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Throughout the development of functional programming languages, one of the

most researched topics is their implementation. A common approach is specifying

their semantics in terms of abstract machines, first-order deterministic transition

systems. Biernacka & Danvy showed the correspondence between abstract ma-

chines and reduction calculi. The authors introduced λp̂-calculus, a variant of

λ-calculus with explicit substitutions via closures, and derived multiple known

abstract machines such as CEK or Krivine machine.

Using Agda, a dependently-typed programming language, and a proof-assistant,

we successfully build upon earlier work by Swierstra on the formalisation of the

Krivine machine and adapt his approach to obtaining a CEK machine.

The main contributions include a mechanized proof of equivalence of derived CEK

machine with the small-step recursive evaluator for λp̂-calculus under call-by-value

reduction strategy. We successfully introduced and formalised a variant of Strong

Normalisation property for λp̂-calculus under call-by-value, inspired by Martin-Löf

and Tait’s proof of Strong Normalisation for Simply Typed λ-calculus.

The result is a correct-by-specification and executable CEK machine proven to

terminate for well-typed terms of the language. This study could be a potential

basis for further research, such as formalising executable machines for context-

sensitive languages with control operators, such as Parigiot’s λµ-calculus.
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Chapter 1

Introduction

1.1 Motivation

Abstract machines are mathematical models used to describe formal semantics

of programming languages, as first-order transition systems. Such treatment of

semantics have multiple useful properties:

• the ease of modelling complex features of the languages, such as continua-

tions, control operators or threads

• realistic and efficient execution model of the language allowing to easily build

an interpreter

• abstract point of view, useful when proving properties of the language or

obtaining static analyses (Van Horn and Might (2010))

The formal definition of the semantics of programming languages allows one to

reason about programs and prove their correctness properties, which is particularly

useful when building safe and trustworthy software systems.

It was shown by Biernacka and Danvy (2007b) that abstract machines, rather than

invented, can be mathematically derived from calculi with explicit substitutions.

The authors introduced a formalism called λp̂ (Extended Calculus of Closures),

which upon transformations leads to multiple known abstract machines for λ-

calculus, as well considered its variants with control operators (Biernacka and

Danvy (2007a)).

1



2 Chapter 1 Introduction

This project concerns the use of Biernacka & Danvy methodology to obtain correct-

by-specification abstract machine interpreter for call-by-value Simply Typed λ-

calculus. To do so, we use Agda, a dependently typed language, which thanks

to the expressiveness of its type system, can double as a proof assistant to ob-

tain correct-by-specification code, along with constructive proofs of the required

properties.

1.2 Scope

The target language we focus on is λ-calculus which is a universal model of com-

putation coming from formal logic, which captures key concepts of a programming

language, such as functions, variables, and instantiating the functions with a given

argument. λ-calculus is a backbone for modern functional programming languages,

such as Haskell.

We particularly restrict our scope to the Simply Typed λ-calculus (STLC), which

is less expressive than untyped lambda calculus. However, it has one interest-

ing property; it is strongly normalising, that is every well typed program always

terminates and never diverges.

As a basis, we consider call-by-value λp̂. From it, we derive a well-known CEK

λ-calculus machine (Felleisen and Friedman (1987)) and prove its correctness prop-

erties. We build upon earlier work of Swierstra (2012) who considered call-by-name

λp̂ to derive an executable Krivine machine.

1.3 Goals and contributions

The primary goals of this project are as follows:

1. To obtain an executable and correct CEK machine in a dependently typed

programming language.

2. To show that such machine always terminates when given well-typed Simply

Typed λ-Calculus terms.
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The main contributions of this project are:

1. We extend Swierstra (2012) formalisation of λp̂ to call-by-value case, includ-

ing the properties of head reduction.

2. We provide a proof of a Strong Normalisation property for call-by-value λp̂-

calculus using Tait-style logical relation.

3. We provide a constructive proof of equivalence of the obtained CEK machine

with call-by-value λp̂.

1.4 Overview and organisation

Chapter 2 sets the scene for this report by introducing the necessary background

and discusses previous work in the area.

Chapter 3 shows how we extend Swierstra (2012) formalisation of λp̂ to a call-by-

value case and obtain a single-step evaluator for it.

Chapter 4 provides lemmas on properties of head reduction in call-by-value λp̂ and

their proofs.

Chapter 5 discusses our machine-checked proof of Strong Normalisation theorem

for call-by-value λp̂ inspired by analogous Martin-Löf and Tait’s proof for STLC.

Chapter 6 describes our formalisation of Danvy’s refocusing transformation of call-

by-value λp̂ single-step evaluator and the proof of equivalence with the single-step

evaluator for λp̂. We also show the termination of the refocused version of the

evaluator.

Chapter 7 describes our formalisation of the transformation leading to a CEK

machine. We show the equivalence of obtained machine with earlier evaluators as

well as its termination for the well-typed terms.

Chapter 8 discusses the engineering management aspect of this project.

Finally, Chapter 9 contains a summary of this work.





Chapter 2

Literature review and background

2.1 λ-calculus, De Bruijn formalism and intrinsic

representation

We encourage the reader to familiarise themselves beforehand with the basics of

λ-calculus. A good resource could be Pierce (2002).

In this project, we consider the variant of the Simple Typed λ-calculus having only

primitive unit type (with no constructors), and an arrow (function type) between

any two valid types. In general, any valid type is defined inductively by inference

rules (Figure 2.1).

Unit type • : Type

Arrow type

a : Type
b : Type

a⇒ b : Type

Figure 2.1: Inference rules for valid types

When denoting the variables, we will use De Bruijn indices, which use numbers for

variable identifiers (Figure 2.1). The value of the number tells to which lambda

abstraction a variable is bound. Another advantage of such representation is the

fact that α-equivalent terms have the same representation, so it is easier to reason

about substitution, without worrying about the problem of variable capture.

5



6 Chapter 2 Literature review and background

λx.λy.yx

λλ10

Figure 2.2: Example λ term and its De Brujin representation

We will use capital Greek letters Γ and ∆ to denote type contexts. As we use De

Bruijn representation of variables, we define typing contexts to be lists of types.

The position in such list denotes the De Bruijn index of the given variable.

We define the variable lookup from the given type context as an inductive structure

with two constructors (Figure 2.3). It is worth noticing that this structure is

similar to the inductive definition of natural numbers. For example, lookup of

variable with identifier 2 is constructed as S (S (Z))

Zero (Z)
(σ :: Γ) 3 σ

Successor (S)
Γ 3 σ

(τ :: Γ) 3 σ

Figure 2.3: Lookup operation

Instead of separately introducing syntax of terms and typing judgements for them,

we can define both at the same time. Such a presentation of the rules is called

intrinsic or Church-style (Wadler et al. (2020)). The only elements of our language

are lambda abstraction, function application and variables (Figure 2.4). Thanks

to the intrinsic representation it is not possible to build an ill typed term.

Abstraction (λ)
(σ :: Γ) ` τ
Γ ` (σ ⇒ τ)

Application (◦)

Γ ` (σ ⇒ τ)
Γ ` σ
Γ ` τ

Variable (‘)
Γ 3 σ
Γ ` σ

Figure 2.4: Terms of the language
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2.2 Curry-Howard isomorphism, intuitionistic logic

and dependent types

Curry-Howard isomorphism is a well-known correspondence between type systems

for λ-calculus and different kinds of logic. A great resource for the interested

reader could be Wadler (2015).

STLC type system corresponds to sentences in first-order propositional logic. De-

pendent types are a more expressive system in which types can depend on val-

ues, and therefore types correspond to quantifiers known from propositional logic.

Therefore, a language with such a type system, such as Agda (Bove et al. (2009))

can be used both as a programming language and a theorem prover.

In most cases (when excluding languages with first-class control) kinds of logic

corresponding to different type systems are intuitionistic. Such systems exclude

rules like double negation elimination or excluded middle, and they restrict the

logic in a way that knowing that a given is not true, does not imply that it is true.

Therefore, they only allow constructive proofs and have computational interpre-

tation, known as Brouwer-Heyting-Kolmogorov interpretation (Troelstra et al.

(2011)). A paper by Moschovakis (2009) provides a compact overview and his-

tory of intuitionistic logic. It is worth noting, that Martin-Löf’s intuitionistic type

theory, being a backbone of Agda’s type system, can be used as an alternative

foundational theory for mathematics.

2.3 λp and λp̂ calculi

Calculus of Closures (λp) is a formal system mediating between λ-calculus and

abstract machines, where explicit substitutions are replaced with closures and

substitution environments (Curien (1991)). Closures are simply λ terms with

accompanying substitution environment providing lexically scoped bindings for

the free variables in the given term. The size of the substitution environment

directly corresponds to the typing context of a given term, as every free variable

in the typing context needs to have a corresponding substitution in the substitution

environment. The only possible substitutions are other closures. So, a substitution

environment is simply a list of closures for each De Bruijn variable of the given

term.
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The main downside of λp is the fact this calculus is not able to encompass single-

step evaluators. To account for that Biernacka and Danvy (2007b) extended λp

with the application of two closures and obtained a system known as λp̂ (Ex-

tended Calculus of Closures). The authors have shown that such a system is

non-deterministic, confluent and equivalent to λ-calculus. Figure 2.5 presents the

grammar of terms of λp̂, while Figure 2.6 describes the semantics of this language.

〈t〉 |= 〈i〉 | 〈t〉〈t〉 | λ〈t〉
〈c〉 |= 〈t〉[〈s〉] | 〈c〉〈c〉
〈s〉 |= • | 〈c〉 · 〈s〉
〈i〉 |= zero | suc〈i〉

Figure 2.5: Grammar of λp̂ (Sourced from Biernacka and Danvy (2007b))

BETA
((λt)[s])c→ t[c · s]

LOOKUP
i[c1 . . . cm]→ ci

APP
(t0t1)[s]→ (t0[s])(t1[s])

LEFT
c0 → c′0

(c0c1)→ (c′0c1)

RIGHT
c1 → c′1

(c0c1)→ (c0c
′
1)

SUB
ci → c′i

t[(c1 . . . ci . . . cn)]→ t[(c1 . . . c
′
i . . . cn)]

Figure 2.6: Semantics of λp̂ (Sourced from Biernacka and Danvy (2007b))

BETA rule corresponds to closing a lambda term and delaying the β-reduction by

extending the substitution environment. LOOKUP simply peels the variable from

substitution context, and APP takes the application of terms to the closure of

application. LEFT and RIGHT reduce terms in the application.
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Call-by-name (Normal order) reduction is obtained by restricting the semantics

to the first four rules. To obtain call-by-value semantics (Applicative order), the

first five rules are considered and the RIGHT rule is restricted to situations where

the left-hand side of the application is a closed value. What is more, BETA rule is

modified and only allows to substitute by closed values.

