Explorations in Recursion with John Pell and the Pell Sequence

Recurrence Relations and their Explicit Formulas

By Ian Walker

June 2011

MST 501 Research Project In partial fulfillment for the Master's of Teaching Mathematics (M.S.T.) Portland State University, Portland, Oregon

John Pell (1611-1685)

- Part of the 17th century intellectual history of England and of Continental Europe.
- Pell was married with eight children, taught math at the Gymnasium in Amsterdam, and was Oliver Cromwell's envoy to Switzerland.
- Pell was well read in classical and contemporary mathematics.
- Pell had correspondence with Descartes, Leibniz, Cavendish, Mersenne, Hartlib, Collins and others.
- His main mathematical focus was on mathematical tables: tables of squares, sums of squares, primes and composites, constant differences, logarithms, antilogarithms, trigonometric functions, etc.

- Many of Pell's booklets of tables and other works do not list himself as the author.
- Did not publish much mathematical work. Is more known for his activities, correspondence and contacts.
- Only one of his tables was ever published (1672), which had tables of the first 10,000 square numbers.
- His best known published work is, "An Introduction to Algebra". It explains how to simplify and solve equations.
- Pell is credited with the modern day division symbol and the double-angle tangent formula.
- Pell is best known, only by name, for the Pell Sequence and the Pell Equation.

- Division Symbol:
- Double-Angle Tangent Formula:

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

• Pell Sequence:

$$p_n = 2p_{n-1} + p_{n-2}$$
 $p_0 = 1, p_1 = 2, n \ge 2$

• Pell Equation:

$$x^2 + 2y^2 = \pm 1$$

- Both the Pell Sequence and the Pell Equation are erroneously named after him.
- Euler, after reading John Wallis's "Opera Mathematica", mistakenly gave credit to Pell for the Pell Equation.
- He had constant financial trouble throughout his life and was twice imprisoned for unpaid debts.
- In summary, Pell seemed easily distracted, had multiple projects going on at once, and many unfinished projects. Not a well known mathematician because of lack of publishing and the desire to remain anonymous.
- Despite all this, he dedicated much of his life to mathematics and therefore is recognized as a minor figure in the history of mathematics.

The Pell Sequence

• Defined by the recurrence relation:

$$p_n = 2p_{n-1} + p_{n-2}$$
 $p_0 = 1, p_1 = 2, n \ge 2$

• The first few terms of the Pell Sequence are:

1,2,5,12,29,70,168,408,.....

$$p_{2} = 2p_{2-1} + p_{2-2} = 2p_{1} + p_{0} = 2(2) + 1 = 5$$

$$p_{3} = 2p_{3-1} + p_{3-2} = 2p_{2} + p_{1} = 2(5) + 2 = 12$$

$$p_{4} = 2p_{4-1} + p_{4-2} = 2p_{3} + p_{2} = 2(12) + 5 = 29$$
etc

The Pell Sequence

• One solution to the recurrence relation is:

$$p_n = \frac{\sqrt{2}}{4} \left[\left(1 + \sqrt{2} \right)^n - \left(1 - \sqrt{2} \right)^n \right] \forall n \ge 1$$

• Here is a second solution to the recurrence relation:

$$p_{n} = \sum_{\substack{i, j, k \ge 0 \\ i+j+2k=n}} \frac{(i+j+k)!}{i! j! k!}$$

The Pell Sequence

• Here is how to find the first term in the Pell Sequence using the second solution:

 $p_{0} = 1$ i + j + 2k = n i + j + 2k = 0 (i, j, k) (0, 0, 0) $\frac{(0 + 0 + 0)!}{0! 0! 0!} = \frac{1}{1} = 1$ $p_{0} = 1$

• Now, it is your turn!

