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Abstract

Recently, the dual-scaling interior-point algorithm has been used to solve large-scale semidef-
inite programs arisen from discrete optimization, since it better exploits the sparsity structure
of the problems than several other interior-point methods, while retain the same polynomial
time complexity. However, solving a linear system of a fully dense Gram matrix in each iter-
ation of the algorithm becomes the time-bottleneck of computational efficiency. To overcome
this difficulty, we have tested using an iterative method, the conjugate gradient method with
a simple preconditioner, to solve the linear system for a prescribed accuracy. In this report,
we report computational results of solving semidefinite programs with dimension up to 20,000,
which show that the iterative method could save computation time up-to 25 times of using the
directed Cholesky factorization solver.

Key words. Semidefinite program, dual-scaling algorithm, conjugate gradient method, precondi-
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1 Introduction
Consider the semidefinite programming problem

Minimize Ceo X
(SDP)
Subject to A;e X =b;, i=1,...,m, (1)

X =0.

where C and A; are given n X n symmetric matrices, C ¢ X =tr CTX = >k CikXjk, and X = 0
means that X is positive semidefinite. Furthermore, we assume that A;’s are linearly independent,
meaning that > ;> y;A; = 0 implies y; = ... =y, = 0;

The dual of (SDP) can be written as:

Maximize b'y
(DSDP) (2)
Subject to TiyAi+S=C, S=0,

where y;, 1 = 1,...,m are scalar variables.

We have the following well-known duality theorem [13]:

Theorem 1 (Strong Duality) Provided that (SDP) and (DSDP) are both feasible and there is a
strictly interior point to either (SDP) or (DSDP), there is no duality gap.

Thus, if both (SDP) and (DSDP) are well behaved or a primal and dual optimal solution pair (X*)
and (y*, S*) exists, then C o X* = bTy*,

There have been several theoretical achievements (see, e.g., Goemans and Williamson [5]) on
using semidefinite programming to approximate combinatorial and graphical problems. The ap-
proach is to relax a combinatorial graph-optimization problem into a semidefinite program, then
solve the relaxation program and construct a solution to the original combinatorial problem. This
solution often possesses a guaranteed quality, although it is not 100% optimal. In these semidefinite
relaxations, most often the constraint matrices are rank-one, i.e., A; = a;al, a; € R"; C represents
the weighted graph-incidence or Laplacian matrix of the original graph; and S possesses the same
sparse structure of C. These features result in considerable simplifications of the algorithm that
we presented later.

There exist various interior-point algorithms that solve the semidefinite program in “poly-
nomial” time, based on either the primal scaling (using X), the dual scaling (using S), or the
primal-dual scaling (using both X and S), see, e.g., [1], [7], [10], [12], [11], [14], and [16]. (Other
nonlinear programming based methods for semidefinite programming include Burer, Monteiro and
Zhang][3|, Helmberg and Kiwiel [6], Vavasis [17], Vanderbei and Benson [18], etc.) Recently, the
dual-scaling algorithm (see Benson et al. [2]) has gained some attention, since it (using S) better



exploits the sparsity structure of the problems than the other methods. However, solving a linear
system of a fully dense gram matrix in each iteration of the algorithm becomes the time-bottleneck
of computational efficiency. To overcome this difficulty, we have tested using an iterative method,
the conjugate gradient method with a simple preconditioner, to solve the linear system with a pre-
scribed accuracy. In this report, we report computational results of solving semidefinite programs
with dimension up to 20,000, which show that the iterative method could save computation time
up-to 25 times of using the directed Cholesky factorization.

2 Dual-Scaling Algorithm

We briefly describe the dual-scaling interior-point algorithm (e.g., [2]). It is a modification of the
dual-scaling linear programming algorithm, and uses the dual potential function

¥(y,2) = pln(z — b'y) — Indet S.

where z = C'e X for some X feasible for the primal. Starting from an interior feasible point (y°, S°)
and a 2", the algorithm generates a sequence of (y*, S*, 2¥) such that the dual potential function
is reduced by a constant, which forces (y*, S¥) converge to an optimal dual solution and generates
X* as a by-product, converge to an optimal primal solution.

