CS 253: ieb Security

1 Feross Aboukhadijeh

= My office hours are moved to tomorrow (@ 9-11am

» Assignment 1 is due tomorrow (@ 5pm

2 Feross Aboukhadijeh

Group activity

1. Take out your laptop
2. Open an alternate browser (one you do not usually use)
3. Visit TheAnnoyingSite.com and do not press any buttons!

4. On the count of three... hold down the space bar!

3 Feross Aboukhadijeh

What happened?

= With a partner
= List some things that happened
» \What was the most surprising thing the site was able to do?

= \Why was this action allowed by the browser?

4 Feross Aboukhadijeh

= Override browser defaults: disorient or trap the user on site

= Scareware: sites which intimidate the user into buying a product by
trapping them on an unwanted site

= Annoy the user: harmless fun, can be disruptive, cause users to lose
unsaved work

5 Feross Aboukhadijeh

API Level Restrictions Examples

Level O No restrictions. API can be used DOM, CSS, window.move(), file
immediately and indiscriminately. download. hide mouse cursor
Level 1 User interaction required. API cannot be Element.requestFullscreen(),

used except in response to a “user

R _ navigator.vibrate(), copy textto
activation” (e.g. click, keypress).

clipboard, speech synthesis API,

window.open()

Level 2 User “engagement” required. APl can- Autoplay sound, prompt to install
not be used until user demonstrates website to homescreen
high engagement with a website.

Level 3 User permission required. API cannot be Camera, microphone, geolocation, USB,
used until user grants explicit MIDI device access
permission.

Classic infinite alert loop

while (true) {
window.alext('Hahah, you fell into my trxap!')

}

7 Feross Aboukhadijeh

Classic infinite alert loop

const messages = [
'Hi therxe!’,
'Welcome to my awesome website',
'I am glad that you made it here’,
'While I have you trapped here, listen up!’,

'Once upon a time...',

while (true) {
messages.forEach(message => alert(message))

8 Feross Aboukhadijeh

» Goal: Browsers want to give users a way to break out of infinite
alert loops without needing to quit their browser

9

Initial solution: Browsers added a checkbox on alert modal to stop

further alerts

Current solution: Browsers are multip
to go into an infinite loop that doesn't

rocess now, so if a tab wants

hrevent the tab's close button

from working. Just let the site infinitely loop as long as the user can

close the misbehaving tab

Feross Aboukhadijeh

Question: what is the most annoying
possible site?

= To get anidea of what types of Ul denial-of-service attacks are
possible, we're going to walk through some of the
TheAnnoyingSite's functionality

10 Feross Aboukhadijeh

const win = window.open('', '', 'width=100,height=100")

win.moveTo(10, 10)
win.resizeTo(200, 200)

11 Feross Aboukhadijeh

O @ Untitled
() about:blank

12 Feross Aboukhadijeh

document.addEventListener('click’', () => {
const win = window.open('', '', 'width=100,height=100")
win.moveTo(10, 10)
win.resizeTo(200, 200)

})

13 Feross Aboukhadijeh

Move the window automatically

let 1 =0

setInterval(() => {
win.moveTo(1i, 1)
1 =(1+ 5) % 200
}» 100)

14 Feross Aboukhadijeh

function moveWindowBounce () {
VELOCITY % (Math.random() > 0.5
VELOCITY % (Math.random() > 0.5

let vx

[IN] o)
(Y] (1)
1 1
R R
-

let vy

window.setInterval(() => {
const x = window.screenX
const y = window.screenY
const width = window.outexWidth
const height = window.outerHeight

if (x < MARGIN) vx = Math.abs(vx)

if (x + width > SCREEN_WIDTH - MARGIN) vx = -1 % Math.abs(vx)
if (y < MARGIN + 20) vy = Math.abs(vy)

if (y + height > SCREEN_HEIGHT - MARGIN) vy = -1 % Math.abs(vy)

window.moveBy(vx, vy)
}s TICK_LENGTH)

15 Feross Aboukhadijeh

function interxceptUsexInput (onInput) {
document.body.addEventListenex('touchstart’', onInput, { passive: false })

document.body.addEventListenex('mousedown', onInput)
document.body.addEventListener('mouseup’, onInput)
document.body.addEventListenex('click’, onInput)

document.body.addEventListener(' 'keydown', onInput)

document.body.addEventListenex('keyup', onInput)
document.body.addEventListener('keypress', onInput)

16 Feross Aboukhadijeh

function openWindow () {
const { x, y } = getRandomCooxds()
const opts = “width=S{WIN_WIDTH},height=${WIN_HEIGHT},left=${x},top=5{y}"’
const win = window.open(window.location.pathname, '', opts)

// New windows may be blocked by the popup blocker
if (!win) return

wins.push(win)

interceptUserInput(event => {
event.preventDefault()
event.stopPropagation()
openWindow()

})

17 Feross Aboukhadijeh

function focusWindows () {
wins.forEach(win => {

if (!win.closed) win.focus()

})

18 Feross Aboukhadijeh

Play random video in the window

const VIDEOS = [
‘albundy.mpgq4’', 'badger.mpq4’', 'cat.mpq’', "hasan.mpq’', "heman.mp4q’,

'jozin.mp4', 'nyan.mp4', 'rickroll.mp4', 'space.mpq4', 'trolol.mp4’

function startVideo () {
const video = document.createElement('video')

video.src = getRandomArrayEntxry(VIDEOS)
video.autoplay = true

video.loop = true

video.muted = true

video.style = 'width: 100%; height: 100%;"

document.body.appendChild(video)

19 Feross Aboukhadijeh

function showModal () {

window.pxint()

}

20 Feross Aboukhadijeh

Show a modal regularly

function startAlertInterval () {
setIntexrval(() => {
showModal()
}, 30000)

21 Feross Aboukhadijeh

Confirm page unioad

function confirmPageUnload () {
window.addEventListener('beforeunload’, event => {

event.returnValue = true

})

22 Feross Aboukhadijeh

Confirm

0 Are you sure you want to navigate away from this page?

Closing this webpage will replace all your files with cat videos.