Verification of the Pell Sequence

- Let p_n count the number of ways to fill an n foot flagpole.
- There are red, white, and blue flags.

$$red = i, blue = j, white = k$$
 $p_0 = 1, p_1 = 2, n \ge 2$

- Red and blue flags are each 1 feet tall and white flags are 2 feet tall.
- If all flags are blue or red or any combination of the 2, then the possibilities are:

$$3^6 = 729$$

Verification of the Pell Sequence

- Consider for all cases which flag is at the top of the flagpole.
- Case 1: If a blue flag is on top then anything underneath is:

 p_{n-1}

• Case 2: If a red flag is on top then anything underneath is:

 p_{n-1}

• Case 3: If a white flag is on top then anything underneath is:

 p_{n-2}

• The cases yield the desired recurrence relation which is the Pell Sequence:

$$p_n = 2p_{n-1} + p_{n-2}$$

Verification of the Pell Sequence

- Here are some examples on a case-by-case basis:
- 1) There is one way to fill a zero-foot flagpole if all flags are zero feet tall.

 $n = 0 \rightarrow p_0 = 1 \rightarrow (i, j, k) \rightarrow (0, 0, 0) \rightarrow i + j + 2k = 0 + 0 + 2(0) = 0$

• 2) There are 2 ways to fill a 1-foot flagpole with either a blue or red flag

$$n = 1 \to p_1 = 2 \to (i, j, k) \to (1, 0, 0) \to i + j + 2k = 1 \to 1 + 0 + 2(0) = 1$$

or $\to (0, 1, 0) \to 0 + 1 + 2(0) = 1$

• 3) There are 5 ways to fill a 2-foot flagpole:

$$n = 2 \rightarrow p_2 = 5 \rightarrow (i, j, k) \rightarrow (2, 0, 0), (0, 2, 0), (0, 0, 1)(1, 1, 0), (1, 1, 0)$$

$$\rightarrow i + j + 2k = 2 \quad red = i, j = blue, k = white$$

• Here is the Pell Sequence recurrence relation and the first few terms.

$$p_n = 2p_{n-1} + p_{n-2}$$
 $p_0 = 1, p_1 = 2, n \ge 2$
1,2,5,12,29,70,169,408,...

- Sometimes the sequence begins with zero.
- Here is one solution to the Pell Sequence.

$$p_n = \frac{\sqrt{2}}{4} \left[\left(1 + \sqrt{2} \right)^n - \left(1 - \sqrt{2} \right)^n \right], \forall n \ge 1$$

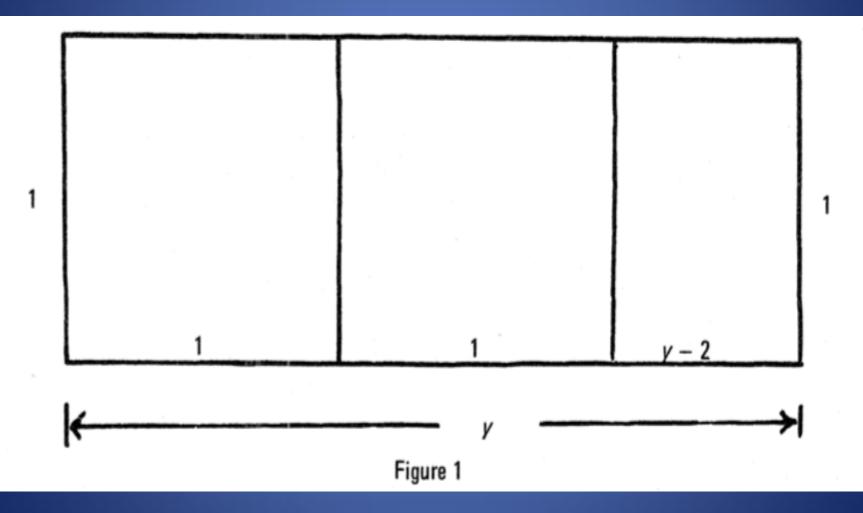
- The only triangular Pell number is 1.
- For a Pell number to be prime, the index needs to be prime.

