
Web Security in
the Real World

yan / @bcrypt
Stanford CS 253

11/18/21

About me:
● Chief Security Officer at

Brave Software
● Former EFF staff

technologist (Let’s Encrypt,
HTTPS Everywhere)

● Stanford Physics PhD
dropout

Why study web security?

Chess is hard...

Much easier: find XSS on play.chessbase.com

https://docs.google.com/file/d/16kApbRsG09zfdUELY9B7NvcPaAY7a6-h/preview

XSS payload (send in the chat window):

<script>
if ($('.cbChatUserName')[0].innerText !== 'Azuki1') { http

idResign.click()
}
</script>

Real world concern #1:
Supply chain attacks

PoC||GTFO 0x08 GET YOUR COPY TODAY
https://www.alchemistowl.org/pocorgtfo/

https://www.alchemistowl.org/pocorgtfo/

“No amount of source-level verification or scrutiny will
protect you from using untrusted code. In demonstrating
the possibility of this kind of attack, I picked on the C
compiler. I could have picked on any program-handling
program such as an assembler, a loader, or even
hardware microcode. As the level of program gets lower,
these bugs will be harder and harder to detect.”

Ken Thompson, Reflections on Trusting Trust (1984)

seen in the wild!

What runs JS?
● Browsers
● Servers (Node.js)
● Soon: everything

● Transpilers to JS exist for every major language
● JS sugar (CoffeeScript, Coco, LiveScript, Sibilant)
● Optimizers (Closure, Uglify)
● Static typing (Closure, Flow, TypeScript, asm.js)
● Language extensions (React’s JSX)
● ES6 -> ES5 converter (Babel)

more at
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-
to-js

JS isn’t “compiled,” but ...

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

Step 1: Pick a JS library

Who uses UglifyJS2?

gruntjs jquery

via grunt-contrib-uglify
plugin

probably. either directly or
upstream somewhere.

your company

used to build that
jquery.min.js file on ~70% of

websites you visit

via collapsify-server

cloudflare

INSERT
OVERCROPPED
LOGO

Step 2: Find an exploitable bug

Fixed in v2.4.24

DeMorgan’s Laws

“The negation of a conjunction is the disjunction of the
negations.”

“The negation of a disjunction is the conjunction of the
negations.”

Q: What’s your favorite cake
ingredient?

“It’s not vodka AND not whipped cream”

“It’s not vodka OR whipped cream”

Q: What is a good drink to have on
Thursdays?

“One that does not contain vodka OR
does not contain whipped cream”

“One that does not contain vodka AND
whipped cream.”

Using DeMorgan’s Laws for code compression

!a && !b && !c && !d

=> 20 characters :-(

!(a || b || c || d)

=> 19 characters!!1 :D

Caveat: only works for boolean expressions

> !false && 1 // returns an int

1

> !(false || !1) // boolean conversion

true

Step 3: exploit it

Hypothetical attack:

1. Get reasonable-looking patches merged into jQuery (or
any popular JS library that uses UglifyJS).

2. Some developers will build jQuery with vulnerable
versions of UglifyJS.

3. Patches from #1 introduce backdoors into jQuery at
minification time.

● Current (in 2015) stable jQuery release is 1.11.3
○ requires grunt-contrib-uglify 0.3.2

■ requires uglify-js ~2.4.0, satisfied by 2.4.23
(vulnerable!)

● Building jquery with grunt uses DeMorgan’s Laws for
compression by default

“If (some conditions are true), call the special removal handlers if there are any.”

Used in .off() method (removes event handlers)

jQuery 1.11.3: src/event.js, line 193:

Insert the backdoor

spliced is boolean after minification -> spliced.length === undefined -> (undefined > 0) === false

special event handlers never get called!

