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Introduction

The main purpose of the present work is to present to the reader a
particularly nice category for the study of homotopy, namely the homo-
topic category (IV). This category is, in fact, — according to Chapter VII
and a well-known theorem of J.H.C. WHITEHEAD — equivalent to
the category of CW-complexes modulo homotopy, i.e. the category
whose objects are spaces of the homotopy type of a CW-complex and
whose morphisms are homotopy classes of continuous mappings between
such spaces. It is also equivalent (I, 1.3) to a category of fractions of the
category of topological spaces modulo homotopy, and to the category
of Kan complexes modulo homotopy (IV).

In order to define our homotopic category, it appears useful to follow
as closely as possible methods which have proved efficacious in homo-
logical algebra. Our category is thus the “topological”’ analogue of the
derived category of an abelian category (VERDIER).

The algebraic machinery upon which this work is essentially based
includes the usual grounding in category theory — summarized in the
Dictionary — and the theory of categories of fractions which forms the
subject of the first chapter of the book. The merely topological machinery
reduces to a few properties of Kelley spaces (Chapters 1 and III).

The starting point of our study is the category 4° & of simplicial sets
(C.S.S. complexes or semi-simplicial sets in a former terminology).
Notwithstanding a very large number of papers and seminar notes
published on the subject, no book has yet been devoted to them. Therefore
in order to fill this gap to some extent, we go back to the beginning of
the theory, and give a complete proof of theorems well-known to the
specialist, in the hope of providing the reader with a coherent survey,
and presenting some proofs which are easier or more conceptual than
those already published.

This book is thus intended to appeal at the same time to the beginner
who wishes to learn algebraic topology, to the algebraist who wants to
be acquainted with topology, and to the topologist eager to assimilate
the category language.

Such a program, which a prior: seems very ambitious, is in fact very
limited: it cannot be greater than the number of pages in the volumes
where this work has been published. Thus the point where we leave off
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is, in fact, nothing but the starting point of algebraic topology, and this
book is thus only an introduction to that theory.

Let us summarize briefly the content of our work.

Chapter I sets forth the theory of categories of fractions and gives
a few examples of applications to groupoids, Kelley spaces and abelian
categories. Given a category € and a subset X of the set 24 % of the
morphisms of %, a category ¥ [2] is constructed whose objects are the
same as those of &, but where the morphisms of X have been formally
made invertible. The description of the set &% ¢[2™] is particularly
nice when X possesses some properties “ allowing a calculus of fractions”
since in that case any morphism of € [X1] can be written s/ where s
is in X and f in &% %. The interest of this concept lies mainly in its
relationship to the existence of adjoint functors (I, 1.3 and I, 4.1).

After having recalled a few properties of the category of functors
with values in a set, Chapter II gives the definition of the category 4°¢
of simplicial sets, and draws the first inferences from it. One constructs
a fully faithful functor from the category %t into 4° & which has a left
adjoint. This pair of adjoint functors allows us to define certain other
pairs of adjoint functors, and in particular the pair (I, D) where Ix
is the Poincaré groupoid of the simplicial set X,and DGisa K (ILG, 1)-
complex where IT,G is the Poincaré group of the groupoid G. This concept
allows us finally to construct an extremely simple theory for the funda-
mental group of a pointed simplicial set, and in particular to state a
Van Kampen theorem in the category .4°&.

Chapter I1I is concerned with the study of the functor | ?|, that is,
MILNOR’S geometric realization functor. After having shown that the
geometric realization of a simplicial set has some good properties (it is
a Hausdorff space, locally arcwise connected and locally contractible), it
is proved that the functor | ?| has some interesting exactness properties
too, and that it commutes with locally trivial morphisms provided one
considers the range of | ?| to be the category of Kelley spaces instead of the
whole category of topological spaces. Under this new definition, the
geometric realization functor commutes with direct limits and finite
inverses limits. Moreover it transforms a locally trivial morphism into
a Serre fibration. '

With Chapter IV the study of homotopy begins. After having defined
the homotopy relation between morphisms without any restriction {and

not only when the common range is a Kan complex), the category A&
" of complexes modulo homotopy and a special set of arrows in that
category — the anodyne extensions —, it only remains for us to define
the homotopic category # as the category of fractions of A° & where the
anodyne extensions are made invertible. Since, for any simplicial set X,
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there exists an anodyne extension ay: X-—+X, where Xy is a Kan
complex, the category # is equivalent to the category of Kan complexes
modulo homotopy. Chapter IV also gives a variant *“with base points”
of the preceding theory, and contains a few technical results on Kan
fibrations and Kan complexes. It is finally pointed out — as an
exercise — how the IT-theory given in Chapter II fits into this new
context.

Chapter V is independent of the preceding ones and presupposes
only a few elementary results (recalled in the Dictionary and in Chapter I)
about groupoids. Its purpose is to give a standard and self-dual proof of
various exact sequences occuring in algebraic topology. As an example
of possible applications, the reader will find the proof of a few well
known exact sequences (PuPPE, EckMaNN-HILTON); he will be able to
obtain in the same way all the other exact sequences of ECKMANN-
Hirton [I]. The main idea is to construct an exact sequence in the
2-category of pointed groupoids and then to reduce the study of a large
class of 2-categories to the preceding one.

We should point out that the preceding method allows to give an
easy proof of the exactness of the sequence of SPANIER-WHITEHEAD in
S-theory?. :

Chapter VI is chiefly an application of the preceding chapter to
simplicial sets and to the homotopic category. It also gives the definition
of homotopy groups, and various technical developments concerning
minimal fibrations, whose purpose is to prove (i) that every fibration is
homotopically equivalent (modulo the base) to a locally trivial morphism,
and (ii) the J. H. C. Whitehead theorem for simplicial sets.

Finally Chapter VII is limited to bringing together the preceding
material in order to prove the theorems referred to in the beginning of
this introduction, and which constitute the justification of the work
itself.

All this, as has already been said, is only an introduction to algebraic
topology. To make this introduction at least more or less complete, we
have sketched briefly in two appendices a few complementary remarks
of interest to the reader.

In Appendix I will be found a theory of coverings and local systems,
and as an application a proof of the Van Kampen theorem for the geo-
metric realization of simplicial sets.

