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Stochastic modeling of the turbulent subgrid fluid
velocity along inertial particle trajectories

By P. Fede†, O. Simonin‡, P. Villedieu† AND K. D. Squires¶

Large Eddy Simulation (LES) coupled with discrete particle simulation (DPS) has
emerged as a powerful tool for the numerical prediction of particle dynamics in turbu-
lent flows. To further advance the technique, several issues require investigation. These
include, for the fluid phase, the effect of the particles on subgrid-scale fluid turbulence,
and for the particulate phase, the effect of the subgrid fluid turbulence on particle dis-
persion and inter-particle collision rates. The present study focuses on the modeling of
the subgrid fluid velocity fluctuations along inertial particle trajectories. The focus of
this work is particles with relaxation times close to the subgrid turbulent time scale of
the fluid. A Langevin model has been derived that ensures that the resulting equation
for the variance of the subgrid velocity along particle paths is consistent with the mean
subgrid kinetic energy equation derived from the filtered Navier-Stokes system. To as-
sess the model, one- and two-point statistics measured from discrete particle simulations
using fluid velocity fields computed using DNS of homogeneous isotropic turbulence are
compared with results obtained using filtered velocity fields (obtained from the DNS
ones) and the stochastic Langevin equation for the subgrid velocity reconstruction. The
results show that the stochastic subgrid model enables accurate prediction of the particle
kinetic energy, with a reasonable match to the DNS database. In contrast, the PDF of
the particle concentration undergoes relatively stronger modifications due to the incor-
poration of the model, with the simulations showing that the random contribution added
by the stochastic model is over-predicted.

1. Introduction

The dynamical behavior of particles suspended in turbulent flows continues to re-
ceive attention because of its relevance to a wide range of applications, including liquid
spray injection in gas turbines, rocket boosters, fluidized beds, pollutant dispersion, and
sand/sediment transport. There are many computational approaches to model two-phase
flows that differ mainly by the level of accuracy and computational cost. A simulation
strategy of increasing interest consists in the coupling of Large Eddy Simulation (LES)
of the fluid turbulence with discrete particle simulation (DPS) of the dispersed phase.
This method typically requires tracking very large numbers of particles and can simu-
late practical processes more accurately than Reynolds-Averaged Navier-Stokes (RANS)
approaches usually employed (Eulerian or Lagrangian).

An open issue, and the subject of this study, concerns the effect of subgrid turbu-
lence on particle motion. In LES only the energy-containing eddies are resolved and the
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Figure 1. Particle dispersion coefficient measured in numerical simulations where the subgrid velocity
is neglected, D̃p, normalized by the value measured in DNS, Dp, as a function of cutoff wavenumber κc
normalized by the fluid integral length scale. From Fede and Simonin (2006).

dissipative-scale effects are taken into account using a subgrid-scale (SGS) model. Inves-
tigations of the influence of subgrid turbulence on particle motion includes the studies
made by Armenio et al. (1999), Yamamoto et al. (2001), Pozorsky et al. (2004), Shotor-
ban and Mashayek (2005), and Fede and Simonin (2006). These studies have shown that
for one-point particle statistics (particle dispersion, particle velocity fluctuations or the
particle Lagrangian time scale), the subgrid turbulence has no significant effect on par-
ticle dynamics for parameter ranges in which the LES of the fluid flow is realistic (and
accurate). This feature is illustrated in Fig. 1 and shows the particle dispersion coefficient
measured in numerical simulations that do not include the effect of the subgrid velocity
fluctuations normalized by the value measured in DNS. The ratio is plotted against the
non-dimensional cutoff wavenumber κcL f (where L f is the fluid integral length scale).
The figure shows that for κcL f > 10, the contribution of the subgrid turbulence in the
dispersion mechanism is less than 2%.