(RIGHT)
c1 → c′1

(vc1)→ (vc′1)

(BETA)
((λt)[s])v → t[v · s]

Figure 2.7: Modified RIGHT and BETA rules for call-by-value λp̂ semantics

2.4 Biernacka & Danvy framework

2.4.1 Evaluation contexts

The semantics of the language can be divided into two parts: the local part which

tells how some closed terms can be atomically reduced (BETA, LOOKUP and APP

rules), and the other one which controls where those reductions happen and in

what order (LEFT and RIGHT rules).

The terms corresponding to BETA, LOOKUP and APP are called redexes. The reduc-

tion of redexes (also called contraction) happens in some evaluation context. We

find an appropriate evaluation context according to LEFT and RIGHT rules (or only

LEFT in case of call-by-name reduction).

A great way of looking at evaluation contexts is by analogy to the famous Zipper

data structure introduced by Huet (1997). The closed terms are simply an induc-

tive datatype, which can be seen as an abstract syntax tree. Reducing a term

can be seen as a depth-first search through that tree until we reach a redex that

can be contracted. Evaluation contexts allow us to remember which path we took

when traversing the tree allowing us to reconstruct it later. Therefore a current

closed term along with accompanying evaluation context forms a data structure

similar to the Zipper. An evaluation context is often called continuation and can

be seen as stack of an abstract machine. In the case of call-by-value reduction, we
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have three constructors for evaluation contexts. MT is simply an empty evaluation

context, meaning that we are at the root of the tree. We use ARG, when we pick

the left route downward the tree to store element on the right-hand side of the

original tree (the argument) as well as previous context. Figure 2.8 illustrates

going to the left-hand side of the application of two closures f and x.

(
Clapp

f x

,MT

)
−→

(
f,ARG x MT

)

Figure 2.8: Traversing the AST to the left of the expression fx

Finally, we use FN when we pick the right subtree of the expression. We store the

left-hand side (the function) and the path that leads us to it. As call-by-value is a

left-to-right evaluation strategy, we first visit the left-hand side of the expression

and then (if there is no redex, so the left-hand side is a value), we switch to the

right side - see Figure 2.9. Single constructors are often called continuation frames

(
Clapp

f x

,MT

)
−→

(
f,ARG x MT

)
−→

(
x,FN f MT

)

Figure 2.9: Visiting the left hand side first and then switching to the right
side

(Felleisen and Friedman (1987)). In case of Krivine machine (Swierstra (2012)),

we only have two types of continuation frames being ARG and MT, as call-by-name

reduction in λp̂ has no RIGHT reduction rule.

2.4.2 Head reduction and refousing transform

Biernacka & Danvy introduced head reduction as a composition of three actions:

• Decompose - Find a redex and accumulate the corresponding evaluation

context

• Contract - Reduce a redex in the given evaluation context
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• Plug - Take a result of reducing a redex and rebuild the syntax tree according

to the evaluation context

Head reduction is repeated until a non-reducible term is obtained. The key obser-

vation of Biernacka & Davy was to notice that instead of rebuilding the tree every

time using a plug function and then decomposing it, a better idea is to go to the

next evaluation contexts according to the given reduction order. Therefore a new

function being a composition of decompose and plug is introduced and is called a

refocusing function. The authors provided a way of deriving a refocusing function

through the code transformation of decomposition function. An evaluator which

uses refocusing is called a pre-abstract machine and can be further transformed.

To do so, the authors introduced eval/apply and push/enter transforms that con-

vert the pre-abstract machines to the abstract machine. Biernacka and Danvy

(2007b) shows the derivation of Krivine machine from call-by-value λp̂.

What is more, Biernacka and Danvy (2007a) also considered variants of λp̂ with

context-sensitive operators. The authors showed the derivation of the variant of

the CEK machine with an abort operator, as well as an abstract machine for λµ

calculus.

2.5 Formalisation of abstract machines

Sieczkowski et al. (2011) provided a Coq formalisation of Biernacka & Danvy

framework and showed the correctness of the transforms leading to abstract ma-

chines. This work was extended in Biernacka (2016), where the authors considered

automating the process of derivation of an abstract machine from reduction se-

mantics. Although proven to be correct, a downside of those contributions is the

fact those formalisations are not executable, as abstract machines are defined as

logical relations between the states. Therefore they cannot be used as a basis

for correct-by-specification abstract-machine based interpreter. The authors did

not consider proofs of termination for abstract machines for strongly normalising

languages.

Completely independent from Biernacka & Danvy framework, Krupicka (2018)

has implemented an executable SECD machine in Agda, basing on typed machine

code. The author used the Delay monad (Abel and Chapman (2014)), which con-

siders partiality and divergence as a monadic effect. The downside of Krupicka’s
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formalisation is the fact that an upper bound of maximal amount of reduction

steps must be provided to work.

Swierstra (2012) basing on the research of Biernacka & Danvy used Agda to for-

malise call-by-name λp̂ and an executable evaluator for it. The author derived the

refocused version of it, as well as the Krivine machine, showing the equivalence

of all three evaluators. An interesting contribution of this study is proof of the

termination of the executable Krivine machine, which relies on the strong normal-

isation property for call-by-value λp̂ proved using Tait-style logical relation. We

rely on this research and adapt the ideas and proofs to call-by-value case. We

directly use some part of this formalisation for the parts which are independent of

the order of evaluation. All such parts are carefully acknowledged.

2.6 Bove-Capretta method

Agda (Bove et al. (2009)) is a total language, which means that each function

must terminate. Agda uses a termination checker to verify that. However, the

only functions that can pass the termination checker are the structurally recursive

ones, that is functions where arguments in recursive calls are strictly smaller.

When there are no guarantees about the size of passed arguments, such functions

are called general recursive. Abstract machines and evaluators belong to this

family.

Bove (2003) provided a solution to the problem of proving termination of generally

recursive algorithms in total and dependently typed languages, and it is widely

known as the Bove-Capretta method. The idea is to introduce a new datatype (a

trace), which can be considered as a predicate that a given function terminates.

The original function is transformed to be structurally recursive given the witness

of the proof it terminates. The trace carries no computational value but allows

to satisfy the requirements of the termination checker. Therefore, proving the

termination of the modified version of the function is performed by showing the

inhabitance of trace datatype (often referred to as Bove-Capretta datatype).

Altenkirch and Chapman (2009) successfully used this method to formalise Strong

Normalisation theorem for System T. This approach directly inspired Swierstra

(2012) and his proof of Strong Normalziation for call-by-name λp̂. We will rely on

both those contributions when introducing our normalisation proof.
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Call-by-value λp̂ evaluator

This chapter outlines the design and implementation of a single-step evaluator for

earlier introduced λp̂-calculus under call-by-value reduction, obtained by extending

Swierstra (2012) call-by-name λp̂ evaluator. We provide definitions of the used

datatypes (usually through sequent-style rules) and high-level sketches of the main

functions, theorems and lemmas.

3.1 Terms, closed terms and substitution envi-

ronments

As we consider Simply Typed λ-calculus our formalisation contains the definition

of types and intrinsically typed λ-terms (Figures 2.1 and 2.4) adapted from Wadler

et al. (2020).

Both in call-by-name and call-by-value cases we have the same definition of closed

terms. Either it is a closure of a term, along with substitution environment or it

is an application of closures. Substitution environment (denoted Env Γ, where Γ

is a type environment) for some term is simply a list of closed terms for each of

the free variables of that term. Nil stands for empty list and constructor (denoted

with mixfix ·) appends an element to the given list. We use mutually recursive

definitions from Swierstra (2012) - Figures 3.1 and 3.2

13
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Closure

Γ ` u
Env Γ

Closed u

Closure application (Clapp)

Closed (u ⇒ v)
Closed u
Closed v

Figure 3.1: Closed terms of the λp̂ (sourced from Swierstra (2012))

Nil (Empty substitution environment)
Env []

Constructor

Closed u
Env Γ

Env (u::Γ)

Figure 3.2: Substitution environments (Env) definition (sourced from Swier-
stra (2012))

3.2 Redexes and contraction

In the considered language, closures containing lambda abstractions are the only

terms that cannot be reduced further. Value datatype simply takes a closure and

a predicate that term in the given closure is a lambda abstraction.

Val

(c : Closed σ)
isVal c
Value σ

There are three possible redexes in the λp̂, which come from the small-step re-

duction rules shown in Figure 2.6. The definition of the datatype representing is

shown in Figure 3.3. It mostly corresponds to definition from Swierstra (2012),

however, the main difference is that we restrict β-reduction to substitute only by

values of the language.

Redexes are simply a different representation of particular closures, therefore each

redex can be mapped back to its underlying closure. Function performing this

mapping is listed in Figure 3.4.
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Lookup

Γ 3 σ
Env Γ
Redex σ

App

Γ ` (σ ⇒ τ)
Γ ` σ
Env Γ
Redex τ

Beta

(σ :: Γ) ` τ
Env Γ
Value σ
Redex τ

Figure 3.3: Possible redexes in λp̂

fromRedex : ∀ {u}

→ Redex u

→ Closed u

fromRedex (Lookup x env) = Closure (‘ x) env

fromRedex (App f arg env) = Closure (f ◦ arg) env

fromRedex (Beta body env (Val c _)) = Clapp (Closure (λ body) env) c

Figure 3.4: Function mapping redex to its underlying closure

Having defined redexes, we can define the contraction function, which maps each

redex to closure after single-step reduction according to the rules from Figure 2.6.

contract : ∀ {u}

→ Redex u

→ Closed u

contract (Lookup i env) = env ! i

contract (App f x env) = Clapp (Closure f env) (Closure x env)

contract (Beta body env (Val c x)) = Closure body (c · env)

Figure 3.5: Contraction funtion

Contracting Lookup redex uses ! helper function which returns i-th closure from

the given substitution environment. Contracting Beta simply outputs the body

of the lambda expression, where the substitution environment is extended with

an argument given to the stored function. As for App redex, the result is closure
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application of closures created from the left-hand-side and right-hand-side of the

given expression.