Press OK to continue, or Cancel to stay on the current page.

23 Feross Aboukhadijeh

Leave site?

Changes you made may not be saved.

24 Feross Aboukhadijeh

function blockBackButton () {
window.addEventListenex('popstate’, () => {

window.histoxy.foxrward()

})

25 Feross Aboukhadijeh

Fill the history with extra entries

function fillHistory () {
for (let 1 = 13 1 < 203 i++) {

window.histoxy.pushState({}, '', window.location.pathname + '7q=" + 1)

}

// Set location back to the initial location, so user does not notice

window.history.pushState({}, '', window.location.pathname)

26 Feross Aboukhadijeh

Copy spam to clipboard

const ART = °

function copySpamToClipboard () {

const randomArt = ART + '\nCheck out https://theannoyingsite.com'
navigator.clipboard.writeText(xrandomArt)

}

27 Feross Aboukhadijeh

function registerProtocolHandlexrs () {
const protocolWhitelist = [
'bitcoin', 'geo', 'im', ‘'irc', 'ircs', 'magnet', 'mailto’,
'mms’', 'news', 'ircs', 'nntp', 'sip', 'sms', 'smsto’', 'ssh’,

'tel'y, 'urn', ‘'webcal', 'wtai', 'xmpp'’

const handlexUxl = window.location.hxef + '/url=%s'

protocolWhitelist.forEach(proto => {
navigator.registerProtocolHandlex(proto, handlexUxrl, 'The Annoying Site')

})

28 Feross Aboukhadijeh

function requestCameraAndMic () {
navigator.mediaDevices.enumerateDevices().then(devices => {
const cameras = devices.filter((device) => device.kind === 'videoinput')
if (cameras.length === 0) return

const camera = cameras[cameras.length - 1]

navigator.mediaDevices.getUserMedia({
deviceId: camera.deviceld,
facingMode: ['user', 'environment'],
audio: true, video: true

}).then(stream => {
const track = stream.getVideoTracks()[o]

const imageCapture = new window.ImageCapture(track)

imageCapture.getPhotoCapabilities().then(() => {
// Let there be light!
track.applyConstraints({ advanced: [{torch: true}] })
}, () => { /% No toxch on this device %/ })
}s () => { /% ignore exrrors =/ })

})

29 Feross Aboukhadijeh

function startVibrateIntexval () {
setIntexrval(() => {
const duration = Math.floox(Math.random() % 600)
window.navigator.vibrate(duration)
}, 1000)

30 Feross Aboukhadijeh

function startInvisiblePictureInPictureVideo () {
const video = document.createElement('video")
video.src = getRandomArrayEntxry(VIDEOS)
video.autoplay = true
video.loop = true
video.muted = true
video.style = HIDDEN_STYLE

document.body.appendChild(video)

function enablePictureInPicture () {
const video = document.querySelector('video')
if (document.pictureInPictureEnabled) {
video.muted = false
video.requestPictureInPicture()

31 Feross Aboukhadijeh

function hideCurxsor () {

document.querySelector('html’').style = 'cursor: none;'’

32 Feross Aboukhadijeh

Trigger a file download

const FILE_DOWNLOADS = [
'cat-blue-eyes.jpg', 'cat-ceiling.jpg’', 'cat-crosseyes.jpg’,
'cat-cute.jpg', 'cat-hover.jpg', 'cat-marshmellows.jpg’,

'cat-small-face.jpg', 'cat-smirk.jpg’

function triggerFileDownload () {
getRandomArrayEntxy(FILE_DOWNLOADS)
const a = document.createElement('a’)

const fileName

a.href = fileName
a.download = fileName
a.click()

33 Feross Aboukhadijeh

VideoLAN

oading VLC 3.0.16

Thanks! Your download will start in few seconds...
If not, click here. Display checksum.

WHY DONATE? SONATE

VideoLAN is a non-profit organization.

All our costs are met by donations we receive from our
users. If you enjoy using a VideoLAN product, please
donate to support us.

34 Feross Aboukhadijeh

function requestFullscreen () {
const requestFullscreen = Element.prototype.requestFullscreen ||
Element.prototype.webkitRequestFullscreen ||
Element.prototype.mozRequestFullScreen ||
Element.prototype.msRequestFullscreen

requestFullscreen.call(document.body)