In Appendix II the reader will find, as a bonus, a version of EILEN-
BERG’S theorem connecting the homology of a complex with the singular

1 The theory of carriers and S-theory — Algebraic geometry and Topo-

logy. A symposium in honor of S. LerscEETZ. Princeton University Press,
1956, pp- 330—360.
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Dictionary

The aim of this dictionary is to define with precision the terms which
will be used in the sequel. For the basic notions, we refer the reader to
the following works:

GABRIEL, P.: Catégories abéliennes. Bull. Soc. Math. France 90
(1962). GROTHENDIECK, A.: Sur quelques points d’algébre homologique.
Tohoku math. J. serie 2. 9 (1957). MacLaxg, S.: Homology. Berlin-
Heidelberg-New York: Springer. MITCHELL, B.: Theory of Categories.
New York: Academic Press.

Unfortunately, the terminologies used in these books coincide neither
with each other, nor with those which we will sometimes use. It is this
great variety of language which forces us to restrict the number of
publications given as references.

Adjoint: See GABRIEL {op. cit.) for the notations. We say that T
is left adjoint to S and that S'is right adjoint to 7. We say that g is an
adjunction isomorphism from T to S, that ¥ is an adjunction morphism
from T to S; similarly, ¢ is an adjunction isomorphism from S to T,
and @ is an adjunction morphism from S to T.

We say that ¥ is quasi inverse to @, and conversely.

Amalgamated sum: It is equivalent to the expression ‘‘somime
fibrée” of GaBriEL (loc. cit.) and pushout of MrrcrHELL (loc. cit.). We

C a,b
write ALLB or A [l B for the amalgamated sum of a diagram of the
form
AL cHB.
Arrow: See category and diagram scheme.

Can: Short for canonical.

Category: See the references. If € is a category, we will write 90 %
(resp. At %) for the class of its objects (resp. morphisms or arrows). The
identity morphism of an object ¢ of a category % will be denoted by Idec,
or simply by Id ¢. If f is a morphism of a category C, the domain and the
vange of f will be denoted by def and tg f, or simply by df and tf. The set
of morphisms of a category € with domain a and range b will be denoted
by € (a, ), or Homg (a, b).

Category of paths of a diagram scheme T': Tt is a category Pz T whose
objects are the same as those of T, and whose morphisms are the se-

1 Ergebn. Mathem., Bd. 35, Gabriel and Zisman
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quences (a;, s, -.. 4,) of morphisms of T such that va;=ba; (=1,
2,...n—1). If dr is the diagram of Z2 T of type T which induces the
identity on objects and which associates with each morphism « of T the
sequence formed by the unique morphism a, the pair (%« T, dy) can be
characterized by the following property: for each category % and each
diagram e of € of type T, there is one and only one functor E: Pa T —%
such that E d,=e.

%at: Tt is the category of categories, i.e. the category whose objects
are the categories € such that Ob % and % belong to a given fixed
universe. Morphisms of %t are functors. If x and y are categories, we
will write #om(x, y) for the category whose objects are the functors
from x to y, and whose morphisms are the functor morphisms.

Cartesian, Cocartesian: Let
A5 B
|l

C—D
v

be a commutative square of a category € (i.e. vx=yu). We say that the
square is cartesian if, for each pair (b, ¢) of morphisms 4: E—B and
¢: E—>C such that vc=yb, there is one and only one morphism a: E—A4
such that b=wua and c=xa. We say that the square is cocartesian if, for
each pair (¢',¢) of morphisms b": B—E’ and c': c¢—E’ such that
B u=c'%, there is one and only one morphism 4: D—E’ such that
b'=dy and ¢'=dwv.

Cokernel; Dual to kernel; called coequalizer in MITCHELL (op. cit.).

Cofree: Let o and & be two categories, F: & —% a functor, and b

| an object of #. We say that f: Fa—bisa coliberty morphism (or right

\ liberty) over b and that a is cofree (or right free) on b if, for each morphism

f': Fa'—b, there is one and only one morphism g: 4’ —a such that

f=f(Fg).
Conservative: Let o7 and 4 be categories, F: &/ —% a functor, and {
a morphism of A. We say that F is conservative if 7 is invertible if and

- omly if Ff is invertible.

Diagram: Let T and U be two diagram schemes. A diagram of U of
type T is defined by two maps dy,: %t T—Ar U and dgp: L6 T—>00 U
such that by dyy=dpp Dy and ty dey=dgp ty- When € is a category, a
diagram of € of type T is a diagram of type T of the diagram scheme
underlying to €.

Diagram scheme: A diagram scheme T is given by two sets £b T and
e T and two maps dp,ty: At T—>Ob T'; an element of b T is an
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object, an element of ArZis a morphism or an arrow. If a is a morphism,
b ais the domain of 4, t7 is the range of a.

With each category € is associated a subordinate diagram scheme,
which has the same objects and the same domain and range maps.
Then the category € is determined by the underlying diagram scheme
and the composition laws.

Domain: See Category.

&: Category of sets.

Epimorphism: See GROTHENDIEK (0p. cit.).

Equivalences of categories: See GABRIEL (op. cit.): quasi inverse.

Fibred product: See GABRIEL (op. cit.); called pullback in MITCHELL
(op. cit.). We shall write 4 x Bor4 I;[ B, Afﬂ B for the fibred product
¢

ofALCcEB.

Free: (or left free); liberty morphism (or left liberty): dual to cofree,
and coliberty morphisms.

Full, Fully faithful: D is a subcategory of €if Ob DD E, e DU E,
and if the composition laws of & are induced by those of €. We say that
9 is a full subcategory of € if moreover, the equality 2 (d, d')=%¢(d, 4')
is satisfied for each pair (4, @) of objects of Z; a functor F: € %" is
said to be fully faithful if F defines an equivalence between € and a full
subcategory of €!

Functor: If F: ¥—D is a functor and if ¢, ¢’ are objects of €, we
write F(c, ¢’) for the map from €(c, ¢') to Z(Fe, F¢') which is defined
by F.

Groupoid: Tt is a category where all morphisms are invertible

@, Tt is the category of groupoids, i.e. the full subcategory of at
whose objects are the groupoids.

Initial: See limit.