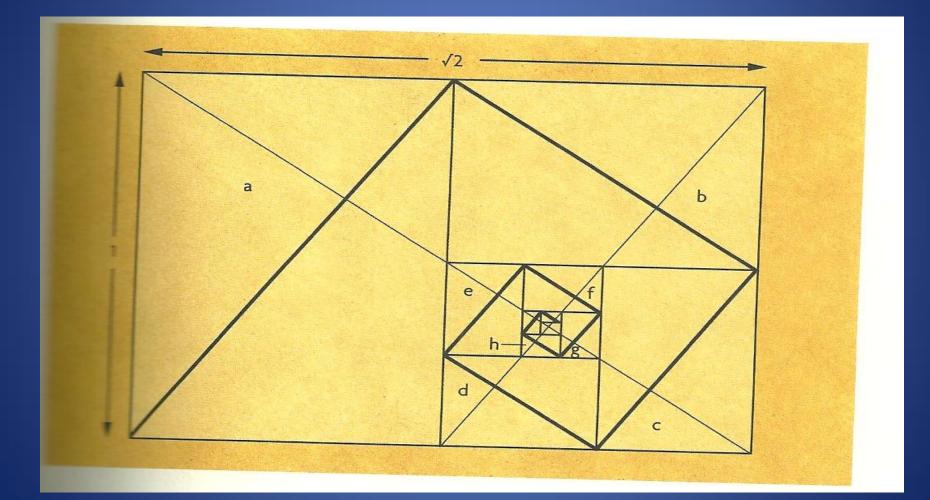
• The only Pell numbers that are cubes, squares or any other higher power are:

0,1,144

- The Pell Numbers can be represented geometrically with the "Silver Rectangle". The ratio of length to width is length "y" and width 1.
- When 2 squares with the side equal to the width are taken out of the rectangle, what remains has the same ratio of length to width as the original rectangle.
- Here is an algebraic representation:

$$\frac{y}{1} = \frac{1}{y-2} \to y^2 - 2y - 1 = 0 \to y = (1 + \sqrt{2})$$





• The generating function for the Pell Sequence is:

$$\frac{1}{1 - 2x - x^2} = \sum_{i=1}^{\infty} P_n x^n$$

• The Pell numbers can be generated by the matrix:

$$M = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, M^n = \begin{bmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{bmatrix}$$

• Identities of the Pell Sequence can produce Pythagorean Triples and square numbers.

- The proportion $\sqrt{2}$:1 or $\frac{99}{70}$ is used in paper sizes A3, A4 and others.
- The Pell Numbers are the denominators of the fractions that are the closest rational approximations to the $\sqrt{2}$

 $\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \dots$

• The sum of the numerator and the denominator of the previous term is the denominator of the current term.

• The numerator of the current fraction is the sum of the numerator and 2 times the denominator of the previous fraction.

 $\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \dots$

• Alternating fractions determine approximations closer and closer to the $\sqrt{2}$

$$\frac{1}{1}, \frac{7}{5}, \frac{41}{29}, \dots < \sqrt{2}, \dots, \frac{99}{70}, \frac{17}{12}, \frac{3}{2}$$

- There is a relationship between the Pell Sequence and the Pell Equation.
- The Pell Equation is defined:

$$x^2 + 2y^2 = \pm 1$$

• and, if

$$x = p_{n+1} - p_n \quad y = p_n$$

• Then χ and γ will satisfy the Pell Equation.

• Example:

$$p_{2} = 5 \rightarrow x = p_{2+1} - p_{2} \rightarrow y = p_{2}$$

$$\rightarrow x = p_{3} - p_{2} \rightarrow y = p_{2}$$

$$\rightarrow x = 12 - 5 = 7 \rightarrow y = 5$$

$$x^{2} + 2y^{2} = \pm 1$$

$$7^{2} + 2(5)^{2} \rightarrow 49 - 50 = -1$$

Table of Contents

- Chapter 1: An Introduction to Recurrence Relations
- Chapter 2: Four techniques for an Explicit Formula
- 2.1 Guess and Check with the Principle of Mathematical Induction
- 2.2 The Characteristic Polynomial
- 2.3 Generating Functions
- 2.4 Linear Algebra
- Chapter 3: John Pell: An "obscure" English Mathematician

Table of Contents

- Chapter 4: The Pell Sequence, its history and some amazing properties
- 4.1 The Pell Sequence: History and Properties
- 4.2 Solving the Pell Sequence using four techniques
- 4.3 An Alternate Explicit Formula for the Pell Sequence and some proofs
- 4.4 Pell and Lucas Numbers: Binet formulas and Identities
- Chapter 5: Curriculum for Instructors and Students
- 7 lessons- including, lesson plans, student handouts, instructor solutions, lesson reflections

Introduction to recurrence relations

- A sequence of numbers can be defined recursively by what is known as a recurrence relation.
- The sequence of numbers:

1,2,5,12,29,70,169,408,.....