35 Feross Aboukhadijeh

Log user out of popular sites (part 1)

const LOGOUT_SITES = {
"AOL': ['GET', 'https://my.screenname.aol.com/_cqr/logout/mcLogout.psp?sitedomain=startpage.aol.com&authLev=08&lang=en&locale=us'],
"AOL 2': ['GET', 'https://api.screenname.aol.com/auth/logout?state=snslogout&r=" + Math.random()],
"Amazon': ['GET', 'https://www.amazon.com/gp/flex/sign-out.html?action=sign-out’'],
'Blogger': ['GET', 'https://www.blogger.com/logout.g'],
'Delicious’': ['GET', 'https://www.delicious.com/logout'], // works!
'DeviantART': ['POST', 'https://www.deviantart.com/users/logout'],
'DreamHost': ['GET', 'https://panel.dreamhost.com/index.cgi?Nscmd=Nlogout'],
'Dropbox': ['GET', 'https://www.dropbox.com/logout'],
'eBay': ['GET', 'https://signin.ebay.com/ws/eBayISAPI.d112?SignIn'],
'Gandi': ['GET', 'https://www.gandi.net/login/out'],
"GitHub': ['GET', 'https://github.com/logout'],
'GMail': ['GET', 'https://mail.google.com/mail/?logout’],
'Google': ['GET', 'https://www.google.com/accounts/Logout'], // works!
'"Hulu': ['GET', 'https://secure.hulu.com/logout'],
"Instapaper': ['GET', 'https://www.instapaper.com/user/logout'],
"Linode': ['GET', 'https://manager.linode.com/session/logout’'],
"LiveJournal': ['POST', 'https://www.livejournal.com/logout.bml', {'action:killall': '1'}],
'"MySpace': ['GET', 'https://www.myspace.com/index.cfm?fuseaction=signout’],

36 Feross Aboukhadijeh

Log user out of popular sites (part 2)

function superLogout () {
for (let name in LOGOUT_SITES) {
const method = LOGOUT_SITES[name][0]
const url = LOGOUT_SITES[name][1]
const params = LOGOUT_SITES[name][2] || {}

if (method === 'GET') {
get(url)

} else {
post(url, params)

}

const div = document.createElement('div')
div.innerText = ‘Logging you out from ${name}...

const logoutMessages = document.querySelector('.logout-messages')
logoutMessages.appendChild(div)

Credit: SuperLogout.com

37 Feross Aboukhadijeh

Do embarrassing searches (part 1)

const SEARCHES = [
'where should i bury the body’',

"why
"why
"why
"why
"why
"why
"why
"why
"why
"why
"why
"why
"why

does my eye twitch',

is
do 1
do 1
do 1
does
does
does
does
does
does
does
does

my poop green',

feel so empty’,

always feel hungry’',

always have diarrhea',

my
my
iy
my
my
my
my
my

anus itch',

belly button smell’,
cat attack me’,

dog eat poop’,

fart smell so bad’,
mom hate me’,

pee smell bad’,

poop float',

'proof that the earth is flat’

38 Feross Aboukhadijeh

function setupSearchWindow (win) {
if (lwin) return
win.window.location = 'https://www.bing.com/search?q=" + encodeURIComponent(SEARCHES[0])
let searchIndex = 1
let interval = setInterval(() => {
if (searchIndex >= SEARCHES.length) {
clearInterval(interval)
win.window.location = window.location.pathname

return

if (win.closed) {
clearInterval(interval)
onCloseWindow(win)

return

win.window.location = window.location.pathname
setTimeout(() => {
const { x, y } = getRandomCoords()
win.moveTo(x, y)

win.window.location = 'https://www.bing.com/search?q=" + encodeURIComponent(SEARCHES[searchIndex])
searchIndex += 1
}, 500)
}» 2500)

39 Feross Aboukhadijeh

Tabnabbing (part 1)

If, social.example.comlinks to attackexr.com

External Website

Then, attacker.com gets a reference to the social.example.com
window

window.opener

40 Feross Aboukhadijeh

Tabnabbing (part 2)

function attemptToTakeoverOpenexWindow () {

window.opener.location = 'http://attacker.com/phishing’

41 Feross Aboukhadijeh

File Edit View

History Bookmarks Tools Help

@ Submit to EvidenceFiller X | 4

\3 C @

reddit

@ & https://www.reddit.com/r/EvidenceFillerSpooky/submit
L Create Post v Q Search r/EvidenceFillerSpooky
Create a post pRAFTs [
r/EvidenceFillerSpooky v
B Post a2 Image @ Link
Check out my blog!]
4 SPOILER < NSFW SAVE DRAFT

Send me post reply notifications

Connect accounts to share your post ®

120% - Y7 N @D »

~ il =B v O P . m?:edTeamPentesting

Q r/EvidenceFillerSpooky

0 1

Members Online

@ Private

X

COMMUNITY OPTIONS v

Posting to Reddit

1. Remember the human

2. Behave like you would in real life

3. Look for the original source of content
4. Search for duplicates before posting

5. Read the community’s rules

Please be mindful of reddit's content policy
and practice good reddiquette.

About Advertise
Careers Blog
Press Help

The Reddit App
Reddit Coins
Reddit Premium

o 0l ~"La

Tabnabbing defenses

» Add xrel="noopenex' to all links with taxrget="_blank" to prevent this attack
» The opened site's window.openex will be null
= Asof 2021, all browsers treat taxrget="_blank" as implying rel="noopenexr"

= New HTTP header: Cxoss-0xrigin-Openexr-Policy: same-origin

= Browsers will use a separate OS process to load the site

» Prevent cross-window attacks (window.openexr, usage of postMessage) and
process side-channel attacks by severing references to other browsing contexts

43 Feross Aboukhadijeh

Extra credit opportunity

= |f you think of additional annoying features to add, send a pull
request!

» https:/github.com/feross/theannoyingsite.com

» Accepted pull requests earn a few points of extra credit

» |'ll share the best submissions with the class

44 Feross Aboukhadijeh

What should a web browser be?