While one-point statistics are negligibly affected for regimes in which the LES of the
fluid should be accurate, for other phenomena such as particle segregation or inter-particle
collisions, Fede and Simonin (2006) have shown that particle dynamics is much more
influenced by subgrid fluid turbulence. Figure 2 shows a measure of particle segregation
and illustrates that for a given range of subgrid Stokes numbers, defined as the ratio of
τp, the particle response time, to δτ, the subgrid characteristic time scale, the influence
of subgrid fluid fluctuations accounts for different phenomena, i.e.,

• For τp/δτ> 5, the subgrid turbulence has no effect on particle segregation.
• For τp/δτ ∈ [0.5;5], subgrid turbulence has a measurable effect on preferential con-

centration. In particular, Fig. 2 shows that the subgrid fluid velocity in this regime has
a randomizing influence on the particle distribution.
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Figure 2. Particle segregation measured in numerical simulations where the subgrid velocity is neglected
Σ̃p normalized by the value measured in DNS Σp with respect to the subgrid Stokes number τp/δτ. From
Fede and Simonin (2006).

• For τp/δτ< 0.5, subgrid turbulence is very important since it comprises the dominant
effect leading to preferential concentration.

The interpretation of these results in the frame of LES is that for τp/δτ > 0.5, the
subgrid turbulence can be modeled using a stochastic Lagrangian approach. Moreover,
if the LES is well-resolved (κcL f > 10) and τp/δτ > 5, then subgrid model accounting
for the influence of the unresolved fluid velocity on particle motion is not needed. In
contrast, for τp/δτ < 0.5, one-point stochastic Lagrangian models appear ill-suited and
other approaches are required (e.g., see Shotorban and Mashayek (2005)).

2. Modeling approach for the subgrid fluid velocity along inertial particle path

The instantaneous fluid velocity u f ,i is decomposed as

u f ,i = ũ f ,i + δu f ,i, (2.1)

where δu f ,i is the subgrid contribution and ũ f ,i is the filtered fluid velocity.

2.1. General form of the Langevin equation along an inertial particle trajectory

To establish the Langevin equation, we write the increment of the full fluid velocity along
a fluid element trajectory as

u f ,i(x + u f ∆t, t + ∆t)−u f ,i(x, t) =

[
− 1

ρ f

∂p
∂xi

+ ν f
∂2u f ,i

∂x j∂x j

]
∆t,
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which corresponds to the discrete-in-time representation of the Navier-Stokes equations
for incompressible flows where gravity is neglected. Using (2.1),

u f ,i(x + u f ∆t, t + ∆t)−u f ,i(x, t) =

[
− 1

ρ f

∂p̃
∂xi

+ ν f
∂2ũ f ,i

∂x j∂x j

]
∆t (2.2)

+

[
− 1

ρ f

∂δp
∂xi

+ ν f
∂2δu f ,i

∂x j∂x j

]
∆t.

By analogy to Pope (1994) for single-phase turbulence and Simonin et al. (1993) for
particulate flows, we write the contribution of the subgrid fluid velocity along an inertial
particle trajectory as

u f ,i(x + up∆t, t + ∆t)−u f ,i(x, t) =

[
− 1

ρ f

∂p̃
∂xi

+ ν f
∂2ũ f ,i

∂x j∂x j

]
∆t (2.3)

+ G f p,i j (u f , j− ũ f , j)∆t + (up, j−u f , j)
∂ũ f ,i

∂x j
∆t + HδWi,

where up is the particle instantaneous velocity, G f p,i j is a second-order tensor having the
dimensions of frequency, δWi is a Wiener process, and H is the intensity of the random
contribution.

In the frame of LES, the contribution of the filtered fluid velocity is given by (see, for
example, Sagaut (2002))

∂ũ f ,i

∂xi
= 0 (2.4)

∂ũ f ,i

∂t
+ ũ f , j

∂ũ f ,i

∂x j
=− 1

ρ f

∂P̃
∂xi

+ ν f
∂2ũ f ,i

∂x j∂x j
− ∂τi j

∂x j
, (2.5)

where τi j = ˜u f ,iu f , j− ũ f ,iũ f , j is the subgrid-scale stress tensor. We rewrite (2.5) in terms
of velocity increment as

[
− 1

ρ f

∂P̃
∂xi

+ ν f
∂2ũ f ,i

∂x j∂x j

]
∆t = ũ f ,i(x + ũ f ∆t, t + ∆t)− ũ f ,i(x, t) +

∂τi j

∂x j
∆t . (2.6)