Define an operator A(X) as
A1 o X
A2 o X
A(X) = :
Ane X
The gradient of the dual potential function, for a fixed 2z, becomes

Vip(y,7) =~ bt ABST) (3)

which is composed of two terms.

From a strictly feasible dual point (y*, S*), the kth iteration of the algorithm solves the following
subproblem for the displacement vector dy*:

Minimize V4T (y* ,Zk)5y
Subject to  ||(S*)~ (A ) )70 < a, (4)

where « is a positive constant less than 1 and
m
= dyidi;
i=1

then assigns

yk+1 — yk: + 5y*



The optimal solution dy* has a close form:

MEsy* + pVp(yE, 2F) = MFsy* + ﬁ(—mu A((SH™)) =0 (5)

for a step-size (3, where

Al(sk)—l ° (Sk)_lAl Al(sk)—l ° (Sk)—lAm
Am(Sk)fl ° (Sk)flAl . Am(Sk)fl ° (Sk)flAm

and
A e (Sk)—l
A((SM) ) = I

Am ° (Sk)—l

The matrix M¥* is called Gram Matrix and it is positive definite when S* = 0 and A;’s are linearly
independent. Note that if A;s are rank-one, i.e., A; = a;al , a; € R™, then
(af (8")7a1)® -+ (af (8*) 7 am)? af (S*)"'ar

: : and A((S%)7") =

Mk = :
(a5 (8%) tar)? -+ (al(S%) Lam)? ah(S%) tam

Thus, we can construct M* by m back-solvers once S* is factorized; and the factorization of S* is
usually easy since S* is intrinsically sparse for real-world applications.

To obtain dy*, one usually computes dy; and dy, such that

MFoys = —A((SF) 1),
and let

(0% (0%
\/—Vz/)T(y’“,z’f)(zk_zTyk Syr + Oya) \/vsz(yk,gk)(Mk)—lw(yk,zk)'

p= (7)

Then, assign

oy = 5(%5% + 0y2). (8)

Ek

In Benson et al. [2], the Cholesky factorization of M* has been used to compute dy; and dys.
Since M* is an m x m almost always fully dense matrix, the factorization of MP* is extremely
expensive and constitutes most of the computation work. Next we show that this work could be
reduced dramatically by iteratively solving the systems of linear equations using a preconditioned
conjugate gradient method.



3 Conjugate Gradient Method

We quickly review the conjugate gradient method in solving a linear system Az = b for an m x m
real positive definite matrix A and a real vector b. Starting from an initial point 2°, the method
generates a sequence of vectors that converges to the solution that satisfies Az = b. Since this
method was first introduced by Hestenes and Stiefel in 1952 ([8]), it has been widely used in
solving large-scale linear systems bearing numerous applications and modifications.

To solve the system, one uses the fact that convex quadratic function
1
o(z) = E:JcTAx — bl 9)

has the minimum solution z* that satisfies Az* = b. Then, the conjugate gradient method generates
a series of nonzero vectors p*’s that satisfy the equalities

(P T Ap’ =0, for all 7 # j. (10)

This property is known as conjugacy. Starting from the initial z° € R™, the method then computes
k

a sequence x", using these conjugate vectors as bases, which converges to z*. More precisely, the
iterative updates are:

= gk 4 kb
where

(T‘k)Tpk

(p*)T Ap¥

of = —
and
rk =b— AzF.
It is well known that, for any z°, the conjugate gradient sequence converges to z* in at most m
steps. In fact, if A has only r distinct eigenvalues, then method will terminate in at most r steps.
The Chebyshev inequality also holds:

N k
V) e -l (1)

