table

121

3.1). The system and resource use logs are archived on a centralised message logging

system.

6.2.1 Significant Errors on Nodes

Let S be a HPC system with n distinct nodes and all the nodes in the system S are

linked together by a network. We capture the significant errors by first defining a

set NSi = {n1, n2, ..., ni|ni ∈ Nodestate}, where 1 ≤ i < x, x is the number of nodes,

Nodestate = {nfault, nerror, nfailed}, nfault = a node on which a fault is triggered,

nerror = a node that contained an error, nfailed = a node that crashed. Thus, an

error can occur within one node or occur on two or more nodes.

Due to the possibility that errors are associated with a large number of nodes,

finding the significant errors is challenging. In this chapter, we will present the

EXERMEST framework that investigates the use of feature extraction methods to

identify the significant errors and the nodes associated with the identified errors.

6.2.2 Problem Specification

The problem we address in this chapter is specified in [12] and we describe the

problem here: Given (i) a set of resource use data matrices, (ii) a set of message

types data matrices, (iii) a list of resource use counters, (iv) a list of message types,

and (v) the number of dates, then:

1. Identify the significant resource use counters by time-bins,

2. Identify the significant message types by time-bins,

3. Identify resource use counters that are strongly linearly or monotonically

correlated to the significant counters by time-bins on the specified dates,

4. Identify messages that are strongly linearly or monotonically correlated to the

significant messages by time-bins on the specified dates.

A time-bin is one window of a fixed time interval. The number of re-

source use and message types data matrices that we collect are based on the

given number of dates. We develop the EXERMEST (EXtracting FEatures and

CoRrelating Resource Use Counters and MESsage Types) framework as shown

in Figure 6.1. EXERMEST applies the Features extraction and Correlation mod-

ules on the resource use and message types data matrices. Each module produces

a set of diagnostics reports. The reports can be used to identify significant er-

ror propagation and recovery cases. EXERMEST is available for downloading at

https://diag-toolkits.github.io/EXERMEST/. Next, we describe the two mod-

ules used within the EXERMEST framework.

122

https://diag-toolkits.github.io/EXERMEST/

Resource use
counters

Correlator Correlator

Validation

use counters
Correlated resource

Validation

List of

counters
resource use Features

extractor
Features
extractor

Extraction

Message types

Message Types
Data Matrix Data Matrix

Significant

Correlation

Significant

Correlated message
types

List of
message
types

Resource Use

Failure
event

Features

Figure 6.1: The workflow of the EXERMEST framework.

6.2.3 EXERMEST: Feature Extraction

The Feature Extraction module is presented in [12] and we describe the details here.

A resource use log is comprised of a number of attributes and an example is given as

follows:

204865 Jul 12 12:30:01 i132-206 eth0 rx_bytes 352894 ..

In the resource use log, each attribute is separated by a white space. The

first attribute represents a job (204865). The second, third and fourth attributes

represent the month, date and time (Jul 12 12:30:01) the resource use log was

generated. The fifth attribute represents a node (i132-206) on the HPC system.

The sixth attribute represents the device name (eth0); in this example, the device is

a network interface card. The remaining pairs of attributes represent a resource use

counter (e.g., rx_bytes) and its value (352894).

To generate the resource use data matrix, we implemented a process that

extracts the resource use counters and their values in the resource use logs. The

process is described in Chapter 3.4.1 and we summarise it here. The process works

as follows:

123

• We divide the resource use log into time-bins of 1 hour, 30 and 10 minutes by

the given date.

• We extract all the resource use counters in the resource use log and store the

resource use counters in a list.

• We identify the unique resource use counters and store them in a list of (unique)

resource use counters.

• We match a resource use counter in the list of unique resource use counters to

the resource use counter in the resource use log and obtain the value of the

resource use counter between two consecutive resource use logs. We obtained

the values of the resource use counters separately by 1 hour, 30 and 10 minute

time-bins.

A system log is comprised of a number of attributes and an example is given

as follows:

227893 Jul 18 08:43:10 i172-108 kernel LustreError: connection

restored

In the system log, each attribute is separated by a white space. The first

attribute represents the job (227893). The second, third and fourth attributes

represent the month, date and time (Jul 18 08:43:10) the system log was generated.

The fifth attribute represents a node (i172-108) on the HPC system. The sixth

attribute represents the system component (kernel); in this example, the system

component is the Linux operating system kernel. The remaining white space separated

attributes represent the system event. In this system event, the Lustre filesystem

had restored its connection (LustreError: connection restored).

To generate the message types data matrix, we implemented a process that

extracts the system events and their counts in the system logs. The process is

described in Chapter 3.4.2 and we summarise it here. The process works as follows:

• We divide the system logs into time-bins of 1 hour, 30 and 10 minutes by the

given date.

• We extract all the system events in the system logs and store the system events

in a list.

• We identify the unique system events and store them in a list of message types.

• We count the message types separately by 1 hour, 30 and 10 minute time-bins.

124

Currently, we evaluate three feature extraction algorithms. The algorithms

are: (i) Principal Component Analysis (PCA), (ii) Independent Component Analysis

(ICA), and (iii) Non-linear Principal Component Analysis (NLPCA). We use PCA

and ICA for identifying resource use counters and message types which are linearly

uncorrelated. We use NLPCA for identifying resource use counters and message

types which are non-linearly uncorrelated. PCA, ICA and NLPCA are unsupervised

dimensionality-reduction methods that do not require a-priori knowledge about the

data labels. Therefore, they can be used for identifying the significant resource use

counters and message types without the need to label the data. We integrate the

PCA, ICA and NLPCA methods into the Features Extraction module. Specifically,

the algorithms we use are: (i) the robust PCA algorithm [13] for obtaining the PCA

components, (ii) the fast ICA algorithm [39] for obtaining the ICA components,

and (iii) the NLPCA algorithm that is based on a neural network [60] for obtaining

the NLPCA components. A large HPC system can monitor hundreds of different

resource use counters and it can generate thousands of different message types. To

identify the significant resource use counters and message types is an essential but

non-trivial task [28, 44, 52].

The Feature Extraction module receives as its input, a resource use data

matrix and a message types data matrix as shown in Figure 6.1. The resource use

data matrix RUDt has m rows and n columns. Each row mi ∈ RUDt represent one

resource use counter, each column nj ∈ RUDt represent one time-bin and each cell

mcij ∈ RUDt contains the count of resource use counter mi at time-bin nj . The

message types data matrix MTDt has x rows and y columns. Each row xi ∈MTDt

represent one message type, each column yj ∈ MTDt represent one time-bin and

each cell mcij ∈MTDt contains the count of message type xi at time-bin yj .

PCA Features Extractor

PCA converts the set of observations of possibly correlated variables into a set of

values of linearly uncorrelated variables called principal components. Because the

rows of the resource use and message types data matrices are the features and their

columns are the time-bins, first we transpose the data matrices RUDt and MTDt

to obtain RUD
′
t and MTD

′
t. The resource use counters collected by TACC Stats

range from CPU usage to memory, Lustre I/O, network, virtual memory, process

and NUMA counters. The scale of the data collected may be different. For example,

CPU utilisation values can be given in percentage and Lustre I/O, memory, network,

virtual memory, process and NUMA counter values can be actual counts. To solve

the problem of different scales in the data, we normalise the values for all the resource

use counters such that their values range between 0 and 10. To capture the true

125

variance, we adjust the columns in the normalised resource use data matrices to have

zero mean. To identify the significant message types under identical conditions, we

normalise the message types values and adjust the columns in the normalised data

matrices so that its columns have zero mean.

Next, we calculate the covariance matrices CRUD and CMTD using the normal-

ized zero-mean matrices RUD
′N0
t and MTD

′N0
t . The covariance matrix has entries

cij defined as [1]: cov(X,Y) = 1
n2

∑
i

∑
j>1(xi − xj).(yi − yj) where X and Y are

variables that can take on the values (xi, yi) for i = 1, ..., n, xi ∈ X and yi ∈ Y . We

obtain: (i) the resource use data covariance matrix CRUD = 1
n−1RUD

′N0
t RUD

′′N0
t

where RUD
′′N0
t is the transpose of RUD

′N0
t , and (ii) the message types covari-

ance matrix CMTD = 1
n−1MTD

′N0
t MTD

′′N0
t where MTD

′′N0
t is the transpose of

MTD
′N0
t . Currently, our PCA features extractor uses the robust PCA algorithm

[13] to obtain the principal components. The reference in [44] have shown that the

first principal component contains the largest variance. Therefore, we extract the

scores of the supplied data on the first principal component.

ICA Features Extractor

Given the normalized zero-mean data matrices RUD
′N0
t and MTD

′N0
t , ICA also

finds a new set of values of linearly uncorrelated variables. Differently to PCA,

the components identified by ICA are not necessarily orthogonal. A pre-processing

step called whitening [42] is first applied on the input data matrix to obtain a new

set of variables which are uncorrelated and each have a variance of 1. Whitening

the input data matrix ensures that the average covariance between the whitened

variables and original variables is maximal [42]. Then, the ICA algorithm is applied

on the whitened data matrix. Currently, our ICA features extractor uses the fast

ICA algorithm [39] to obtain the ICA components. Based on the reference in [44]

that show that the first principal component contains the largest variance, we extract

the estimated scores of the supplied data on the first ICA component.

NLPCA Features Extractor

Given the normalized zero-mean data matrices RUD
′N0
t and MTD

′N0
t , NLPCA

finds a new set of values of uncorrelated variables. Differently to PCA, the principal

components identified by NLPCA are non-linear (i.e., curved). Currently, our

NLPCA feature extractor uses a neural network based algorithm [60] that provides

a non-linear model of the mapping function to obtain the principal components.

Based on the reference in [44], we extract the scores of the supplied data on the first

component.

126

Extracting the Significant Features

We implement a process for extracting the score and its associated resource use

counter and message type. The process works as follows: Let Lpair be a list that

contains pairs of 〈index, score〉 where index is the index of a resource use counter

or message type, score is the score of the resource use counter or message type

and SizeL = |Lpair| is the total number of index-score pairs in the list. First,

we sort the list Lpair in descending order such that the first pair 〈index1, score1〉
is the resource use counter or message type with the highest score. Then, we

extract a subset Lsubset
pair ⊂ Lpair such that ∀〈index, score〉 ∈ Lsubset

pair , score > 0 and

|Lsubset
pair | = d0.05× SizeLe. Next, ∀〈index, score〉 ∈ Lsubset

pair we map index to the list

of resource use counters and list of message types and obtain the list of significant

resource use counters and list of significant message types. Algorithms such as PICK

[4] can also be used to select the top 5% of resource use counters and message types.

6.2.4 EXERMEST: Correlation

The Features Extraction module described in the preceding section extracted the

lists of significant resource use counters and message types. Then, these lists are

given to the Correlation module to correlate the significant resource use counters to

other counters and correlate the significant message types to other message types.

The Correlation module is presented in [12] and we describe it here. Specifically, the

Correlation module performs the following:

• It calculates the correlation coefficient for all pairs of significant resource use

counters and other resource use counters, and obtain a resource use counters

correlation matrix.

• It calculates the correlation coefficient for all pairs of significant message types

and other message types, and obtain a message types correlation matrix.

To obtain the resource use counters and message types correlation matrices,

we implemented a process that works as follows:

• We obtain the significant data matrices containing counts of all the significant

resource counters or message types by time-bins of 1 hour, 30 and 10 minutes.

• We obtain the data matrices containing counts of all the resource counters or

message types by time-bins of 1 hour, 30 and 10 minutes.

• We apply two correlation methods on the significant resource use data matrix

and resource use data matrix by time-bins of 1 hour, 30 and 10 minutes, and

127

obtain the resource use counters correlation matrices by 1 hour, 30 and 10

minute time-bins.

• We apply two correlation methods on the significant message types data matrix

and message types data matrix by time-bins of 1 hour, 30 and 10 minutes, and

obtain the message types correlation matrices by 1 hour, 30 and 10 minute

time-bins.

In our Correlation module, we currently use Pearson correlation and Spearman-

Rank correlation methods [1]. The details are described in Chapter 4.3.2 and we

provide a summary here. Pearson correlation coefficient [1], r is defined as the

mean of the products of the standard scores, r = 1
n−1

∑n
i=1

(
xi−x̄
sx

)(
yi−ȳ
sy

)
where(

xi−x̄
sx

)
is the standard score of x,

(
yi−ȳ
sy

)
is the standard score of y, x and y are

two datasets containing n values of a pair of resource use counters or a pair of

message types, sx =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation of x,

sy =
√

1
n−1

∑n
i=1(yi − ȳ)2 is the sample standard deviation of y, x̄ and ȳ is the

sample mean of x and y. We implemented the Pearson correlation algorithm to

identify resource use counters and message types which are correlated linearly.

Spearman-Rank correlation coefficient [1], ρ is defined as the Pearson correla-

tion coefficient between the ranks of a pair of variables. The following is assumed

by Spearman-Rank correlation: (i) the value of a variable increases when the value

of another variable increases, (ii) the value of a variable remains when the value of

another variable remains. We implemented the tied rank average method [67] and

obtain the ranked values for all pairs of variables. After we obtained the ranked

values for all pairs of variables, we input the ranked values into Pearson correla-

tion method to obtain Spearman-Rank correlation coefficient. We implemented the

Spearman-Rank correlation algorithm to identify resource use counters and message

types which are correlated monotonically.