3.3 Evaluation contexts and hole semantics

We can now introduce the inductive datatype representing evaluation contexts

(Figure 3.6) for the call-by-value order. Similarly to Swierstra (2012) the contexts

are indexed by the pair of types. The first type represents the type of closure

we are currently looking at and the right type represents the original type of the

expression we are evaluating.

MT
EvalContext u u

ARG

Closed u
EvalContext v w

EvalContext (u ⇒ v) w

FN

Value (a ⇒ b)
EvalContext b c
EvalContext a c

Figure 3.6: Inductive definition of typed evaluation contexts

Having defined the evaluation contexts, we can state plug function from Biernacka

and Danvy (2007b) which takes a closure and corresponding evaluation context

are recreates the original term before traversals (Figure 3.7).

plug : ∀ {u v}

→ EvalContext u v

→ Closed u

→ Closed v

plug MT f = f

plug (ARG x ctx) f = plug ctx (Clapp f x)

plug (FN (Val closed isval) ctx) x = plug ctx (Clapp closed x)

Figure 3.7: Listing of the plug function
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3.4 Decomposition

W are left with introducing the decomposition function. A correct decomposition

of any valid closed term of λp̂ is either a value (as there are no more redexes to

be found) or a redex with accompanying evaluation context that was accumulated

before finding the redex. Following Swierstra (2012) we can introduce a dependent

datatype describing a decomposition of a given closed term - see Figure 3.8

Val

(body : (u :: Γ) ` v)
(env : Env Γ)

Decomposition (Closure (λ body) env)

Redex×Context

(r : Redex u)
(ctx : EvalContext u v)

Decomposition (plug ctx (fromRedex r))

Figure 3.8: Valid decompositions of a closed term

This datatype directly corresponds to the Value + (Redex×Context) type from

Biernacka and Danvy (2007b). Below, we restate the definition of the decomposi-

tion function from Biernacka and Danvy (2007b) but using Agda syntax. The heart

of the decomposition function are two mutually recursive functions decompose’

and decompose aux’ and Figure 3.9 contains a listing of them.

decompose’ is used to decompose a closed term in the arbitrary context. If it

contains an variable lookup or a closure of the application it returns the appro-

priate redex. If the given closed term is closure application, the function simply

calls itself to traverse to the left, while saving the right-hand side in the evaluation

context. Finally, if a given closure is a value it calls the decompose aux’ function,

which decides what to do depending on the accumulated evaluation context.

If it is an empty context, we have found a value of the language. If we came

from the left-hand side and reached the value, we should switch to the right-hand

side and save the evaluated left-hand side in the FN frame. If we came from the

right-hand side, it means that we have found the application of two values which

forms redex corresponding to β-reduction.

Finally, the main decomposition function calls decompose’ with an empty context.

It is worth noticing the terminating pragma, which means that Agda termination
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{-# TERMINATING #-}

mutual

decompose’ : ∀ { u v}

→ (ctx : EvalContext u v)

→ (c : Closed u)

→ Decomposition (plug ctx c)

decompose’ ctx (Closure (‘ i) env) =

Redex×Context (Lookup i env) ctx

decompose’ ctx (Closure (λ body) env) =

decompose’_aux ctx (body) env

decompose’ ctx (Closure (f ◦ x) env) =

Redex×Context (App f x env) ctx

decompose’ ctx (Clapp f x) =

decompose’ (ARG x ctx) f

decompose’_aux : ∀ { a b w Γ}
→ (ctx : EvalContext (a ⇒ b) w)

→ (body : (a :: Γ) ` b)

→ (env : Env Γ)
→ Decomposition (plug ctx (Closure (λ body) env))

decompose’_aux MT body env = Val body env

decompose’_aux (ARG arg ctx) body env =

decompose’ (FN (Val (Closure (λ body) env) tt) ctx) arg

decompose’_aux (FN (Val (Closure (λ x) env2) proof) ctx) body env =

Redex×Context (Beta x env2 (Val (Closure (λ body) env) tt)) ctx

decompose : ∀ {u}

→ (c : Closed u)

→ Decomposition c

decompose c = decompose’ MT c

Figure 3.9: Listing of a decomposition function

checker cannot confirm that the function is terminating, due to its non-structurally

recursive structure. This topic is discussed more broadly in chapter 8.2.
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3.5 Small-step evaluator

Having defined decomposition, contraction and plugging we can give a function

that takes any closure and performs a reduction of redex at its’ head position.

We look at the decomposition of a given term. If it is a value, we are done.

Otherwise, we contract the found redex and rebuild the closed term, by plugging

the contracted redex using earlier found valuation context.

This definition is common to all machines stated using Biernacka & Danvy ap-

proach, and therefore we rely on the implementation from Swierstra (2012) - see

Figure 3.10.

headReduce : ∀ {u}

→ Closed u

→ Closed u

headReduce c with decompose c

headReduce .(Closure (λ body) env) | Val body env =

Closure (λ body) env

headReduce .(plug ctx (fromRedex redex)) | Redex×Context redex ctx =

plug ctx (contract redex)

Figure 3.10: Head reduction function - sourced from Swierstra (2012)





Chapter 4

Head reduction properties

After introducing the single-step head reduction evaluator for call-by-value λp̂, we

can internally verify it, by proving its properties, which will become handy later

when proving the termination of the well-typed programs.

In this chapter, we will mostly introduce equational properties relying on inductive

proofs by reflection. Proofs by reflection in type theory generally rely on the

principle that if two sides of equality evaluate to the same result then they both

are indeed equal (Bove et al. (2009)).

4.1 Plugging properties

Lemma 4.1. For any types u and v, let r denote redex of type u and let ctx

denote an EvalContext parametrised by types u and v. We have that plug ctx

(fromRedex r) is a closed term, which is not a value and therefore can be further

reduced.

Proof. We prove this by relying on two helper lemmas. By case splitting on all pos-

sible redexes, we know that for any redex r closed term obtained by fromRedex r

is not a value. Then, by considering all possible EvalContext constructors we

prove that plugging non-value closed term into any EvalContext always yields a

non-value. Combining those two lemmas, we prove the needed property.

21
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4.2 Decomposition and plugging properties

Given a closed term and its context, decomposition of the reconstructed term using

plug is the same as continuing the traversal in a given context using decompose’.

Therefore, two steps of head reduction can be replaced by a single function, which

takes fewer steps. Function with such property could work as refocusing function,

simplifying the evaluator.

Theorem 4.2 (Refocusing theorem). For any types u and v let c denote closed

term of type u and let ctx denote an EvalContext parametrised by types u and v.

We have decompose (plug ctx c) ≡ decompose’ ctx c

Proof. By induction. We consider three cases of different EvalContext construc-

tors. For MT proofs goes by reflection. For ARG and MT cases we rewrite by induction

hypothesis and prove the desired equality by reflection.

We introduce a simple helper lemma from Swierstra (2012) that will become useful

later, saying that decomposition a closed term of some redex r in some context is

that redex in the original context.

Lemma 4.3. For all u v, let r denoted redex t of type u, and let ctx denote an

EvalContext parametrised by types u and v. We have the equality decompose’

ctx (fromRedex r) ≡ Redex×Context r ctx

Proof. Trivially provable by reflection upon splitting into all cases for EvalContext

and all possible redexes.

We can use that lemma to prove a stronger property adapted from Swierstra

(2012). Head reduction of a closed term of a redex in some context corresponds

to the closed term of the contracted form of that redex plugged into the original

context.

Lemma 4.4. For all u v, let r denoted redex t of type u, and let ctx denote an

EvalContext parametrised by types u and v. We have the equality headReduce

(plug ctx (fromRedex r)) ≡ plug ctx (contract r)

Proof. We rewrite the equation by appealing to the Lemma 4.3 and Theorem 4.2

and then the original statement stands by the reflection.
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4.3 Leftmost innermost head reduction proper-

ties

The strong normalisation theorem proofs rely on properties of left-to-right call-

by-value evaluation of application of closures. We introduce three properties:

Lemma 4.5 (Left hand side evaluation lemma). For any types u and v let f

denote a closed term of type u ⇒ v, let x denote a closed term of type u and fx

denote a closed term of type v such that Clapp f x ≡ fx and f is not a value.

We have the equality headReduce fx ≡ Clapp (headReduce f) x

Lemma 4.6 (Right hand side evaluation lemma). For any types u and v let f

denote a closed term of type u ⇒ v, let x denote a closed term of type u and fx

denote a closed term of type v such that Clapp f x ≡ fx and f is a value. If x

is not a value then headReduce fx ≡ Clapp f (headReduce x)

Lemma 4.7. For any typing contexts Γ and ∆ and types a, b and v let body

denote a term ((a ⇒ b) :: Γ) ` v). Let env denote substitution environ-

ment for typing context Γ and let arg denote a term (a :: ∆) ` b. Assume

that env is a substitution environment for typing context ∆. We have the equal-

ity headReduce (Clapp (Closure (λ body) env) (Closure (λ arg) env))

≡ Closure body ( (Closure (λ arg) env) · env)

Lemma 4.7 trivially holds by reflection, as it simply describes the case of perform-

ing β-reduction. Lemmas 4.5 and 4.6 are more complex to prove. We extend the

idea from Swierstra (2012) and his ”backwards view” to a call-by-value case and

we show that Lemma 4.5 is a dual of Lemma 4.6.