Hence, (2.3) becomes

u f ,i(x + up∆t, t + ∆t)−u f ,i(x, t) = ũ f ,i(x + ũ f ∆t, t + ∆t)− ũ f ,i(x, t)

+
∂τi j

∂x j
∆t + (up, j−u f , j)

∂ũ f ,i

∂x j
∆t + G f p,i jδu f , j∆t + HδWi

and finally we obtain the following Langevin equation for the subgrid fluid velocity in-
crement along an inertial particle path:

δu f ,i(x + up∆t, t + ∆t)−δu f ,i(x, t) =−δu f , j
∂ũ f ,i

∂x j
∆t +

∂τi j

∂x j
∆t + G f p,i jδu f , j∆t (2.7)

+ HδWi .

In the right-hand side of the above equation, the first and second terms are exact and
can be computed from the filtered fluid velocity field. In contrast, the third and fourth
contributions are not closed and will be detailed in the following section.



Stochastic modeling of the turbulent subgrid velocity 251

2.2. Closure of the Langevin equation

The closure of (2.7) requires a model for the tensor G f p,i j and the intensity of the random
contribution H. The expression of H can be derived using the Lagrangian structure
function of the subgrid fluid velocity, δRL(τ), defined by

δRL(τ) =
〈
[δu f ,i(t0 + τ)−δu f ,i(t0)] [δu f , j(t0 + τ)−δu f , j(t0)]

〉
(2.8)

For τK < τ < τL, the Lagrangian structure function has a linear evolution Pope (1994)
and is linked to the subgrid dissipation via

δRL,i j(τ) = C∗0δε f τδi j, (2.9)

where δi j is the Kronecker delta, C∗0 is the Kolmogorov constant, and δε f is the sub-
grid fluid velocity dissipation. If we build the Lagrangian structure function using the
Langevin equation (2.7), we obtain δRL,i j(τ) = H2τδi j leading to

H =
√

C∗0δε f . (2.10)

The numerical value of the Kolmogorov constant C∗0 is discussed in Section 3.4.
In (2.7) the only degree of freedom is the second-order tensor G f p,i j. As previously dis-

cussed, this tensor has the physical dimensions of frequency. In the case of homogeneous
isotropic turbulence, the following spherical form is adopted:

G f p,i j =− 1
δτ

δi j. (2.11)

In the present study the characteristic time scale δτ is given by a consistency relation
that forces the Langevin equation to be consistent with the standard LES approach in
terms of the subgrid kinetic energy. In particular, in the frame of standard LES, the

transport equation of the subgrid kinetic energy δq2
f = ˜δu f ,iδu f ,i/2 is†

∂δq2
f

∂t
+ ũ f , j

∂δq2
f

∂x j
=− 1

2
∂

∂x j

˜[δu f , jδu f ,iδu f ,i] (2.12)

+
˜

δu f ,i
∂τi j

∂x j
−

˜
δu f ,iδu f , j

∂ũ f ,i

∂x j
−δε f ,

with the subgrid fluid dissipation given by,

δε f =
˜

ν f
∂δu f ,i

∂x j

∂δu f , j

∂xi
. (2.13)

For fluid elements, i.e., up = u f , we equate (2.7) and (2.11) to derive the following trans-
port equation for the subgrid kinetic energy:

∂δq2
f

∂t
+ ũ f , j

∂δq2
f

∂x j
=− 1

2
∂

∂x j

〈
δu f , jδu f ,iδu f ,i

〉
(2.14)

+

〈
δu f ,i

∂τi j

∂x j

〉
−
〈

δu f ,iδu f , j
∂ũ f ,i

∂x j

〉
− 2

δτ
δq2

f +
3
2

H2,

where < . > is an averaging operator. Assuming that the average < . > is equivalent to
the filtering .̃ we can equate (2.12) and (2.14). Finally, using H =

√
C∗0δε f we obtain

† assuming that the pressure-subgrid fluid velocity correlation can be neglected.
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Reynolds number ReL 61
Fluid kinetic energy (m2.s−2) q2

f 6.56 10−3

r.m.s fluid velocity (=
√

2q2
f /3) (m.s−1) u′f 6.61 10−2

Dissipation rate (m2.s−3) ε f 16.3 10−3

Dissipation time scale (= q2
f /ε f ) τε/τK 13.96

Integral length scale L f /Lb 0.11
Eulerian integral time scale τE/τK 6.94
Lagrangian integral time scale τL/τK 5.63
Kolmogorov time scale (s) τK 28.8 10−3