• can be defined with the recurrence relation:

$$p_n = 2p_{n-1} + p_{n-2}$$

• The first few terms are known as the initial conditions of the sequence.

$$p_0 = 1, p_1 = 2, n \ge 2$$

Introduction to Recurrence Relations

• The numbers in the list are the terms of the sequence.

$$p_0 = 1, p_1 = 2, p_2 = 5, etc...$$

• A "solution" to the recurrence relation is:

$$p_n = \frac{\sqrt{2}}{4} \left[\left(1 + \sqrt{2} \right)^n - \left(1 - \sqrt{2} \right)^n \right] \forall n \ge 1$$

• This is also known as an "explicit" or "closed-form" formula.

4 techniques for solutions to recurrence relations: Guess and check with the Principle of Mathematical Induction

- Guess and check with the Principle of Mathematical Induction.
- Consider the sequence defined by:

$$a_n = 2a_{n-1} + 1$$
 $a_1 = 1$ $n \ge 2$

• The first few terms in the sequence can be computed as follows:

$$a_{1} = 1$$

$$a_{2} = 2a_{2-1} + 1 = 2a_{1} + 1 = 2(1) + 1 = 3$$

$$a_{3} = 2a_{3-1} + 1 = 2a_{2} + 1 = 2(3) + 1 = 7$$

$$a_{4} = 2a_{4-1} + 1 = 2a_{3} + 1 = 2(7) + 1 = 15$$

$$a_{5} = 2a_{5-1} + 1 = 2a_{4} + 1 = 2(15) + 1 = 3$$

$$a_{6} = 2a_{6-1} + 1 = 2a_{5} + 1 = 2(31) + 1 = 63$$

4 techniques for solutions to recurrence relations: Guess and check with the Principle of Mathematical Induction

• From this data we can notice a pattern and guess a formula:

$$a_{1} = 2^{1} - 1 = 1$$

$$a_{2} = 2^{2} - 1 = 3$$

$$a_{3} = 2^{3} - 1 = 7$$

$$a_{4} = 2^{4} - 1 = 15$$

$$a_{5} = 2^{5} - 1 = 31$$

$$a_{6} = 2^{6} - 1 = 63$$

$$\therefore a_{n} = 2^{n} - 1, \forall n \ge 1$$

• Use induction to prove $a_n = 2^n - 1$ holds for all $n \ge 1$

4 techniques for solutions to recurrence relations: Guess and check with the Principle of Mathematical Induction

• Proof: (i) Base cases: For

$$n = 1 \rightarrow a_n = 2^n - 1 \rightarrow a_1 = 2^1 - 1 = 1.$$

- (ii) induction step:
- Assume $a_n = 2^n 1$ is true, then $a_{n+1} = 2^{n+1} 1$ is true. Then

$$a_{n+1} = 2a_{(n+1)-1} + 1 \rightarrow 2a_n + 1 \rightarrow 2(2^n - 1) + 1$$

$$\rightarrow 2^{n+1} - 2 + 1 \rightarrow 2^{n+1} - 1$$

• Therefore by induction $a_n = 2^n - 1$ holds for all $n \ge 1$

4 techniques for solutions to recurrence relations: The Characteristic Polynomial

• Consider the recurrence relation: $a_n = -5a_{n-1} + 6a_{n-2}$ $a_0 = 5, a_1 = 19, n \ge 2$

• Solution \longrightarrow

$$a_{n} = -5a_{n-1} + 6a_{n-2}$$

$$a_{n} + 5a_{n-1} - 6a_{n-2} = 0$$

$$x^{2} + 5x - 6 \rightarrow (x - 1)(x + 6) = 0$$

$$x_{1} = -6, x_{2} = 1$$

$$a_{n} = c_{1}(x_{1}^{n}) + c_{2}(x_{2}^{n})$$

$$a_{n} = c_{1}(-6^{n}) + c_{2}(1^{n})$$

$$a_{0} = 5 \rightarrow 5 = c_{1}(-6^{0}) + c_{2}(1^{0})$$

$$5 = c_{1} + c_{2} \rightarrow equation 1$$

$$a_{1} = 19 \rightarrow 19 = c_{1}(-6^{1}) + c_{2}(1^{1})$$

$$\rightarrow 19 = -6c_{1} + c_{2} \rightarrow equation 2$$

4 techniques for solutions to recurrence relations: The Characteristic Polynomial