4.3.1 View on the last frame

Let fx denote Clapp f x. The key observation here is that if f is not a value,

decomposing f yields the same redex as decomposing fx. It is also worth noticing

that evaluation contexts obtained when decomposing them are similar. Taking

the last MT of evaluation context obtained when decomposing f and replacing it

with ARG x MT gives the evaluation context of fx. Figure 4.1 contains a listing

of a function snoc (sourced from Swierstra (2012)), that given an evaluation con-

text obtained when decomposing f and given x produces an evaluation context of

decomposing fx.
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snoc : ∀ {u v w}

→ EvalContext u (v ⇒ w)

→ (Closed v)

→ EvalContext u w

snoc MT u = ARG u MT

snoc (FN x ctx) u = FN x (snoc ctx u)

snoc (ARG x ctx) u = ARG x (snoc ctx u)

Figure 4.1: Snoc function - adapted from Swierstra (2012)

Similarly, in case when f is a value, decomposing fx and x yields the same redex,

and replacing last MT of evaluation context of decomposition of x with FN (Val f

tt) MT gives the evaluation context of decomposition of fx. We introduce cons

(see Figure 4.2), a dual of snoc which given f and an evaluation context obtained

by decomposing x, can produce an evaluation context of decomposition of fx.

cons : ∀ {a b c}

→ EvalContext a b

→ (Value (b ⇒ c))

→ EvalContext a c

cons MT val = FN val MT

cons (FN x ctx) val = FN x (cons ctx val)

cons (ARG x ctx) val = ARG x ((cons ctx val))

Figure 4.2: Cons function

Therefore, a key thing to look at when proving the lemmas 4.5 and 4.6 is to have a

look at the last non-MT frame. Therefore, we introduce a data structure allowing

to store the last non-MT frame of an evaluation context of given decomposition

(see Figure 4.3).
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Nil
SnocView u u MT

Cons

(val : Value (b ⇒ c))
(ctx : EvalContext a b)

(SnocView (cons ctx val))

Snoc

(x : Closed v)
(ctx : EvalContext u (v ⇒ w))

SnocView (snoc ctx x)

Figure 4.3: Snoc view datatype

Having that, we introduce a function (see Figure 4.4) which populates this datatype

using any evaluation context. Hence, we can obtain the last non-MT frame of the

given evaluation context (if it exists) or obtain Nil meaning that we tried to

decompose an empty evaluation context.

viewSnoc : ∀ {u v}

→ (ctx : EvalContext u v)

→ SnocView ctx

viewSnoc MT = Nil

viewSnoc (FN x ctx) with viewSnoc ctx

viewSnoc (FN x .MT) | Nil = Cons x MT

viewSnoc (FN x .(cons ctx val)) | Cons val ctx = Cons val (FN x ctx)

viewSnoc (FN x .(snoc ctx z)) | Snoc z ctx = Snoc z (FN x ctx)

viewSnoc (ARG x ctx) with viewSnoc ctx

viewSnoc (ARG x .MT) | Nil = Snoc x MT

viewSnoc (ARG x .(cons ctx val)) | Cons val ctx = Cons val (ARG x ctx)

viewSnoc (ARG x .(snoc ctx z)) | Snoc z ctx = Snoc z (ARG x ctx)

Figure 4.4: Function allowing to populate SnocView for any evaluation context

Having defined those functions we can prove following two properties. Lemma

4.8 is adapted from Swierstra (2012), as it is present both in call-by-name and

call-by-value cases. We also provide its dual (Lemma 4.9), which is needed for the

call-by-value case.

Lemma 4.8 (Snoc lemma). For all types u, v and w let ctx denote an evaluation

context parametrised by types u and (v ⇒ w). Let x denote a closed term of type

v and let t denote a closed term of type u. In such case the following equality

stands: plug (snoc ctx x) t ≡ Clapp (plug ctx t) x
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Proof. Consider possible evaluation context constructors. For MT case, equality

trivially stands by reflection. For the other two cases, we appeal to the inductive

hypothesis and upon rewriting why arrive at desired equality by reflection.

Lemma 4.9 (Cons lemma). For all types a, b and c let ctx denote an evaluation

context parametrised by types a and b. Let fn denote a closed term of type b ⇒
c and let t denote a closed term of type a. Finally, let p denote a witness of a

proof that fn is a value. In such case the following equality stands: plug (cons

ctx (Val fn p) ) t ≡ Clapp fn (plug ctx t)

Proof. Similarly to proof of Lemma 4.8

4.3.2 Properties of closure application

When proving the head reduction lemmas, we need three simple properties of

equalities of applications of closures. We adapt them from Swierstra (2012) as

they are independent of the order of reduction.

Lemma 4.10. For all types u, v let f and f’ denote closed terms of type u ⇒ v,

and let x and x’ denote closed terms of type u. If Clapp f x ≡ Clapp f’ x’,

then f ≡ f’

Lemma 4.11. For all types u, v let f and f’ denote closed terms of type u ⇒ v,

and let x and x’ denote closed terms of type u. If Clapp f x ≡ Clapp f’ x’,

then x ≡ x’

Lemma 4.12. For all types u, u’ and v let f denote a closed terms of the type

u ⇒ v and let f’ denote a closed term of type u’ ⇒ v. Let x denote a closed

term of the type u, and let x’ denote a closed term of the type u’. If Clapp f x

≡ Clapp f’ x’, then u ≡ u’

All those lemmas hold by a trivial reflection.

4.3.3 Head reduction lemmas

Finally, we can prove the lemmas 4.5 and 4.6.
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Left-hand side reduction lemma. Consider all possible outcomes of viewSnoc on

the evaluation context obtained by decomposing fx.

If it’s Nil, we know that that evaluation context is simply just MT. Because fx

is of arrow type, the redex found by decomposing it must be β-reduction redex.

By appealing to lemmas 4.10 and 4.12 we can show that both closures in this

application, that is f and x are values. But by assumption, f is not a value, which

leads to falsity. We can infer anything from absurdity, therefore we are done.

If it’s a Cons, then we know that evaluation context can be created by cons

function and the last non-MT frame is FN which holds some value. Original term

can be reconstructed by plugging x into that valuation context, and because last

non-MT frame is FN, by appealing to lemmas 4.10 and 4.12 we can show that

left hand side of fx, that is f is a value, which leads to a falsity. Again we use

bottom-elimination to provide the witness of the proof.

Finally, if it’s Snoc then we know that evaluation context can be created by cons

function and the last non-MT frame is ARG which holds some closure. We rewrite

the equation by lemmas 4.10, 4.11 and 4.12. By appealing to Lemma 4.8 for both

closure form of redex from the decomposition, as well as its contracted form, we

show by reflection that reduction of f in Clapp f x is indeed a reduction of fx.

Now, we use a similar line of reasoning to prove the dual property. The line of

reasoning mirrors the previous proof.

Right-hand side reduction lemma. Consider all possible outcomes of viewSnoc on

the evaluation context obtained by decomposing fx.

If it’s a Nil the case is identical to earlier proof. We have the β-reduction redex,

and because of that, we know that x is a value. Therefore, we get to a falsity.

Snoc case, which earlier leads to an only non-absurd case, in this lemma leads to

absurdity, similarly to Cons in the previous proof.

Cons case, which leads to the absurd case, now leads to the solution. Instead of

appealing to lemma on plugging context obtained by snoc, we use Lemma 4.9 -

its’ dual, for plugging context obtained by snoc. Besides that, the structure of the

proof is identical to the previous one.





Chapter 5

Strong Normalisation property

Relying on the properties introduced in the previous chapter, we prove the strong

normalisation property of λp̂ under call-by-value. We use it to prove that evaluator

from Chapter 3 always terminates with a value, when given a well-typed term.

To do so, we will use the earlier mentioned Bove-Capretta method (Bove (2003))

to mechanise a variant of well-known proof of normalisation by evaluation due to

Tait (1967) for call-by-value λp̂ calculus. We rely on earlier work on mechanisation

of such proofs for System T (Altenkirch and Chapman (2009)) and λp̂ under call-

by-name (Swierstra (2012))

5.1 Bove-Capretta trace

Function performing repeated head reduction until reaching a value is not struc-

turally recursive. To pass the termination checker, we introduce a Bove-Capretta

datatype (see Figure 5.1) and make the evaluation function structurally recursive

given the trace. This datatype can be seen as a list of recursive calls being made

by a function. Such datatype carries no computational value but assists the termi-

nation checker to show that every recursive call is made with structurally smaller

arguments. More discussion on the collapsibility of Bove-Capretta datatypes is

provided in Swierstra (2012).

Figure 5.2 shows the listing of the structurally recursive version of the evaluation

function, which takes both the decomposition of the closed term, as well as an

corresponding trace datatype to obtain a value of the λp̂. Both the trace datatype,

as well as structurally recursive evaluation function are adapted from Swierstra

29
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(2012), as they are universal to any order of reduction and apply both to call-

by-name and call-by-value cases. The key difference here is the way of obtaining

the Bove-Capretta trace for any well-typed closed-term, as call-by-value requires

stronger properties to be proved.

Done

(body : (u :: Γ) ` v)
(env : Env Γ)

Trace (Val body env)

Step

{r : Redex u}
{ctx : EvalContext u v}

Trace (decompose (plug ctx (contract r)))

Trace (Redex×Context r ctx)

Figure 5.1: Definition of Bove-Capretta trace for repeated head reduction
evaluator - adapted from Swierstra (2012)

iterate : ∀ {u : Type}

→ {c : Closed u}

→ (d : Decomposition c)

→ Trace d

→ Value u

iterate (Val body env) (Done .(body) .(env)) = Val (Closure (λ body) env) tt

iterate {c} {u} (Redex×Context r ctx) (Step step) =

iterate (decompose ( plug ctx (contract r))) step

Figure 5.2: Listing of iterate function which is structurally recursive -
adapted from Swierstra (2012)

5.2 Defining a reducibility relation

It was noticed by Tait (1967) that straightforward induction over terms is not

enough to prove the strong normalisation of well-typed terms of STLC. To account

for that, he introduced the stronger notion of reducibility relation (for more detail

see Girard et al. (1989)).

Definition 5.1. We define a set Reducible u (reducible closed terms of type u)

by induction on the types.

• For c of type •, c belongs to Reducible u, if c is strongly normalising
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• For c of type a ⇒ b, is reducible, if for any closed term d of type a which

belongs to Reducible a, Clapp c d belongs to Reducible b

In the Agda formalisation of this relation, we use Bove-Capretta trace to express

that the given term is strongly normalising. Following Swierstra (2012), in the

case of arrow type, we define it as an arrow type, where the first part includes the

witness that the left-hand side is strongly normalising.

To account for the fact, that we deal with λp̂, which has the notion of closure,

we need to extend the approach from Tait (1967). We need to ensure, that every

closure stored in the environment of some closure is also reducible. To do so,

similarly to Swierstra (2012), we introduce RedEnv logical relation.