Tests pass with uglify-js@2.2.24!

maybe the maintainers will merge our pull request

Trigger the backdoor

Pre-minification

Post-minification

Links

backdoored fork of jquery 1.11.3 + PoC:
https://github.com/diracdeltas/jquery

writeup with more examples:
https://blog.azuki.vip/backdooring-js/

https://github.com/diracdeltas/jquery
https://blog.azuki.vip/backdooring-js/

aftermath
● Someone submitted a CVE request
● Assigned Ruby security advisory

OSVDB-126747
● Assigned Node security advisory
● Long thread on debian-devel:

https://lists.debian.org/debian-devel/
2015/08/msg00427.html

● Debian draft proposal
recommending against minification:
https://wiki.debian.org/onlyjob/no-m
inification

● Various libraries updated:
grunt-contrib-uglify, jquery,
Cloudflare collapsify, etc.

https://lists.debian.org/debian-devel/2015/08/msg00427.html
https://lists.debian.org/debian-devel/2015/08/msg00427.html
https://wiki.debian.org/onlyjob/no-minification
https://wiki.debian.org/onlyjob/no-minification

Lessons learned:

1. Don’t optimize unless you have to.
2. Run tests post-minification & other processing. Check if

your CDN (ex: Cloudflare) is minifying files for you.
3. Even well-reviewed JS libraries probably depend on

sketchy code.
4. Audit early, audit often.
5. Minimize third-party dependencies.

“Minimize third-party dependencies”

Real world concern #2:
Electron

Electron is a framework for building desktop apps using HTML, CSS, and JavaScript

From https://github.com/electron/electron/blob/master/docs/tutorial/security.md

“When working with Electron, it is important to
understand that Electron is not a web browser . . .
JavaScript can access the filesystem, user shell,
and more . . . be aware that displaying arbitrary
content from untrusted sources poses a severe
security risk that Electron is not intended to
handle.”

https://github.com/electron/electron/blob/master/docs/tutorial/security.md

In ancient times (~2015 A.D.),
Brave started building a web
browser using Electron.

It didn’t go so well . . .

Why build a new web browser?

What is Brave? ● Open source web browser
for desktop, iOS, & Android.

● Has ad/tracker blocking and
fingerprinting protection
built-in.

● Tor integration on desktop
● Allows users to fund

websites directly through
anonymous micropayments

● https://search.brave.com https://brave.com
https://github.com/brave

https://search.brave.com
https://brave.com
https://github.com/brave

Why we initially decided to use Electron

● Cross-platform support
● Good documentation and open source community
● Allowed for fast development
● Reputable products were already using it (Atom,

Slack, Visual Studio Code, Nylas, etc.)

Brave was publicly released on
1/20/2016.

8 days later, we receive our first
embarrassing security report.

��

Source: http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html

Chrome:
High
Privilege

Low
Privilege

http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html

Source: http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html

Electron:
High
Privilege

http://www.aosabook.org/en/posa/high-performance-networking-in-chrome.html

Why is the renderer sandbox useful?

● Renderer process has a large attack surface since it
does JS execution and HTML rendering.

● Main browser process requires high system
privileges (read/write files, run commands, etc.).

● If the renderer process ran at the same privilege level
as the main browser process, any renderer exploit
would be a critical security issue.

From
https://www.blackhat.com/docs/us-16/materials/us-16-Molinyawe-Shell-On-Earth-From
-Browser-To-System-Compromise.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Molinyawe-Shell-On-Earth-From-Browser-To-System-Compromise.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Molinyawe-Shell-On-Earth-From-Browser-To-System-Compromise.pdf

Renderer sandboxing in Electron

● “having Node.js available in the renderer is an
extremely powerful tool for app developers”

● Historically renderer sandboxing was off by default:
https://www.electronjs.org/docs/latest/tutorial/sand
box

● As of 2021, on by default unless Node integration is
enabled:
https://github.com/electron/electron/pull/30197

https://www.electronjs.org/docs/latest/tutorial/sandbox
https://www.electronjs.org/docs/latest/tutorial/sandbox
https://github.com/electron/electron/pull/30197

Feb. 8, 2016:

Brave enables
sandboxing by
default in our fork
of Electron.