Kolmogorov length scale ηK/L f 0.048
κmaxηK 2.01

Table 1. Turbulent fluid flow statistics computed in DNS with N = 1283 mesh points.

the following consistency relation:

δτ =

[
1
2

+
3C∗0

4

]−1 δq2
f

δε f
. (2.15)

The relation (2.15) closes the Langevin equation in the sense that δq2
f and δε f can be

estimated from the filtered fluid velocity field in the frame of the LES approach. It must
also be noted that we have not taken into account the effect of particle inertia, such as
crossing trajectory effects, on the subgrid time scale δτ. Such extensions are an important
next step in the modeling.

2.3. Evaluation of δq2
f and δε f

In the frame of the Smagorinsky (1963) model, the subgrid dissipation may be approxi-
mated as

δε f = CS∆2|S|3, (2.16)

where CS is the Smagorinsky constant (its value is discussed in Section 3.4), ∆ is the filter
width, |S|=

√
2Si jSi j the modulus of the filtered strain tensor,

Si j =
1
2

[
∂ũ f ,i

∂x j
+

∂ũ f , j

∂xi

]
.

Yoshizawa (1982) proposed to compute the subgrid fluid kinetic energy according to

δq2
f = 2CY ∆2|S|2, (2.17)

where CY is the Yoshizawa constant detailed in Section 3.4. Combining (2.16) and (2.17)
with (2.15) yields the following expression:

δτ =
1

β|S| with β =

[
1
2

+
3C∗0

4

]
CS

2CY
. (2.18)

3. Simulation overview

3.1. Fluid flow simulation – DNS

In this study the turbulence is homogeneous and isotropic and predicted using direct
numerical simulation (DNS) of the incompressible Navier-Stokes equations for a fluid
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Density ρp/ρ f 10 256 8 547 6 837 5 128 3 419 1 709
Diameter dp/ηK 0.1 0.1 0.1 0.1 0.1 0.1
Stokes number τp/τK 5.34 4.46 3.58 2.70 1.81 0.91
Subgrid Stokes number τp/δτ 3.78 3.16 3.54 1.91 1.28 0.64

Table 2. Particle properties and statistics with δτ/τK = 1.41.

of density ρ f = 1.17 kg.m−3 and kinematic viscosity ν f = 1.47 10−5 m2.s−1. The com-
putational domain is a cubic box of length Lb = 0.128 m and with periodic boundary
conditions. Spectral forcing proposed by Eswaran and Pope (1988) is applied to obtain a
statistically stationary turbulent flow. More details on the numerical schemes and meth-
ods can be found in Magnaudet et al. (1995) and Février et al. (2001). The main fluid
properties of the turbulent flow are summarized in Table 1. The turbulent fluid kinetic
energy and dissipation are computed from the three-dimensional spectrum E(κ),

q2
f =

∫ +∞

0
E(κ)dκ , ε f = 2ν f

∫ +∞

0
κ2E(κ)dκ . (3.1)

The integral length scale is defined as L f =
∫ +∞

0 f (r)dr where f (r) is the fluid velocity
longitudinal correlation function. The Reynolds number given in Table 1 is defined as

ReL =
u′f L f

ν f
. (3.2)

The Kolmogorov time and length scales are calculated from

τK =

(
ν f

ε f

)1/2

, ηK =

(
ν3

f

ε f

)1/4

. (3.3)

3.2. Discrete particle simulation (DPS)

This study is restricted to a dispersed phase composed of Np solid, spherical, and identical
particles (Np = 200 000). Inter-particle collisions and turbulence modulation by the par-
ticles (two-way coupling) are neglected because of the low volumetric fraction considered
(αp = 1.37 10−5).