Definition 5.2. We define a set RedEnv (reducible environments) by induction

on the constructors of substitution environment datatype.

• For the Nil constructor, an environment trivially belongs to RedEnv

• For the constructor case, an environment is reducible if the closure in the

head position belongs to the Reducible relation of the appropriate type and

the tail of the enviroment belongs to RedEnv

We can show that CR1 property from Girard et al. (1989) trivially holds.

Lemma 5.3. If a closed term t of type u belongs to Reducible u, then it is

strongly normalising

Proof. By induction on the type u. If u is a unit type, then by definition of

reducibility relation we can obtain the witness (trace datatype) that it is strongly

normalising. If u is an arrow type, then we project the first component of the

cartesian pair to obtain the witness of the strong normalisation.

We also can state that looking up from a reducible substitution environment, gives

reducible closure.

Lemma 5.4. For all typing contexts Γ and any type u, let env denote substitution

environment for typing context Γ and let r denote a variable lookup Γ 3 u . If

env is reducible environment then closure obtained from that context using r (env

! r) belongs to Reducible u
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Proof. By straightforward induction on constructors of lookup type and reducible

environment relation. If we have Z constructor, we can easily obtain reducibility

proof of closure in the head position. If we have S we simply appeal to the induction

hypothesis.

5.3 Strong Normalisation Theorem and termi-

nation of evaluator

First, we introduce two helper functions (see Figure 5.3) operating on Bove-

Capretta traces, which will become handy when proving further lemmas, as they

relate trace datatype with head reduction. step takes a closed term and the trace

built from decomposition of a head reduced version of this term and builds a bigger

trace for the decomposition of the term before reduction. unstep does the oppo-

site, and peels off one step from the trace, to obtain trace for the head reduced

version.

step : ∀ {u}

→ (c : Closed u)

→ (t : Trace (decompose (headReduce c)))

→ Trace (decompose c)

step c trace with decompose c

step ._ trace | Val body env = Done body env

step ._ trace | Redex×Context redex context

= Step {r = redex} {ctx = context} trace

unstep : ∀ {u}

→ (c : Closed u)

→ (t : Trace (decompose c))

→ (Trace (decompose (headReduce c)))

unstep c trace with decompose ( c)

unstep ._ trace | Val body env = trace

unstep .(plug context (fromRedex redex)) (Step trace)

| Redex×Context redex context = trace

Figure 5.3: Listing of step and unstep functions

Having those helper functions defined we can prove the following theorem. We use

e e′ to denote headReduce e = e’.

Theorem 5.5 (Preservation equivalence theorem). If e e′, e is reducible if and

only if e’ is reducible
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First, we prove one side of the implication.

Lemma 5.6 (Preservation lemma). If e e′ and e’ is reducible, then e is reducible

Proof. First, we consider two cases depending on the type of e.

If e is of unit type, then we can use step to obtain the trace of e from the trace

of e’.

If e is an arrow type, then we proceed by induction on the term structure. The

witness of e being reducible will be a cartesian product of witness that e is strongly

normalising and a function that given a reducible argument for the function gives

the proof that application of argument to the function is reducible.

If the term is a lambda abstraction, then we return a cartesian product of Done

trace and a function appealing to induction hypothesis using the proof that ap-

plying any reducible argument to e’ is also reducible.

In the remaining cases, we use step function to obtain the trace, and similarly, we

appeal to the induction hypothesis as earlier. In the case of closure application,

we also appeal to Lemma 4.5 on the reduction of the left-hand side of closure

application.

Similarly, we prove the converse.

Lemma 5.7 (Backwards preservation lemma). If e  e′ and e is reducible, then

e’ is reducible

Proof. First, we consider two cases depending on the type of e.

If e is of unit type, then we can use unstep to obtain the trace of e’.

If e is an arrow type, then we proceed by induction on the term structure. The wit-

ness of e being reducible will be a cartesian product of witness that e’ is strongly

normalising and a function that given a reducible argument for the function gives

the proof that application of argument to the function is reducible.

In each case, we obtain the witness that e’ is strongly normalising, by the use of

unstep. To obtain the necessary function to show reducibility of closure applica-

tion we similarly appeal to the induction hypothesis as in the proof of the earlier

lemma.
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In the case when e is a closure application, we also appeal to Lemma 4.5 on the

reduction of the left-hand side of the closure application.

We arrive at the main property that leads to the desired strong normalisation

proof. It is worth noticing that lemmas 5.8 and 5.9 are mutually inductive.

Lemma 5.8 (Closure reducibility lemma). Closure of a well-typed term with a

reducible environment is always reducible

Proof. Proof by induction. We consider three cases for terms. In each of them, we

appeal to preservation lemma (sese Lemma 5.6) to obtain the desired reducibility

proof.

In a variable case, we simply use deref function to show that a closure obtained

by looking up the variable is reducible. If this variable is reducible after looking

up, then by Lemma 5.6 we know that one reduction step earlier, when it was a

closure of variable lookup, it was also reducible.

In the application case, we use the induction hypothesis to show that closures of

terms of the left and right-hand sides of the application are reducible. If closure

of the left-hand side is reducible, then because it is a function, we can obtain the

witness that application of closures of the left and right-hand side is reducible.

Such application of closures is a head reduced version of the closure of application

of terms. Therefore, we can again appeal to Lemma 5.6 to show that this closure

is reducible.

Finally, let’s consider the lambda abstraction case. In all previous cases, we knew

what was the previous reduction rule we used (LOOKUP and APP) and that’s why

it was straightforward to prove it using Lemma 5.6. Here again, we would like

to appeal to Lemma 5.6, but to use it we need to show that closure application

of closure containing lambda abstraction and arbitrary closure is reducible. It

is trivial in the call-by-name case (Swierstra (2012)), as we always perform a β-

reduction regardless of the form of the closure on the right-hand side. Therefore,

to deal with this case, we appeal to helper Lemma 5.9.

Lemma 5.9 (Right hand reducibility lemma). For all Γ, σ and τ , let body denote

a term (σ :: Γ) ` τ and let env denote a substitution environment for typing

context Γ, which is reducible. Let x denote a closed term of type σ. Finally let

trace denote a Bove-Capretta trace of decomposition of x. If x is reducible, then

so is (headReduce (Clapp (Closure (λ body) env) x)
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Proof. Proof by induction on the structure of decomposition of x. If x is a value,

then we know that the next reduction step would be a β-reduction. To show

the reducibility, we appeal to Lemma 5.8 to show that closure of body of lambda

abstraction with an environment extended by x (which is reducible by hypothesis)

is also reducible.

If x is not a value, then we use the induction hypothesis until we reduce the right-

hand side to the value. We show the reduciblity of head reduced version of x by

the use of Lemma 5.7. We also use right hand side evaluation Lemma 4.6 to obtain

the reducibility of (headReduce (Clapp (Closure (λ body) env) x) from the

reducibility of headReduce x

Finally, we show the desired property.

Theorem 5.10 (Reducibility Theorem). Closure of any well-typed term with an

empty environment is reducible

Proof. Empty environment is trivially reducible. We use Lemma 5.8 to show that

closure of any well typed term in an empty environment is always reducible.

Theorem 5.11 (Strong normalisation theorem for λp̂ calculus under call-by–

value). Closure of any well-typed term with an empty environment is strongly nor-

malising

Proof. We use Theorem 5.10 to get a witness that the closure of any well-typed

term with an empty environment is reducible. Then by Lemma 5.3 we show that

this closure is strongly normalising.

Finally, we can use the Bove-Capretta based iterated head-reduction evaluator

and the witness of Theorem 5.11 to define an evaluation function - see Figure 5.4.

evaluate : ∀ {u}

→ (t : [] ` u)

→ (Value u)

evaluate t = iterate (decompose (Closure t Nil)) (termination t)

Figure 5.4: Terminating evaluation function
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Refocusing transformation

In this chapter, we combine the results from chapters 4 and 5 to obtain simplified

version of the evaluator, which is less expensive computationally. To do so, we rely

on the refocusing theorem (see Theorem 4.2), stating that decomposing a closed

term created by reconstruction through plugging, is the same as using decompose’

to continue decomposition in the current context.

We follow Swierstra (2012) and show that refocused version of evaluator is equiv-

alent to the original evaluator from previous chapters. Moreover, we adapt the

proofs from the previous chapter to show that simplified evaluator is also termi-

nating.

6.1 Modified Bove-Capretta trace

We aim to introduce the refocusing function which replaces the composition of

decompose and plug. In Theorem 4.2 we showed that such function exists and it

is decompose’. Therefore we define refocus (see listing 6.1) to be decompose’

refocus : ∀ {u v}

→ (ctx : EvalContext u v)

→ (c : Closed u)

→ Decomposition (plug ctx c)

refocus = Redex.decompose’

Figure 6.1: Definition of refocus function
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Now, we can trivially show by reflection that following property holds.

Lemma 6.1. For any types u and v let c denote closed term of type u and let ctx

denote an EvalContext parametrised by types u and v. We have refocus ctx c

≡ decompose (plug ctx c)

So, before we define refocused version of evaluator which terminates, we need to

create new Bove-Capretta trace datatype which takes refocus into account - see

listing 6.2. Knowing the refocusing property, we can easily show that given a trace

Done

(body : (u :: Γ) ` v)
(env : Env Γ)

Trace (Val body env)

Step

{r : Redex u}
{ctx : EvalContext u v}

Trace (refocus ctx (contract r))

Trace (Redex×Context r ctx)

Figure 6.2: Definition of Bove-Capretta trace for refocused evaluator - adapted
from Swierstra (2012)

of a plugged and decomposed term, we can obtain the trace of the same term upon

refocusing.

Lemma 6.2. For any types u and v let t denote closed term of type u and let

ctx denote an EvalContext parametrised by types u and v. Existence of Trace

(decompose (plug ctx t)), implies the existence of Trace (refocus ctx t)

Proof. By Lemma 6.1, we can can conclude that Trace (decompose (plug ctx

t)) is equivalent to Trace (refocus ctx t).

As a consequence of this lemma, we can prove a stronger property.