= Simple document viewer or powerful app platform?
= There's a inherent tension between the two goals

» Need to give developers powerful features without letting the
bad ones be user-hostile (i.e. fingerprinting, phishing)

45 Feross Aboukhadijeh

46 Feross

10v2 [cs.CR] 5 Sep 2017

Most Websites Don’t Need to Vibrate:
A Cost-Benefit Approach to Improving Browser Security

Peter Snyder Cynthia Taylor Chris Kanich
University Of Illinois at Chicago University Of Illinois at Chicago University Of Illinois at Chicago
psnyde2@uic.edu cynthiat@uic.edu ckanich@uic.edu
ABSTRACT Firefox OS, have expanded the Web API tremendously. Modern

Modern web browsers have accrued an incredibly broad set of
features since being invented for hypermedia dissemination in
1990. Many of these features benefit users by enabling new types
of web applications. However, some features also bring risk to
users’ privacy and security, whether through implementation error,
unexpected composition, or unintended use. Currently there is
no general methodology for weighing these costs and benefits.
Restricting access to only the features which are necessary for
delivering desired functionality on a given website would allow
users to enforce the principle of lease privilege on use of the myriad
APIs present in the modern web browser.

However, security benefits gained by increasing restrictions must
be balanced against the risk of breaking existing websites. This
work addresses this problem with a methodology for weighing
the costs and benefits of giving websites default access to each
browser feature. We model the benefit as the number of websites
that require the feature for some user-visible benefit, and the cost
as the number of CVEs, lines of code, and academic attacks related
to the functionality. We then apply this methodology to 74 Web
API standards implemented in modern browsers. We find that al-
lowing websites default access to large parts of the Web API poses
siochificant securitv and orivacv risks with little correspondinge

browsers have, for example, gained the ability to detect changes
in ambient light levels [58], perform complex audio synthesis [14],
enforce digital rights management systems [25], cause vibrations
in enabled devices [36], and create peer to peer networks [11].

While the web has picked up new capabilities, the security model
underlying the Web API has remained largely unchanged. All web-
sites have access to nearly all browser capabilities. Unintended in-
formation leaks caused by these capabilities have been leveraged by
attackers in several ways: for instance, WebGL and Canvas allowed
Cao et al. to construct resilient cross-browser fingerprints [21], and
Gras et al. were able to defeat ASLR in the browser [30] using the
Web Workers and High Resolution Timing APIs.! One purported
benefit of deploying applications via JavaScript in the browser is
that the runtime is sandboxed, so that websites can execute any
code it likes, even if the user had never visited that site before. The
above attacks, and many more, have subverted that assumption to
great effect.

These attacks notwithstanding, allowing websites to quickly pro-
vide new experiences is a killer feature that enables rapid delivery
of innovative new applications. Even though some sites take ad-
vantage of these capabilities to deliver novel applications, a large
portion of the web still provides its primary value through rich me-

Most WWebsites Don"t Need to Vibrate
(2017)

» (Cost-benefit analysis of web features

= Benefit: number of websites that require the feature for some
user-visible benefit

» Cost: number of CVEs (implementation errors), lines of code,
unexpected composition, unintended use, known attacks

47 Feross Aboukhadijeh

Alice in Warningland:
A Large-Scale Field Study of Browser Security Warning Effectiveness

Devdatta Akhawe Adrienne Porter Felt
University of California, Berkeley* Google, Inc.
devdatta@cs.berkeley.edu felt@google.com
Abstract The security community’s perception of the “oblivious”

We empirically assess whether browser security warn-
ings are as ineffective as suggested by popular opinion
and previous literature. We used Mozilla Firefox and
Google Chrome’s in-browser telemetry to observe over
25 million warning impressions in situ. During our field
study, users continued through a tenth of Mozilla Fire-
fox’s malware and phishing warnings, a quarter of Google
Chrome’s malware and phishing warnings, and a third of
Mozilla Firefox’s SSL warnings. This demonstrates that
security warnings can be effective in practice; security
experts and system architects should not dismiss the goal
of communicating security information to end users. We
also find that user behavior varies across warnings. In con-
trast to the other warnings, users continued through 70.2%
of Google Chrome’s SSL warnings. This indicates that
the user experience of a warning can have a significant
1moact on user behavior. Based on our findines. we make

user evolved from the results of a number of laboratory
studies on browser security indicators [5,11,13, 15,27,
31,35]. However, these studies are not necessarily rep-
resentative of the current state of browser warnings in
2013. Most of the studies evaluated warnings that have
since been deprecated or significantly modified, often in
response to criticisms in the aforementioned studies. Our
goal is to investigate whether modern browser security
warnings protect users in practice.

We performed a large-scale field study of user deci-
sions after seeing browser security warnings. Our study
encompassed 25,405,944 warning impressions in Google
Chrome and Mozilla Firefox in May and June 2013. We
collected the data using the browsers’ telemetry frame-
works, which are a mechanism for browser vendors to
collect pseudonymous data from end users. Telemetry
allowed us to unobtrusively measure user behavior during

Alice in Warningland (2013)

= Question: Are security warnings effective?

= Answer: "Users clicked through fewer than a quarter of both browser’s
malware and phishing warnings and a third of Mozilla Firefox's SSL warnings. We
also find clickthrough rates as high as 70.2% for Google Chrome SSL warnings,
indicating that the user experience of a warning can have a tremendous impact
on user behavior”

» Question: Do advanced users click through phishing warnings at higher or lower
rates?