Invertible: Let f: a—b be a morphism of a category . We say that
f is invertible if there is a morphism g: b—a such that gof=1d a and
fog=Idb.
f
Kernel: Let a =3 b be a diagram of a category #. A kernel is an in-
g
verse limit of this diagram; it is called equalizer in MITCHELL (op. cit.).
Limits: Let d be a diagram of type T of a category . If x is an
object of €, a projective or inverse cone with domain vertex x and base @

q1*
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is a family (p,) of morphisms indexed by the objects of T'; the domain of
p, is x and its range is df=dgp(£); it is required also that (p,) satisfies
the relations p,=dy (@) o p,= (da) o p, for each morphism a: t—¢t'. Such
a cone is called terminal if, for each cone (g,) with domain vertex y and
with the same base d, there is one and only one morphism g: y—x such
that g,= p, 0 g for all ¢. We say then that x is an snverse limit of d (notation
x=li2 d) and that p, is the projection of index ¢ (notation p,= pri or
7).

We say that C admits finite inverse limits if EIE d exists whenever
00 T and U T are finite sets.

let F: €—>2 be a functor. If l@ d and EEF d exist, we define a
morphism ¢: F EE a —>1<lr£ Fd by means of the equations pritoc=
F(p7%. If ¢ is invertible, we say that F' commutes with the inverse
limit of 4.

For the dual notions, we will use the following terminology: inductive
or direct cone with range vertex x and base 4, nittal cone, direct limit
(notation lirg d), induction or canowical injection of index ¢ (notation
ng or in,).

Let us review briefly the construction of the direct limit of a diagram
d: T —>%at. Let & be the category of sets; let Ob d: T—& (resp. Ut d) be
the diagram which associates with each object ¢ of T the set of objects
(resp. of morphisms) of the category 4(f). By passing to the direct
limit, the domain and range maps of 4(f) induce maps

b, v: lim ¥ 4(¢) = lim Ob 4(¥)
= M

and define a diagram scheme X whose set of objects is 1_1@ £b d(f) and
t
whose set of morphisms is 1£n> e d (). It is clear that X is the direct limit

t
of the diagram schemes subordinated to the categories d (¢).

Let #2 X be the category of paths of X. The canonical maps from
b d@¢) and WArd(f) to 1_1_1_1; £bd(f) and lin_z Ar () induce diagrams
i,: d(f) —>Pa X. There is obviously no reason for these diagrams to be
functors: for instance, if « and f# are two composable morphisms of
d(f), 3,(B) o%,(e) can be different from 4,(foo); similarly, if a is an object
of d(t), 4,(Id a) is in general different from Id 7,(a). It follows that lim 4
is the quotient of the category of paths Zz X by the relations. —

i,(B) ot (@)=1,(Boa) and ¢,(Id a)=1d7,(a).
Hence, the set of morphisms of the direct limit d is the quotient of

Ar #z X by the intersection S of all equivalence relations R satisfying
the following conditions:
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a) R contains (1,(f)oi,(«),,(foa)) and (i,(Ida), 1d i,(a)) for all
tap,x;

b) the relation f~g implies that f has the same domain and the
same range as g,

c) the relation f~vg implies that a0 frroeogandfo B g0 B whenever
these expressions make sense.

The construction of inverse limits is more simple; if d: T —%at is a
small diagram, the set of objects of lim 4 is the inverse limit of the sets
Ob d(); if (x,), (v,) and (z,) are elemas of l(lg b d (¢), we have -

t
Homl(igd ((xt)’ (yt)) =£i_rtn_ Homy (%, V1)

and the composition maps
Homyy (%, ¥2) X Homg ) (¥4, 70) —Homyy (%, 2;)
induce, by passing to the limit, the composition maps of £1_1§ d.
Morphism: See category.
Monomorphism: See GROTHENDIECK (op. cit.).
Quasi inverse: See adjoint.

Quasi filtering: A category % is called (right-) quasi feltering if (i)
and (ii) are satisfied: (i) for each pair (a, a') of morphisms with the same
domain, there is a pair (b, ") of morphisms with the same range such
that ba="0'a’; (i) for each pair (C, C’') of morphisms with the same
domain and the same range, there is one morphism d such that dc=dc’.

Range: See category.

Representable: Let & be the category of sets, & an arbitrary category,
and 2°& the category of contravariant functors from & to &. For each
object a of @, b~>P (b, a) is a contravariant functor from 2 to &: we
denote this functor by 42 or by & (a), and we say that it is representable.
Thus we define a covariant functor 42 a~%(a) from 2 to 2°8.

If F: 9°—& is an arbitrary functor and 4 an object of &, we know
that there is a “Functorial bijection” from 2°& (2 (a), F) onto F(a):
this bijection associates with each functor morphism f: @(a)—F, the
image A of the identity Id a of 2 under the map f@): D(a, a)—~F(a}; we
can check easily that f can be reconstructed from 4 as follows: for each
morphism o b—>a, /(b) («) is the image of 4 under the map F(o): F(a)—
F(b). In particular, if F is of the form & (a'), Aisa morphism from 4 to a’,
and / is simply 2 (-, A): 2(-, a)>2 (-, a'). 1t {ollows that the functor
h2: a~—h? is fully faithful and allows us to identify & with a full
subcategory of 2°¢6.
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- IfF,a, Aare defined as above, and if the associated functor morphism
f: @ (a)—F is invertible, we say that the pair (a, A) is a representation
of F.

Retraction, section: A retraction (resp. section) of a morphism
v: b—>a is a morphism #: a—b such that uov=1Id b (resp. vou=1d a).

Small diagram: A diagram d of type T of a category ¥ is called a
small diagram if Ob T and % T belong to a given fixed universe 1.
When the sets % (x, ) also belong to 11, and each small diagram hasa
direct limit (resp. inverse limit), we say that € is a category with divect
limits (resp. inverse limits).

Subcategory: See Full.
Terminal: See limits.

Zero: See GABRIEL (op. cit.): “null”.

Chapter One

Categories of Fractions

1. Categories of Fractions.
Categories of Fractions and Adjoint Functors

1.1. A functor F: € —2 is said make a morphism ¢ of € invertible
if Fo is invertible. We intend to associate with each category € and
with each subset X of At € a category € [21] and a functor Py: €—%[27]
such that the following conditions are verified:

(i) Py makes the morphisms of 2 invertible,

(ii) If a functor F: ¥ —~% makes the morphisms of 2 invertible,
there exists one and only one functor G: € [271] % such that F=G-Fx.

In order to do this, consider the diagram scheme T defined as follows:
Ob T coincides with ©b %; % T is the direct sum Ar € L X; if in; and
in, are the canonical injections of %t % and X into Ar # L1 2, then

broin,=Dbe broiny=ty|Z,
rTOinlztg rTOin2=bg‘2.