There are many methods available. However, those methods assume that the

data variables are i.i.d, i.e., each variable has the same probability distribution as all

the other variables, and all the variables are mutually independent. The references in

[24, 51] have shown that correlation algorithms are effective in identifying influence

between interacting system components [51] and modeling system behaviour [24].

While a HPC system generates resource utilisation data at regular intervals, it

generates error and failure messages only when the error output statement in the

program code is executed. Because of this, the timestamps in the resource use data

and system logs are different. The correlation algorithms require that the same

number of data points is available on the x-axis in the dataset in order to calculate

the correlation coefficient. As such, we do not identify correlations of resource use

128

counters to message types. Having said that, our objective is to identify correlations

of resource use counters and correlations of message types. We use the following

rules for interpreting the strength of the correlation coefficients [1]: (a) 0.8 to 1:

Strong positive correlation, (b) 0.3 to 0.79: Moderate positive correlation, (c) 0.1 to

0.29: Weak positive correlation.

Testing the Significance of the Correlation Coefficients

The technique we used to test the significance of all the correlation coefficients is

presented in Chapter 4.3.2; we summarise the validation technique here. We define

two null hypotheses and two alternate hypotheses. The null hypotheses are: (i)

H0r that two resource use counters are positive correlated with a score between

0.1 and 0.29, and (ii) H0m that two message types are positive correlated with a

score between 0.1 and 0.29. The alternate hypotheses are: (i) Har that two resource

counters are positive correlated with a score between 0.8 and 1, and (ii) Ham that

two message types are positive correlated with a score between 0.8 and 1. We apply

Fisher’s z-transform and obtain the z-scores for all correlation coefficients [67]. When

the absolute value of z at a confidence level of 99% is 2.64, it will reject the null

hypothesis in favour of the alternate hypothesis.

Handling Inflation in False Positive

The technique we used to handle inflation in false positive due to testing multiple

independent hypothesis is presented in Chapter 4.3.2 and we summarise the technique

here. Our interest are on: (i) (strong) positive correlated resource use counters with

a score between 0.8 and 1, and (ii) (strong) positive correlated message types with a

score between 0.8 and 1. To test all the hypotheses, we apply a one-sided test. We

use the significance level, α = 0.01 to obtain an unadjusted P -value. The probability

of identifying a significant correlation due to chance increases when more correlations

are tested. The Bonferroni Correction [26] accounts for inflation in false positive by

adjusting the P -value. To obtain the adjusted P -value, we multiply the unadjusted

P -value by the number of dates.

Extracting the Nodes

Once the list containing the correlated significant messages and other messages

is obtained, we implemented a process to extract the nodes associated with the

correlated messages. The process is given as follows:

• Step 1: For each message type in the list of correlated messages, match the

message type back to the system logs.

129

• Step 2: In the system logs, extract the log-entries that contain the message

type to obtain a smaller set of system logs.

• Step 3: For all log-entries in the smaller set of system logs, extract the node

and store it in a list of nodes.

• Step 4: Remove all repeated nodes in the list of nodes to obtain a list of unique

nodes.

6.3 Case Studies on Ranger and Lonestar4

We conduct studies of rare error cases on the Ranger and Lonestar4 HPC systems.

The Ranger HPC system was a 4,048 node Linux-based cluster and Lonestar4 was

a 1,888 node Linux-based cluster. Both the Ranger and Lonestar4 HPC systems

were operated by the Texas Advanced Computing Center at The University of Texas

at Austin. On Ranger and Lonestar4, the TACC Stats resource usage data were

sampled at intervals of 10 minutes. On Ranger, we collected 26 days worth of resource

use data and system logs. On Lonestar4, we collected 31 days worth of resource

usage data and system logs. A summary of the data is given in Table 6.1.

Table 6.1: Summary of resource use data and system logs.

Ranger

TACC Stats data Rationalized logs

No. days Data size No. of lines Data size No. of messages

26 124.1 GB 637,860,203 9.6 GB 64,822,682

Lonestar4

TACC Stats data Syslogs

No. days Data size No. of lines Data size No. of messages

31 46.6 GB 207,068,692 1.3 GB 12,267,629

Therefore, given a cluster system with nodes, next we evaluate the PCA, ICA

and NLPCA feature extractors and present four rare error cases.

6.3.1 Phase 1: Identify Significant Resource Use Counters and Mes-

sages

In this section, we determine on all dates: (i) the feature extractor which identifies

the largest number of significant resource use counters, and (ii) the feature extractor

which identifies the largest number of significant message types.

130

Identify Significant Resource Use Counters

Figure 6.2 shows the number of significant resource use counters that were identified

by PCA, ICA and NLPCA on data matrices of 1 hour time-bins on Ranger.

Figure 6.2: Significant resource use counters on time-bins of 1 hour on Ranger.

We observe that 21 resource use counters were identified by PCA on 12 dates,

21 resource use counters were identified by ICA on 17 dates and 21 resource use

counters were identified by NLPCA on 26 dates.

Figure 6.3 shows the number of significant resource use counters that were

identified on data matrices of 30 minute time-bins on Ranger.

Figure 6.3: Significant resource use counters on time-bins of 30 minutes on Ranger.

We observe that 21 resource use counters were identified by PCA on 13 dates,

21 resource use counters were identified by ICA on 15 dates and 21 resource use

counters were identified by NLPCA on 26 dates.

Figure 6.4 shows the number of significant resource use counters that were

identified on data matrices of 10 minute time-bins on Ranger.

131

Figure 6.4: Significant resource use counters on time-bins of 10 minutes on Ranger.

We observe that 21 resource use counters were identified by PCA on 14 dates,

21 resource use counters were identified by ICA on 14 dates, and 21 resource use

counters were identified by NLPCA on 26 dates. On the data matrices of 1 hour,

30 minute and 10 minute time-bins, both PCA and ICA took less than one second

to execute. On the data matrices of 1 hour, 30 minute and 10 minute time-bins,

NLPCA took an average of 55 seconds to execute. Our results show that:

• The largest number of significant resource use counters were identified only by

NLPCA on all 26 dates in July 2011.

• The number of significant resource use counters that were identified on all the

26 dates represent 6% of all the resource use counters monitored on Ranger.

Figure 6.5 shows the number of significant resource use counters that were

identified on data matrices of 1 hour time-bins on Lonestar4.

Figure 6.5: Significant resource use counters on time-bins of 1 hour on Lonestar4.

We observe that 21 resource use counters were identified by PCA on 24 dates,

132

21 resource use counters were identified by ICA on 25 dates, and 21 resource use

counters were identified by NLPCA on 31 dates.

Figure 6.6 shows the number of significant resource use counters that were

identified on data matrices of 30 minute time-bins on Lonestar4.

Figure 6.6: Significant resource use counters on time-bins of 30 minutes on Lonestar4.

We observe that 21 resource use counters were identified by PCA on 25 dates,

21 resource use counters were identified by ICA on 17 dates, and 21 resource use

counters were identified by NLPCA on 31 dates.

Figure 6.7 shows the number of significant resource use counters that were

identified on data matrices of 10 minute time-bins on Lonestar4.

Figure 6.7: Significant resource use counters on time-bins of 10 minutes on Lonestar4.

We observe that 21 resource use counters were identified by PCA on 22 dates,

21 resource use counters were identified by ICA on 23 dates, and 21 resource use

counters were identified by NLPCA on 31 dates. On the data matrices of 1 hour,

30 minute and 10 minute time-bins, both PCA and ICA took less than one second

to execute. On the data matrices of 1 hour, 30 minute and 10 minute time-bins,

133

NLPCA took an average of 1 minute 22 seconds to execute. Our results show that:

• The largest number of significant resource use counters were identified only by

NLPCA on all 31 dates in March 2013.

• The number of significant resource use counters that were identified on all the

31 dates represent 6% of all the resource use counters monitored on Lonestar4.

Identify Significant Message Types

Figure 6.8 shows the number of significant message types that were identified on

data matrices of 1 hour time-bins on Ranger.

Figure 6.8: Significant message types on time-bins of 1 hour on Ranger.

We observe that: (i) the largest number of significant message types were

identified by PCA on 23 dates, (ii) the largest number of significant message types

were identified by ICA on 19 dates, and (iii) the largest number of significant message

types were identified by NLPCA on 26 dates.

Figure 6.9 shows the number of significant message types that were identified

on data matrices of 30 minute time-bins on Ranger.

Figure 6.9: Significant message types on time-bins of 30 minutes on Ranger.

134

We observe that: (i) the largest number of significant message types were

identified by PCA on 21 dates, (ii) the largest number of significant message types

were identified by ICA on 17 dates, and (iii) the largest number of significant message

types were identified by NLPCA on 25 dates.

Figure 6.10 shows the number of significant message types that were identified

on data matrices of 10 minute time-bins on Ranger.

Figure 6.10: Significant message types on time-bins of 10 minutes on Ranger.

We observe that: (i) the largest number of significant message types were

identified by PCA on 20 dates, (ii) the largest number of significant message types

were identified by ICA on 19 dates, and (iii) the largest number of significant message

types were identified by NLPCA on 25 dates. On the data matrices of 1 hour, 30

minute and 10 minute time-bins, PCA took 1.2 seconds to execute and ICA took

less than one second to execute. On the data matrices of 1 hour, 30 minute and 10

minute time-bins, NLPCA took an average of 77 seconds to execute. Our results

show that:

• Only NLPCA identified the largest number of significant message types on

data matrices of 1 hour time-bins on all 26 dates in July 2011.

• The number of significant message types identified on all 26 dates represent

between 5% and 50% of all message types generated on all the dates.

Figure 6.11 shows the number of significant message types that were identified

on data matrices of 1 hour time-bins on Lonestar4. We observe that: (i) the largest

number of message types were identified by PCA on 26 dates, (ii) the largest number

of message types were identified by ICA on 18 dates, and (iii) the largest number of

message types were identified by NLPCA on 31 dates.

135

Figure 6.11: Significant message types on time-bins of 1 hour on Lonestar4.

Figure 6.12 shows the number of significant message types that were identified

on data matrices of 30 minute time-bins on Lonestar4.

Figure 6.12: Significant message types on time-bins of 30 minutes on Lonestar4.

We observe that: (i) the largest number of message types were identified by

PCA on 27 dates, (ii) the largest number of message types were identified by ICA on

20 dates, and (iii) the largest number of message types were identified by NLPCA

on 30 dates.

Figure 6.13 shows the number of significant message types that were identified

on data matrices of 10 minute time-bins on Lonestar4. We observe that: (i) the

largest number of message types were identified by PCA on 28 dates, (ii) the largest

number of message types were identified by ICA on 19 dates, and (iii) the largest

number of message types were identified by NLPCA on 31 dates. On the data

matrices of 1 hour, 30 minute and 10 minute time-bins, both PCA and ICA took

1.5 seconds to execute. On the data matrices of 1 hour, 30 minute and 10 minute

time-bins, NLPCA took an average of 2 minutes 12 seconds to execute. Our results

show that:

• Only NLPCA identified the largest number of significant message types on

136

Figure 6.13: Significant message types on time-bins of 10 minutes on Lonestar4.

data matrices of 1 hour and 10 minute time-bins on all 31 dates in March 2013.

• The number of significant message types identified on all 31 dates represent

between 3% and 46% of message types generated on all the dates.

6.3.2 Phase 2: Identify Rare Error Cases

In this section, we provide details for four error cases on the Ranger and Lonestar4

HPC systems. We use the lists of correlated resource use counters and correlated

errors to identify the error cases and discussed the use cases with the system

administrator. In all the error cases, the errors are different. The errors are: (i)

network packet drops and Lustre I/O errors, (ii) CPU I/O bottleneck and Lustre

client eviction, (iii) virtual memory and harddisk I/O errors, and (iv) data and

network synchronisation errors. A summary of the error cases is given in Table 6.2.

Table 6.2: List of rare error cases on Ranger and Lonestar4.

Ranger

Components Error Date

Infiniband & Lustre network, Network packet July 5

Lustre filesystem drops & Lustre I/O

CPU, harddisk & CPU I/O bottleneck & July 15

Lustre filesystem Lustre client eviction

Memory management, Virtual memory & July 25

harddisk & Lustre harddisk I/O

Lonestar4

Components Error Date

Memory, Linux threads Data & network March 1

& Lustre network synchronisation

When the Linux operating system kernel goes into a loop, i.e., Linux hanged,

a soft lockup event is generated. To identify the soft lockup event, we scan the

137

system logs for a message containing the keywords soft lockup. We implemented a

function in EXERMEST to search the system logs for soft lockup events and extract

the dates of soft lockups. In the Ranger system logs, we identified 12 dates of soft

lockups for July 2011 (see Figure 3.2b). In the Lonestar4 system logs, we identified

seven dates of soft lockups for March 2013 (see Figure 3.3b).

Error Case 1: Infiniband, Lustre Network and Lustre Filesystem

The network interface card (NIC) transmits and receives data packets on a network.

When a NIC receives or transmits data, first it will store the data into the available

buffers on the network card. Most of the time, the network card receives the data

into its buffers correctly. However, in a rare case, the buffers on the network card

may be full and some of the data is dropped. A networked filesystem transmits and

receives a lot of data on the network. When a filesystem on a node wants to send

data to another node, it will send the data to the network card first. Most of the

time, the network card receives the data into its buffers correctly. However, if the

data size is larger than the available buffers on the network card, the NIC is not able

to transmit all the data.