= Answer: "In several cases, Linux users and early adopters click through malware
and phishing warnings at higher rates”

49 Feross Aboukhadijeh

50 Feross Aboukhadijeh

= Acting like a reputable entity to trick the user into divulging sensitive
information such as login credentials or account information

= (Often easier than attacking the security of a system directly

» Just get the user to tell you their password

51 Feross Aboukhadijeh

“Security solutions have a technological component, but security is
fundamentally a people problem.’

— Bruce Schneier

52 Feross Aboukhadijeh

\F T CAN TUST OVERCLOCK THE UNIX
OJANGO, T CAN BASIC THE DDOOS

ROOT. OAMN, NO DICE. BUT WA\T,,, \¢ I
DISESNCRYPT THER KILOBYTES WITH A
RECKDOOR HWANDSHAKE

THEN... JACKAOIT.

H\, THIS & ROBERT
WACKERMAN. T'M THE\\ HELP You TODAY?

COUNTY PRSSWORD
\NSPEC TOR.

53 Feross Aboukhadijeh

Notice anything odd?

Hey there! X =+

€ 08 hitps//www.apple.com

& www.apple.com

Secure Connection

54 Feross Aboukhadijeh

55 Feross Aboukhadijeh

Try visiting https:/www.appie.com/ a.k.a. https:/
www.xXn--80ak6aa92e.com

Try it in Firefox vs. Chrome/Safari

56 Feross Aboukhadijeh

Demo: view URLSs in hex editor

® O B apple.txt

0 | 68747470 733A2F2F 7777772E DOBOD180 D180D38F DOBS2E63 6F6DZ2FOA | | https://www
28 | 68747470 733A2F2F 7777772E 6170706C 652E636F 6D2F https://www.apple.com/

Signed Int || le, dec

0x32 out of 0x32 bytes

57 Feross Aboukhadijeh

» Hostnames containing Unicode characters are transcoded to subset of
ASCIl consisting of letters, digits, and hyphens called punycode

= Punycode is a representation of Unicode with the limited ASCIl character
subset used for Internet host names

» Allows registering domains with foreign characters!

= munchen.example.com — xn--mnchen-3ya.example.com
» #8.co — xn--s7y.co

58 Feross Aboukhadijeh

What's going on?

= Many Unicode characters are difficult to distinguish fromm common
ASCII characters

= (an you spot the difference?

= apple.com vs. apple.com

= |If you convert all hostnames to punycode, then it becomes obvious

= apple.com — xn--pple-43d.com

59 Feross Aboukhadijeh

= Akin to "domain typosquatting”
» Use similar-looking name to an established domain to fool a user
» Handwriting has this issue too

= See etymology of the word "zenith". The translation from the

Arabic "samt" (direction) included the scribe's confusing of "m"
Into "ni”

» Some typefaces still have the issue ("rn" vs. "m" vs. "rri")

60 Feross Aboukhadijeh

e
%
5
o
0
0
=
g
°
7
3
=
T

OLYMPIA

61 Feross Aboukhadijeh

= Solution: Punycode will show if domain contains characters from

multiple different languages

= Workaround: Replace every character with a lookalike from a single

foreign language

= appile.com — xn--80ak6aa92e.com

= Updated solution: Show punycode w

lookalike characters and the top-

= Won't fool a password manager!

62 Feross Aboukhadijeh

egve

nen entire domain is made of

-domain is not IDN itself.

Confuse the user with subdomains

http://paypal.com-webappsuserid29348325limited active-userid.com/webapps/89980/

e | e—

63 Feross Aboukhadijeh

Demo: Some browsers try to help

http://paypal.com-webapps.a12323894574389574322389243579w2349.attacker.com:9999/paypal.com.html

64 Feross Aboukhadijeh

® ® & paypal.com-webapps.a234829° X <4

<& C (@ paypal.com-webapps.a2348293423423423434234834238.example.com/path.html

This site can’t be reached

paypal.com-webapps.a2348293423423423434234834238.example.com’s server IP address could not
be found.

e (o to http://example.com/
e Search Google for paypal webapps example path

ERR_NAME_NOT_RESOLVED

65 Feross Aboukhadijeh

A Server Not Found

© & paypal.com-webapps.a48.example.com/path.html e %

HMmM. We're having trouble
finding that site.

We can’t connect to the server at paypal.com-
webapps.ad48.example.com.

If that address is correct, here are three other things you
can try:

e Try again later.
e Check your network connection.

e |f you are connected but behind a firewall, check that
Firefox has permission to access the Web.

Try Again

66 Feross Aboukhadijeh

O ® @ paypal.com-webapps.a234829° X +

< C @ paypal.com-webapps.a23482934234234234342348342381.a903848f8234234dff8ff12344.exam... ¢ @

This site can’t be reached

paypal.com-

webapps.a23482934234234234342348342381.a903848f8234234dff8ff12344.example.com’s
server I[P address could not be found.

e (o to http://example.com/
e Search Google for paypal webapps example path

ERR_NAME_NOT_RESOLVED

67 Feross Aboukhadijeh

A Server Not Found

© & paypal.com-webapps.a479123809f1348724571f1 e %

HMM. We're having trouble
finding that site.

We can’t connect to the server at paypal.com-
webapps.a47912380911348724571f1343248.example.com.

If that address is correct, here are three other things you can
try:

e Try again later.

e Check your network connection.