Lemma 6.3 (Refocusing trace lemma). For all u, let t denote a closed term of

type u. The existence of a trace of head reduction evaluator for decompose t,

implies the existence of a trace of refocusing evaluator for decompose t

Proof. By induction on the head reduction evaluator trace. If t is a value then

both traces are identical, as they denote the Done case. If decomposing t yields a

redex and a context, we can appeal to Lemma 6.1 to rewrite the head reduction

trace to refocusing trace at the first element of trace. Then, we appeal to induction

hypothesis for the rest of the trace.
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6.2 Modified evaluator

We earlier proved the Strong Normalisation property for λp̂, meaning that for

every well-typed term we could obtain the head reduction trace. By applying

Lemma 6.3 we can now obtain a refocusing trace for any well-typed term. Figure

6.3 shows the listing of the structurally recursive refocused evaluator, which takes

a Bove-Capretta trace to run. We also provide a terminating evaluation function,

which appeals to Strong Normalisation property (5.11) and trace Refocusing Trace

Lemma (6.3) to obtain a needed trace for any well-typed term.

iterate : ∀ {u}

→ {c : Closed u}

→ (d : Decomposition c)

→ Trace d

→ Value u

iterate (Val body env) (Done .(body) .(env)) =

Val (Closure (λ body) env) tt

iterate (Redex×Context r ctx) (Step step) =

iterate (refocus ctx (contract r)) step

evaluate : ∀ {u}

→ (t : [] ` u)

→ Value u

evaluate t = iterate (refocus MT (Closure t Nil)) (termination t)

Figure 6.3: Terminating refocused evaluator - adapted from Swierstra (2012)

6.3 Correctness guarantees

Finally, we can show that refocused evaluator gives the same result as the original

head reduction evaluator. We start with a helper lemma.

Lemma 6.4. For all types u, let t denote a closed term of type u. Given a

head reduction evaluator trace and refocused evaluator trace of decomposition of t,

iterate function of head reduction evaluator produces the same result as iterate

function of the refocused evaluator.
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Proof. By induction on the decomposition of t. If t is a value then desired prop-

erty trivially holds by reflection. If decomposition of t yields a redex and the

context, then we appeal to Lemma 6.1 and show equivalence of current step, and

then appeal to inductive hypothesis for the rest of the both traces.

We use this lemma to show a slightly stronger property on the equivalence of results

of both evaluators when the refocused evaluator obtains its first configuration by

refocusing a given closed term in the empty context.

Theorem 6.5. For all type u, let t denote a closed term of type u. Let t1 de-

note refocusing trace of configuration obtained by refocusing t in empty evaluation

context. Let t2 denote head reduction trace of decomposition of t. Then iterate

function of refocused evaluator when given a configuration obtained by refocusing t

in the empty context, yields the same result as iterate of head reduction evaluator

when given a decomposition of t.

Proof. The appeal to Lemma 6.1 to show that configuration obtained by refocusing

a term in the empty context is the same as its decomposition. Then we use Lemma

6.4 to show that results obtained by both iterate functions are equivalent.

And finally, we obtain the central correctness property of the refocused version of

the evaluator.

Corollary 6.6. For all types u let t denote a well-typed term term [] ` u.

Then evaluate function of the refocused evaluator yields the same result for t

as evaluate function of the head reduction evaluator.

Proof. We use Theorem 6.5 to show that repeated iterate functions yield the

same result. We use Strong Normalisation property (Theorem 5.11) to obtain the

trace for head reduction evaluator. Finally, we appeal to Refocusing Trace Lemma

6.3 to obtain the trace for refocused evaluator.
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CEK machine

In this chapter we further simplify the evaluator from Chapter 6 and obtain the

CEK machine from Felleisen and Friedman (1987).

Following Danvy and Nielsen (2004) and Biernacka and Danvy (2007b) we combine

refocus and contract functions and factor out the environment from the closures,

obtaining a state transition function.

Relying on results from Chapter 5 we introduce a Bove-Capretta trace for the

CEK machine, show that it can be obtained from refocusing trace, and finally give

correctness and termination guarantees for the obtained machine.

7.1 Correct environments, closures and lookup

Machine state consisting only of terms, environments and evaluation contexts can

only store closures, and there is no way of representing the closure application.

Therefore, in this section, we strictly follow Swierstra (2012) to introduce logical

predicates which ensure a lack of closure applications in any parts of the state of

the machine. What is more, we introduce properties of manipulating the correct

closures and environments. In general, a closed term is valid only if it is a closure

and has a valid environment. Valid environments are those which are empty or

only store valid closures. Finally, valid evaluation contexts are those that only

store closure applications in their frames or are the empty context. Listing 7.1

(adapted from Swierstra (2012)) shows the Agda definitions of valid closures, en-

vironments and evaluation contexts.

41
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mutual

isValidClosure : ∀ {u}

→ Closed u

→ Set

isValidClosure (Closure x env) = isValidEnv env

isValidClosure (Clapp closure closure) = ⊥

isValidEnv : ∀ {Γ}
→ Env Γ
→ Set

isValidEnv Nil = >
isValidEnv (x · env) = (isValidClosure x × isValidEnv env )

isValidContext : ∀ {u v}

→ EvalContext u v

→ Set

isValidContext MT = >
isValidContext (FN (Val (Closure (λ body) env) proof) context)

= ( isValidEnv env × isValidContext context )

isValidContext (ARG (Closure x env) context) =

( isValidEnv env × isValidContext context )

isValidContext (ARG (Clapp _ _) context) = ⊥

Figure 7.1: Valid closures and environments - sourced from Swierstra (2012)

Having those predicates defined, we can follow Swierstra (2012) further and in-

troduce functions for extraction of typing contexts, environments and terms from

valid closures - see Figure 7.2.
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getContext : ∀ {u}

→ Σ (Closed u) (isValidClosure)

→ Context

getContext (Closure {Γ } _ _ , _) = Γ

getEnv : ∀ {u}

→ (c : Σ (Closed u) (isValidClosure))

→ Env (getContext c)

getEnv (Closure _ env , _) = env

getTerm : ∀ {u}

→ (c : Σ (Closed u) isValidClosure)

→ (getContext c) ` u

getTerm (Closure x _ , _) = x

Figure 7.2: Type safe deconstruction of closures - sourced from Swierstra
(2012)

Figure 7.3 introduces a type-safe lookup, which for a valid environment is guaran-

teed to return a valid closure.

lookup : ∀ {u Γ}
→ Γ 3 u

→ (env : Env Γ)
→ isValidEnv env

→ Σ (Closed u) isValidClosure

lookup Z (Closure x env · _) (fst , _) = (Closure x env) , fst

lookup (S ref) (x · env) (_ , snd) = lookup ref env snd

Figure 7.3: Type safe lookup - sourced from Swierstra (2012)

Such lookup satisfies the two properties, which can be found below.

Lemma 7.1. For all type environents Γ and any type u let env denote a substi-

tution environment for typing context Γ. Let p denote a witness that env satisfies

isValidEnv predicate. Let i denote a variable lookup Γ 3 u. Then, the result

of closure lookup using env ! i is the same as Closure (getTerm (lookup i

env p)) (getEnv (lookup i env p))

Proof. Proof by induction. In the base case, when i is a lookup from the first

position, the statement holds by reflection. In the inductive case, when i is a

successor, we appeal to the induction hypothesis.

Lemma 7.2. For all type environments Γ and any type u let env denote a substi-

tution environment for typing context Γ. Let p denote a witness that env satisfies
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isValidEnv predicate. Let i denote a variable lookup Γ 3 u. Then an environ-

ment obtained by getEnv (lookup i env p) satisfies isValidEnv predicate.

Proof. By induction. In the base case, when i is a lookup from the first position,

then we use the first component of cartesian pair constituting i, to obtain witness

that the environment of the looked up closure is valid.

In the inductive case, we appeal to the induction hypothesis using the second

component of the cartesian pair constituting i.

7.2 Bove-Capretta trace and state transition func-

tion for CEK machine

As earlier, we can introduce a Bove-Capretta trace for the next version of the

evaluator. The main difference, between previous traces and CEK machine trace,

is the fact that because of inlining contraction with refocusing, we have different

kinds of reduction steps rather than having just Step.

Therefore each constructor of the new trace corresponds to a different state transi-

tion of the CEK machine. The only common thing for all trace datatypes is Done

constructor, which corresponds to the final state of each of the evaluators. A full

Bove-Capretta trace for a given term will be simply a call graph of CEK machine

transitions when evaluating the given term. Figure 7.4 shows the definition of the

Bove-Capretta trace for the CEK machine.

Obtained machine corresponds with the CEK machine presented in Felleisen and

Friedman (1987) and Van Horn and Might (2010), but has one interesting dif-

ference. Our CEK machine does not have a closure making step and its control

language are simply well-typed terms of STLC. Rules performing transition upon

having closure in the control part of the state are composed with the closure mak-

ing step. What is more, our variant of the CEK machine uses De Bruijn indices, as

opposed to having named variables, like in Felleisen and Friedman (1987). There-

fore obtained machine corresponds to the presentation known from Biernacka and

Danvy (2007b) and Biernacka and Danvy (2007a).
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Done

{env : Env Γ}
(body : (v :: Γ) ` u)

Trace (λ body) env MT

Lookup

{ctx : EvalContext u v}{env : Env Γ }
(i : Γ 3 u)(p : isValidEnv env)

Trace (getTerm (lookup i env p)) (getEnv (lookup i env p)) ctx

Trace (‘ i) env ctx

Left

{env : Env Γ}{ctx : EvalContext v w}
(f : Γ ` (u ⇒ v) )(x : Γ ` u)

Trace f env (ARG (Closure x env) ctx)

Trace (f ◦ x) env ctx

Right

{env : Env Γ}{ctx : EvalContext v w}
(env2 : Env ∆)(body : (u :: ∆) ` v)(x : Γ ` u)
Trace x env (FN (Val (Closure (λ body) env2) tt) ctx)

Trace (λ body) env2 (ARG (Closure x env) ctx)

Beta

{env : Env Γ}(ctx : EvalContext u w)(argBody : (a :: ∆) ` b)
(argEnv : Env ∆)(body : ( (a ⇒ b) :: Γ) ` u)
Trace body (Closure (λ argBody) argEnv · env) ctx

Trace (λ argBody) argEnv (FN (Val (Closure (λ body) env) tt) ctx)

Figure 7.4: CEK machine trace datatype

Having defined the trace, we can build a structurally recursive function taking a

well-typed term and corresponding trace to compute a result of the term. Fig-

ure 7.6 shows listing of the CEK transition function. For readability, Figure 7.5

provides a simplified presentation of the obtained transitions rules.