• Multiplying equation 1 by 6 and adding equation 1 to equation 2 yields:

$$c_1 = -2, c_2 = 7$$

 $a_n = -2(-6^n) + 7(1^n) \rightarrow \therefore a_n = -2(-6^n) + 7, \forall n \ge 0$

4 techniques for solutions to recurrence relations: Generating Functions

Consider the recurrence relation: $a_n = 2a_{n-1}$ $a_0 = 1, n \ge 1$

Solution: \rightarrow

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$f(x) = a^0 x^0 + \sum_{n=1}^{\infty} (2a_{n-1}) x^n$$

$$f(x) = 1 + 2\sum_{n=1}^{\infty} (a_{n-1}) x^n$$

$$f(x) = 1 + 2x \sum_{n=0}^{\infty} (a_{n-1}) x^{n-1}$$

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \Rightarrow f(x) = 1 + 2x f(x)$$

$$f(x) - 2x f(x) = 1 \to f(x)(1 - 2x) = 1$$

$$f(x) = \frac{1}{1 - 2x} \to f(x) = \sum_{n=0}^{\infty} (2x)^n \to f(x) = \sum_{n=0}^{\infty} 2^n x$$

$$\therefore a_n = 2^n \to \forall n \ge 0.$$

n

• Solve the recurrence relation:

$$a_{n+1} = 3a_n - 2a_{n-1}$$
 $a_0 = -4, a_1 = 0, n \ge 1$

• Solution:

$$v_{n} = A^{n} \bullet v_{n-1}$$

$$\begin{bmatrix} a_{n+1} \\ a_{n} \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n} \\ a_{n-1} \end{bmatrix}$$

$$A^{n}v_{0} = A^{n} \begin{bmatrix} a_{1} \\ a_{0} \end{bmatrix} = A^{n} \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

• Next is the characteristic polynomial of A by the diagonalization of A

$$(A - \lambda I) = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{bmatrix}$$
$$\det(A - \lambda I) = (3 - \lambda)(-\lambda) - (-2)(1)$$
$$\lambda^{2} - 3\lambda + 2 = 0 \rightarrow (\lambda - 2)(\lambda - 1) \rightarrow \lambda_{1} = 1, \lambda_{2} = 2$$
$$D = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

• The Eigen vectors of A are: λ_1 and λ_2 The Eigen space for A is:

$$egin{array}{ccc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}$$

• To find the Eigen space for $\lambda_1 = 1$ we have:

$$(A - \lambda I)x = 0$$

$$\begin{bmatrix} 3 - \lambda_1 & -2 \\ 1 & -\lambda_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \rightarrow \begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$2x_1 - 2x_2 = 0$$

$$x_1 - x_2 = 0$$

• Where $x_2 = t_1$ is free and $x_1 = x_2 = t_1$ and:

$$x = \begin{bmatrix} t_1 \\ t_1 \end{bmatrix} = t_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• To find the Eigen space for $\lambda_2 = 2$ we have:

$$(A - \lambda I)x = 0$$

$$\begin{bmatrix} 3 - \lambda_2 & -2 \\ 1 & -\lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \rightarrow \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$x_1 - 2x_2 = 0$$

$$x_1 - 2x_2 = 0$$

• Where $x_2 = t_2$ is free and $x_1 = 2x_2 = 2t_2$ and:

$$x = \begin{bmatrix} 2t_2 \\ t_2 \end{bmatrix} = t_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

