
CS 253: Web Security
Server security, Safe coding practices

1 Feross Aboukhadijeh

Admin
• Assignment 2 due Friday 10/29 @ 5pm

2 Feross Aboukhadijeh

Extra Credit
• 6 students reported bugs so far!

• XSS in Stanford Profiles website (eligible for bug bounty)
• XSS in CS course website (two different courses)
• Information disclosure for CS website
• Insecure design allowing coding challenge test cases to be leaked

• Completely optional, but very fun :)

3 Feross Aboukhadijeh

One weird trick to make $25,000.
Security teams hate him!

4 Feross Aboukhadijeh

Recall: Cross Site Request Forgery
(CSRF)
• Idea: Force user to execute unwanted actions on a web app that

they are currently authenticated to
• Authentication is implemented with cookies
• Cookies use an "ambient authority" model
• If attacker.com causes an HTTP request to get sent to victim.com,

the browser will automatically attach the victim.com cookies to the
request

5 Feross Aboukhadijeh

How Cross Site Request Forgery
(CSRF) works

6 Feross Aboukhadijeh

Recall: SameSite cookies
• Use SameSite cookie attribute to prevent cookie from being sent

with requests initiated by other sites
• Request from victim.com to victim.com:

POST /transfer HTTP/1.1
Cookie: sessionId=1234

• Request from attacker.com to victim.com:

POST /transfer HTTP/1.1

18 Feross Aboukhadijeh

CSRF tokens
• What did websites do before the SameSite cookie attribute was

implemented in browsers?
• It was possible for attacker.com to send GET or POST requests to

victim.com with cookies attached
• The browser allowed this and sites had no way to prevent it
• Yet, we need some way to prevent any random site from

submitting a form to the server with the user's cookies attached
• How can victim.com prevent CSRF attacks?

19 Feross Aboukhadijeh

CSRF tokens
• CSRF token is a "nonce"

• Secret, unpredictable value generated by the server
• Server transmits it to the client
• Client must include the CSRF token in subsequent HTTP requests to

prove to the server that the request is valid
• The server rejects HTTP requests with missing or invalid token

20 Feross Aboukhadijeh

CSRF tokens
• CSRF tokens are included in HTML forms as a hidden input:
<input type='hidden' name='csrfToken' value='MzNjNGM5NmQtYzRjOS00NTEy' />

• CSRF token generated randomly (stateful):

let csrfToken = crypto.randomBytes(16).toString('hex')

• CSRF token generated based on request information (stateless):

let csrfToken = HMAC(sessionId, csrfSecret)

21 Feross Aboukhadijeh

How a CSRF token works

22 Feross Aboukhadijeh

How a CSRF token works against an
attacker

33 Feross Aboukhadijeh

48 Feross Aboukhadijeh

49 Feross Aboukhadijeh

GitHub OAuth Flow
1. Some third-party app wants to access a user's GitHub data. It sends

the user to https://github.com/login/oauth/authorize with a bunch
of information in the querystring

2. GitHub displays an authorization page to the user

50 Feross Aboukhadijeh

51 Feross Aboukhadijeh

GitHub OAuth Flow
1. Some third-party app wants to access a user's GitHub data. It sends the

user to https://github.com/login/oauth/authorize with a bunch of
information in the querystring

2. GitHub displays an authorization page to the user
3. If the user chooses to grant access to the app, they click the “Authorize”

button on the page
4. User is redirected back to the third-party app with an authorization

code in the querystring, which can be used to access the requested data

52 Feross Aboukhadijeh

How does the "Authorize" button
work?
• The button is a self-contained HTML form
• When clicked, it sends a POST request with some hidden form

fields, including a CSRF token
• When the server receives a POST request with a valid CSRF token,

the server assumes the user has granted permissions to the app
• Interesting detail: The form submits to /login/oauth/authorize, the

same URL that the authorization page itself is served from

53 Feross Aboukhadijeh

GitHub OAuth Flow

54 Feross Aboukhadijeh

One URL, two HTTP methods
In the router

match "/login/oauth/authorize", # For every request with this path...
 :to => "[the controller]", # ...send it to the controller...
 :via => [:get, :post] # ... as long as it's a GET or a POST request.