¢ |f you are connected but behind a firewall, check that Firefox
has permission to access the Web.

Try Again

68 Feross Aboukhadijeh

69 Feross Aboukhadijeh

https:/feross.org/html5-fullscreen-api-attack/

70 Feross Aboukhadijeh

71 Feross Abouk

£ Mtp Jlpagpal bam com/! - Windews Internet Explores

B Lpsyed bgb oo

£ hepemalogncoe,

T Welcoma - PayPal - Windows Internet Explerer
o rEpevees sontel cony

- ‘> .} Wekoes ra.“’

[FEVAEL]

Sond Moy

Member LOg-In

*mal Addres

Paren, "

PayPal. Privacy is bulit in.

cBay Sellers

Free salay 100K

g -
sehing easw
PavPal works hard o

b= p protect

selers,

"‘.‘v"’@l 3"‘ ir.-.f

Lo

Roquest Noney

shinning anag trackhirq.

wish fapelireLB) *r XK !
v -
-' -
-
Sign Up | Log In | Helg
Merchant Sorvions Auction Tooks
2in Payral teday
Now Dver asen more shout
100 mio~ acoourts
16 Ways to Promote
Your E-Business
Merchants Donnizes your fres
SR OO Y
a1 -‘ : =t - '-.
{ A 1 4s :‘.’"I"\.
I . PayPal Moblic
Get pad by phone R
tax, and mal mnth
") f - e aas - .
il _lequna What's New
‘-;‘6 nNOW pa\""-.‘ can) e Svvne Nercha v

= Show a picture of a browser window with trust indicators for the
victim website within the attacker page

» "We found that picture-in-picture attacks showing a fake browser
window were as effective as the best other phishing technique, the
homograph attack. Extended validation did not help users identify

either attack"’

'"An Evaluation of Extended Validation and Picture-in-Picture Phishing Attacks"

72 Feross Aboukhadijeh

Chromeless windows

location bar command system icons

titlebar I BBC World Service | Home Page - Mozilla Firefox
File Edit View Go Bookmarks Tools Help . menubar
navigation I e -
toolbar € » S0H
bookmarks

’ Getting Started L;.,' Latest Headlines Firefox Start Page
toolbar

tab bar . | | BBC World Service | Home Page

horizontal
scrollbar

resizing
site navigation bar grippy

73 Feross Aboukhadijeh

2321 B O O M - N 94 mid5%

@ https:/jameshfisher.com/2019/04/%

The inception bar: a new
phishing method

Welcome to HSBC, the world's
seventh-largest bank! Of

course, the page you're reading isn't actually
hosted on hsbc. com; it's hosted on
jameshfisher.com. But when you visit this

74 Feross Aboukhadijeh

site on Chrome for mobile, and scroll a little

» Use a password manager

= Password manager won't be fooled by IDN homograph attack

= Use a hardware security key ‘/
O

\

75 Feross Aboukhadijeh

Cookiejacking

» Famous example affected IE in 2011.

<iframe sxc="file://C:/Usexs/%usex%/AppData/Roaming/
Microsoft/Windows/Cookies/%user%@google[1].txt">

= Use clickjacking technique to perform "content extraction" using Drag-and-Drop

= Learn Windows username by adding to
nage, wait for NTLM (New Technology LAN Manager) protocol to send
username in the clear to SERVER _IP

» Select the whole cookie text with mousedown using two nested iframes

76 Feross Aboukhadijeh

Cotkumpacany Mol
(vag e Babs iy e Lusbetn

T

= Make users think that a file upload dialog is actually a file download
dialog

= (et them to upload the entire contents of a folder to your server

78 Feross Aboukhadijeh

Download custom-built hacking tricks

Built on~demand just for you!
Oy MU Aulosics

Fve gl some giftn fur you. | gatiersl some of e Latest Naching Trichs for all Sromsers, 4000ad 11w slth @ dlgeitie That sill seest vy 4 OOF fils
crafisd spwcinily Tor you Daasd on your smeers, Just TLLL out tre short Ul sexd sttt Tor the Tils oo,

- v kv

. Dooss tecinriam 9 Uxcloe)
& it
.o
8w
60130 et g
L
L ‘s U rwviest of tew ALY
® Wlary
® JCamnu!
® hevin mLICH
¢ Drumer pou'ce Lttty
® teew
Swmis
. 'l"'\n ,
.ONO
S hey sttAll Diiedd (ool sl . .)
S ey

S1 will miy ser 00 Loshnigees sent jonad 45 Uhe Soon for Legitssuts purpoces) :
Chooed dosdont Lecetimn nov let's loock at what is really going o

© "Marag ey Sub emmert | peds

S e e Ay o g tmar o mar B c— - —

Mreperirg file for daelned

Nt Se'ew saperioviing NIE 1mis row, pieese Be patism

Q o ogemse. T utes ctty. TV mpmeten) . @ womgren- . 8 v ssettnss B Sl S 1 - - _e)
79 Feross Aboukhadijeh

User interface security

» "Ul security attacks ... are fundamentally attacks on human
perception"?

= (Core problem: Browser allows untrusted sites to put contentin a
place where the user looks to make trust decisions

*"Clickjacking Revisited: A Perceptual VView of Ul Security"

80 Feross Aboukhadijeh

= Google maintains a list of known malware/phishing URLs
» |dea: Browser queries the list on every navigation

» \Would send real-time browsing history to Google
» |dea: Download full list of URLs to browser

» Would be huge, and it's constantly changing

» |dea: Do something smarter?