• Then we will write the matrices P, P^{-1}, D to solve for A:

$$P = \begin{bmatrix} t_1 & t_2 \\ t_1 & t_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \qquad P^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Solution:

$$P^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \rightarrow \frac{1}{(1)(1) - (2)(1)} \begin{bmatrix} 1 & -2 \\ -1 & -1 \end{bmatrix}$$

$$P^{-1} = -\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$P^{-1}AP = D \Longrightarrow A = PDP^{-1}$$

$$v_n = A^n v_0 = (PDP^{-1})v_o = (PDP^{-1}) \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

$$P^{-1}v_0 = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ -4 \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$

$$PD^n = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2^n \end{bmatrix} = \begin{bmatrix} 1 & 2^{n+1} \\ 1 & 2^n \end{bmatrix}$$

$$v_n = PD^n \bullet P^{-1}v_0$$

$$v_n = \begin{bmatrix} 1 & 2^{n+1} \\ 1 & 2^n \end{bmatrix} \begin{bmatrix} -8 \\ 4 \end{bmatrix} = \begin{bmatrix} -8 + 4(2^{n+1}) \\ -8 + 4(2^n) \end{bmatrix} a_{n+1}$$

$$a_n$$

$$\therefore a_n = -8 + 4(2^n) \rightarrow a_n = 4 \begin{bmatrix} -2 + (2^n) \end{bmatrix} \forall n \ge 0.$$

Curriculum for Instructors and Students

- The curriculum consists of 8 lessons: Introduction to Recurrence Relations, Characteristic Polynomial, Checking Explicit Formulas, Guess and Check with Induction, Pell Sequence, Tower of Hanoi, Generating Functions, Linear Algebra
- Each lesson has a lesson plan, student handout, instructor solutions, and lesson reflection. In the case of the Tower of Hanoi models were made.
- All lessons were done except for Generating Functions and Linear Algebra due to time constraints and students lacking prerequisites.
- The unit was done with my high school Advanced Algebra 2 class with mostly 10th and 11th grade students with a few 12th and 9th grade students. The unit was done January 2011.

Curriculum for Instructors and Students

- A chapter on recursive sequences in their Advanced Algebra 2 book was done before the curriculum. It contained arithmetic and geometric sequences, writing recursive formulas, shifted geometric sequences- (concept of a limit), graphs of sequences, application problems.
- Students had the most success with Introduction to Recurrence Relations, Characteristic Polynomial, Pell Sequence and Tower of Hanoi.
- Students had the least success with Checking the Explicit Formula, and Guess and Check with Induction.
- Here are some examples of student work which are contained within the student handouts.

Characteristic Polynomial – Student Work

5)
$$a_{n+1} = 7a_n - 10a_{n-1}$$
 given $a_0 = 10$ and $a_1 = 29$

$$X^2 - 7 + 10 \qquad x^2 - 2x - 5x + 10$$

$$(x - 5)(x - 2) \qquad 10 = 3 + C_2$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad 29 = 5C_{1} + C_{2}$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad 29 = 3C_{1} - 26C_{2}$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad 29 = 3C_{1} - 26C_{2}$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad \frac{9}{3} = 3C_{1} - C_{1} = 3$$

$$C_{2} = 7$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad \frac{9}{3} = 3C_{1} - C_{1} = 3$$

$$C_{2} = 7$$

$$a_{1} = C_{1}(+s^{n}) + C_{2}(+2^{n}) \qquad \frac{9}{3} = 3C_{1} - C_{1} = 3$$

$$C_{2} = 7$$

Pell Sequence – Student Work

b) Use the characteristic polynomial technique to solve this recurrence relation.

Alternate Pell Formula – Student Work

P2 = 5 true? $P_2 \rightarrow i + j + 2K = 2$ (1, 1, 0)+(0,0,1)+(2,00) (0, 2, 0) $\frac{(1+1+0)!}{1! 1! 0!} + \frac{(0+0+1)!}{0! 0! 1!} + \frac{(2+0+0)!}{2! 0! 0!} + \frac{(0+2+0)!}{0! 2! 0!}$ 12- 12 1 - 12 12/2 J NNN $P_2 = 5$