In the controller

if request.get?
 # serve authorization page HTML
else
 # grant permissions to app
end

69 Feross Aboukhadijeh

Let's talk about HTTP HEAD requests
• The semantics are: "pretend this is a GET request, but only send

back response headers without a response body"

• Useful if client wants to check the Content-Length header before
deciding whether to start a file download

• Ruby on Rails knows that most people will forget to implement
HEAD, but since it's so similar to GET they figure they can
automatically handle this for the developer

70 Feross Aboukhadijeh

HEAD requests and web frameworks
• Ruby on Rails automatically routes HEAD requests to the same place

as it routes GET requests (Express does this too)
• It runs the same controller (handler) code as for GET requests and

just omits the response body
• Time-saving feature for developers, since this is usually the right

behavior
• But it's a leaky abstraction since if the controller checks

request.get? it returns false for HEAD requests (unexpected)

71 Feross Aboukhadijeh

Let's look at that code again
In the router

match "/login/oauth/authorize", # For every request with this path...
 :to => "[the controller]", # ...send it to the controller...
 :via => [:get, :post] # ... as long as it's a GET or a POST request.

In the controller

if request.get?
 # serve authorization page HTML
else
 # IMPORTANT: CSRF token is only checked when method is POST
 # grant permissions to app
end

72 Feross Aboukhadijeh

How to bypass GitHub OAuth security
(now fixed)

73 Feross Aboukhadijeh

How could GitHub have prevented
this?
• Use SameSite cookies instead of (or in addition to) CSRF tokens
• Use a separate controller for GET/HEAD vs. POST
• Use separate URLs for authorization page vs. form submission

endpoint (which results in separate controllers for each case)

• Changing else to elsif request.post? to ensure HEAD or any
other unexpected methods won't be treated as POST

83 Feross Aboukhadijeh

Explicit check for POST
In the controller

if request.get?
 # serve authorization page HTML
elsif request.post?
 # grant permissions to app
else
 raise 'Unexpected HTTP method'
end

84 Feross Aboukhadijeh

How could Rails have prevented this?
• Do not automatically send HEAD requests to the GET handler

• Set request.get? to true since the developer did not indicate they
were prepared to handle HEAD requests separately from GET requests
• Developer indicated the controller could only handle GET or POST
• So it's a leaky abstraction for Rails to send it requests where

neither request.get? or request.post? is true!
• Rewrite Rails in a powerful typed language, like Haskell

85 Feross Aboukhadijeh

Safe coding lessons
• Complexity is the enemy of security

• Goal of abstractions is to hide complexity from the developer. The more edge cases
an abstraction has the "leakier" it is

• Explicit code is better than clever code
• Writing overly clever, succinct, or "magic" code can increase complexity

• Fail early
• Ignore the Robustness Principle and do the opposite

• Code defensively
• Your assumptions may be violated, so always verify them upfront

86 Feross Aboukhadijeh

Safe coding lessons – Bad API design
• Examples of suboptimal design decisions

• Insecure defaults require the developer to set options to get
secure behavior

• Polymorphic function signatures which put lots of unrelated
functionality into the same function

• Behaving differently based on function arity

87 Feross Aboukhadijeh

jQuery uses polymorphic functions
$('button') // Select the given CSS selector

$(htmlElement) // Wrap HTML element in jQuery object

$(someJqueryObject) // Clone another jQuery object

$('<p>some html</p>') // Create a DOM node with the given HTML

$(() => console.log('loaded')) // Function to run on page load

88 Feross Aboukhadijeh

Express error-handling middleware
relies on function arity detection
app.use((req, res, next) => {
 // Normal middleware
 res.status(200).send('Hello world')
})

app.use((req, res, next, error) => {
 // Error-handling middleware
 res.status(500).send('Something broke!')
})