1

where ||lul , = (u” Au)? and ¢ = /}\m#, the ratio of the max-eigenvalue over the min-eigenvalue of
min

A.

l* — 2™ 4 < 2(

One variation of the original conjugate gradient method is to use preconditioning. Using a
linear translation # = B%®z for a nonsingular matrix B, the system becomes

O(2) = %:%T(B_O'5AB_0'5)£ — (B™%%%)b. (12)
Then, one can apply the method to minimize ®(#). The goal is to choose a nonsingular matrix
B such that the eigenvalues of B9°AB~%5 are clustered closely to each other and; thereby, the
number of needed conjugate steps can be reduced. On the other hand, the computation of B0
must be cost-effective. In our experiment, the diagonal of A is used as B. Other popular choices
are incomplete Cholesky factorizations or band matrices of A.

Thus, the simple standard preconditioned conjugate gradient method, using the diagonal of A
as the preconditioner, can be descried as follows.



Algorithm PCG Start by choosing any z° € R™ and set 0 = b — Ax0, ¢* = Diag(A)flro,
p? = ¢° and k = 0. For a given tolerance e,

while([[r*[|/[[bl] > €)

k_ _(F)Tqb |
&= T AR
2L = gk g okph

Phtl = pk ok Apk.

¢"*" = Diag(A)~'rktY

k+1)T gh+1
Bk =l (rk;TZk )
pEHL = gh+l 4 ghph.
k=k+1;

end;

Now we apply this iterative method to solving (6). To generate a pair of dy’s, we run the
PCG method two times—one against b and one against —A((S¥)~1). But in actual computation
we utilize the fact that they use the same right-hand matrix M*. Therefore we run the pair of
conjugate gradient method simultaneously to save some computation work. We stop the conjugate
steps when the bigger of the relative norms, is smaller than the given tolerance €. In one conjugate
step, we need two matrix-vector multiplications and several vector-vector products. And we do not
need any memory space to allocate matrices, so that the method is space efficient.

After solving these two linear equations of (6) approximately we return to the same procedure
of Benson et al. [2] and continue the major iteration. Note that, since (6) is not solved exactly, the
by-product primal update z¥ = C'e X* (see [2]) will not be an exactly feasible primal objective value;
but b y* remains a feasible dual objective value. Thus, the algorithm terminates at a slightly sup-
optimal (sub-optimal) value for the primal (dual), depending on the tolerance e for the conjugate
gradient process. Interestingly, the tolerance does not need to be too small for solving all our test
problems, still producing excellent approximate combinatorial solutions for the original graphical
problems. In our experiment, € is set to be 0.1 and 2" = 0 is used as the initial point.

The conjugate direction method has been used by Kaliski and Ye [9] and Resende and Veiga
[15] in LP dual interior-point algorithms, and by Fujisawa and Kojima[4] in an SDP primal-dual
interior-point algorithm.

4 Computational result

The following tables illustrate the test results of solving various types of graphical problems. The
major iteration of the dual-scaling algorithm is terminated when the (approximate) primal-dual
relative gap is below 10~*. Then, the same rounding methods of Benson et al. [2] are used to



construct combinatorial solutions.

In Table 1 we compares the conjugate gradient method with the Cholesky factorization for
solving the Max-Cut of the G-set graphs, generated by the machine independent graph generator,
rudy, of G. Rinaldi and also used in Benson et al. [2].
(the number of vertices in the graph), “Spars” is the density of the graphs, “SFden” is the density
of the Cholesky factor of S (after reordering). The next two sections contain the solution times,
the cut values, and their comparisons between the CG (conjugate gradient) and the CH (Cholesky
factorization) solvers. Column “CG/CH” shows the ratio of the CG solution time to the CH time,
and column “(CG-CH)/CH?” is the ratio of the difference of the two resulting cut values to the cut
value resulted from the CH solver. There, we see that the CG solution time is uniformly less than
the CH solution time, while the two max-cut values remains extremely close.