(f ◦ x , env , kont) (f , env , ARG <x , env> kont)

(λ body , env2 , ARG <x , env> kont) (x , env , FN <λ body , env2> kont)

(λ arg , env2 , FN <λ body , env> kont)) (body , <λ arg , env2> · env , kont)

(‘ i , env , kont) (env[i] , env , kont)

(λ body , env , MT) Done

Figure 7.5: Obtained CEK transition rules
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refocus : ∀ {Γ u v}

→ (ctx : EvalContext u v)

(t : Γ ` u)

(env : Env Γ)
→ Trace t env ctx

→ Value v

refocus kont .(‘ i) env (Lookup i p trace) =

let c = (lookup i env p) in

refocus kont (getTerm c) (getEnv c) trace

refocus .MT .(λ body) env (Done body) =

Val (Closure (λ body) env) tt

refocus kont .(f ◦ x) env (Left f x trace) =

refocus (ARG (Closure x env) kont) f env trace

refocus (ARG (Closure x argEnv) kont)

.(λ body) env (Right .env body x trace) =

refocus (FN (Val (Closure (λ body) env) tt) kont) x argEnv trace

refocus (FN (Val (Closure (λ body) env2) tt) ctx)

.(λ argBody) env (Beta ctx argBody .env body trace) =

refocus ctx body (Closure (λ argBody) env · env2) trace

Figure 7.6: CEK transition function

7.3 Correctness guarantees

Finally, having both the new trace datatype as well as the evaluation function, we

can look into the correctness and termination of the obtained CEK evaluator. We

first introduce property similar to Lemma 6.4, but relating CEK evaluator with

the refocused evaluator.

Lemma 7.3. For all types u, v and any typing context Γ, let ctx denote an

evaluation context parametrised by types u and v. Let t denote a term Γ ` u.

Let env denote a substitution environment for a typing context Γ. Given a CEK

machine trace for t, env, ctx and refocusing evaluator trace for a decomposition

obtained by refocusing closure of t with environment env in a context ctx, CEK

refocus function provides the same result, as iterate function of the refocusing

evaluator.

Proof. Proof by induction on CEK machine case. In case of Done trace, trivially

holds by reflection. In a case of Lookup we appeal to Lemma 7.1 before using

induction hypothesis. In the case of Beta, Left and Right we appeal to induction

hypothesis for a next CEK machine state.
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Following Swierstra (2012) we also introduce a predicate that must be satisfied by

the CEK machine at each step of the evaluation - that both current environment

and current evaluation context are valid - see Figure 7.7

invariant : ∀ {Γ u v}

→ EvalContext u v

→ Env Γ
→ Set

invariant ctx env = isValidEnv env × isValidContext ctx

Figure 7.7: Invariant predicate which needs to be satisfied by CEK machine
at every stage of evaluation - sourced from Swierstra (2012)

Lemma 7.4. For all types u, v and any typing context Γ, let ctx denote an

evaluation context parametrised by types u and v. Let t denote a term Γ ` u.

Let env denote a substitution environment for a typing context Γ. Additionally,

ctx and env satisfy environment and correctness predicates. In such case, the

existence of refocusing evaluator trace for a decomposition obtained by refocusing

a closure of t in environment env in a context ctx implies the existence of CEK

machine trace for t, env, ctx.

Proof. By straightforward induction on evaluation contexts and term structure.

Done trace of refocusing evaluator, corresponds to Done trace of CEK machine. In

cases when the term is a variable lookup, we appeal to Lemma 7.1 and use getEnv

and getTerm before relying on induction hypothesis. Additionally, we appeal to

Lemma 7.1 to get witness that environment obtained by looking up is correct.

In all remaining cases, we trivially populate CEK machine trace, by appealing to

the induction hypothesis for the next CEK state, given the appropriate cases of

evaluation contexts and structure of terms.

We can obtain CEK trace from refocusing evaluator trace if evaluation context and

environment are correct. Trace of refocusing evaluator can be obtained from the

trace of head reduction evaluator (by Lemma 6.3). We can obtain a head reduction

evaluator trace for the closure of any well-typed term in an empty environment.

Empty environment and empty context trivially satisfy correctness properties.

Therefore, we can obtain a CEK trace for any well-typed term, starting from an

empty environment and context.
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Knowing that we can introduce a CEK evaluation function that is proven to ter-

minate for any well-typed term. Finally, we state the most important correctness

termination : ∀ {u}

→ (t : [] ` u)

→ Trace t Nil MT

termination t = traceLemma MT t Nil (tt , tt) (Refocusing.termination t)

evaluate : ∀ {u}

→ [] ` u

→ Value u

evaluate t = refocus MT t Nil ((termination t))

Figure 7.8: Terminating CEK evaluation function

property of the obtained CEK machine, that it always reaches the same result as

refocusing evaluator for any well-typed term

Corollary 7.5. For all types u, let t denote a term [] ` u. When given t, CEK

evaluate function yields the same result as evaluate function of the refocusing

evaluator.

Proof. We appeal to Lemma 7.3 and provide witnesses that both refocusing eval-

uator and CEK evaluator have a trace for any well-typed term by using the con-

sequences of Theorem 5.11 and lemmas 6.3 and 7.4.



Chapter 8

Testing, critical evaluation and

project management

8.1 Testing and verifiction

The usual part of the report on a programming project is a section about testing

the obtained code, using unit, integration or component tests. However, in a

project like this, which was developed using dependently-typed Agda, there is no

need to do so. Dependent types allow internal verification of the code, that is

performing formal verification while developing the code. Therefore, the obtained

program is formally proven to be correct with the specification.

8.2 Termination of decomposition problem

A careful reader should notice that our mutually recursive definition of decompose’

and decompose’ aux functions are annotated with termination pragma, that is

Agda termination checker cannot confirm that a function is terminating. The

reason why the Agda termination checker cannot prove the termination of those

functions is the fact that they are not structurally recursive. The call-by-value eval-

uation requires evaluating the left-hand side of the application to a value before

looking into the right-hand side. When switching from evaluating the left-hand to

the right-hand side, the argument to a next call is not structurally smaller, which

triggers the Agda termination checker warning. Locally it looks like the size of the
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argument is not decreasing, even though when looking globally, from the point of

view of an application of two expressions, progress can be seen.

decompose’ and decompose’ aux were proven to terminate in Danvy and Nielsen

(2004). What is more, formalisation of Sieczkowski et al. (2011), which models

abstract machines as logical relations, also provides a machine checked proof that

decompose’ and decompose’ aux are terminating. Therefore, there is no reason

to suspect that asserting a termination of those functions is inconsistent with the

rest of theory.

As termination of those functions was explicitly proven in the mentioned literature,

we recognise that there is little value in mechanising such proof. Therefore, due

to the complexity and little value, proving the termination of those functions was

left out as an optional task in this project. Due to a short time frame, we were

able to partially complete this task. Therefore, the appendix B contains a sketch

of a potential way of solving this problem, which could be the basis for future

developments in the project.

8.3 Reflection on time management and project

planning

The project successfully reached its main objectives, while producing a valuable

deliverable and new contributions to the field. It is worth mentioning, that this

project was research-oriented and therefore had a high risk associated with it. The

engineering management of this project allowed to mitigate those risks.

The project progress was discussed in the weekly meetings with the supervisor.

Those meetings involved both theoretical and conceptual discussions, as well as

project planning aspects. All tasks in the project were managed and tracked with

the Kanban board, using Trello service. Before the first term a Gantt chart was

created with the road map of project development (see Figure 8.1). When learning

more about the problem domain, and upon seeing the increased complexity of

producing a proof of termination a Gantt chart was appropriately adjusted (Figure

8.2).

Two meetings with the secondary examiner were conducted. The main objective

was to brief the examiner on the progress of the project, as well as to discuss the

final write-up of the project. All received remarks were appropriately addressed.
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The mitigation of the risks is described in the Figure 8.3. The project planning

involved the potential impact of data loss and hardware failure and was appropri-

ate by backing up the Agda code on University’s GitLab service. Moreover, the

potential effect of Covid-19 was considered. Finally, to mitigate a high risk related

to pursuing a research project contact with researchers from the field, including

Dr Swierstra, Prof. Altenkirch and Dr Sieczkowski, was established. Discussions

with them were parallel to the discussions with the main supervisor and introduced

great value to the project.

Finally, it is worth mentioning that the overall project topic has changed com-

pared to the original project brief (appendix A). The original plan was to deliver

Agda formalisation of Douence and Fradet (1998) combinator based framework

for abstract machines. The type system considered by the authors contained one

unsound rule, which highly increased the complexity of the necessary work, as it

would need developing a new type system from scratch. Instead of building some

theory from scratch, the focus of the project was shifted towards contributing to

existing research in dependently typed formalisations of abstract machines and

extending it to the broader case.

8.4 Self-evaluation

The project was somewhat challenging, however it was an outstanding opportu-

nity for me to gain a greater understanding of programming language theory and

formal methods. I am incredibly pleased with the final outcome of the project. I

was able to efficiently and competently adapt to teach myself Agda to a level that

has allowed me to contribute to the field I was working in. I consider establishing

contact with the authors of the papers I was relying on a great success. Exchang-

ing ideas with Dr Swierstra was a great experience, which allowed me to pick up

practical research skills. I completed all the main objectives of the project, how-

ever only partially completed the low-priority optional task. Having been given

more time, I would choose to focus on proving termination of decomposition, as

well as consider languages with control operators. I am extremely grateful to my

supervisor and second examiner for their guidance and support.

8.5 Gantt charts
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8.6 Risk assesment

Figure 8.3: Risk assessment of the project



Chapter 9

Conclusions and future work

The main deliverable of our project is an Agda formalisation of a correct-by-

specification CEK machine equivalent to a call-by-value iterated head reduction

evaluator for λp̂. To our best knowledge, it is first proven to terminate and exe-

cutable the formalisation of the CEK machine in a dependently typed language.

The main project objectives were met and associated tasks were completed. The

only optional task was partially completed, however, it was not critical to the main

aims of the project.