• Issue: https://github.com/expressjs/express/issues/2896

89 Feross Aboukhadijeh

https://github.com/expressjs/express/issues/2896

The Bu!er class
• Server code often needs to allocate memory, so Node.js introduced

the Bu!er class
• Later, the JavaScript language got native support for binary data via

TypedArray and ArrayBu!er

90 Feross Aboukhadijeh

The Bu!er class
// Create a bu!er containing [01, 02, 03]
const buf1 = new Bu!er([1, 2, 3])

// Create a bu!er containing ASCII bytes [74, 65, 73, 74]
const buf2 = new Bu!er('test')

// Create a bu!er of length 10
const buf3 = new Bu!er(10)

// Clone another bu!er
const buf3 = new Bu!er(otherBu!er)

91 Feross Aboukhadijeh

Demo: Bu!er class is error-prone

92 Feross Aboukhadijeh

Demo: Bu!er class is error-prone
app.get('/api/convert', (req, res) => {
 const data = JSON.parse(req.query.data)
 if (!data.str) {
 throw new Error('missing data.str')
 }
 if (!['hex', 'base64', 'utf8'].includes(data.type)) {
 throw new Error('data.type is invalid')
 }

 res.send(convert(data.str, data.type))
})

function convert (str, type) {
 return new Bu!er(str).toString(type)
}

93 Feross Aboukhadijeh

Unallocated memory
> new Bu!er(10)
<Bu!er 00 20 00 00 00 00 00 00 d0 4d>

> new Bu!er(10)
<Bu!er 50 74 84 02 01 00 00 00 0a 00>

> new Bu!er(10)
<Bu!er 78 74 84 02 01 00 00 00 05 00>

94 Feross Aboukhadijeh

User is responsible for zeroing out
the memory
> new Bu!er(10).fill(0)
<Bu!er 00 00 00 00 00 00 00 00 00 00>

• But you won't call fill() if you're not expecting a number to be
passed in!

95 Feross Aboukhadijeh

Thousands of ecosystem packages
potentially vulnerable
• Discovered by Feross Aboukhadijeh and Mathias Buus

• Initially discovered our own npm package, bittorrent-dht, was
vulnerable

• Any computer in the world could send a specially-designed message to
our listening BitTorrent peer and read a 20 byte chunk of process memory

• Commit: https://github.com/webtorrent/bittorrent-dht/commit/
6c7da04025d5633699800a99ec3fbadf70ad35b8

96 Feross Aboukhadijeh

https://github.com/webtorrent/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8
https://github.com/webtorrent/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8

The ws package
• 18 million weekly downloads

const { Server } = require('ws')

const server = new Server()

server.on('connection', socket => {
 socket.on('message', message => {
 message = JSON.parse(message)
 if (message.type === 'echo') {
 socket.send(message.data) // send back the user's message
 }
 })
})

• Release notes: https://github.com/websockets/ws/releases/tag/1.0.1

97 Feross Aboukhadijeh

https://github.com/websockets/ws/releases/tag/1.0.1

The request package
• 16 million weekly downloads
• Pull request: https://github.com/request/request/pull/2018

98 Feross Aboukhadijeh

https://github.com/request/request/pull/2018

The bl package
• 5 million weekly downloads
• Pull request: https://github.com/rvagg/bl/pull/22

99 Feross Aboukhadijeh

https://github.com/rvagg/bl/pull/22

How could this vulnerability be
prevented?
• Reject numbers as the first argument to Bu!er
• Validate JSON to ensure the type of each property is what we expect

• Use JSON-Schema or check each property manually and throw if invalid
• Define a class with just the properties we expect and the types we expect.

Parse the JSON, then construct an instance of the class.