We manually scan the lists of significant resource use counters generated by

PCA, ICA and NLPCA on data matrices of 1 hour, 30 minute and 10 minute time-bins.

We found that only the list generated on the resource use data matrix of 10 minute

time-bins contain both net ib0 tx_dropped and llite /work write_bytes. Fur-

ther, we identified the two resource use counters only on July 5 2011. We found

that both the PCA and ICA generated lists contain the llite /work write_bytes

resource use counter. Therefore, the Lustre filesystem write bytes resource use

counter follows a linear uncorrelated pattern – in this case, we can use PCA as

the primary method. We found that only the NLPCA generated list contain the

net ib0 tx_dropped resource use counter. Our result shows that: (i) the network

transmit packet drop resource use counter follows a non-linear uncorrelated pattern

on July 5 2011, and (ii) PCA and NLPCA are required for identifying the significant

net ib0 tx_dropped and llite /work write_bytes resource use counters.

Next, we scan the lists of correlated resource use counters generated on the

data matrix of 10 minute time-bins. Figure 6.14 shows the significant resource use

counters that are correlated to other resource use counters. We observe a strong cor-

relation of net ib0 tx_dropped to lnet rx_msgs_dropped, llite /work dirty_

pages_misses and llite /work ioctl – the correlation strength ranges from 0.93

to 1. We observe a strong correlation of llite /work write_bytes to lnet rx_msgs_

dropped, llite /work dirty_pages_misses and llite /work ioctl – the correl-

ation strength ranges from 0.93 to 1. We found that the correlated resource use coun-

138

Figure 6.14: Correlated resource use counters on Ranger. The significant resource
use counters are “net ib0 tx dropped” and “llite /work write bytes”.

ters are contained only in the list generated by Pearson correlation. Pearson correla-

tion took 1.5 seconds to execute and generate the list. The lnet rx_msgs_dropped

records dropped packets on the Lustre filesystem network. Our result shows that

Pearson correlation is a suitable method; it identified the Lustre I/O, Infiniband and

Lustre network resource use counters that follow a linear pattern.

The IO window and PREFETCH window events can be used to see what happens

when the Linux kernel executes a function call. We manually scan the lists of

significant message types generated by PCA, ICA and NLPCA on the 1-hour, 30

and 10 minutes time-bins data matrices. We found that only the lists generated

on the 1-hour time-bins message types data matrix contain the IO window and

PREFETCH window events. Further, we identified the two system events only on

July 5. We found both the system events only in the NLPCA generated list. Our

result shows that the IO window and PREFETCH window events follow a non-linear

uncorrelated pattern on July 5 2011.

Next, we scan the lists of correlated messages that were generated on

the 1-hour time-bins data matrix on July 5 2011. Figure 6.15 shows the sig-

nificant system events that are correlated to other system events. We observe

a strong correlation of IO window to error reading dir, request timed out

and tried all connections ... – the correlation strength ranges from 0.88 to

1. We observe a strong correlation of PREFETCH window to error reading dir,

request timed out and tried all connections ... – the correlation strength

ranges from 0.88 to 1. We found that only the list generated by Pearson correlation

contain the correlated system events. Our result shows that Pearson correlation is a

suitable method; it identified that the system events follow a linear pattern on July

5 2011.

Correlation with failures: Next, we scan the correlation matrix that was

generated on the 1-hour time-bins data matrices to determine the correlation strength

139

Figure 6.15: Correlated messages on Ranger. The significant events are “kernel IO
window” and “kernel PREFETCH window”.

of IO window and PREFETCH window to soft lockup events. We found that their

correlation scores is -0.07. Therefore, there is no correlation between the two Linux

function call messages and soft lockup events on July 5 2011.

Detailed diagnosis: On July 5 2011, data that was transmitted was dropped

by a NIC due to insufficient buffer space on the network card. On the same day, a

filesystem directory read error was strongly correlated to two Linux kernel function

calls. Further, two timeout and reconnection messages were strongly correlated to

both Linux kernel function calls. A soft lockup was reported on July 5 2011 but there

is no correlation of both the kernel function calls to the soft lockup event. Therefore,

the networked filesystem error did not cause compute node crash on July 5 2011.

When on the same day, correlations of network transmit packet drop, Lustre

I/O and Lustre network resource use counters and correlations of Linux I/O, Lustre

I/O and network error messages occur, we can use the network transmit packet drop

and Lustre I/O counters to monitor the state of the Infiniband and Lustre network

and filesystem.

Validation: We test the significance of: (i) strong positive correlated resource use

counters, and (ii) strong positive correlated messages. We summarise their z-scores

in Table 6.3. All the z-scores range from 4.85 to 27.73. At the confidence level of

99%, under the null hypothesis z0r = 2.64 and z0m = 2.64. Therefore, we reject the

null hypothesis in favour of the alternate hypothesis.

Table 6.3: z-scores for correlated resource use counters and correlated messages on
Ranger.

Correlated resource use counters July 5 2011

Infiniband network, Lustre network & I/O 16.00 ≤ zr ≤ 27.73

Correlated messages July 5 2011

Kernel function call, Lustre I/O & timeout errors 4.85 ≤ zm ≤ 10.68

140

Next, we determine the probability of identifying a significant result due to

the increase in the number of hypotheses tested. The lowest z-score in Table 6.3

is 4.85. We apply a one-sided test and use the significance level, α = 0.01 for all

given hypothesis tests to obtain a P -value. The P -value is equal to P (Z > 4.85) =

1 − P (Z ≤ 4.85) = 1 − 0.9999 = 0.0001. Then, we obtain the adjusted P -value

0.0001× 26 = 0.0026 where the number of dates is 26. For all z-scores in Table 6.3,

the adjusted P -values are less than 0.01. This indicates that all the correlations

would not be observed under the null hypothesis.

Identify the nodes: We determine the nodes which are associated with the identi-

fied errors. A summary is given in Table 6.4.

Table 6.4: List of messages and associated number of nodes on Ranger.

Significant message Nodes Correlated message Nodes

IO window 6 error reading dir 1

PREFETCH window 6 tried all connections, 3,929

request timed out 3,929

From Table 6.4, we observe:

• there are six nodes associated with IO window and PREFETCH window.

• there is one node associated with error reading dir.

• there are 3,929 nodes associated with request timed out and tried all

connections.

Error Case 2: CPU, Harddisk and Lustre Filesystem

When data is prepared to be written to the harddisk, the filesystem sends a write

request to the harddisk. The resource use counter named block hda wr_merges is

incremented when a write request merges with the existing in-queue requests. When

the filesystem performs an I/O operation, the processor waits for the I/O operation

to complete. The resource use counter named cpu 6 idle is incremented when a

processor waits on a filesystem I/O operation.

We manually scan the lists of significant counters generated by PCA, ICA

and NLPCA on the data matrices of 1 hour, 30 minute and 10 minute time-bins. We

found that only the lists generated on the 10 minutes time-bins data matrix contain

cpu 6 iowait and llite /work ioctl. Further, we identified both the resource

use counters only in the list on July 15. We found both the resource use counters

only in the list generated by NLPCA. Our results show that the CPU I/O wait and

Lustre filesystem I/O resource use counters follow a non-linear uncorrelated pattern

on July 15 2011.

141

Next, we scan the lists of correlated resource use counters generated on the

10 minutes time-bins data matrices. Figure 6.16 shows the significant resource use

counters that are correlated to other resource use counters.

Figure 6.16: Correlated resource use counters on Ranger. The significant resource
use counters are “cpu iowait” and “llite /work ioctl”.

We observe there is a strong correlation of cpu 6 iowait to cpu 6 idle,

block hda wr_merges and numa 0 other_node – the correlation strength ranges

from 0.87 to 0.96. We observe there is a strong correlation of llite /work ioctl

to cpu 6 idle, block hda wr_ merges and numa 0 other_node – the correlation

strength ranges from 0.83 to 0.99. We found the correlated resource use counters

in the lists generated by Pearson and Spearman-Rank correlation methods. The

Pearson and Spearman-Rank correlation methods took 1.2 seconds to execute and

generate the lists. Our result shows that Spearman-Rank and Pearson correlation

are suitable methods. When both correlation methods identify the correlated events,

Pearson correlation can be used as the primary method.

The connection lost and connection restored events can be used to see

what happens when the Lustre filesystem communicates with an unresponsive client.

We scan the lists of significant message types generated by PCA, ICA and NLPCA

on the 1-hour, 30 and 10 minutes time-bins data matrices. We found that only the

lists generated on the 10 minutes time-bins data matrix contain connection lost

and connection restored events. Further, we identified the two events only in the

lists on July 15. We found the two events only in the list generated by ICA. Our

result shows that the two system events follow a linear uncorrelated pattern on July

15 2011.

Next, we scan the lists of correlated messages generated on the 10 minutes time-

bins data matrix. Figure 6.17 shows the significant events that are correlated to other

system events. We observe there is a strong correlation of connection was lost

to cancel RPC, request timed out and client was evicted – the correlation

strength is 0.86. We observe there is a strong correlation of connection restored

142

Figure 6.17: Correlated messages on Ranger. The significant events are “connection
was lost” and “connection restored”.

to cancel RPC, request timed out and client was evicted – the correlation

strength ranges from 0.87 to 0.88. We found the correlated events only in the list

generated by Pearson correlation. Our results show that the system events follow a

linear pattern on July 15 2011.

Correlation with failures: No soft lockup event was reported on July 15 2011

(see Figure 3.2b for the dates of compute node soft lockups on July 2011.). Therefore,

the Lustre filesystem eviction of an unresponsive client did not cause a compute

node to crash.

Detailed diagnosis : On July 15 2011, the Lustre filesystem was executing I/O

operation which caused the processor to wait for the I/O operation to finish. On the

same day, eviction of an unresponsive Lustre client was traced to three correlated

Lustre Evict/RPC protocol messages. On the same day, a NUMA resource use

counter which records the number of memory pages allocated to a remote process, is

correlated with CPU idle and harddisk I/O activity counters.

When on the same day: (i) correlations of significant cpu iowait activity to cpu

idle and harddisk I/O activities, and correlations of significant Lustre I/O activity to

cpu idle and harddisk I/O activities occur, and (ii) correlations of Lustre connection

and client eviction error events also occur it shows that Lustre network and client

evicted errors are generated by CPU, harddisk and Lustre filesystem activities.

Therefore, we can use the CPU I/O wait and Lustre filesystem I/O resource use

counters to monitor the state of the CPU, harddisk and Lustre filesystem.

Validation: We test the significance of: (i) strong positive correlated resource use

counters, and (ii) strong positive correlated messages. We summarise their z-scores

in Table 6.5. All the z-scores range from 10.42 to 27.73. At the confidence level of

99%, under the null hypothesis z0r = 2.64 and z0m = 2.64. Therefore, we reject the

null hypothesis in favour of the alternate hypothesis.

143

Table 6.5: z-scores for correlated resource use counters and messages on Ranger.

Correlated resource use counters July 15 2011

CPU, harddisk, NUMA & Lustre I/O 10.42 ≤ zr ≤ 27.73

Correlated messages July 15 2011

Unresponsive Lustre client & Evict/RPC 11.67 ≤ zm ≤ 12.64

Next, we determine the probability of identifying a significant result due to the

increase in the number of hypotheses tested. We apply a one-sided test and use the

significance level, α = 0.01 for all given hypothesis tests to obtain a P -value. From

Table 6.5, we observe that the lowest z-score is 10.42. Since this is a one-sided test,

the P -value is equal to P (Z > 10.42) = 1− P (Z ≤ 10.42) = 1− 0.99999 = 0.00001.

Then, we obtain the adjusted P -value 0.00001 × 26 = 0.00026 where d = 26. For

all z-scores in Table 6.5, the adjusted P -values are less than 0.01. This indicates

that it is highly unlikely that all the correlations would be observed under the null

hypothesis.

Identify the nodes: We determine the nodes which are associated with the identi-

fied errors. A summary is given in Table 6.6.

Table 6.6: List of messages and associated number of nodes on Ranger.

Significant message Nodes Correlated message Nodes

connection restored 152 cancel RPC 12

connection was lost 152 client was evicted 12

request timed out 151

From Table 6.6, we observe:

• there are 152 nodes associated with connection restored and connection

was lost.

• there are 12 nodes associated with cancel RPC and client was evicted.

• there are 151 nodes associated with request timed out.

Error Case 3: Linux Memory Management Unit, Harddisk and Lustre

Filesystem

When a program makes a request for data, the operating system checks that the data

requested by the program is available in main memory. If the data is not in the main

memory and the main memory is full, some existing data is moved to the harddisk to

free up space for new data. The resource use counter named mem Writeback records

the total amount of data that is moved from the memory to harddisk. The resource

144

use counter named block hda wr_sectors records the total number of harddisk

sectors that were written.

We manually scan the lists of significant resource use counters generated by

PCA, ICA and NLPCA on the 1-hour, 30 and 10 minutes time-bins data matrices.

We found that: (i) only the lists generated on the 10 minutes time-bins data

matrix contain vm pgfault and llite /share ioctl, (ii) only the list generated

by ICA contain vm pgfault, and (iii) only the list generated by NLPCA contain

llite /share ioctl. Further, we identified the two resource use counters only in

the lists on July 25. The page-fault resource use counter follows a linear uncorrelated

pattern. The Lustre filesystem I/O resource use counter follows a non-linear uncor-

related pattern. Our result shows that ICA and NLPCA are required for identifying

the two significant resource use counters on July 25 2011.