Neglecting gravity and assuming a large particle-to-fluid density ratio (ρp/ρ f � 1), the
forces acting on the particle are reduced to the drag. Hence, the single-particle equations
of motion are

dxp,i

dt
= up,i ,

dup,i

dt
=−up,i−u f @p,i

τp
, (3.4)

where xp,i and up,i are the ith component of the particle position and velocity. The particle
response time, τp, is defined as

τp =
ρp

ρ f

4
3

dp

Cd

1
|up−u f @p|

, (3.5)

where u f @p,i is the fluid velocity at the particle position (locally undisturbed by the
particle), also referred to as the fluid velocity “seen” by the particle. As two-way coupling
is not considered, the undisturbed fluid velocity is given by the DNS and evaluated at
the particle position using cubic splines or the shape function method (see Balachandar
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Figure 3. Energy ( ) and dissipation ( ) spectra extracted from DNS. The dashed lines
correspond to the filter wavenumber: κcηK = 0.38.

and Maxey (1989)). The drag coefficient, Cd , is given by Schiller and Nauman (1935),

Cd =
24

Rep

[
1 + 0.15Re0.687

p

]
, (3.6)

where the particle Reynolds number is given by Rep = dp|up−u f @p|/ν f and the particle
diameter, dp, is much smaller than the Kolmogorov length scale of the undisturbed flow,
dp� ηK .

3.3. Filtering procedure

A spectral cutoff filter is used to separate the subgrid fluid velocity from the full instan-
taneous fluid velocity. Hence, the filtered fluid velocity field, ũ f ,i, is defined as

ũ f ,i(x, t) = FT−1
[{

u∗f ,i(κ, t) if |κ| ∈ [κ0,κc]

0 otherwise

]
, (3.7)

where κ0 is the smallest resolved wavenumber (κ0 = 2π/Lb), FT is the Fourier transform,
κc the cutoff wavenumber, and u∗f ,i is the fluid velocity field in Fourier space u∗f ,i(κ, t) =
FT [u f ,i(x, t)]. The subgrid velocity field, δu f ,i, is obtained from

δu f ,i(x, t) = u f ,i(x, t)− ũ f ,i(x, t). (3.8)

The filtered, ũ f @p,i, and subgrid, δu f @p,i, fluid velocity at the particle position are ob-
tained by interpolation from the grid. Simulations have been performed for κc = 12κ0
corresponding to κcηK = 0.38 and κcL f = 8. The position of the filter relative to the
energy and dissipation spectra from the DNS is shown in Fig. 3.

Note that the filter does not modify prediction of the fluid flow in the DNS, i.e., the
filtering is applied solely for computation of the fluid velocity at the particle position
(prior to interpolation).
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Figure 4. Lagrangian structure function measured in DNS for the full fluid velocity ( ) and the
subgrid fluid velocity ( ), both measured using fluid element trajectories. The dotted lines correspond
to the linear assumption (2.9), enabling determination of C∗0 .

3.4. Langevin equation integration and constant determination

The Langevin equation (2.7) is discretized using a first-order Euler scheme. The Wiener

process is modeled as δWi = Cξ̂, where ξ̂ is a random, normalized Gaussian variable. Using
the property of the Wiener process, i.e., 〈δWiδWi〉= ∆t, the constant C must be specified
such that C2 = ∆t. Consequently, the numerical integration of the Langevin equation as
performed together with the particle trajectory computation is accomplished as

δun+1
f ,i = δun

f ,i

[
1− ∆t

δτ

]
−
(

δu f , j
∂ũ f ,i

∂x j

)n

∆t +

(
∂τi j

∂x j

)n

∆t +
√

C∗0δε f ∆tξ̂ , (3.9)

with δε f given by (2.16) and δτ by (2.18) both taken at time level n.
The model constants are important aspect of (3.9). For regimes corresponding to turbu-

lent flows characterized by large scale-separation, the literature gives C∗0 = 2.1, CS = 0.18,
and CY = 0.039. In the present study, the DNS have been performed at a relatively low
Reynolds number and with a limited separation of scales (see Fig. 3). Thus, the model
constant are not universal and moreover, they depend on the filter width. For the present
study, the constants are estimated from a single-phase DNS with fluid elements.

The value of the Kolmogorov constant C∗0 was computed using the Lagrangian structure
function. In Fig. 4 are plotted the Lagrangian structure functions measured in the DNS
for the full fluid velocity field R (τ) and for the subgrid fluid velocity field δRL(τ). The
simulations show that δRL(τ) follows a linear evolution for τ> τK , allowing extraction of
the following value of the fitted “Kolmogorov constant”:

C∗0 = 1.26.