Checking the Explicit Formula – Student Work

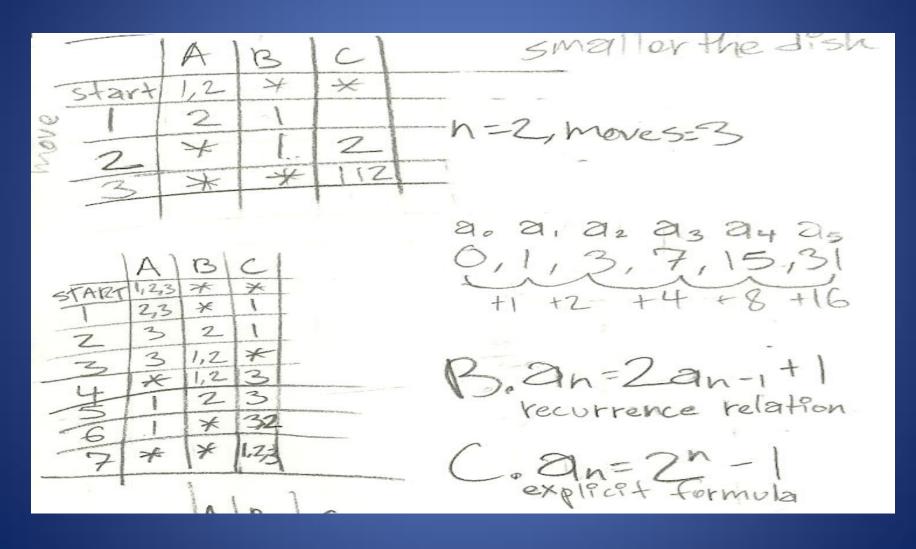
5)
$$a_{n+1}^{n} = 7a_n - 10a_{n-1}$$
 given $a_0 = 10$ and $a_1 = 29$
 $\lambda_n := \frac{3}{5}(5^n) + \frac{21}{6}(2^n)$
 $\frac{3}{5}(5^n) + \frac{21}{6}(2^n) = 7[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] - 10[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)]$
 $\frac{3}{5}(5^n) + \frac{21}{6}(2^n) - 7[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] + 10[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] = 0$
 $5^{n+2}2^{n-2}\frac{3}{5}(5^n) + \frac{21}{6}(2^n) - 7[\frac{3}{5}(5^1) + \frac{21}{6}(2^1)] + 10[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] = 0$
 $5^{n-2}2^{n-2} \frac{3}{5}(5^n) + \frac{21}{6}(2^n) - 7[\frac{3}{5}(5^1) + \frac{21}{6}(2^1)] + 10[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] = 0$
 $5^{n-2}2^{n-2} \frac{3}{5}(5^n) + \frac{21}{6}(2^n) - 7[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] + 10[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] = 0$
 $5^{n-2}2^{n-2} \frac{3}{5}(5^n) + \frac{21}{6}(2^n) - 7[\frac{3}{5}(5^n) + \frac{21}{6}(2^n)] = 0$
 $5^{n-2}2^{n-2} \frac{3}{5}(5^n) + \frac{21}{6}(2^n) = 0$

43

Induction – Student Work

1) Prove that the sum of ⁿ consecutive positive odd integers is ^{n^2}. In other Base Case: n=1 W.t.S (2K-1)+2(K+1)-1=K2+2(K+1)-1 2.1-1=12 (2K-1)+2(K+1)-1=k2+2(k+1)-1 2-1=12 = k2+2k+2-1 8 = k2+2k+1 = (k + 1)(k + 1)= (K+1)2

Tower of Hanoi – Student Work



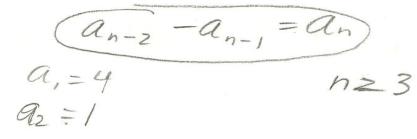
Intro to Recurrence Relations – Student Work

15) Write a recurrence relation for the following sequences. Use a_1 for the first term in the sequence

a)
$$1,1,2,3,5,8,13,...,21,34,55,89$$

b) $1,4,9,16,...,25,36,49,64,81$
c) $1,2,6,5,...,120,720$
 $A_n = n^2$

d) 4,1,3, -2,5, -7,12, -19,31,



Curriculum for Instructors and Students

- Summary of Curriculum:
- Overall it went well, sometimes painful and sometimes beauty
- Small class of 24 students, many smart and motivated students, I have known many of them since 6th grade.
- Summary of M.S.T. 501 project:
- It took about 9-12 months, summer 2010 getting ideas, fall-winter 2010-2011 doing math, winter-spring 2010 paper and power point.