Next, we scan the lists of correlated resource use counters generated on the

10 minutes time-bins data matrices. Figure 6.18 shows the significant resource use

counters that are correlated to other resource use counters.

Figure 6.18: Correlated resource use counters on Ranger. The significant resource
use counters are “vm pgfault” and “llite /share ioctl”.

We observe there is a strong correlation of vm pgfault to block wr_sectors,

mem Writeback and llite /work write_bytes – the correlation scores range from

0.85 to 0.99. We observe there is a strong correlation of llite /share ioctl to

block wr_sectors, mem Writeback and llite /work write_bytes – the correla-

tion scores range from 0.85 to 0.99. We found that both the Pearson and Spearman-

Rank correlation generated lists contain the correlated resource use counters. The

Pearson and Spearman-Rank correlation methods took 1.5 seconds to execute and

generate the lists of correlated counters. Our result shows that Spearman-Rank and

Pearson correlation are suitable methods. When the correlated events are identified

by both correlation methods, Pearson correlation can be used as the primary method.

The get_user_pages and copy_strings system events can be used to see

what happens when Linux’s memory management unit functions are executed. We

scan the lists of significant message types generated by PCA, ICA and NLPCA

145

on the 1-hour, 30 and 10 minutes time-bins data matrices. We found that only

the lists generated on the 1-hour time-bins message types data matrix contain the

get_user_pages and copy_strings events. Further, we identified the two system

events only in the list on July 25. We found the two system events only in the list

generated by NLPCA. Our result shows that NLPCA identified that the two system

events follow a non-linear uncorrelated pattern on July 25 2011.

Next, we scan the lists of correlated messages generated on the 1-hour time-

bins data matrix. Figure 6.19 shows the significant system events that are correlated

to other system events.

Figure 6.19: Correlated messages on Ranger. The significant events are “kernel
get user pages” and “kernel copy strings”.

We observe there is a strong correlation of get_user_pages to try_to_free_

pages, do_page_fault and soft lockup – the correlation score is 0.99. We observe

there is a strong correlation of copy_strings to try_to_free_pages, do_page_fault

and soft lockup – the correlation score is 0.99. We found that the correlated system

events are present only in the list generated by Pearson correlation. Our results show

that the correlated system events follow a linear pattern on July 25 2011.

Correlation with failures : From Figure 6.19, we observe that there is a strong

correlation of get_user_pages and copy_strings to soft lockup – the correlation

score is 1.

Detailed diagnosis: On July 25 2011, two kernel functions were executed by

the Linux memory management unit to free up available space in the system main

memory. The decision to free up space in main memory was made in response to a

program’s request for data. A page-fault occurred which led to a Linux operating

system crash.

When on the same day: (i) correlations of significant page-fault activity

to memory, harddisk I/O and filesystem activities, and correlations of significant

Lustre I/O activity to memory, harddisk I/O and filesystem activities occur, and (ii)

correlations of Linux memory management, page-fault error events and soft lockup

messages also occur, it shows that virtual memory and harddisk I/O errors are

146

generated by page-fault, filesystem, harddisk and memory I/O activities. Therefore,

we can use the page-fault and Lustre filesystem I/O resource use counters to monitor

the state of Linux memory management.

Validation: We test the significance of: (i) strong positive correlated resource use

counters, and (ii) strong positive correlated messages. We summarise their z-scores

in Table 6.7. All the z-scores range from 10.68 to 27.73. At the confidence level of

99%, under the null hypothesis z0r = 2.64 and z0m = 2.64. Therefore, we reject the

null hypothesis in favour of the alternate hypothesis.

Table 6.7: z-scores for correlated resource use counters and messages on Ranger.

Correlated resource use counters July 25 2011

Page-fault, hard disk, memory & Lustre I/O 11.22 ≤ zr ≤ 27.73

Correlated messages July 25 2011

Memory management, page-fault & Linux crash zm = 10.68

Next, we determine the probability of identifying a significant result due to the

increase in the number of hypotheses tested. We apply a one-sided test and use the

significance level, α = 0.01 for all given hypothesis tests to obtain a P -value. From

Table 6.7, we observe that the lowest z-score is 10.68. Since this is a one-sided test,

the P -value is equal to P (Z > 10.68) = 1− P (Z ≤ 10.68) = 1− 0.99999 = 0.00001.

Then, we obtain the adjusted P -value 0.00001 × 26 = 0.00026 where d = 26. For

all z-scores in Table 6.7, the adjusted P -values are less than 0.01. This indicates

that it is highly unlikely that all the correlations would be observed under the null

hypothesis.

Identify the nodes: We determine the nodes which are associated with the identi-

fied errors. A summary is given in Table 6.8.

Table 6.8: List of messages and associated nodes on Ranger.

Significant message Node Correlated message Node

get user pages i182-312 do page fault i128-406, i182-312

copy strings i182-312 try to free pages i182-312

soft lockup i128-406, i162-208, i182-312

From Table 6.8, we observe:

• there is one node associated with get_user_pages and copy_strings.

• there are two nodes associated with do_page_fault.

• there is one node associated with try_to_free_pages.

• there are three nodes associated with soft lockup.

147

Error Case 4: Dirty Memory, Linux Threads and Lustre Network

When data in the main memory is modified but not yet written back to the harddisk,

the in-memory version of the data is out of sync with the version on disk. The

resource use counter named mem Dirty records the amount of data that is out of

sync. When the version on the harddisk is updated, the data in main memory and

harddisk are in sync. The resource use counter named mem Writeback records the

amount of data that is actively being written to the disk. Data in memory must be

synchronised with the data on disk when multiple threads belonging to a process

are created. In most cases, the data in memory is synchronised with the data on

disk. However, on a rare occasion, if one of the threads fail then some of the data

in memory and disk may not be synchronised. The resource use counter named

ps nr_threads records the number of threads.

We scan the list of significant resource use counters generated by PCA, ICA

and NLPCA on the 10 and 30 minutes and 1 hour time-bins data matrices. We

found that: (i) the resource use counter ps nr_threads is contained only in the

list generated by NLPCA on the 10 minutes time-bins data matrix, and (ii) the

resource use counter mem 0 Dirty is contained in the lists generated by NLPCA

on the 10 minutes time-bins data matrix and ICA on the 1 hour time-bins data

matrix. Further, ps nr_threads and mem 0 Dirty are contained only in the lists

of significant resource use counters on March 01 2013. Our results show that:

• the resource use counter ps nr_threads follows a non-linear uncorrelated

pattern on March 01 2013. Therefore, NLPCA is a suitable method for

identifying ps nr_threads.

• the resource use counter mem 0 Dirty follows: (i) a non-linear uncorrelated

pattern on 10 minutes time-bins, and (ii) a linear uncorrelated pattern on 1

hour time-bins on March 01 2013. Because ICA generates the list of significant

resource use counters faster than NLPCA, when NLPCA and ICA identifies

the significant resource use counter, ICA can be used as the primary method.

Next, we scan the lists of correlated resource use counters that were gen-

erated on the 10 minutes time-bins and 1 hour time-bins data matrices. Fig-

ure 6.20 shows the significant resource use counters that are correlated to other

resource use counters. We observe there is a strong correlation of ps nr_threads to

mem 1 Writeback, mem 1 Dirty and mem 0 LowFree – the correlation scores range

from 0.81 to 0.82. We observe there is a strong correlation of mem 0 Dirty to

mem 1 Writeback, mem 1 Dirty and mem 0 LowFree – the correlation scores range

from 0.8 to 0.95. We found that only Spearman-Rank correlation identified the cor-

related ps nr_threads and mem 1 Writeback, ps nr_threads and mem 1 Dirty,

148

Figure 6.20: Correlated resource use counters on Lonestar4. The significant resource
use counters are “ps nr threads” and “mem 0 Dirty”.

mem 0 Dirty and mem 1 Dirty, and mem 0 Dirty and mem 0 LowFree. We found

that only Pearson correlation identified the correlated mem 0 Dirty and mem 1

Writeback. The correlated ps nr_threads and mem 0 LowFree resource use coun-

ters are contained in the lists generated by Pearson and Spearman-Rank correlation

methods. Both Pearson and Spearman-Rank correlation methods took 1.5 seconds

to generate the lists. Our results show that both Pearson and Spearman-Rank

correlation are required for identifying the correlated resource use counters.

The system events failed to close new saved state file and request

sent has timed out can be used to see what happens when synchronisation errors

occur. We scan the lists of significant messages generated by PCA, ICA and NLPCA

on the 10 and 30 minutes and 1 hour time-bins data matrices. We found that: (i)

the event failed to close new saved state file is contained only in the list

generated by NLPCA on the 30 minutes time-bins data matrix, and (ii) the event

request sent has timed out is contained only in the lists generated by ICA on

the 10 minutes and 1 hour time-bins data matrices. Further, the two error events

are contained only in the lists of significant messages on March 01 2013. Our results

show that:

• the event failed to close new saved state file follows a non-linear un-

correlated pattern on March 01 2013. Therefore, NLPCA is a suitable method

for identifying the event.

• the event request sent has timed out follows a linear uncorrelated pattern

on March 01 2013. Therefore, ICA is a suitable method for identifying the

event.

Next, we scan the lists of correlated messages generated on the 10 and

30 minutes time-bins data matrices. Figure 6.21 shows the significant messages

that are correlated to other messages. We observe there is a strong correlation

of failed to close new saved state file to data not saved properly – the

149

Figure 6.21: Correlated messages on Lonestar4. The significant messages are “failed
to close new data saved state” and “request sent has timed out”.

correlation score is 1. We observe there is a strong correlation of request sent has

timed out to connection was lost and client was evicted – the correlation

score is 1. We found that the correlated messages are contained in the lists gen-

erated by Pearson and Spearman-Rank correlation methods. Both Pearson and

Spearman-Rank correlation took 1.5 seconds to generate the list of correlated mes-

sages. When both Pearson and Spearman-Rank correlation methods identify the

correlated messages, Pearson correlation can be used as the primary method.

Correlation with failures: There are no soft lockup events on March 01 2013.

Detailed diagnosis : On March 01 2013, two synchronisation error events were

reported by the Linux operating system. The decision to synchronise data in memory

and disk was identified from the strong correlations of Linux process threads to dirty

memory and memory writeback resource use counters. The synchronisation of data

and the generation of synchronisation error events did not lead to a compute node

crash on March 01 2013.

When on the same day: (i) correlations of significant Linux process threads

and dirty memory to memory writeback activities occur, and (ii) correlations of

significant network and data saved errors to Lustre network and data saved events

also occur, it shows that data and network synchronisation errors are generated by

Linux process threads and Lustre network events. Therefore, we can use the Linux

process threads and dirty memory resource use counters and Lustre network events

to monitor the state of data and network synchronisation.

Validation: We test the significance of: (i) strong positive correlated resource use

counters, and (ii) strong positive correlated messages. We summarise their z-scores

in Table 6.9. All the z-scores range from 6.98 to 27.73. At the confidence level of

99%, under the null hypothesis z0r = 2.64 and z0m = 2.64. Therefore, we reject the

null hypothesis in favour of the alternate hypothesis.

Next, we determine the probability of identifying a significant result due to

the increase in the number of hypotheses tested. We apply a one-sided test and use

150

Table 6.9: z-scores for correlated resource use counters and messages on Lonestar4.

Correlated resource use counters March 01 2013

Linux threads & memory 6.98 ≤ zr ≤ 9.36

Correlated messages March 01 2013

Data synchronisation & Lustre network errors 23.41 ≤ zm ≤ 27.73

the significance level, α = 0.01 for all given hypothesis tests to obtain a P -value.

From Table 6.9, we observe that the lowest z-score is 6.98. Since this is a one-sided

test, the P -value is equal to P (Z > 6.98) = 1−P (Z ≤ 6.98) = 1−0.99997 = 0.00003.

Then, we obtain the adjusted P -value 0.00003 × 31 = 0.00093 where d = 31. For

all z-scores in Table 6.9, the adjusted P -values are less than 0.01. This indicates

that it is highly unlikely that all the correlations would be observed under the null

hypothesis.

Identify the nodes: We determine the nodes which are associated with the identi-

fied errors. A summary is given in Table 6.10.

Table 6.10: List of messages and associated nodes on Lonestar4.

Significant message Node Correlated message Node

failed to close new saved state file login3 data not saved properly login3

request sent has timed out 15 connection was lost 17

This client was evicted 17

From Table 6.10, we observe:

• there is one node associated with failed to close new saved state file

and data not saved properly.

• there are 15 nodes associated with request sent has timed out.

• there are 17 nodes associated with connection was lost and This client

was evicted.

6.4 Summary

In this chapter, we presented the EXERMEST framework for diagnosing rare error

cases on HPC systems. The main technical contribution is a new workflow that

integrated three feature extraction methods and two correlation methods. We

evaluated the feature extractors and combined resource use data matrices with

message types data matrices to identify the significant resource use counters and

system events associated with rare error cases. EXERMEST identified four error

cases on two HPC systems and diagnosed multiple system components associated

151

with the errors. We showed that multiple feature extractors and time-bins of different

granularities are required for identifying the error cases. EXERMEST used the

Bonferroni correction to ensure the accuracy of the diagnoses and showed that all

the correlations would not be observed under the null hypothesis.