As expected for R (τ), the linear range is larger and C0 = 2.96. This value is slightly
different from the standard value 2.1, which is likely due to the low Reynolds number of
the DNS.
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Figure 5. Particle kinetic energy normalized by the DNS kinetic energy. Results plotted are for :
DNS + DPS; : filtered DNS + DPS and symbols: “filtered DNS + Langevin equation” + DPS.

The Smagorinsky constant CS is obtained from

CS =

〈
ν f

∂δu f ,i
∂x j

∂δu f , j
∂xi

∆2|S|3

〉

over the domain

≈ 2.2×10−2 (3.10)

and the Yoshizawa’s constant CY with

CY =

〈
1
2 δu f ,iδu f ,i

2∆2|S|2

〉

over the domain

≈ 1.1×10−2. (3.11)

4. Results and discussion

4.1. Methodology for model assessment

In this study we have performed three different numerical simulations:

• DNS + DPS: in this case the fluid velocity used to solve (3.4) is given by the DNS.
This numerical simulation is then our reference case.

• Filtered DNS + DPS: this corresponds to a simulation where the particle equation
of motion (3.4) is advanced using the filtered fluid velocity ũ f @p instead of u f @p. Hence,
it represents an LES where the subgrid fluid velocity is neglected.

• “Filtered DNS + Langevin equation” + DPS: in this simulation the fluid velocity in
(3.4) is u f @p = ũ f @p + δu f @p, where ũ f @p is computed by filtering of the instantaneous
DNS field before interpolation, and δu f @p is predicted by (3.9).
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Figure 6. Particle concentration PDF for τp/τK = 5.34 (left panel) and τp/τK = 2.70 (right panel). Results
shown are for : DNS + DPS; : filtered DNS + DPS and : “filtered DNS + Langevin
equation” + DPS. The Poisson law corresponds to a random uniform distribution that has also been plotted.

4.2. Particle kinetic energy

Figure 5 shows the variation in the particle kinetic energy as a function of the particle
Stokes number. We observe that for the Filtered DNS + DPS, the particle energy is
underestimated for each case. This trend was expected because the filter applied (e.g.,
κcL f = 8) is not in accordance with the limit criterion κcL f > 10. Figure 5 also shows that
the modification of the particle kinetic energy is more pronounced for light particles.

Figure 5 shows that the “Filtered DNS + Langevin equation” + DPS results match
well the DNS + DPS, indicating that the proposed closure of the Langevin equation is
consistent with the DNS for the kinetic energy.

4.3. Particle segregation

The effect of filtering on particle segregation is investigated using the probability density
function (PDF) f (C) of the particle concentration C. Particle segregation corresponds to
f (C), deviating from the Poisson law that describes a random uniform particle distribu-
tion. Figure 6 shows that in the present simulations there are strong effects of particle
segregation.

Figure 6 also shows that the effect of filtering on the particle concentration is not
significant (dashed vs. solid lines). The test case is therefore not relevant to assessing the
Langevin model for accounting for segregation effects. Nevertheless, Fig. 6 shows that
the stochastic model leads to a more uniform particle distribution. The figure shows that
this trend, while expected given the form of the model, is overestimated.

5. Conclusion

A theoretical stochastic model has been derived to model the subgrid fluid velocity
fluctuations along a particle path. The model closure has been derived in order that
the Reynolds stresses provided by the model are identical to the ones of the standard
LES approach. This yields a consistency equation that links the subgrid time scale with
subgrid energy and dissipation. Following Smagorinsky and Yoshizawa, these quantities
are expressed in term of the filtered fluid velocity field closing the stochastic model. The
results presented in this study have shown that use of the model enables a match to
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DNS data for the particle kinetic energy. In contrast, particle segregation is too strongly
modified by the model which randomizes the particle distribution. Additionally, the test
case used for model assessment in this work does not respect the criteria suggested by
Fede and Simonin (2006) for a stochastic modelling of the subgrid fluid velocity. Hence,
more numerical simulations with larger scale-separation should be performed to more
accurately validate the model.
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