Now let € [Z-1] be the quotient of the category P« T of paths of T
by the following relations:

(a) (in, v)o (in, %) =1in, (vou) if vou is defined in €.
(b) in, (Id, @) =1dg, ra for each object a of ¥.
(c) iny goin;o=1Idg, r(by 6) and in; coin, c=1dg, r(vy o) if gel.

1. Categories of Fractions 7

Finally, let Py: ¥—%[Z] be the functor which induces on Ob%
the identity map of Ob € onto ©b ¥ [21], and on r ¥ the composition
of in, with the canonical maps of U T into At P2z T and of W P2 T
into W F[27].

1.2. Lemma: For each category X, the functor Hom(Ps, X):
Hoom (€ [EV), F) —Hom (€, ) is an isomorphism from Hom(€ [271], %)
onto the full subcategory of #Hom (€, %) whose objects are the functors F:
€ > which make all the morphisms of X invertible.

The proof is left to the reader. This lemma states more precisely
conditions (i) and (ii). From now on, we will say that €{21] is the
category of fractions of € for X, and that Py is the canonical functor; we
will say that the set of morphisms o of % such that P; ¢ is invertible is
the saturation of 2.

1.3. Proposition: Let the functor D: D —>% be right-adjoint to G: € -2,
let @: GD—>1d D be an adjunction morphism from D to G, and 2 the set
of morphisms u of € such that G u is invertible. Then the following state-
ments are equivalent:

() D s fully faithful.
(ii) The functor morphism @: GD—1d 2 1s tnvertible.

(iti) The functor H: €[] —D such that G=Ho Py is an equivalence.

(iv) For each category &, the functor Hom (G, X): Hom (D, %) —
Hom (@, %) is fully faithful.

(i) (ii): For each morphism «: d—d’ of @, we have ao (P d)=
(@ d')o (GD &), which is equivalent to the Commutativity of the dia-

gram of Fig. 1:
D(d, &)

2, d) %(Dd, Dd')
l@(rpd, ) lG(Dd, Dd)
2(GDa, &) <2220 _9(G Dd, G Dd')

Fig. 1

But the composition @ (GD 4, B &') o G(Dd, Dd’) is simply ¢ (D4, a),
where g is the adjunction isomorphism associated with @. It follows that
D(d, &) is a bijection for all & and @’ if and only if Hom (@ 4, d’) isa
bijection for all 4 and &', i.e. if and only if @ is invertible.

(i) = (iii). By (i), H(PxD) is isomorphic to 1d 2. Hence it is suf-
ficient to prove that (PgD)H is isomorphic to Id®[21]. Since
Hom Py, €[ X)) is fully faithful by lemma 1.2, it is sufficient to prove
that (P D) H Py is isomorphic to Py. But if ¥: Id ¢ —D G, an adjunction
morphism from G to D, is quasi-inverse to @, we know that the com-

b
position GﬂGDG(D—ﬂG
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is the identity of G. Since @G is invertible, G¥ is invertible; hence
P,¥: Py—>P;DHP; is an isomorphism by definition of 2.
(iii) = (iv). Since H is an equivalence, #o» (H, Z) is fully faithful
On the other hand, lemma 1.2 shows that #om (Py, &) is fully faithful.
(iv) = (ii). The proof is based on the following lemma:

1.3.1. Lemma: Consider the following diagram of €at:

(€<—D—9’
o
7

and let @: (FG)D—1d D' be and adjunction morphism from D to FG.
If for each category & ,the functor

Hoom (G, X): Hom (D, X) —Hom (€, Z)
is fully faithful then @ is an adjunction morphism from GD to F.

Proof: Let ¥: 1d%¥->D(FG) be an adjunction morphism quasi
inverse to @. By the hypothesis, there exists a unique functor morphism
. 1d 9 —>GDF, such that ¥'G=G¥. Hence it is sufficient to prove
that ¥’ and @ are quasi-inverse to each other.

But the composition D *2. prGD 2% D, after left-multiplication
by G, gives GD 22> GDFGD 2> GD. Since (D ®) o (P D) is the iden-
tity of D, and since GP=P'G, it is clear that (GD ®)o (¥’'GD) is the
identity of G D.

On the other hand, in order to prove that the composition

FXFeDF 2L F

is the identity of F, it is sufficient to prove that the composition
FG22% FeDFG 2 FG

is the identity of FG. This follows from the equation ¥'G=G¥ and

from the fact that ¥ is quasi-inverse to .

Let us apply the lemma to the case where F: 2 —%2' is the identity
functor of & (hence 2=92'). We see then that @: GD—>Id Z is an
adjunction morphism from GD to Id D, and hence is invertible. (We
know that adjoint functors and adjunction morphisms are unique up to
isomorphism; hence G D is isomorphic to Id 2, and @ is “‘isomorphic”
to the functor morphism which is the identity of Id 2.)

Note: The formulation of the dual to proposition 1.3 is left to the

reader. In what follows we will refer to 1.3 either for the proposition
itself or its dual.
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1.4. Suppose that the equivalent conditions of 1.3 are verified, and
let 7: T—9 be a diagram of D. Then @7: GDr—7isa diagram iso-
morphism so that lim 7 exists if and only if lim G D exists. Since G is
left adjoint to D, and hence commutes with direct limits, we see that
the existence of lim D7 implies that of lim 7 and of the following iso-
morphisms: -

3 —~1
1_13(4’1')

lim 7 lim GD1 2> G (lim D).
—_— — —

Dually, D commutes with inverse limits. Moreover, the existence of
lim D7 implies that of 1(1_13 7: Let L= lg_n D, then, since D is fully faithful
;;s sufficient to show that L is isomorphic to the image under D of an
object of 2. If ¥ is an adjunction morphism quasi-inverse to D, it is
then sufficient to prove that ¥L: L—-DGL is invertible. But for each
object ¢ of T, there exists a unique morphism p,: GL—t¢ such that
pry=Dp;)o(¥L); in fact, with the usual notation, p, is the image of
pr, under @ (L, 7t). By unicity of the morphisms #,,(#,) is a projective
cone with domain vertex GL and base 7. Hence there exists a morphism
$: DGL—L such that pr,op=Dp,; hence priopo(WL)y=2pr, for all £.
Tt follows that po(¥L)=Id L; and if we set L'=DGL, and :=W¥L,
the equalities (PL)oi=(DGi)o(¥L) and (PLyop=(DGp)o(¥L")
imply that po (WL’)™o (DG7) is an inverse of ¥ L. (The above argument
is due to L. GRUSON).