We successfully extended Swierstra (2012) formalisation of the Krivine machine

to a call-by-value case. Our main contributions include providing Strong Normal-

isation theorem for λp̂ under call-by-value in a style of Tait and Martin-Löf, as

well as providing machine-checked proof of CEK equivalence with head reduction

evaluator.

A natural extension of the mentioned project would be to consider the derivation

of abstract machines for context-sensitive calculi involving control operators. For

example lambda calculus with an abort operator, or λµ-calculus (Parigot (1992)).

Languages with first-class continuations allow having a computational version of

some elements of classic logic through Curry-Howard isomorphism.

There have been already some work on variants of λp̂ with control operators and

deriving context-sensitive machines through refocusing, with the most important

contribution being Biernacka and Danvy (2007a). It is interesting that closures in

their work mixed namespace of λ and α variables. When deriving a machine for

λµ-calculus, one could consider variants of λp̂ where closure has two substitution

environments - one for λ variables and the other one for α-variables.
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56 Chapter 9 Conclusions and future work

When extending our project to formalising such machines the interesting prob-

lem would be proving termination. Biernacka and Biernacki (2009) introduced a

variant of Tait-style logical relation taking evaluation contexts into account. The

authors also introduced a typing for evaluation contexts, however different from

the one from Swierstra (2012) and our project. The authors proved the termi-

nation of λ-calculus with various control operators including callcc, abort and

Felleisen’s C.
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Original project brief

61



Formally verified, compositional framework
for abstract λ-calculus machines

Authored by Wojciech Rozowski

Supervised by Dr Julian Rathke

Problem

Throughout the development of functional programming languages, one of the most researched topics is their im-
plementation. A common approach to describe programming languages semantics is using abstract state machines
(ASMs), a first-order transition systems based on the abstract syntax trees. Several abstract machines have been
developed and formally described, with most notable examples of SECD (Landin [1964]), Krvine-machine (Krivine
[2007]), CE(S)K (Felleisen and Friedman [1987]) and STG (Jones et al. [1992]).

Despite the usefulness of abstract state machines and high amount of research papers about them, there have
been relatively few efforts to come up with way of unified global way of studying, reasoning and comparing them.
Biernacka and Danvy [2007] did a notable contribution to this field, by providing a derivational taxonomy of ASMs
from one-step reduction functions.

A slightly less known, yet highly interesting concept was introduced by Douence and Fradet [1998]. The authors
descibed a unified abstract framework to describe, relate, compare and classify functional language ASMs implemen-
tations, by expressing compilation process as series of compositional program transformations, between combinator-
based intermediate languages. Each intermediate transform can be seen as different fundamental choice for the
evaluation strategy and correctness of each of the steps can be treated distincly from the rest of program trans-
forms.

Using this theory one could build a formally verified framework for ASM-based interpreters of functional languages
in a manner similar to formally verified compilers (eg. CompCert by Leroy [2009]), however no such works have been
done before in this area, and this leaves an interesting area for investigation.

Goals

A primary goal of this project is to implement Dounce and Fradet’s framework in a formally verified way using Agda
(Bove et al. [2009]) - a dependently typed programming language based on Martin-Löf’s intuitionistic type theory,
which extends it with mutliple programming language features. By Curry-Howard isomorphism, well-typed programs
in a language with such type system, can be also seen as constructive proof of inhabitance of their corresponding
types.

Upon formalizing this framework in Agda, the secondary goal is to study what properties of the program transforma-
tions can be formally guaranteed. Possible routes could include looking into guarantees of normalization properties,
semantic preservation or type preservation.

The tertiary and optional goal is to consider coinductive formalization of the target language of the transforms and
study whether one could prove the termination of the well-typed input programs, by using delay monad, similarly
to master thesis by Krupicka [2018]

Scope

Instead of thinking about more complicated functional programming language, the scope of the project will be
restricted to a language with fewer amount of constructs. As a starting point, simply typed λ-calculus will be
considered, as it can be seen as natural basis for any programming language. Then, more sophisticated elements will
be studied and considered accordingly to the time left. Also, given a rather short-time frame for the project, the
scope of the project might consider only a subset of intermediate languages transformations and therefore a smaller
subset of covered ASMs (eg. omitting graph reduction-based machines), focusing on providing functional and verified
framework that can be gradually extended. However, the goal is to cover as many transforms as possible.



Appendix B

Sketch of termination proof of a

decomposition function

Even though the arguments to the decompose and decompose’ aux are not struc-

turally recursive, we can attempt to order the configurations (that is pair of current

closed term and substitution environment) by the order they are being called. We

use a principle, which is supported in Agda and is known as well-founded recur-

sion. If we can show that the non-structurally recursive function calls argument

smaller with respect to a given well-founded relation, then it passes the termination

checking. Safe configurations to recurse through, are those which are accessible

in a given relation. If for some x for all y, such that y < x (with respect to that

relation), then x is accessible.

As decompose’ and decompose’ aux take multiple arguments, we introduce a

configuration (see figure B.1) datatype, which describes valid states of travers-

ing through some closed term. Confuguration of a closed term closure is some

current closed term along a corresponding substitution context and witness that

plugging a current closed term into given evaluation context recreates the original

closure.

Now, inspired by <f and <t relations from Sieczkowski et al. (2011) we introduce

an ordering on configurations (see figure B.2). We restrict the relation to compare

the possible configurations of only one underlying closed term, rather than arbi-

trary configurations. Broadly speaking, arg-lt-clapp says that traversing to the

left-hand side is a configuration closer to the end than the closed-term of appli-

cation of two sides. fn-lt-arg describes situation when switching the evaluation

contexts. The rules are not transitive by definition, so we impose the transitivity

by definition.
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data Configuration (v : Type) (closure : Closed v) : Set where

[_-_-_] : ∀ {u}

→ ( ctx : EvalContext u v )

→ ( c : Closed u )

→ ( plug ctx c ≡ closure )

→ ( Configuration v closure )

Figure B.1: Configuration datatype definition

arg-lt-clapp

(ctx : EvalContext u v)(x : Closed a)
(f : Closed (a ⇒ u))(closure : Closed v)

(p1 : plug ctx (Clapp f x) ≡ closure)
(p2 : plug (ARG x ctx) f ≡ closure)

[[ closure ]] [ ARG x ctx - f - p2 ] < [ ctx - Clapp f x - p2 ]

fn-lt-arg

(ctx : EvalContext u v)(x : Closed a)
(f : Closed (a ⇒ u) )(p : isVal f)

(closure : Closed v)
(p1 : plug ctx (Clapp f x) ≡ closure)

[[ closure ]] [ FN (Val f p) ctx - x - p1 ] < [ ARG x ctx - f - p1 ]

transitivity

(c : Closed v)(e1 : Configuration v c)
(e2 : Configuration v c)(e3 : Configuration v c)

[[ c ]] e1 < e2
[[ c ]] e2 < e3

[[ c ]] e1 < e3

Figure B.2: Ordering on configurations

Having such a relation, we can rewrite our decompose’ and decompose’ aux to

pass termination checking, given the accessibility predicate - see figure B.3. The

open problem is giving an accessibility predicate for any valid configuration, that is

proving the well-foundedness of the relation. It is possible, that the given definition

of the relation is non-canonical and transforming it into an equivalent definition

that is canonical would allow creating a straightforward well-foundedness proof.

Also, the concerning thing is the fact that multiple properties of decomposition rely

on proofs by reflection, which could be problematic when rewriting the equations

involving the variants of functions taking accessibility predicate.
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mutual

dec5a : ∀ { u v}

→ (ctx : EvalContext u v)

→ (c : Closed u)

→ (a : Acc [[ plug ctx c ]]_<_ ([ ctx - c - refl ]))

→ Decomposition (plug ctx c)

dec5a ctx (Closure (λ x) env) a = dec5b ctx x env a

dec5a ctx (Closure (x ◦ x) env) a = Redex×Context (App x x env) ctx

dec5a ctx (Closure (‘ x) env) a = Redex×Context (Lookup x env) ctx

dec5a ctx (Clapp f arg) (acc rs) =

dec5a (ARG arg ctx) f

(rs [ ARG arg ctx - f - refl ]

(arg-lt-clapp ctx arg f (plug ctx (Clapp f arg)) refl refl))

dec5b : ∀ { a b w Γ}
→ (ctx : EvalContext (a ⇒ b) w)

→ (body : (a :: Γ) ` b)

→ (env : Env Γ)
→ (a : Acc [[ plug ctx (Closure (λ body) env) ]]_<_

([ ctx - (Closure (λ body) env) - refl ]))

→ Decomposition (plug ctx (Closure (λ body) env))

dec5b MT body env rs = Val body env

dec5b (FN (Val (Closure (λ x) env) p) ctx) body env rs =

Redex×Context (Beta x env (Val (Closure (λ body) env) tt)) ctx

dec5b (ARG x ctx) body env (acc rs) =

dec5a (FN (Val (Closure (λ body) env) tt) ctx) x

(rs [ FN (Val (Closure (λ body) env) tt) ctx - x - refl ]

(fn-lt-arg ctx x (Closure (λ body) env) tt

(plug ctx (Clapp (Closure (λ body) env) x)) refl))

Figure B.3: Well-founded decompose’ and decompose’ aux





Appendix C

Desciption of project archive

The whole formalisation is contained in the cek.agda file. It requires agda 2.6.1,

as well as compatible agda standard library to sucessfully pass the checks. The

formalisation root module is cek and it contains several submodules:

• Terms - contains the definitions of closd terms of λp̂-calculus (see chapter 3)

• Redex - contains the decomposition function, definition of single-step head

reduction as well as lemmas on head reduction properties (see chapters 3

and 4)

• IteratedHeadReduction - Strong Normalization theorem and correspond-

ing lemmas (see chapter ??)

• Refocusing - Refocusing transformation and corresponding equivalence and

termination proofs (see chapter 6)

• Machine - CEK machine and corresponding equivalence and termination

proofs (see chapter 7)

We also include wf-decomposition.agda which contains our unfinished develop-

ments in proving termination of decompose’ and decompose’ aux functions. It

only includes Terms and Redex modules.
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Appendix D

Total word count

The total word count in the body of the report was counted using TeXcount web

service (https://app.uio.no/ifi/texcount/online.php) and is 9975
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