“Dim” represents the size of the problem

Time Cut-Value
Name | Dim  Spars(%) SFden(%) CG CH CG/CH | CG CH (CG-CH)/CH
Gl11 800 0.63 2.6 16.61 28.38 0.59 542 532 0.01
G12 800 0.63 3.64 17.66 29.84 0.59 540 534 0.01
G13 800 0.63 4.37 18.19 28.74 0.63 564 554 0.01
G14 800 1.59 14.49 35.23 47.76 0.74 2922 2982 -0.02
G15 800 1.58 13.88 32.11 54.9 0.58 2938 2975 -0.01
G20 800 1.59 14.05 32.03 58.46 0.55 838 876 -0.04
G21 800 1.58 13.86 37.56 61.29 0.61 841 855 -0.01
G22 2000 1.05 47.88 4123.31 4325.62 0.95 12960 12989 -0.00
G23 2000 1.05 47.68 3233.52 3402.86 0.95 13006 13002 0.00
G24 2000 1.05 48.29 3250.7 3549.09 0.92 12933 12985 -0.00
G30 2000 1.05 48.53 3718.93 3929.19 0.94 3038 3080 -0.01
G31 2000 1.05 48.70 3835.70 3784.45 1.01 2851 2936 -0.02
G32 2000 0.25 1.70 142.61 616.96 0.23 1338 1302 0.02
G33 2000 0.25 1.85 132.48 352.90 0.37 1330 1286 0.03
G34 2000 0.25 2.28 156.66 383.67 0.40 1334 1292 0.03
G48 3000 0.17 1.73 343.64 1113.6 0.31 6000 6000 0
G49 3000 0.17 1.57 303.3 1197.64 0.25 6000 6000 0
G50 3000 0.17 1.28 264.59 1706.73 0.16 5880 5880 0
G55 5000 0.1 1.04 1474.77 17854.76 0.08 9960 9960 0
Gb56 5000 0.12 8.76 15618.6 31341.04 0.50 3634 3649 -0.00
G57 5000 0.1 0.82 1819.76 15401.37 0.12 3320 3208 0.03
G60 7000 0.08 8.46 58535.13 89700.25 0.65 13610 13658 -0.00
G61 7000 0.08 8.46 52719.63 90491.23 0.58 5252 5273 -0.00
G62 7000 0.07 0.66 5187.23 63139.88 0.08 4612 4476 0.03
G63 7000 0.05 0.41 21386.79 62248.04 0.34 8017 8059 -0.00
G64 7000 0.18 11.19 102163.92  150017.27 0.68 7624 7861 -0.03
G65 8000 0.06 5.21 58309.63  133412.95 0.43 13261 13286 -0.00
G70 10000 0.03 0.31 33116.22  193932.17 0.17 9456 9499 -0.00
G72 10000 0.05 0.69 12838.07  265875.75 0.05 6644 6370 0.04
G77 14000 0.04 0.52 32643.36  804486.15 0.04 9418 9048 0.04
G381 20000 0.03 0.38 131778.21 0.00 13448

Table 1: Comparison of the CG and CH solvers for solving Max-Cut problems (Time is in seconds).




This table shows a significant speed improvement for the dual-scaling algorithm from the CH
factorization to the CG solver. For G77 (this graph has 14000 vertices), the cut solution takes 9
days to obtain when the CH factorization is used; while it takes about 9 hours when the CG solver
is used. At the same time, the solution quality of the CG solver is even better than that of the CH
factorization.