🎉🎉🎉🎉🎉🎉🎉

https://github.com/brave/muon/pull/
12

● Sandboxed renderer processes
that don’t need Node on
Mac/Win. Later sandboxed all
renderers on all platforms.

● Brave content scripts
communicate with the browser
process which has Node access
using IPC.

● Around this time, we renamed
our fork of Electron to Muon. ⚛

https://github.com/brave/muon/pull/12
https://github.com/brave/muon/pull/12

11 days later, we receive another
important security report.

How urgent are Chromium updates for Electron?

According to the Chrome Security FAQ, security bugs are
made public within ~14 weeks of a fix landing on
Chromium master.

Chrome’s release cycle is 6 weeks.

So Electron has 8-14 weeks to update to latest
Chromium stable release before Chromium
vulnerabilities in Electron can be exploited by the public.

https://chromium.googlesource.com/chromium/src/+/master/docs/security/faq.md#TOC-Can-you-please-un-hide-old-security-bugs-

“But Electron isn’t meant
to be used for loading
remote content.”

Mist: official Ethereum wallet, has access to eth private keys

Nov 2017: still on Chromium 58, not sandboxed 😈

https://blog.ethereum.org/2017/12/15/security-alert-chromium-
vulnerability-affecting-mist-browser-beta/

https://blog.ethereum.org/2017/12/15/security-alert-chromium-vulnerability-affecting-mist-browser-beta/
https://blog.ethereum.org/2017/12/15/security-alert-chromium-vulnerability-affecting-mist-browser-beta/

“don’t browse untrusted websites.”

What if an attacker gets XSS in a
“trusted” website like
ethereum.com?

-> App-level system privileges! 🏁

Affects other Chromium forks too

Real world concern #3:
URL parsers

Consider this url:
http://brave.com%60x.code-fu.org/

What is the hostname?

Using Node’s built-in `url` module:

The hostname is brave.com

Using Chrome’s URL parser (window.URL):

The hostname is brave.com%60x.code-fu.org!

What happened when this URL was loaded in Brave?

● Renderer loads the attacker-controlled domain
brave.com%60x.code-fu.org

● Non-Chromium components using Node call
`url.parse(...)` to determine what site settings to
apply to the page. The result is brave.com

● Site settings for brave.com are applied on
code-fu.org!

URL hostname checks

URL hostname checks

Both match https://www.twitch.tv.evil.com

const l = window.location // or new URL(url)

l.href.startsWith(‘https://twitch.tv’)

l.href.startsWith(‘https://twitch.tv/’)

l.href.includes(‘https://twitch.tv’)

l.href.includes(‘https://twitch.tv/’)

l.protocol === ‘https:’ && l.hostname.endsWith(‘twitch.tv’)

l.protocol === ‘https:’ && l.hostname.endsWith(‘.twitch.tv’)

l.href.startsWith(‘https://’) && l.href.endsWith(‘.twitch.tv’)

l.origin.startsWith(‘https://’) && l.origin.endsWith(‘.twitch.tv’)

Which of these ONLY match if the base domain is twitch.tv?

const l = window.location // or new URL(some_string)

l.href.startsWith(‘https://twitch.tv’) // https://twitch.tv.evil.com

l.href.startsWith(‘https://twitch.tv/’)

l.href.includes(‘https://twitch.tv’) // https://twitch.tv.evil.com

l.href.includes(‘https://twitch.tv/’) // https://evil.com/#https://twitch.tv/

l.protocol === ‘https:’ && l.hostname.endsWith(‘twitch.tv’) // https://nottwitch.tv

l.protocol === ‘https:’ && l.hostname.endsWith(‘.twitch.tv’)

l.href.startsWith(‘https://’) && l.href.endsWith(‘.twitch.tv’) // https://evil.com/#.twitch.tv

l.origin.startsWith(‘https://’) && l.origin.endsWith(‘.twitch.tv’)

Which of these ONLY match if the base domain is twitch.tv?

Thanks!

yan@brave.com / @bcrypt

mailto:yan@brave.com