152

Chapter 7

A Comparative Analysis of

CORRMEXT and EXERMEST

In this chapter, we discuss the similarities and differences between the CORRMEXT

(CORrelating Resource use data and Message logs and EXtracting Times) and

EXERMEST (EXtracting FEatures and CoRrelating Resource Use Counters and

MESsage Types) diagnostics frameworks. Whereas the CORRMEXT framework

combines data type extraction, multiple correlation methods and time-bin extraction

to identify frequently occurring error cases and report the success and failure of error

recovery protocols, the EXERMEST framework combines multiple feature extraction

methods and multiple correlation methods to identify rare error cases. We provide

this chapter for the interested reader to easily compare the diagnostics capabilities

of CORRMEXT and EXERMEST.

We structure this chapter as follows: In Section 7.1, we summarise the

CORRMEXT framework and describe the list of error cases. In Section 7.2, we

summarise the EXERMEST framework and describe the list of error cases. In

Section 7.3, we discuss the similarities and differences between CORRMEXT and

EXERMEST and conclude with a summary in Section 7.4.

7.1 CORRMEXT Failure Diagnosis Framework

In this section, we summarise the CORRMEXT diagnostics framework and describe

the list of error cases.

7.1.1 Introduction

We developed CORRMEXT to study patterns of error cases that occur frequently.

CORRMEXT used real resource use data and system logs in its analyses. The

153

resource use data and system logs were generated on production high performance

computing systems. CORRMEXT combined analysis of resource usage data and

system logs and report the success and failure of error recovery protocols. It is based

on the use of TACC Stats [17] resource usage monitor, Rationalized message logs

[36] and Syslogs [40]. We implemented an approach (CORRMEXT) that has three

phases. The three phases of the approach are:

• Correlating resource use counters in the resource use data to identify the

strongly positive correlated resource use counters.

• Correlating message types in the system logs to identify the strongly positive

correlated system events.

• Extracting the variance of the time-bins associated with the correlated resource

use counters and correlated system events to identify the earliest hour of change

in the system behaviour.

The CORRMEXT framework is composed of three modules. The three

modules are: (1) Data Type Extraction, (2) Correlation and (3) Time-bin Extraction.

When given a list of dates, CORRMEXT automatically applied the Data Type

Extraction, Correlation and Time-bin Extraction modules on the resource use data

and system logs. Next, we summarise the three modules within the CORRMEXT

framework.

CORRMEXT: Data Type Extraction

The Data Type Extraction module currently processes TACC Stats resource use

data, Rationalized message logs and Syslogs. It produced a standardise data format

on which standard analysis algorithms can be applied. We represented the resource

use data and system logs as two data matrices. In the data matrix that represents

resource use data, a resource use counter is represented by one row, a time-bin is

represented by one column and the count for one resource use counter at one time-bin

is represented by one cell. In the data matrix that represents the system logs, a

message type is represented by one row, a time-bin is represented by one column

and the count for one message type at one time-bin is represented by one cell. Our

objective is to identify error propagation and recovery patterns which occur over a

regular time window, not over different time windows. Therefore, we collected the

resource use data and system logs using a fixed time window of one hour.

154

CORRMEXT: Correlation

The Correlation module computes: (i) the correlation coefficients between all the

resource use counters and extracts a list of strongly positive correlated resource use

counters for analysis, and (ii) the correlation coefficients between all the message

types and extracts a list of strongly positive correlated system events for analysis.

It receives the resource use counters and message types data matrices generated by

the Data Type Extraction module. Currently, the Correlation module evaluated two

different correlation algorithms. The correlation algorithms are Pearson correlation

and Spearman-Rank correlation. We implemented Pearson correlation and use it to

identify resource use counters and system events that follow a linear pattern. We

implemented Spearman-Rank correlation and use it to identify resource use counters

and system events that follow a monotonically increasing pattern. We combined

Pearson and Spearman-Rank correlation methods to detect a gradual change or

fluctuation in the relationship between a pair of resource use counters or a pair of

message types. We used the following rules to interpret the strength of the correlation

coefficient [1]: (i) between 0.8 to 1 as strong positive correlated, (ii) between 0.3 to

0.79 as moderate positive correlated, and (iii) between 0.1 to 0.29 as weak positive

correlated.

We tested the significance of all the correlation coefficients by applying a

standard technique called Fisher’s z-score [67]. We defined two null hypothesis

and two alternate hypothesis. The null hypotheses are: (i) a pair of resource use

counters is weakly positive correlated, and (ii) a pair of message types is weakly

positive correlated. The alternate hypotheses are: (i) a pair of resource use counters

is strongly positive correlated, and (ii) a pair of message types is strongly positive

correlated. We addressed the issue of inflation in false positive due to multiple

independent tests by applying the Bonferroni correction [26].

CORRMEXT: Time-bin Extraction

At every hour, the Time-bin Extraction module computes the variance of the

correlated resource use counters and correlated system events to identify the hour

that has the highest variance. It receives the data matrices that contain the strongly

positive correlated resource use counters and strongly positive correlated message

types. Our objective is to identify the earliest hour of change in the system behaviour

by identifying the hour containing the highest variance.

155

7.1.2 Error Cases Identified by CORRMEXT

We applied CORRMEXT on the resource use data and system logs collected on

Ranger and Lonestar4. There are no system logs available on Stampede-1. Because of

this, we applied CORRMEXT only on the resource use data collected on Stampede-1

and focus on the system logs that are available on Ranger and Lonestar4. We

obtained the correlation reports that CORRMEXT has generated. We used the

correlation reports to identify the error cases. We identified seven different error

cases on Ranger, Lonestar4 and Stampede-1. The error cases are: (i) network data

and networking software errors, (ii) filesystem, Linux process and software errors, (iii)

file access and Linux process errors, (iv) Linux process errors and system memory

exhaustion, (v) NUMA memory allocation and Linux software memory leaks, (vi)

communication and filesystem I/O errors, and (vii) chipset and ECC memory errors.

A summary of the error cases and their associated system components is given in

Table 7.1.

Table 7.1: List of error cases identified on Ranger, Lonestar4 and Stampede-1.

HPC system Component Error

Lonestar4, Infiniband network Network data &

Stampede-1 software errors

Lonestar4, Storage system & Filesystem, process

Stampede-1 Linux processes & software errors

Ranger Linux virtual memory 1. File access &

& hard disk process errors

2. Process errors &

memory exhaustion

Ranger NUMA & memory Memory allocation

allocation & memory leaks

Ranger Lustre filesystem I/O & Communication &

Infiniband file-system I/O errors

Ranger Chipset & ECC memory Chipset & memory errors

Network Data and Networking Software Errors

In this error case, we gave an example of diagnosing network problems through: (i)

correlations between Infiniband and compute node network resource use counters,

and (ii) correlations between DNS lookup failures and FTP software failures. The

Infiniband and compute node network resource use counters record various activities

on the network ranging from the amount of network data received to the number

of data packets dropped and data frame errors. When data errors occur on the

network, the correlations between networking resource use counters can be used to

monitor the state of the Infiniband network. On Stampede-1, we found that: (i)

156

network data frame errors were strongly positive correlated to network data received

on 26 out of 28 dates during February 2017, and (ii) network data CRC errors were

strongly positive correlated to network data received on 26 out of 28 dates also

during February 2017. This represented 92% of the dates that network data errors

occurred. On Lonestar4, we found that: (i) network data frame errors were strongly

positive correlated to network data packets received on 24 out of 26 dates during

February 2013, and (ii) network data CRC errors were strongly positive correlated

to network data packets received on 24 out of 26 dates also during February 2013.

This represented 92% of the dates that network data errors occurred.

A DNS lookup failure occurred when a networking software attempted to

identify a destination node on the network but the DNS server was incorrectly

configured. On Lonestar4, we found that DNS lookup failure messages were strongly

positive correlated to GSIFTP software error messages on six dates during February

2013. The correlated DNS lookup failures and GSIFTP software errors occurred

on the same dates when network data errors also occurred. On three out of the

six dates, the DNS lookup failure led to the GSIFTP software crash. However on

all six dates, we found that the DNS lookup failure and GSIFTP software errors

were weakly correlated to compute node soft lockups. Therefore, the DNS lookup

failure and GSIFTP software errors did not cause a compute node to crash. This

represented a recovery rate of 100%.

Filesystem, Linux Process and Software Errors

In this error case, we gave an example of diagnosing filesystem problems through:

(i) correlations between harddisk, Lustre filesystem and Linux process resource use

counters, and (ii) correlations between Linux process, Lustre filesystem and software

errors. The harddisk, filesystem and Linux process resource use counters record

various activities on the disk, filesystem and operating system ranging from the

number of inodes allocated to the number of disk sectors written and Linux processes

created. When a Linux process access the harddisk, the correlations between the

harddisk, filesystem and Linux process resource use counters can be used to monitor

the state of the storage and filesystem. On Stampede-1, we found that harddisk,

filesystem and Linux process resource use counters were strongly positive correlated

on 27 dates during February 2017. On Lonestar4, we found that: (i) filesystem and

Linux process resource use counters were strongly positive correlated on 19 dates,

(ii) filesystem and harddisk resource use counters were strongly positive correlated

on 18 dates, and (iii) harddisk and Linux process resource use counters were strongly

positive correlated on 24 dates.

A filesystem I/O error occurred when a harddisk degrades over time and star-

157

ted to fail. On Lonestar4, we found a strong positive correlation between filesystem

I/O and Linux process errors and the errors were strongly positive correlated to

compute node soft lockup on one out of six dates. This represented a failure rate of

17%. On five more dates, we found a strong positive correlation between filesystem

I/O and Linux process errors and the errors were weakly correlated to compute node

soft lockups. The correlated filesystem I/O, Linux process errors and compute node

soft lockups coincided with the dates that harddisk, Lustre filesystem and Linux

process resource use counters were strongly positive correlated. On five of the six

dates, the filesystem I/O and Linux process errors did not cause a compute node to

crash. This represented a recovery rate of 83%.

File Access and Linux Process Errors

In this error case, we gave an example of diagnosing file-access problems through:

(i) correlations of harddisk and virtual memory resource use counters, and (ii)

correlations of file access and Linux process errors. The harddisk and virtual memory

resource use counters record various activities on the harddisk and virtual memory

system ranging from the number of disk sectors written to the number of major

page faults. When Linux uses the harddisk as memory due to low main memory, the

correlations between harddisk and virtual memory resource use counters can be used

to monitor the state of the system memory. On Ranger, we found that: (i) harddisk

I/O and major page faults were strongly positive correlated on 25 dates, and (ii)

file access errors were strongly correlated to compute node soft lockups on eight

out of eight dates. The correlated file access errors and compute node soft lockups

coincided with the dates that harddisk I/O and major page faults were strongly

positive correlated. On all eight dates, file access errors led to a compute node crash.

This represented a failure rate of 100%.

Linux Process Errors and System Memory Exhaustion

In this error case, we gave an example of diagnosing system memory problems

through: (i) correlations of harddisk and virtual memory resource use counters,

and (ii) correlations of Linux process and system memory exhaustion errors. The

harddisk and virtual memory resource use counters record various activities on the

harddisk and virtual memory system ranging from the number of disk sectors written

to the number of major page faults. When Linux uses the harddisk as memory

due to low main memory, the correlations between harddisk and virtual memory

resource use counters can be used to monitor the state of the system memory. On

Ranger, we found that: (i) harddisk I/O and major page faults were strongly positive

correlated on 25 dates, and (ii) Linux process and system memory exhaustion errors

158

were strongly correlated on two dates. The correlated Linux process and system

memory exhaustion errors were also strongly positive correlated to compute node

soft lockups on the two dates. All the dates of the correlated Linux process, system

memory exhaustion errors and compute node soft lockups coincided with the dates

that harddisk I/O and major page faults were correlated. On two out of the two

dates, Linux process and system memory exhaustion errors led to a compute node

crash. This represented a failure rate of 100%.

NUMA Memory Allocation and Linux Software Memory Leaks

In this error case, we gave an example of diagnosing memory allocation and application

memory leak through: (i) correlations of NUMA and Linux process resource use

counters, and (ii) correlations of Linux software memory leaks. The NUMA and

Linux process resource use counters record node memory allocation activities based

on a Linux process request. When a node runs out of memory, the correlations

between NUMA and Linux process resource use counters can be used to monitor the

state of memory allocation in the system. On Ranger, we found that: (i) NUMA and

Linux process resource use counters were strongly positive correlated on 25 dates,

and (ii) segmentation fault and general protection error messages were strongly

positive correlated on 10 dates. All the dates of the correlated segmentation fault

and general protection errors coincided with the dates that NUMA and Linux process

resource use counters were correlated. We found that the correlated segmentation

fault and general protection errors were strongly positive correlated to compute node

soft lockups on 2 of the 10 dates. On the two dates, segmentation fault and general

protection errors led to a compute node crash. This represented a failure rate of

20%. On 8 of the 10 dates, the correlated segmentation fault and general protection

errors were weakly correlated to compute node soft lockups – segmentation fault and

general protection errors did not lead to a compute node crash. This represented a

recovery rate of 80%.