81 Feross Aboukhadijeh

https:/testsafebrowsing.appspot.com/

82 Feross Aboukhadijeh

O @® Security error X +

< cC A Dangerous | testsafebrowsing.appspot.com/s/phishing.html

Deceptive site ahead

Attackers on testsafebrowsing.appspot.com may trick you into doing something
dangerous like installing software or revealing your personal information (for example,
passwords, phone numbers, or credit cards). Learn more

E] Help improve Safe Browsing by sending some system information and page content to Google.

Privacy policy

Back to safety

83 Feross Aboukhadijeh

Safe Browsing - Lookup API

= Send URLs to the Google Safe Browsing server to check their status

» Advantages

= Simple URL checks: You send an HTTP POST request with the actual URLs,
and the server responds with the state of the URLs (safe or unsafe).

» Drawbacks

= Privacy: URLs are not hashed, so the server knows which URLs you look up.

= Response time: Every lookup request is processed by the server. We don't
provide guarantees on lookup response time.

84 Feross Aboukhadijeh

Cryptographic hash function

» Algorithm that maps data of arbitrary size (the "message") to a bit string of
a fixed size (the "hash value")

One-way function: infeasible to invert

Deterministic: same message always results in the same hash value
Quick to compute: we often call hash functions thousands of times

No collisions: infeasible to find different messages with same hash value

Avalanche effect: small change to message changes hash value
extensively

85 Feross Aboukhadijeh

Get unsafe hash prefixes

_—

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?

sha256('example.com') — 'abcdef0123456789..."

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?
sha256('example.com') — 'abcdef0123456789..."

'abcdef' pref1x present?

Get unsafe hash prefixes

— —————

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') - 'abcdef0123456789..."

Is 'abcdef' prefix present? Google

g Safe

No .
C—— Browsing

Server

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef0123456789..."

Is 'abcdef' prefix present? Google
: > Safe
Client No !
e —— Browsing
Server

example.com is safe!

94 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef0123456789..."

Is 'abcdef' prefix present? Google
: > Safe
Client No !
e —— Browsing
Server

example.com is safe!

95 Feross Aboukhadijeh

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?

sha256('example.com') — 'abcdef012345...

Get unsafe hash pref1xes

[aaabbb', 'cccddd', 'eeefff']

Is example.com safe?
sha256('example.com') — 'abcdef012345...

'abcdef' pref1x present?

Get unsafe hash prefixes

— —————

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345..."

Is 'abcdef' prefix present? Google

g Safe

Yes .
C—— Browsing

Server

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

_— s

101 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']

—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

_— s

['abcdef000...', 'abcdeflll...']

B — e ——

102 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']

e ——— e I

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: < Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

103 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: < Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

_—

104 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_ s

l No

105 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_ s

No

—

106 Feross

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_ s

No

—

107 Feross

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']

e ——— e I

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: < Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

108 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: < Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

_—

109 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_———
l Yes

110 Feross Aboukhadijeh

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_———
l Yes

111 Feross

Get unsafe hash prefixes

— e ——

['aaabbb', 'cccddd', 'eeefff!']
—

Is example.com safe?

sha256('example.com') = 'abcdef012345...'

Is 'abcdef' prefix present? Google
: > Safe
Client Yes .
e — Browsing
Server

Get unsafe hashes for prefix 'abcdef'

['abcdef000...', 'abcdeflll...']

Is 'abcdef012345...' present?

—_———
l Yes

112 Feross

» Advantages

» Privacy: You exchange data with the server infrequently (only after a local hash prefix match)
and using hashed URLs, so the server never knows the actual URLs queried by the clients.

= Response time: You maintain a local database that contains copies of the Safe Browsing lists;
they do not need to query the server every time they want to check a URL.

» Drawbacks

= Implementation: You need to set up a local database and then download, and periodically
update, the local copies of the Safe Browsing lists (stored as variable-length SHA256 hashes).

= Complex URL checks: You need to know how to canonicalize URLs, create suffix/prefix
expressions, and compute SHA256 hashes (for comparison with the local copies of the Safe
Browsing lists as well as the Safe Browsing lists stored on the server).

113 Feross Aboukhadijeh

114 Feross Aboukhadijeh

= "An attack based on information gained from the implementation of

a computer system, rather than weaknesses in the implemented
algorithm itself"

= Possible sources of leaks: Timing information, power consumption,
electromagnetic leaks, sound can provide an extra source of
information, which can be exploited

115 Feross Aboukhadijeh

116 Feross Abo

The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis! Michael Rubinstein?! Neal Wadhwal

Gautham J. Mysore® Frédo Durand! William T. Freeman!

IMIT CSAIL 2Microsoft Research 3Adobe Research

Amplitude
|

ShRese Source sound in the room

£
4 g
v &= g
mmEE e
Vibrating object Sound recovered from a bag of chips
(Visual Microphone) §

»

Amplitude

High-speed camera Sound recovered from a plant

Representative frame

Maryhad a li-ttle lamb ... (tones)

4 6 8 10 12 14 16 2 4 6 8 10 12 14
Time (sec) Time (sec)

Sound waveform Spectrogram

Figure 1: Recovering sound from video. Left: when sound hits an object (in this case, an empty bag of chips) it causes extremely small
surface vibrations in that object. We are able to extract these small vibrations from high speed video and reconstruct the sound that produced
them - using the object as a visual microphone from a distance. Right: an instrumental recording of "Mary Had a Little Lamb” (top row) is
played through a loudspeaker, then recovered from video of different objects: a bag of chips (middle row), and the leaves of a potted plant
(bottom row). For the source and each recovered sound we show the waveform and spectrogram (the magnitude of the signal across different
frequencies over time, shown in linear scale with darker colors representing higher energy). The input and recovered sounds for all of the

experiments in the paper can be found on the project web page.