1.5. Some examples where proposition 1.3 can be applied:

1.5.1. Here, ¥ is the category Jog of topological spaces, & the
category of HAUSDORFF topological spaces, D the inclusion functor.
The functor G, left adjoint to D, associates to each topological space Z
the ““largest Hausdorff quotient” of Z. Let 7: T -2 be a small diagram:
by 1.4, the inverse limits in the category of Hausdorff spaces coincide
with the inverse limits in the category of all topological spaces; moreover
EE 7 exists and is identified with the largest Hausdorff quotient of

lim Dt.

—>1.5.2. Let o be an abelian category with enough injectives, and let
be the category K* (&) whose objects are the complexes

X*: o _>Xn—1_dn;1>Xnﬁ>Xn+1 >
of of such that X, is zero when # is near —oo; a morphism of K*(&) is
an equivalence class of homotopic chain homomorphisms (VERDIER [11]).
Now let & be the full subcategory of K*(s#) formed by all complexes
K, such that X, is injective for all », and let D be the inclusions of &
into @. Then the functor G associates with each complex an injective
resolution of this complex.



10 Cha
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have a direct limit. Moreover, ¢ commutes with direct limits, since it has
a right adjoint. In other words, if d: T ->%af is a small diagram and if
d(f) is a groupoid for each object ¢ of T, then the direct limit of 4 in
%at is a groupoid and is a direct limit of the diagram T — & induced
by 4.

Y Since the inclusion 1: @»—%at has a right adjoint and is fully faithful
and since each small diagram of %4 has an inverse limit, this conclusion
also holds for %». Moreover 3 commutes with inverse limits, since it
has a left adjoint. Hence ‘‘the inverse limits in % can be constructed
like those of Fat”.

2. The Calculus of Fractions

Let us return to the situation of proposition 1.3.
D
(5%.@ &:. D14 9.

We will see first that we can give a simple construction of € [27!] by
means of the functor DG and of a functor morphism ¥: Id¥—DG
quasi-inverse to @. To that end, let us associate with each morphism
y: c—>DGc' of € the diagram

7

c c
N e

Since W is quasi inverse to @, (PG)o (GW) is the identity of G, so that
GW¥, and hence P ¥ is an isomorphism. It follows in particular that we
have a map
p o> ya=(Pe¥c")Fo (Fry)

from € (¢, DG¢') to € [27] (¢, ¢).

Lemma: The map y~yy is a bijection from €(C,DGc') onto
AP I AN

Proof: 1f we define H by the equation G=H o Py, it follows that

H(e, o) pu=(HEPE) o (HPyy) = (G¢) 20 (Gy).
Since (G¥P¢)r=@Gc’, we finally have
He, ¢)yx=p(c, G¢)y,

where ¢ (¢, G¢'): ¥ (¢, DG¢') = D (Ge, G¢') is the adjunction isomorphism

associated with @. Since H{c, ¢') is a bijection, this completes the proof.
Hence we can identify the set €[X](c, ¢’) with €(c, DGc). If

y: ¢c—>DG¢ and y': ¢/—>DGc" are two morphisms of %, it is clear that



12 Chapte

the composition y, oy is
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is the category of sets) can be described as
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Let H(d, c) be the set of pairs (s, f) of morphisms of € such that
tf=ts, bfj=d, bs=¢ and seX.

d ¢
Nl
c

Two pairs (s, f) and (4, g) belonging to H(d, ¢) are said to be equiva-
lent if there exists a commutative diagram (Fig. 3)

such that as=>b¢ belongs to 2 (the commutativity of this diagram is
equivalent to the equalities as=>5¢ and a /:bg). It follows from a), b),
c), d) that this defines an equivalence relation on H (d', c)» anq that
li_I_)n €(d,1s)is identified with the quotient of H (d, ¢) by this relation.

§ . .

Let s|f be the canonical image of an element (s, ) of H ({i, ¢) in

lim % (d, ts). Define then a new category X1% as follows: the objects of
—_

Zs"l(g coincide with those of €, and hence with those of ¥ [2‘1]'; if d
and ¢ are two such objects, X% (d, c) is equal to 1_1§‘€ (@, ts); finally
the composition maps Z1E (¢, d) X Z1E (d, ¢) —> 31 (e, c) are defined

by the formula: .
(slhetle)=5"sl"g

where s’ is an element of X and ' a morphism which makes the diagram

of Fig. 4 commutative: . d
g |1\
ot

\\1
R

C
b

§

&=

Fig. 4
Conditions a), b), ¢), d) show that the above formula makes sense and
makes Z-1€ a category. It is this category which we want to compare

with % [Z-1]. In order to do this, let 4 and e be two objects of €, and s an
object of ¢\X. Passing to direct limits, the maps

(s, f)er (Pr )V E f
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induce a map
w(d ¢): sfo> (Pgs) 1P f
from
2ZYE L e) to F[ZN) (4, ).

2.4. Proposition: Let € be a category, and X a subset of Ur C which
admits a calculus of left frac ions. The identity map of Ob C and the maps
7 (d, ¢) define an isomorphi-m from Z1€ onto € [X1]. In particular the
map w(d,cy: s|f~>(Pes)?>Pyf is a bijection from lim€(d,ts) onto
€121, c). 0

Proof: Let yP: €—2% be the functor defined by the equations:
sPe=cif c¢Db% and yPf==(Id tf|f) if feUr ¥. It is clear then that the
pair (271G, »P) is a solution: of the universal problem 1.1: for »P makes
the morphisms of X' inverti®le, and on the other hand, if F: ¥ % is a
functor which makes the morphisms of X invertible, then F=Go ;P if
and only if Gpp=1Fps and 5 (s|f)=F(s) 2o F(f), whenever fc% C, s¢X
and tf=zxs.

In particular, if Z'is equ- | to ¥ [Z1] and F is equal to Py, G is simply
the functor 7 defined by th- maps #(d, ¢) of 2.3. Since (¢ [2-1], Ps) and
(Z72C, xP) are solutions of the same universal problem, s is an iso-
morphism.

In what follows, we wil! identify X% with € [21] under s, when-
ever 2 admits a calculus ¢ left fractions. We will also use freely the
dual to proposition 2.4. In ; articular, we will say that a subset of U &
admits a calculus of right fra tions if the duals of conditions a), b), c), d)
of 2.2 are satisfied.