Communication and Filesystem I/O Errors

In this error case, we gave an example of diagnosing communication and filesystem

errors through: (i) correlations of Lustre filesystem I/O and Infiniband resource use

counters, and (ii) correlations of Lustre filesystem and communication errors. The

Lustre filesystem I/O and Infiniband resource use counters record filesystem and

network traffic activities. When the network and filesystem are heavily used, the

correlations between network data error and filesystem I/O resource use counters

can be used to monitor the state of the networked filesystem. On Ranger, we found

that: (i) Infiniband network packet drop and Lustre I/O resource use counters were

159

strongly positive correlated on 24 dates, and (ii) communication and filesystem

errors were strongly positive correlated on 11 dates. All the dates of correlated

communication and filesystem errors coincided with the dates of correlated network

packet drop and Lustre I/O resource use counters. On 2 of the 11 dates, the correlated

communication and filesystem errors were strongly positive correlated to compute

node soft lockups. On the 2 dates, communication and filesystem errors led to a

compute node crash. This represented a failure rate of 18%. On 9 of the 11 dates, the

correlated communication and filesystem errors were weakly correlated to compute

node soft lockups. On the 9 dates, communication and filesystem errors did not lead

to a compute node crash. This represented a recovery rate of 81%.

Chipset and ECC Memory Errors

In this error case, we gave an example of diagnosing memory errors through: (i)

correlations of CPU and memory resource use counters, and (ii) correlations of

chipset and ECC errors. The CPU and memory resource use counters record various

activities ranging from user and system CPU usage to active and inactive memory

usage. When the CPU and memory are heavily used, the correlations between CPU

and memory resource use counters can be used to monitor the state of the CPU and

memory system. On Ranger, we found that: (i) user and system CPU and active

and inactive memory resource use counters were strongly positive correlated on 13

dates, and (ii) chipset and ECC errors were strongly positive correlated on 26 dates.

All the dates of correlated CPU and memory resource use counters coincided with

the dates of correlated chipset and ECC errors. On all the 26 dates, chipset and

ECC errors were weakly correlated to compute node soft lockups – chipset and ECC

errors did not lead to a compute node crash. This represented a recovery rate of

100%.

7.2 EXERMEST Failure Diagnosis Framework

In this section, we summarise the EXERMEST failure diagnosis framework and

describe the list of error cases.

7.2.1 Introduction

We developed the EXERMEST framework to identify the significant resource use

counters and system events associated with rare error cases. By significant, we

mean the resource use counters and system events assigned the highest scores by the

feature extractors. EXERMEST used the resource use data matrices and message

types data matrices. It is based on the data matrices that are generated from

160

TACC Stats [17] resource usage monitor, Rationalized message logs [36] and Syslogs

[40]. EXERMEST evaluated multiple feature extraction methods. We implemented

an approach (EXERMEST) that has two phases. The two phases of the approach

are:

• Extracting the significant resource use counters and system events by applying

different feature extraction methods.

• Correlating the significant resource use counters to other resource use counters

and correlating the significant system events to other system events by applying

different correlation algorithms.

The EXERMEST framework is composed of two modules. The two modules

are: (i) Feature Extraction, and (ii) Correlation. When given a list of dates,

EXERMEST automatically applied the Feature Extraction and Correlation modules

on the resource use data and message types data matrices. Next, we summarise the

two modules within the EXERMEST framework.

EXERMEST: Feature Extraction

The Feature Extraction module receives as its input, a resource use counters data

matrix and message types data matrix. In the resource use counters data matrix

a resource use counter is represented by one row, a time-bin is represented by one

column and the count for the resource use counter at a time-bin is represented by

one cell in the data matrix. In the message types data matrix, a message type is

represented by one row, a time-bin is represented by one column and the count

for the message type at a time-bin is represented by one cell in the data matrix.

The Feature Extraction module currently process three different time-bins of data

matrices. The time-bins are 10 minutes, 30 minutes and 1 hour.

Currently, our Feature Extraction module evaluated three different feature

extraction methods. The feature extraction methods are: (i) Principal Component

Analysis (PCA), (ii) Independent Component Analysis (ICA), and (iii) Non-linear

Principal Component Analysis (NLPCA). Our objective for applying different feature

extraction methods is to identify different patterns of significant resource use counters

and message types. We used PCA and ICA to extract the resource use counters and

message types that follow a linear uncorrelated pattern. We used NLPCA to extract

the resource use counters and message types that follow a non-linear uncorrelated

pattern.

We implemented a process to extract the significant resource use counters

and message types. The process is as follows: First, we extracted the scores of the

supplied data on the first principal component and obtain three sets of scores by

161

PCA, ICA and NLPCA. Second, we sorted the scores by PCA, ICA and NLPCA in

descending order. Third, we extracted the top 5% of the scores by PCA, ICA and

NLPCA and obtain three lists of significant resource use counters and three lists of

significant message types.

EXERMEST: Correlation

The Correlation module received as its input the data matrices as follows: (i) the

resource use data matrix and a smaller data matrix that contains the significant re-

source use counters, and (ii) the message types data matrix and a smaller data matrix

that contains the significant message types. Our Correlation module computed:

• The correlation coefficients between the significant resource use counters and

all the other resource use counters and extracts a smaller set of resource use

counters for analysis.

• The correlation coefficients between the significant message types and all the

other message types and extracts a smaller set of message types for analysis.

Currently, the Correlation module applies two different correlation algorithms.

The correlation algorithms are Pearson correlation and Spearman-Rank correlation.

We used Pearson correlation to identify pairs of resource use counters and pairs of

message types that has a linear relationship. We used Spearman-Rank correlation

to identify pairs of resource use counters and pairs of message types that has a

monotonically increasing relationship. We used the following rules to interpret the

strength of the correlation coefficient [1]: (i) between 0.8 to 1 as strong positive

correlated, (ii) between 0.3 to 0.79 as moderate positive correlated, and (iii) between

0.1 to 0.29 as weak positive correlated.

We applied a standard technique called Fisher’s z-score [67] to test the

significance of all the correlation coefficients. We tested the correlation coefficients

by defining two null hypothesis and two alternate hypothesis. The null hypotheses

are: (i) a pair of resource use counters is weakly positive correlated, and (ii) a pair

of message types is weakly positive correlated. The alternate hypotheses are: (i)

a pair of resource use counters is strongly positive correlated, and (ii) a pair of

message types is strongly positive correlated. We applied the Bonferroni correction

[26] to address the inflation in false positive due to multiple independent tests. We

addressed the inflation in false positive by multiplying the P -value by the number of

tests.

162

7.2.2 Error Cases Identified by EXERMEST

We applied EXERMEST on the resource use data and system logs collected on

Ranger and Lonestar4. We obtained the features and correlation reports generated

by EXERMEST. We used the reports to identify the rare error cases. All the error

cases are different. The error cases are: (i) network packet drop and Lustre I/O

errors, (ii) CPU I/O bottleneck and Lustre client eviction, (iii) virtual memory and

harddisk I/O errors, and (iv) data and network synchronisation errors. A summary

of the error cases and their associated system components is given in Table 7.2.

Table 7.2: List of rare error cases on Ranger and Lonestar4.

Ranger

Components Error Date

Infiniband & Lustre network, Network packet July 5

Lustre filesystem drops & Lustre I/O

CPU, harddisk & CPU I/O bottleneck & July 15

Lustre filesystem Lustre client eviction

Memory management, Virtual memory & July 25

harddisk & Lustre harddisk I/O

Lonestar4

Components Error Date

Memory, Linux threads Data & network March 1

& Lustre network synchronisation

Network Packet Drop and Lustre I/O Error

In this error case, we gave an example of diagnosing buffer overflow on a network

card through: (i) correlation of significant Infiniband network packet drop to Lustre

network packet drop and Lustre I/O resource use counters and correlation of sig-

nificant Lustre write bytes to Lustre network packet drop and Lustre I/O resource

use counters, and (ii) correlation of significant Linux kernel I/O function calls to

Lustre I/O and Lustre communication errors. When network data transmission error

occurred due to a network card buffer overflow, the correlated Infiniband, Lustre

network and Lustre I/O resource use counters can be used to monitor the state of

the Infiniband, Lustre network and filesystem.

We identified Infiniband network packet drop and Lustre write bytes as

significant resource use counters on Ranger. We found that: (i) the significant

Infiniband network packet drop resource use counter was only identified by NLPCA,

and (ii) the significant Lustre write bytes resource use counter was only identified by

PCA and ICA. Further, we found that the significant resource use counters were only

identified on the data matrix of 10 minute time-bins. We identified two Linux kernel

163

I/O function calls as significant system events. We found that the two Linux kernel

I/O function calls were only identified by NLPCA. Further, we found that both

function calls were only identified on the data matrix of 1 hour time-bins. Our results

showed that: (i) we require different feature extractors for identifying the significant

resource use counters, and (ii) we require time-bins of different granularities for

identifying the significant resource use counters and system events.

CPU I/O Bottleneck and Lustre Client Eviction Error

In this error case, we gave an example of diagnosing bottlenecks through: (i)

correlations of significant CPU I/O wait to CPU idle, harddisk sectors merged and

NUMA resource use counters and correlations of significant Lustre I/O call to CPU

idle, harddisk sectors merged and NUMA resource use counters, and (ii) correlations

of significant Lustre communication errors to Lustre client eviction events. When a

Lustre filesystem client is evicted due to communication errors, the correlated CPU

I/O wait to CPU idle, harddisk sectors merged and NUMA resource use counters and

correlated Lustre I/O function call to CPU idle, harddisk sectors merged and NUMA

resource use counters can be used to monitor bottlenecks on the CPU, harddisk and

Lustre filesystem.

We identified CPU I/O wait and Lustre I/O function call as significant

resource use counters on Ranger. We found that: (i) both significant resource

use counters were only identified by NLPCA, and (ii) both significant resource

use counters were only identified on the data matrix of 10 minute time-bins. We

identified two Lustre filesystem communication error messages as significant events.

We found that: (i) both significant error messages were only identified by ICA, and

(ii) both significant error messages were only identified on the data matrix of 10

minute time-bins. Our results showed that we require different feature extractors for

identifying the significant resource use counters and error messages.

Virtual Memory and Harddisk I/O Error

In this error case, we gave an example of diagnosing a virtual memory allocation error

through: (i) correlations of significant page fault to harddisk sectors written, memory

writeback and Lustre write bytes resource use counters and correlations of Lustre

I/O function call to harddisk sectors written, memory writeback and Lustre write

bytes resource use counters, and (ii) correlations of significant Linux kernel memory

management function calls to Linux page fault and soft lockup events. When the

Linux operating system crashed due to insufficient main memory and virtual memory

allocation, the correlated page fault, harddisk sectors written, memory writeback

and Lustre write bytes resource use counters and correlated Lustre I/O function

164

call, harddisk sectors written, memory writeback and Lustre write bytes resource

use counters can be used to monitor the state of Linux memory management.

We identified virtual memory page fault and Lustre I/O function call as

significant resource use counters on Ranger. We found that: (i) the virtual memory

page fault resource use counter was only identified by ICA, and (ii) the Lustre I/O

function call resource use counter was only identified by NLPCA. Further, we found

both resource use counters only in the data matrix of 10 minute time-bins. We

identified two Linux memory management function calls as significant system events.

We found that: (i) both function call messages were only identified by NLPCA, and

(ii) both function call messages were only identified on the data matrix of 1 hour

time-bins. Our results showed that: (i) we require different feature extractors for

identifying the significant resource use counters, and (ii) we require time-bins of

different granularities for identifying the significant resource use counters and system

events.

Data and Network Synchronisation Error

In this error case, we gave an example of diagnosing a synchronisation error through:

(i) correlations of significant Linux threads count to memory state resource use

counters and correlations of significant out-of-sync memory data to memory state

resource use counters, and (ii) correlations of significant data synchronisation errors

to communication errors. When data and communication errors occur due to

synchronisation issues on the network and Linux operating system, the correlated

Linux threads count and memory state resource use counters can be used to monitor

the state of data synchronisation on the Linux operating system.

We identified Linux threads count and memory data out-of-sync as significant

resource use counters on Lonestar4. We found that the significant Linux threads

count resource use counter was only identified by NLPCA. Further, it was only

identified on the data matrix of 10 minute time-bins. We found that the memory

data out-of-sync resource use counter was identified by ICA and NLPCA. Further, the

significant memory data out-of-sync resource use counter was identified: (i) only on

the data matrix of 10 minute time-bins by NLPCA, and (ii) only on the data matrix

of 1 hour time-bins by ICA. We identified two synchronisation error messages as

significant system events. We found that one of the significant synchronisation error

message was only identified by NLPCA. Further, it was identified only on the data

matrix of 30 minute time-bins. We found that the second significant synchronisation

error message was only identified by ICA. Further, it was identified on the data

matrices of 10 minute time-bins and 1 hour time-bins. Our results showed that: (i)

we require different feature extractors for identifying the significant resource use

165

counters and error messages, and (ii) we require time-bins of different granularities

for identifying the significant resource use counters and error messages.

7.3 Similarities and Differences Between CORRMEXT

and EXERMEST

In this section, we discuss the similarities and differences between the CORRMEXT

and EXERMEST failure diagnosis frameworks. We begin by comparing the methods

within the CORRMEXT and EXERMEST frameworks. Then, we highlight the

types of errors CORRMEXT and EXERMEST were designed to identify. Then, we

highlight the similarities of CORRMEXT and EXERMEST which can help integrate

both workflows.

7.3.1 Features of CORRMEXT and EXERMEST

The CORRMEXT framework integrated the Data Type Extraction, Correlation and

Time-bin Extraction modules. The EXERMEST framework integrated the Feature

Extraction and Correlation modules. A comparison of the functions of CORRMEXT

and EXERMEST is given in Table 7.3.

Table 7.3: Comparing features of the CORRMEXT and EXERMEST frameworks.