The CG solver can be implemented without explicitly storing M* at each iteration, which makes
the solver use much less memory than the CH method does. For example, G81 of Table 1 cannot
be solved by the CH method due to the shortage of memory

Figure 1 shows the number of CG steps in each major iteration of the algorithm for solving the
G38 max-cut problem. The horizontal axis is the indices of the major algorithm iterations, and the
vertical axis is the number of CG steps used in each major iteration. The figure depicts a typical
behavior of the CG solver for solving these max-cut problems. At the beginning, the method needs
very few CG steps. Then more and more steps are needed; after few iterations the number starts
to decrease. At the end, 1 or 2 CG steps are sufficient. This trend alludes that one might develop
a better preconditioner during the middle of the iterative process to further reduce the number of
CG steps.

Figure 1: The number of CG steps for solving Max-Cut G38.

Another interesting trend is: the sparser of the graph, the faster of the CG method or the less
of needed CG steps. Figure 2 depicts the relation between the density of the Cholesky factor of
S—“SFden” (horizontal axis), and the solution time ratio—“CG/CH” (vertical axis) of Table 1.
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Figure 2: The solution time ratio and the density of S-factor.

Table 2 shows the test results for solving these graphs as the Max-Bisection—to find the max-
cut while the two sides have the same number of vertices—using the CG solver. In addition to the
G-set graphs, we also include in our test a set of circuit graphs from real-industrial applications.
There, “# of Iterations” is the number of major iterations occurred in the dual-scaling algorithm,
and “Max # of CG-steps” is the largest number of CG steps in each major iteration during the
entire iterative process. We see that the time used in solving the Max-Bisection problem is about
the same as that of solving the Max-Cut problem, and the number of CG steps needed in each
major iteration remains low. Again, a substantial speed improvement has been achieved here. For
example, using the CH solver the bisection of circuit “s15850” needs 88 hours, but now it needs
only 4.5 hours.



Name Dim  Spars(%) SFden(%) | # of Iterations Bisection-Value Max # of CG-steps Time
G48 3000 0.17 1.73 23 6000 2 511.54
G49 3000 0.17 1.57 23 5996 2 519.41
G50 3000 0.17 1.28 20 5878 2 462.34
G55 5000 0.1 1.04 22 9958 2 1793.39
G56 5000 0.12 8.76 46 3611 10 20793.52
Gbh7 5000 0.1 0.82 32 3322 3 2090.77
G60 7000 0.08 8.46 39 13640 8 48949.86
G61 7000 0.08 8.46 34 5195 9 42467.23
G62 7000 0.07 0.66 34 4576 3 5445.99
G63 7000 0.05 0.41 82 7826 10 13166.68
G64 7000 0.18 11.19 76 7700 20 123409.74
G70 10000 0.03 0.31 85 1953 7 18254.4
GT71 10000 0.02 0.03 65 1444 7 11459.39
GT72 10000 0.05 0.69 35 6628 5 15383.86
G74 10000 0.06 2.07 58 6560 18 64514.15
G77 14000 0.04 0.52 40 9450 3 36446.69
G81 20000 0.03 0.38 31 13402 9 334824.22
balu 801 3.80 14.11 26 693 3 40.20
pl 833 1.48 6.25 26 852 2 31.47
bm1 882 1.32 5.48 25 848 2 33.88
t4 1515 9.12 12.23 27 1539 2 439.73
t3 1607 4.49 10.22 42 1494 4 588.14
t2 1663 6.08 11.76 31 1630 3 679.56
t6 1752 6.60 17.77 32 1526 3 1390.15
struct 1952 0.49 2.79 26 1753 1 185.17
t5 2595 6.49 10.21 38 2574 3 3039.91
19ks 2844 3.31 6.69 31 3128 3 2221.06
p2 3014 0.63 5.50 35 2851 3 2223.24
s9234 5866 0.11 0.58 64 5600 3 5181.22
biomed | 6514 2.98 12.28 33 5355 2 46750.65
s13207 8772 0.08 0.40 52 8326 3 12077.33
s15850 | 10470 0.07 0.25 54 9940 2 15966.03

Table 2: Results of using the CG solver for solving Max-Bisection problems (Time is in seconds).
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