2.5. Some examples of a-plications:

a) Let G: €—9 be left : ljoint to D: 2% ; suppose that D is fully
faithful (see 1.3), and let ¥: 'd € — DG be an adjunction morphism from
G to D. Let X be the inter: >:ction of all subsets of 2%t % which contain
the identity morphisms, th morphisms ¥e¢: ¢—DGe, and which are
stable under composition (i. . which satisfy b) above).

Then, by definition, 2’ s tisfies a) and b). In order to verify c), it is
obviously sufficient to take : X—X’ of the form ¥YX: X +>DGX, and
to chose t="'Y, 4’ =D Gu. .1 order to verify d), we may take s: X'—>X,
of the form We: ¢—+DGe, ar 1 choose t=¥'Y: Y—->DGY ; we then have
the commutative squares:

DGe —1» - DGe —Et» vy

wDGe »y and DG vy

D6DG: 2L Doy DGDGc 2% DGy

2. The Calculus of Fractions 15

Moreover ¥ DG and DGW have the same inverse functor isomorphism
D®G, so that they coincide. Hence we have the following equalities:

(DGfo(WDGc)=(DGf)o(DG¥c)=(DGg)o(DGW¥c)=(DGg)o(¥DGe).
Hence (PY)of=(WPY)og Q.ED.

b) Let %, 2, G, D be as in 2), but let 2 be the set of morphisms made
invertible by G. As above, we can verify that 2 admits a calculus of
left fraction.

¢) Let o7 be an abelian category, and K(s7) the “category of com-
plexes of o/ up to homotopy " (an object of K (/) is a complex

dp_ dn
X*“"—>Xn—1 1Xn—_)Xn+1_>.“

of &7; a morphism of K (&) is an equivalence class of homotopic chain
homomorphisms). Let X be the set of morphisms #: Xy —>Y, of K (&)
such that H, (u): H,(X4)—H,(Y,) is an isomorphism for each #. We
can verify (see VERDIER) that X admits a calculus of left and right
fractions (i.e. X satisfies conditions a), b), c), d) and their duals). The
category K(sZ)[2] is called the ““derived category” of .

d) Let o be an abelian category, and & a thick subcategory of &;
i.e. #is a full subcategory of &7, and for each exact sequence

% v
0—+A"—A—>A"—o0

of &7, A is an object of & if and only if A’ and A" are objects of &#. If
X (#)=2X denotes the set of morphisms s of ./ such that Kers and
Coker s are in &, X admits a calculus of left and right fractions. The
category & [Z71] is then identified with quotient category /% (see
GROTHENDIECK).

e) Let o be an abelian category and X the set of essential extensions
of o (a monomorphism %: A’—A4 of &7 is an essential extension if, for
each morphism v»: A—>A", the condition 9y =monomorphism”’
implies that “v=monomorphism”). We can verify that 2 admits a
calculus of right fractions (but, in general, not of left fractions). The
category &/ [X1] is the “spectral category of & "'; if &/ is the category
of left unitary modules over a ring A with unit (more generally, if each
sub-object of an object of & has a complement, in particular, if each
object of &7 has an injective envelope), 4 [27'] is an abelian category in
which every morphism splits. If, moreover, 4 is left Noetherian (more
generally, if &/ is locally Noetherian: see GaBRIEL), each object of
&/ [Z-1] is a direct sum of simple objects, and there is a bijection from
the set of isomorphism classes of simple objects of &/ [2"1] onto the set
of isomorphism classes of indecomposable injectives of 7.
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f) Let & be the category & of sets, and let ¢ be an infinite cardinal
number. Let 2 be the subset of Ut & formed by all morphisms %: M —>N
such that:

(i) NF=0=> M==0,
(ii) Card (N—u(M))<o,
(iii) There exists a subset' M’ of M such that the restriction u| M’
of u to M’ injective and such that Card (M — M") <.

Consider also the subfamily X,. of Ar & formed by all morphisms
satisfying (i) and (iii) only. Then X,(X,.; and X, and X, admit a
calculus of left fractions.

3. Calculus of Left Fractions and Direct Limits

3.1. Proposition: Let € be a category, and X a subset of We € which
admits a calculus of left fractions. Then the canonical functor

Py €—¥[21]
commutes with finite direct limits.

Proof: Let T be a finite diagram scheme, t: T—=%, a diagram
of type T, in, the canonical map of range lim v whose domain is the

image under 7 of the object # of T. We want to show that, for every
object ¢ of &, the morphisms P (in,) induce a bijection

F[E1] (13Y lim =4, c) o lim @[ 2] By, o).
t ¢

According to the description of the morphisms of %[21] given in the
‘ preceding paragraph, we just have to prove that the canonical map

lim#& (lim T, rs) —lim lim % (z¢, vs)
— —_— e —
sEZ t t s€X

or, equivalently, the canonical map

lim im % (z¢, vs) —lim lim % (¢, ts)
T T s

is a bijection. This last result comes from the fact that in & finite inverse
limits commute with quasi filtering direct limits.

3.2. Corollary 1: Under the hypothesis of 3.1, if each finite diagram
of € has a direct limit, the same holds for € [21].

It is sufficient to prove that each finite family of objects of AP
has a direct sum and that each pair of morphisms has a cokernel.

" 3. Calculus of Left Fractions and Direct Limits 17

If (c,)er is a finite family of objects of #[27] and if (zle'lrc” in,) is
a direct sum of this family in €, it follows from the proposition that
(Le,, Px in,) is a direct sum of (¢,)er in ‘Apxait
tET

If f, g: c—=d is a pair of morphisms of ¢ [2"1], there exists a morphism
s:d—d’' of X and two morphisms /', g': c=2d’ of & such that Py f'= (Pys) f
and Pyg =(Pys)g. It follows from the prect.ading pfoposition that
(Pse, Py (mos)) is a cokernel of (f, g) in ¥[Z7] if (e, ) is a cokernel of
(f,g)in¢%.