Multiple Feature Feature Raw Data

time-bins selection extraction data matrix

CORRMEXT No Yes No Yes Yes

EXERMEST Yes Yes Yes No Yes

We summarise the functions of CORRMEXT that are different to EXER-

MEST:

• It uses the raw resource use data and system logs as input.

• It organises the resource use data and system logs into time-bins of 1 hour.

• It applies supervised methods to select the features to be used for detailed dia-

gnosis. The methods are Pearson correlation and Spearman-Rank correlation.

We summarise the functions of EXERMEST that are different to COR-

RMEXT:

• It uses the resource use data matrices and message types data matrices as

input.

166

• It processes resource use data matrices and message types data matrices of

multiple granularities of time-bins.

• It applies unsupervised methods to extract the features for an initial diagnosis.

The methods are PCA, ICA and NLPCA.

7.3.2 Frequent and Rare Error Cases

The CORRMEXT framework identifies error cases that occur frequently and reports

the success and failure of error recovery protocols. The EXERMEST framework

identifies the significant system events and resource use counters to diagnose error

cases that are rare. A summary of the types of error cases is given in Table 7.4.

Table 7.4: Summary of error cases diagnosed using CORRMEXT and EXERMEST.

Multiple components Rare errors Frequent errors

CORRMEXT Yes No Yes

EXERMEST Yes Yes No

From Table 7.4, we observe that the type of error cases CORRMEXT and

EXERMEST identified are different in the following way: (i) the error cases COR-

RMEXT identifies are frequently occurring ones, (ii) the error cases EXERMEST

identifies are rare. Therefore, we can use CORRMEXT to identify error cases

that occur frequently and use EXERMEST to identify error cases that are rare.

Both EXERMEST and CORRMEXT identify errors that occur on multiple system

components.

7.3.3 Integrating EXERMEST and CORRMEXT

From Table 7.3, we observe that CORRMEXT and EXERMEST shared two functions.

The functions are: (i) using correlation to select features for detailed diagnosis,

(ii) using resource use data matrices and message types data matrices to identify

the features which are relevant to the diagnosis of an error. From Table 7.4, we

observe that CORRMEXT and EXERMEST identified errors that occur on multiple

system components. Based on the similarities, a framework which integrates the

CORRMEXT and EXERMEST workflows can be developed. We are implementing

a framework to bring the workflows together.

7.4 Summary

We presented a comparative analysis of the CORRMEXT and EXERMEST failure

diagnosis frameworks. We summarised the Data Type Extraction, Correlation and

167

Time-bin Extraction modules used within CORRMEXT and described the list of

error cases. We summarised the Feature Extraction and Correlation modules used

within EXERMEST and described the list of error cases. We discussed the features

of CORRMEXT and EXERMEST and showed that CORRMEXT and EXERMEST

complemented each other through their diagnostics functions.

168

Chapter 8

Summary and Future Research

Analysing failures to improve the reliability of HPC systems is important. The

system logs and resource use data that HPC systems generate are a useful source of

information, however the large amount of data presents a significant challenge for

systems diagnosis. In this thesis, we developed two failure diagnosis frameworks. We

implemented the Data Type Extraction, Feature Extraction, Correlation and Time-

bin Extraction modules. We integrated the Data Type Extraction, Correlation and

Time-bin Extraction modules into the framework called CORRMEXT. It identified

frequently occurring error cases and reported the success and failure of error recovery

protocols. We integrated the Feature Extraction and Correlation modules into

the framework called EXERMEST. It extracted the significant system events and

resource use counters associated with rare error cases.

We structure the remainder of this chapter as follows: In Section 8.1, we

summarise the contribution of Chapters 2, 3, 4, 5, 6 and 7. In Section 8.2, we provide

a number of suggestions for future research.

8.1 Summary of Chapters

The introductory chapters in this thesis are: (i) Introduction (Chapter 1), (ii) Review

of cluster log-files data processing tools (Chapter 2), and (iii) Define the research

problem, describe the HPC systems and log-data (Chapter 3). The contribution

chapters in this thesis are: (i) The CORRMEXT framework (Chapters 4 and 5), and

(ii) The EXERMEST framework (Chapter 6).

In Chapter 2, we presented a detailed survey of system log-file processing

tools. We showed that most of the tools were comprised of two main activities. The

first activity tokenised system log messages by extracting sequences of English-only

words in the free form text of the textual message logs. The second activity applied

a method to measure the similarity between system log messages. Further, we

169

showed that the method implemented by the tools can be grouped into five different

categories.

In Chapter 3, we described the system model, fault model and system issues,

introduced the Ranger, Lonestar4 and Stampede-1 HPC systems operated by the

Texas Advanced Computing Center, described the TACC Stats resource use data,

Rationalized message logs and Syslogs, and gave the implementation details for the

Resource Use Data and Message Types Data preprocessing modules.

In Chapter 4, we presented the CORRMEXT framework that processed both

the resource use data and system logs to identify: (i) frequently occurring error

cases, and (ii) report the success and failure of error recovery protocols. We applied

CORRMEXT on the TACC Stats resource use data and Rationalized message logs on

the Ranger HPC system. CORRMEXT diagnosed five error cases and extracted the

variance in the times of the correlated resource use counter groups and correlated error

groups to identify the earliest occurrences of the problem. To ensure diagnostics

accuracy, CORRMEXT used the Bonferroni correction and showed that all the

correlations are significant. The main technical contribution of the chapter is a

new failure diagnostics framework that integrated resource use data and system

log-preprocessing, multiple correlation methods and time-bins extraction.

In Chapter 5, we applied CORRMEXT on multiple HPC systems. COR-

RMEXT generated the analyses focused on the correlated groups of resource use

counters and correlated groups of errors. It confirmed the findings reported in

Chapter 4 and identified three different error cases and one resource usage activity

case. To ensure diagnostics accuracy, we showed that all the correlations would not

be observed under the null hypothesis.

In Chapter 6, we presented the EXERMEST framework for diagnosing rare

error cases on multiple HPC systems. EXERMEST used the resource use data

matrices and message types data matrices in its analyses. It evaluated three different

feature extraction methods. EXERMEST identified four different error cases on two

HPC systems. EXERMEST used the Bonferroni correction to ensure the accuracy of

the diagnoses and showed that all the correlations would not be observed under the

null hypothesis. The main technical contribution of the chapter is a new workflow that

integrated multiple feature extraction methods and multiple correlation methods.

In Chapter 7, we presented a comparative analysis of the CORRMEXT

and EXERMEST failure diagnosis frameworks. We summarised the Data Type

Extraction, Correlation and Time-bin Extraction modules used within CORRMEXT

and provided the list of error cases. We summarised the Feature Extraction and

Correlation modules used within EXERMEST and provided the list of error cases.

We discussed the various functions in CORRMEXT and EXERMEST and showed

170

that they complement one another by identifying their similarities.

8.2 Future Research

In this section, we provide a number of suggestions for future research.

8.2.1 Preventive Maintenance

The groups of correlated resource use counters and groups of correlated errors

(presented in Chapters 4 and 5) raise an interesting point for discussion on further

work. A detailed analysis of spatial failures on a large HPC system was presented

in [29]. The authors used the analyses to improve the performance of applications

running on the Titan supercomputer at Oak Ridge National Laboratory. They

proposed a novel scheme that exploited the spatial characteristics of system failures.

In contrast to the analyses presented in [29], we argue that the CORRMEXT

framework focuses on the problem specification described in Section 4.2.2, i.e., we

seek to correlate groups of resource use counters and correlate groups of errors by

time-bins. We know that network data and networking software errors, file access

errors and process messages, process errors and system memory exhaustion, and

filesystem, Linux process and software errors can be identified using hour-based

correlation analysis. A potential thread for future research is to integrate location

and time-based analysis approaches to relate system processes to new error cases.

This will lead to an interesting application where the diagnoses can be used as part

of a preventive maintenance regime. Here, the goal is to identify small problems and

fix them before they become a major problem.

8.2.2 Extension to Distributed Systems

The HPC systems presented in Chapter 3 raise an interesting point for discussion on

further work. The CORRMEXT framework does not process system logs generated

on distributed systems but CORRMEXT’s data type extractor was designed to work

on system logs that contain only three fields (timestamp, node and message). We

argue that this pertains to the case study systems, i.e., we identify the error cases on

HPC systems. Having said that, we can apply CORRMEXT’s data type extractor to

process system logs generated on distributed systems, for example: Hadoop system

logs. We can integrate distributed log-analysis frameworks, for example: DILAF [2]

with CORRMEXT. A potential thread for future research is to extend CORRMEXT

to diagnose errors on distributed systems.

171

8.2.3 Failure Prediction

The error cases presented in Chapters 4, 5 and 6 raise an interesting point for

discussion on further work. The EXERMEST and CORRMEXT frameworks do not

infer actual root cause of system failures but it is done with the aid of a system

administrator. We argue that this pertains to the fault model described in Section

6.2.1, i.e., we identify errors without prior knowledge of fault models. There is no

prediction model. Therefore, we focus on system diagnosis. Having said that, we can:

(i) use the error cases identified by EXERMEST and (ii) use the frequently occurring

error cases identified by CORRMEXT to predict when those errors are likely to occur

in the future. We can integrate online failure prediction frameworks, for example:

the reference in [52], failure prediction techniques described in [59] with EXERMEST

and CORRMEXT. Integrating EXERMEST and CORRMEXT with an online failure

prediction framework and error detection method, for example: CRUDE [34] will

expand it into the error prediction and detection phases. A potential thread for

future research is to develop an unsupervised approach to identify which resource

use counter and system event are good predictors for the error cases.

8.2.4 Feature Selection and Optimisation

The Correlation module implemented in CORRMEXT raises an interesting point

for further work. CORRMEXT generated the correlation reports which is manually

scanned to extract the resource use counters and system errors for diagnosing an

error case. We argue that this pertains to the problem specification described in

Section 4.2.2, i.e., we seek to correlate groups of resource use counters and correlate

groups of errors by time-bins. Having said that, we can integrate feature extraction

with correlation, for example: in EXERMEST (see Chapter 6). We can also integrate

correlation-based feature selection techniques, for example: the reference in [43] with

CORRMEXT. A potential thread for future research is to develop a correlation-based

approach to automate selection of a good subset of features whilst minimising the

error rate.

172

Bibliography

[1] Alan Agresti and Christine Franklin. Statistics: The Art and Science of Learning

From Data. Prentice Hall International, 2009. ISBN 978-0135131992.

[2] Merve Astekin, Harun Zengin, and Hasan Szer. DILAF: A framework for

distributed analysis of large-scale system logs for anomaly detection. Software:

Practice and Experience, 49(2):153–170, 2019. doi: 10.1002/spe.2653.

[3] Algirdas Avizienis, Jean-Claude Lapire, Brian Randell, and Carl Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

[4] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.

Tarjan. Time bounds for selection. Journal of Computer and System Sciences,

7(4):448 – 461, 1973. doi: https://doi.org/10.1016/S0022-0000(73)80033-9.

[5] Greg Bronevetsky, Ignacio Laguna, Bronis R de Supinski, and Saurabh Bagchi.

Automatic fault characterization via abnormality-enhanced classification. In

Proceedings of IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pages 1–12, 2012. doi: 10.1109/DSN.2012.6263926.

[6] Edward Chuah and et. al. Enabling online resource use and system log-analysis

for HPC systems vulnerability diagnosis. In Under preparation for submission

in 2020, 2020.

[7] Edward Chuah, Gary Lee, William-Chandra Tjhi, Shyh-Hao Kuo, Terence

Hung, John Hammond, Tommy Minyard, and James C. Browne. Establishing

hypothesis for recurrent system failures from cluster log files. In Proceedings of

IEEE DASC, pages 1–8, Dec 12-14 2011.

[8] Edward Chuah, Arshad Jhumka, Sai Narasimharmuthy, John Hammond,

James C. Browne, and Bill Barth. Linking resource usage anomalies with

system failures from cluster log data. In Proceedings of IEEE International

173

Symposium on Reliable Distributed Systems (SRDS), pages 111–120, 2013. doi:

10.1109/SRDS.2013.20.

[9] Edward Chuah, Arshad Jhumka, James C. Browne, Nentawe Gurumdimma, Sai

Narasimharmuthy, and Bill Barth. Using message logs and resource use data

for cluster failure diagnosis. In Proceedings of IEEE International Conference

on High Performance Computing, Data and Analytics (HiPC), pages 232–241,

2016. doi: 10.1109/HiPC.2016.035.

[10] Edward Chuah, Arshad Jhumka, Samantha Alt, Theo Damoulas, Nentawe

Gurumdimma, Marie-Christine Sawley, William L. Barth, Tommy Minyard, and

James C. Browne. Enabling dependability-driven resource use and message-log

analysis for cluster system diagnosis. In Proceedings of IEEE International

Conference on High Performance Computing, Data and Analytics (HiPC), pages

317–327, 2017. doi: 10.1109/HiPC.2017.00044.

[11] Edward Chuah, Arshad Jhumka, Samantha Alt, Daniel Balouek-Thomert,

James C. Browne, and Manish Parashar. Towards comprehensive dependability-

driven resource use and message log-analysis for HPC systems diagnosis. Journal

of Parallel and Distributed Computing, 132:95–112, 2019. doi: https://doi.org/

10.1016/j.jpdc.2019.05.013.

[12] Edward Chuah, Arshad Jhumka, Samantha Alt, J.J Villalobos, Joshua B.

Fryman, William L. Barth, and Manish Parashar. Using resource use data

and system logs for HPC system error propagation and recovery diagnosis.