Abstract

When sound hits an object, it causes small vibrations of the ob-
ject’s surface. We show how, using only high-speed video of the
object, we can extract those minute vibrations and partially re-
cover the sound that produced them, allowing us to turn everyday
objects—a glass of water, a potted plant, a box of tissues, or a bag
of chips—into visual microphones. We recover sounds from high-
speed footage of a variety of objects with different properties, and

I S M . A I B P I R AR Y Ay IR R

1 Introduction

Sound waves are fluctuations in pressure that travel through a
medium. When sound hits an object, it causes the surface of that
object to move. Depending on various conditions, the surface may
move with the surrounding medium or deform according to its vi-
bration modes. In both cases, the pattern of motion contains useful
information that can be used to recover sound or learn about the
object’s structure.

LS

High speed videc Sound Recovered
(actual video playing here) From Video

117 Feross Aboukhadijeh

Why is this a side channel attack?

= "An attack based on information gained from the implementation of
a computer system, rather than weaknesses in the implemented
algorithm itself"

118 Feross Aboukhadijeh

Cross-site Leaks (XS-Leaks)

» (lass of vulnerabilities derived from side-channels built into the
web platform

= The web is composable and *even with the same origin policy in
place, websites can interact with each other

» These legitimate mechanisms of cross-site interaction may leak
user information

119 Feross Aboukhadijeh

Classic attack: CSS history leak

let a
a.href = "https://example.com’

document.createElement('a’)

document.body.appendChild(a)

if (a.style.coloxr === 'purple’) {

alert('I know you visited example.com!')

}

120 Feross Aboukhadijeh

Plugging the CSS History Leak (2010)

» Mozilla's Goal: Prevent high-bandwidth techniques, or those that extract lots
of information from users’ browsers quickly

1. Prevent layout-based attacks: Don't allow :visited to load a resource,
change position, or change size

2. Prevent some timing attacks: Make the code paths for visited and unvisited
links the same length

3. Prevent computed style attacks: DOM APIs always report link styles as if
link was unvisited

= Many leaks still remain

121 Feross Aboukhadijeh

https:/bugs.chromium.org/p/chromium/issues/detail?7id=252165

122 Feross Aboukhadijeh

= Ban (CSS properties that significantly affect rendering speed

» Complex SVG background images, large text-shadow, etc.
= Double-key the visited link history

= If user clicks an example.com link from good.com, then example.com
links will be considered visited when shown on good.com, but as
unvisited when shown on evil.com

= Remove ability to style visited links

= Completely eliminates this vector for history leaks

123 Feross Aboukhadijeh

Cross-origin images can leak data

» |Image either:

= Says "signin” and is 100px wide

= Says "sign out” and is 120px wide

= Insert image into the page and detect how it affects the layout

= The size difference "leaks" even across origins

124 Feross Aboukhadijeh

Stealing sensitive browser data with
IW3C Ambient Light Sensor API (2019)

= "The color of the user’s screen can carry useful information which
websites are prevented from directly accessing for security
reasons.’

» "Light sensor readings allow an attacker to distinguish between
different screen colors.’

125 Feross Aboukhadijeh

126 Feross Aboukhadijeh

Log

Detecting history: 14 URLs. ETA: 11s.

Detected:

Detected:
Detected:
Detected:
Detected:
Detected:
Detected:

https://www.google.com
https://news.ycombinator.com
https://www.reddit.com
https://en.wikipedia.org
https://en.m.wikipedia.org/wiki/Main_Page
http://edition.cnn.com
https://arturjanc.com/ls/demo.html?demo=histor

127 Feross Aboukhadijeh

Log

—
LA A

arturjanc.com/ |5/ ds

Recovered image:

Light: 52 lux

Mobile Device Identification via
Sensor Fingerprinting (2014)

= Gyrophone: "The MEMS gyroscopes found on modern smart phones are
sufficiently sensitive to measure acoustic signals in the vicinity of the
phone. ... Using signal processing and machine learning, this information
is sufficient to identify speaker information and even parse speech.’

= "Since 105 and Android require no specia

gyro, our results show that apps and acti

permissions to access the
ve web content that cannot

access the microphone can nevertheless eavesdrop on speech in the

vicinity of the phone.

128 Feross Aboukhadijeh

= |s this a practical attack?
= Even if not practical, it's still a violation of Same Origin Policy

» Ambient light attack could run when you step away from your
device

» Mitigations
» Limit the frequency of sensor readings (to much less than 60Hz)

» Limit the precision of sensor output (quantize the result)

129 Feross Aboukhadijeh

= Thereis a tension between security and capabilities of the web
browser

» Phishing is a human problem, though technical solutions can help

= Side channels exist all over the place, and are really hard to prevent

130 Feross Aboukhadijeh

Credits:

nttps:/www.xudongz.com/blog/2017/idn-phishing/
Nttp:/www.smbc-comics.com/index.php?db=comics&id=2526
nttps:/sites.google.com/site/tentacoloviola/cookiejacking

131 Feross Aboukhadijeh