3.3. Corollary 2: Under the hypothesis of 3.1, of € is an additive category,
€ [21] is additive.

Let o be a zero object of C. We will show first that o is also a zero
object of #[Z-1]. Since o is obviously an initial object of' € _[Z.”l] (bxthe
above proposition), let us prove that it is terminal. For this, it is sufficient
to prove that, for each diagram of the form

c o

N s

d
such that sc2, we have s!f: (Id o)[O‘, where 0°cC (¢, 0). Consider the
diagram o—id_s;_oi,d; there exists, according to condition d) of para-

1ad
graph 2, an element ¢: d—d’ of X such that ¢{=¢(Id d)=ts0% It fol-

lows that we have ¢f=¢s0%f=1¢s 0°, hence s|f=(Id o')tO”.. . .
Now we note that the sets €[ 2] (c, d) can be 1dent1f1ed. with the
direct limits lim %(c, ts), and hence, have a natural abelian group
—_—

sed\Z . . .
structure. Moreover, the composition laws are bilinear with respect to

these group structures. The corollary follows from this fact, from the
existence of a zero object and of finite sums (GABRIEL).

3.4. Proposition: Let G: €—Z be a functor commut.ing with finite
divect limits, and X the subset of Ut € formed by all morphisms s such that
Gs is an isomorphism. If finite divect limits exist in %, X admit's a calculus
of left fractions; moreover, the functor H: € [2"1] —x@ 'defmed by t.he
equation G=H o Py is conservative and commutes with finite divect limits.

Conditions a) and b) are clearly verified. Let us check c): Since the

square GX G Y
Gsl lG(in,)

G (iny) X
GX 5 6(x 1Y)

is cocartesian and since Gs is an isomorphism, G (in,) is invertible, and
hence in, belongs to 2. For d): let ¢: Y— Y’ be a cokernel of (f, g). Then

2 Ergebn. Mathem., Bd. 35, Gabriel and Zisman
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Gtis a cokernel of (Gf, Gg). But since Gs is invertible, we have Gf=Gg,
and hence Gt is invertible and ¢ belongs to 2.

Let us show now that a morphism » of ¥[27] is invertible if Hu
is an isomorphism; we may indeed suppose that # is of the form s|¢,
where sc¢X. Since Hu=(Gs)o (G#) is an isomorphism, G? is invertible,
and hence ¢ belongs to X, and the inverse of s|#is £ s.

It remains to be shown that H commutes with finite direct limits:
since each finite diagram of ¥ [X] has a direct limit (according to 3.2),
it is sufficient to show that H commutes with finite sums and with
cokernels of pairs of morphisms. The first statement is obvious. The
second can be proved by an argument similar to that of corollary 1.

3.5. The above proposition can be applied in particular, to the case
where Tis a subset of %t ¥ admitting a calculus of left fractions, and where
G=P,. In that case, X is the saturation of 7', and the categories € [2™]
and #[T-'] are identified. It is easily seen then that X is the subset
of ¢ % formed by the morphisms #: c—d which can be inserted in a
commutative diagram of the form ‘

U
c—>d

sl/lt where s,tcT.

PORAN [

Hence if ¥ admits finite direct limits, the saturation of a subset of
9 ¥ which admits a calculus of left fractions has the same property.
We can then restrict ourselves to saturated subsets X' of %t € which
admit a calculus of left fractions; and we will call category of left fractions
of % a category of fractions with respect to such a subset 2. We see that
in a certain sense, the categories of left fractions of & classify the functors
of domain € which commute with finite direct limits. We can show for
instance that each category of left fractions of & is one of the categories &,
E[Z71) or £[ZH] for a suitable infinite cardinal number & (see 2.51).
Similarly, if we defined in a dual way the categories of right fractions, we
would see that the only categories of right fractions of & are & and
E[(Ur &)1].

3.6. Suppose now that € admits finite direct limits and finite inverse
limits, and that X is a subset of At % admitting a calculus of left and
right fractions. Then % [2-1] admits finite direct and inverse limits and
the functor Py: ¥ >%[21] is exact. We can check moreover that a
certain number of exactness properties of € are carried over to ¥[27].
We will restrict ourselves to the following property:

Proposition: If X admits a calculus of left and right fractions, and if
€ is an abelian category, € [21] is abelian.
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We know already that @ [Z7'] is additive and admits kernels and
cokernels. It remains to be shown that, for each morphism #: ¢ —d, the
canonical morphism ©: Coim #—Im % is invertible. Since there exists
a commutative diagram

¢ -5d

Ppaw\ | P2
pN s,

where Py s is invertible, we may suppose that « is of the form Pyv, where
v: c—d is a morphism of €. If : Coim v —Im vis the canonical morphism
defined by vin %, we have #=Py1. Hence ¢ is invertible if % is invertible.

Let us go back now to example d) of paragraph 2. We mnote (still
under the hypothesis of the preceding proposition) that the full sub-
category € () of € formed by the objects ¢ of & such that Ps.c is zero, is
thick (because Py is exact). It follows easily that the map &~ 2 (%) of
paragraph 2 is a bijection from the set of thick subcategories of & onto
the set of saturated subsets of Ut C which admit a calculus of left and
right fractions. Hence the notions of thick subcategories, of categories of
left and right fractions, and of saturated subsets of At % admitting a
calculus of left and right fractions, are in a one-to-one correspondance,
if € is an abelian category.

4. Return to Paragraph 1

Let € be a category, and X a set of morphisms of ¢ which admits a
calculus of left fractions. We want to study the existence of a functor
D: €[Z1]-~% right adjoint to Py. We know that such a functor D
exists if and only if, for each object e of € [2], there exists an object 4
of € and a coliberty morphism y: Py d—e.

4.1. Definition: Let X be a set of morphisms of a category €. We say
that an object ¢ of € is left closed for X if (s, c) is a bijection for each
morphism s of 2.

We have the following proposition:

Proposition: Let € be a category, and X a subset of W € admitting a
calculus of left fractions. Then the following statements are equivalent:

(i) Py has a right adjoint (which is then fully faithful).

(ii) For each object c of €, there exists an object d of € lefi-closed for X,

and a morphism s: c—>d such that Py s is invertible.

Before giving a proof, we will give a few properties of left-closed
objects for Y when X admits a calculus of left fractions.

441, If X admits a calculus of left fractions, an object ¢ of € is left
closed for X if and only if € (s, ¢) is a surjection for each morphism s of 2.

a%
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It is sufficient to show that if € (s, ¢) is a surjection for each morphism
s of X, then it is also an injection. Let
s f
a—b3e, seX
€
be such that fos=gos. According to 2.2.d), there exists a morphism
¢: ¢c—¢' such that fof=tog, with e 2. Since % (¢, ¢) is a surjection, there
exists a morphism p such that pot=1d c. Hence the equation tof=tog
implies that f=g.