In Proceedings of IEEE International Symposium on Parallel and Distributed

Processing with Applications (ISPA), pages 1–10, 2019.

[13] Christophe Croux, Peter Filzmoser, and M. Rosario Oliveira. Algorithms for

projection-pursuit robust principal component analysis. Chemometrics and

Intelligent Laboratory Systems, 87(2):218–225, 2007.

[14] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott Baden.

Doomsday: Predicting which node will fail when on supercomputers. In

IEEE/ACM Supercomputing (SC), 2018.

[15] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. Desh: Deep

learning for system health prediction of lead times to failure in HPC. In ACM

HPDC, 2018.

[16] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello. Logaider: A tool for

mining potential correlations of HPC log events. In IEEE Cluster, Cloud and

Grid Computing (CCGRID), pages 442–451, May 2017.

174

[17] R. Todd Evans, James C. Browne, and William L. Barth. Understanding applica-

tion and system performance through system-wide monitoring. In Proceedings of

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 1702–1710, 2016. doi: 10.1109/IPDPSW.2016.145.

[18] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena

Vlasenko. Failure prediction based on log files using random indexing and

support vector machines. Journal of Systems and Software, 86(1):2 – 11, 2013.

doi: https://doi.org/10.1016/j.jss.2012.06.025.

[19] Q. Fu, J. G. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed

systems through unstructured log analysis. In 2009 Ninth IEEE International

Conference on Data Mining, pages 149–158, Dec 2009. doi: 10.1109/ICDM.2009.

60.

[20] Song Fu and Cheng-Zhong Xu. Exploring event correlation for failure predic-

tion in coalitions of clusters. In Proceedings of ACM/IEEE Supercomputing,

number 41, 2007.

[21] Xiaoyu Fu, Rui Ren, Jianfeng Zhan, Wei Zhou, Zhen Jia, and Gang Lu. Log-

master: Mining event correlations in logs of large-scale cluster systems. In

Proceedings of IEEE International Symposium on Reliable Distributed Systems

(SRDS), pages 71–80, 2012. doi: 10.1109/SRDS.2012.40.

[22] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. Predicting computer

system failures using support vector machines. In Proceedings of 1st USENIX

Workshop on the Analysis of System Logs, 2008. URL http://dl.acm.org/

citation.cfm?id=1855886.1855891.

[23] Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and Bill Kramer. Event

log mining tool for large scale HPC systems. In Proceedings of Euro-Par, pages

52–64, 2011.

[24] Ana Gainaru, Franck Cappello, and William Kramer. Taming of the shrew:

Modeling the normal and faulty behaviour of large-scale HPC systems. In Pro-

ceedings of IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 1168–1179, 2012. doi: 10.1109/IPDPS.2012.107.

[25] Diego Galar and Uday Kumar. Chapter 5 - diagnosis. eMaintenance, pages 235

– 310, 2017.

[26] Jelle J. Goeman and Aldo Solari. Multiple hypothesis testing in genomics.

Statistics in Medicine, 33(11):1946–1978, 2014. doi: 10.1002/sim.6082.

175

http://dl.acm.org/citation.cfm?id=1855886.1855891
http://dl.acm.org/citation.cfm?id=1855886.1855891

[27] Qiang Guan and Song Fu. Adaptive anomaly identification by exploring metric

subspace in cloud computing infrastructures. In 32nd IEEE International

Symposium on Reliable Distributed Systems (SRDS), pages 205–214, 2013. doi:

10.1109/SRDS.2013.29.

[28] Qiang Guan, Derek Smith, and Song Fu. Anomaly detection in large-scale coali-

tion clusters for dependability assurance. In Proceedings of IEEE International

Conference on High Performance Computing (HiPC), pages 1–10, 2010. doi:

10.1109/HIPC.2010.5713169.

[29] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell. Understanding and

exploiting spatial properties of system failures on extreme-scale HPC systems.

In Proceedings of IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pages 37–44, 2015. doi: 10.1109/DSN.2015.52.

[30] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. Fail-

ures in large scale systems: Long-term measurement, analysis, and implications.

In Proceedings of IEEE/ACM Supercomputing (SC), pages 44:1–44:12, 2017.

doi: 10.1145/3126908.3126937.

[31] Nentawe Gurumdimma and Arshad Jhumka. Detection of recovery patterns

in cluster system using resource usage data. In Proceedings of IEEE Pacific

Rim International Symposium on Dependable Computing (PRDC), pages 58–67,

2017. doi: 10.1109/PRDC.2017.17.

[32] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and

Jamee C. Browne. On handling redundancy for failure log analysis of cluster

systems. In Proceedings of DEPEND, pages 1–8, 2015.

[33] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and

James C. Browne. Towards increasing the error handling time window in large-

scale distributed systems using console and resource usage logs. In Proceedings

of IEEE Trustcom/BigDataSE/ISPA, pages 61–68, 2015. doi: 10.1109/Trustcom.

2015.613.

[34] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and

James C. Browne. Crude: Combining resource usage data and error logs for

accurate error detection in large-scale distributed systems. In Proceedings of

IEEE International Symposium on Reliable Distributed Systems (SRDS), pages

51–60, 2016. doi: 10.1109/SRDS.2016.017.

[35] John Hammond. Tacc stats: I/o performance monitoring for the intransigent.

In Invited Keynote for the 3rd IASDS Workshop, pages 1–29, 2011.

176

[36] John L. Hammond, Tommy Minyard, and Jim Browne. End-to-end framework

for fault management for open source clusters: Ranger. In Proceedings of ACM

TeraGrid Conference, number 9, 2010. doi: 10.1145/1838574.1838583.

[37] Stephen E. Hansen and E. Todd Atkins. Automated system monitoring and

notification with swatch. In USENIX LISA, pages 101–108, 1993.

[38] Huan Liu and Lei Yu. Toward integrating feature selection algorithms for classi-

fication and clustering. IEEE Transactions on Knowledge and Data Engineering,

17(4):491–502, 2005.

[39] Aapo Hyvarinen and Erkki Oja. Independent component analysis: Algorithms

and applications. Neural Networks, 13(4-5):411–430, 2000.

[40] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable

Operating System Interface (POSIX) Rationale (Informative). IEEE Standards,

2001. ISBN 1-85912-247-7 (UK), 1-931624-07-0 (US), 0-7381-3048-6 (print),

0-7381-3010-9 (PDF), 0-7381-3129-6 (CD-ROM).

[41] Soila P Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev Gandhi,

and Priya Narasimhan. Draco: Statistical diagnosis of chronic problems in large

distributed systems. In Proceedings of IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), pages 1–12, 2012. doi: 10.1109/DSN.

2012.6263927.

[42] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and

decorrelation. The American Statistician, 0(0):1–6, 2018.

[43] Madhumathi R. Kowshalya, A.M. and N. Gopika. Correlation based feature

selection algorithms for varying datasets of different dimensionality. Wireless

Personal Communications, (108):19771993, 2019. doi: https://doi.org/10.1007/

s11277-019-06504-w.

[44] Zhiling Lan, Ziming Zheng, and Yawei Li. Toward automated anomaly identi-

fication in large-scale systems. IEEE Transactions on Parallel and Distributed

Systems, 21(2):174–187, 2010.

[45] Yinglung Liang, Yanyong Zhang, Morris Jette, Anand Sivasubramaniam, and

Ramendra Sahoo. Bluegene/l failure analysis and prediction models. In Pro-

ceedings of IEEE/IFIP DSN, pages 425–434, 2006.

[46] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. Failure

prediction in ibm bluegene/l event logs. In Proceedings of IEEE International

177

Conference on Data Mining (ICDM), pages 583–588, 2007. doi: 10.1109/ICDM.

2007.46.

[47] Tao Li Liang Tang and Chang-Shing Perng. Logsig: Generating system events

from raw textual logs. In Proceedings of the 20th ACM International Conference

on Information and Knowledge Management, pages 785–794, 2011.

[48] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. Cluster-

ing event logs using iterative partitioning. In Proceedings of ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1255–

1264, 2009. doi: 10.1145/1557019.1557154.

[49] Ann Gentile Matthew Wong Narate Taerat, Jim Brandt and Chokchai Leang-

suksun. Baler: deterministic, lossless log message clustering tool. Computer

Science: Research and Development, 26:285–295, 2011.

[50] Adam J. Oliner, Alex Aiken, and Jon Stearley. Alert detection in system logs. In

Proceedings of IEEE International Conference on Data Mining (ICDM), pages

959–964, December 2008. doi: 10.1109/ICDM.2008.132.

[51] Adam J Oliner, Ashutosh V. Kulkarni, and Alex Aiken. Using correlated

surprise to infer shared influence. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 191–200, 2010.

doi: 10.1109/DSN.2010.5544921.

[52] Alejandro Pelaez, Andres Quiroz, James C. Browne, Edward Chuah, and Manish

Parashar. Online failure prediction for HPC resources using decentralized clus-

tering. In Proceedings of IEEE International Conference on High Performance

Computing (HiPC), pages 1–9, 2014. doi: 10.1109/HiPC.2014.7116903.

[53] James E. Prewett. Analyzing cluster log files using logsurfer. In 4th Linux

Clusters Conference CWCE, June 2003.

[54] James E. Prewett. Listening to your cluster with logs. In Proceedings of

the 5th LCI International Conference on Linux Clusters: TheHPC Revolution,

2004. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

563.8475.

[55] Thomas Reidemeister, Mohammad Ahmad Munawar, Miao Jiang, and Paul A.S.

Ward. Diagnosis of recurrent faults using log files. In Proceedings of the 2009

Conference of the Center for Advanced Studies on Collaborative Research, pages

12–23, 2009. doi: 10.1145/1723028.1723031.

178

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.563.8475
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.563.8475

[56] John P. Rouillard. Real-time log file analysis using the simple event correlator

(sec). In Proceedings of the 18th USENIX Conference on System Administration,

pages 133–150, 2004. URL http://dl.acm.org/citation.cfm?id=1052676.

1052694.

[57] Felix Salfner and Steffen Tschirpke. Error log processing for accurate failure

prediction. In 1st UNIX Workshop on the Analysis of System Logs, December

2008.

[58] Felix Salfner, Peter Troeger, and Steffen Tschirpke. Cross-core event monitoring

for processor failure prediction. In Proceedings of IEEE International Conference

on High Performance Computing Simulation, pages 67–73, 2009. doi: 10.1109/

HPCSIM.2009.5191988.

[59] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure predic-

tion methods. ACM Comput. Surv., 42(3), March 2010. ISSN 0360-0300. doi: 10.

1145/1670679.1670680. URL https://doi.org/10.1145/1670679.1670680.

[60] Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka, and Joachim

Selbig. Non-linear PCA: a missing data approach. Bioinformatics, 21(20), 2005.

[61] Niyazi Sorkunlu, Varun Chandola, and Abani Patra. Tracking system behavior

from resource usage data. In Proceedings of IEEE International Conference on

Cluster Computing (CLUSTER), pages 410–418, 2017. doi: 10.1109/CLUSTER.

2017.70.

[62] Jon Stearly and Adam J. Oliner. Bad words: Finding faults in spirit’s syslogs.

In Proceedings of IEEE CCGRID, pages 765–770, 2008.

[63] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining. Addison-Wesley, 2006.

[64] Michael M. Tsao and Daniel P. Siewiorek. Trend analysis on system error files.

In Proceedings of FTCS ’83, pages 116–119, 1983.

[65] Risto Vaarandi. Sec a lightweight event correlation tool. In Proceedings of the

2002 IEEE Workshop on IP Operations and Management (IPOM), pages 1–5,

2002.

[66] Risto Vaarandi. Mining event logs with slct and loghound. In Proceedings

of IEEE Network Operations and Management Symposium (NOMS), pages

1071–1074, 2008. doi: 10.1109/NOMS.2008.4575281.

179

http://dl.acm.org/citation.cfm?id=1052676.1052694
http://dl.acm.org/citation.cfm?id=1052676.1052694
https://doi.org/10.1145/1670679.1670680

[67] Ronald E. Walpole, Raymond H. Myers, and Sharon L. Myers. Probability and

Statistics for Engineers and Scientists. Prentice Hall International, 1998. ISBN

978-0138402082.

[68] Guosai Wang, Lifei Zhang, and Wei Xu. What can we learn from four years

of data center hardware failures? In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 25–36, June

2017. doi: 10.1109/DSN.2017.26.

[69] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan.

Detecting large-scale system problems by mining console logs. In Proceedings of

ACM Symposium on Operating Systems Principles (SIGOPS), pages 117–132,

2009. doi: 10.1145/1629575.1629587.

[70] Ziming Zheng, Zhiling Lan, Byung H. Park, and Al Geist. System log pre-

processing to improve failure prediction. In Proceedings of IEEE/IFIP DSN,

2009.

[71] Ziming Zheng, Li Yu, Wei Tang, and Zhiling Lan. Co-analysis of RAS log

and job log on BlueGene/P. In Proceedings of IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 840–851, 2011. doi:

10.1109/IPDPS.2011.83.

[72] Ziming Zheng, Li Yu, Zhiling Lan, and Terry Jones. 3-dimensional root cause

diagnosis via co-analysis. In Proceedings of ACM International Conference on

Autonomic Computing (ICAC), pages 181–190, 2012. doi: 10.1145/2371536.

2371571.

180

	Insert from: "WRAP_Coversheet_Theses_PhD.pdf"
	http://wrap.warwick.ac.uk/147261