• Fix the design of the Bu!er class to be less error-prone

100 Feross Aboukhadijeh

Problems with the Bu!er class
• The Bu!er class often takes untrusted user input as the first argument

• Usually this untrusted input is a string but if it can be a number in
even one place in the codebase, we have information exposure

• The default behavior is unsafe – Zeroed memory should be returned by
default, unless the user specifically asks for uninitialized memory

• Two very different pieces of functionality are mixed into the same API
• Converting user-provided data to a Buffer representation
• Allocating a Buffer with the specified amount of uninitialized memory

101 Feross Aboukhadijeh

Introducing new Buffer methods
Bu!er.from('abc') // Convert anything to a Bu!er

Bu!er.alloc(10) // Allocate a zero-filled Bu!er

Bu!er.allocUnsafe(10) // Allocate an uninitialized Bu!er

• Pull request: https://github.com/nodejs/node/issues/4660

102 Feross Aboukhadijeh

https://github.com/nodejs/node/issues/4660

Bu!er aftermath
• Ecosystem still had tons of unsafe usage of new Bu!er() for

several years

• safe-bu!er shim package helped
• Libraries need to support old versions of Node.js which lacked the

new Buffer APIs
• Updates took time to percolate through the ecosystem

103 Feross Aboukhadijeh

Polymorphic functions in bcrypt
const HASH_ROUNDS = 10
const passwordHash = bcrypt.hashSync(password, HASH_ROUNDS)

• When HASH_ROUNDS is a string, it will be used as the salt itself
instead of specifying that a new salt should be created with
HASH_ROUNDS number of rounds

const HASH_ROUNDS = process.env.HASH_ROUNDS
const passwordHash = bcrypt.hashSync(password, HASH_ROUNDS)

104 Feross Aboukhadijeh

Hide error details from client
• Errors potentially exposes sensitive information
• Exposes file paths, third-party packages in use, and other internal

workings
Error: missing data.str
 at app.get (/Users/feross/websec/lectures/Lecture 17/code/unsafe-bu!er.js:17:11)
 at Layer.handle [as handle_request] (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)
 at next (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/route.js:137:13)
 at Route.dispatch (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/route.js:112:3)
 at Layer.handle [as handle_request] (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)
 at /Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:281:22
 at Function.process_params (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:335:12)
 at next (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/index.js:275:10)
 at expressInit (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/middleware/init.js:40:5)
 at Layer.handle [as handle_request] (/Users/feross/websec/lectures/Lecture 17/code/node_modules/express/lib/router/layer.js:95:5)

105 Feross Aboukhadijeh

Hide error details from client
app.use((err, req, res, next) => {
 res.status(err.status || 500)
 res.render('error', {
 message: err.message,
 stack: process.env.NODE_ENV === 'production'
 ? ''
 : err.stack
 })
})

106 Feross Aboukhadijeh

Prevent simple server fingerprinting
• Servers may send HTTP headers which reveal server type

HTTP/1.1 200 OK
X-Powered-By: express

• Can be disabled with:

app.disable('x-powered-by')

107 Feross Aboukhadijeh

Prevent simple server fingerprinting
• Servers may send HTTP headers which reveal server type and version

HTTP/1.1 200 OK
Server: nginx
X-Powered-By: PHP/5.3.3

• Can be disabled with:

server_tokens o!;
proxy_hide_header X-Powered-By;

108 Feross Aboukhadijeh

109 Feross Aboukhadijeh

Safe coding lessons
• Complexity is the enemy of security

• Goal of abstractions is to hide complexity from the developer. The more edge cases
an abstraction has the "leakier" it is

• Explicit code is better than clever code
• Writing overly clever, succinct, or "magic" code can increase complexity

• Fail early
• Ignore the Robustness Principle and do the opposite

• Code defensively
• Your assumptions may be violated, so always verify them upfront

110 Feross Aboukhadijeh

END
Credits:

https://blog.teddykatz.com/2019/11/05/github-oauth-bypass.html

111 Feross Aboukhadijeh