4.1.2. If X adwits a calculus of left fractions and if an object ¢ of Ob €
is left closed for X, the map pz(b, c): € (b, c) >F [21] (b, c) is a bijection
Jor each object b of Ob¥F.

We saw in 4.1.1 that for each morphism s: ¢—¢’ belonging to 2,
there exists a retraction p: ¢’ —c of s. In particular, s is a monomorphism
and the canonical map € (b, ¢) —>Er2 % (b, ¢’) is an injection. Since we
have the diagram s

s de

c—>¢c' /3¢

sp

there exists a morphism £: ¢’ —¢" of X' such that ¢=¢sp. Hence for each
morphism f: b—>¢’, we have the following equalities: (s|f)=(¢s|¢f)=
(ts|tspf)=(Id c|pf), so that the map € (b, ¢) —>1i_n)1?(b, ¢') is a surjection.

Then the statement follows immediately form 2.4.

4.2. Proof of proposition 4.1.

Consider two categories € and 2, functors G: ¥ -2 and D: D€,
G being left adjoint to D, and a subset X of v € which admits a calculus
of left fractions. If s belongs to X and 4 to 0 D, each adjunction iso-
morphism from G to D allows us to identify the map € (s, Dd) with
2(Gs, d). 1t follows that if G makes the morphisms of 2 invertible, the
objects Dd are left-closed for 2.

In particular, if the functor Py: ¥—%[2'] has a right adjoint
1, 1 Py c is left-closed for X, for any ceb%. If ¥ is an adjunction
morphism from P, to 7 and @ an adjunction morphism quasi inverse
to ¥, the morphism ¥c: ¢—% Py ¢ is made invertible by Py, since @
is invertible [1.3. (ii)] and since (@ Py) o (Py¥)=1d Py. This proves that
(i) implies (ii).

Conversely, suppose that with each object ¢ of € we can associate
a left-closed object ¢(c) and a morphism a(c): ¢—>i(c) such that Pya(c)
is invertible. For each dc 0b ¥, a(c) induces a bijection from € [21](d,c)
onto ¥ [Z1] (d, i(c)), this set being canonically isomorphic to € (d, i(c))

N
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by 4.1.2. Hence for each object ¢ of € [27], we get an isomorphism
alc): €[ Z) (Pypd, ¢)—~C(d, (c))

which is functorial in d. For each morphism y: ¢—c¢’ of C[2™], there
exists then a unique morphism 4(y) such that €(d,i(y))ca(c)=
alc)yo (€[2] (P4, )). The maps c~—i(c) and y~-i(y) define a
functor ¢, right adjoint to Ps.

Chapter Two

Simplical Sets
1. Functor Categories

We wish first to complete some results of the dictionary. Notations .
will be the same. s

1.1. Let @ be a category, and 2°& the category of contravariant
functors from 2 to the category of sets &. If d is an object of &, it is

clear that the functor
F ~~ F(d)

from @° & to & commutes with direct and inverse limits. Moreover, a
morphism f of 2°¢ is an epimorphism (resp. monomorphism, resp. iso-
morphism) if and only if /(d) is surjective (resp. injective, resp. bijective),
for any dcOb 2.

We will see now that each functor F: 2°—>& is a dirvect limit of ve-
presentable functors: let FF be the following category: the objects of
9|F are the morphisms a: 2 (a)—>F of 2°¢&; if a: % (a)—~F and §:
9 (b) —F are two such objects, Homg,r («, f) is formed by all morphisms
f: a—b of @ such that a=02(f); composition of morphisms in Q|F
is “obvious”. There is then a ‘‘natural” morphism dp: Z/F >92°¢&
which associates with an object a: & (a) —F the functor Z(a); with a
morphism f: «a—f of @|F the morphism 2(f): 2 (a)—>2 (b) of 2°&.
Moreover, the morphisms «: 2 (a)—>F induce a morphism 11_13 ar 2 F
which is invertible, this being easily deduced from above.

Given two functors F and G from 2° to &, each functor morphism
¢: F—G induces a functor Z/¢: 9|F —2|G. This functor associates
with an object a: @ (a) —F of |F the object poa: Z(a) G of I[G; and
its restriction to Homgr(, f) is the inclusion of Homgp (a, f) CHomg
(@, b) into Homgs (o, pof) (Homg (a, b). With these definitions, dr

is the composition

F 2 9162590 ¢
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and the canonical morphism Eg(dGo(.@/q;)) l—'p>1i_)md6 induces a
commutative square

gr_r;dF—’Ll_igdG

D e

F-2>G

1.2. Recall that the usual construction of the direct limit 1_15:. dp is the
following : let F, be the direct sum in @° & of the representable functors
9 (b)s, where f runs through the objects of Z[F, and where 2 (b); denotes
the domain of the morphism f. Similarly, let F, be the direct sum of the
representable functors 2 (a);, where f runs through the morphisms
f: a—p of D|F and where 2 (a); denotes the domain of o. If in; and ing
denote the canonical monomorphisms from D (a); and D (b)g into F and
F,, we define two functor morphisms dy, 4 Fy = F, by the relations
dyoin;=ingo Z(f) and d,oin;=in,. Then 1_12 dy, and hence F, are
identified with the cokernel of the pair d, d,, which can be translated
by saying that we have an exact sequence

d,
Fl_—_> F0—> F
do

We will say that this exact sequence is the canonical presentation of I
(compare with [Bourbaki, Algébre commutative] 1.2.8); the functor F
is in a certain sense an amalgamation of the representable functors
2 (b)g, the amalgamation conditions being given by the representable
functors 2 (b); and the morphisms dq and 4.

1.3. Proposition: Let € be a category with direct imits, and G: D° & —%,
a functor. Then the following statements are equivalent:

(i) G commutes with direct limits.

(ii) G is left adjoint to a functor D: €—>2° &. Moreover, the funcior
G s Goh? is an equivalence of the full subcategory of Hom (2° &,%)
formed by the functors G which commute with direct limits on Hom (D, ).

We know that each left adjoint functor commutes with direct limits.
Conversely, suppose that G commutes with direct limits. We will then
define a functor D: ¥—2° & right adjoint to G. Let D be the functor
¢~ h€0Goh?, so that D(c) is the functor a ~— % (G (h2), ¢). The ad-
junction isomorphism @t c): €(Gf o)== 9° &(f, Dc) can then be
given explicitely as follows: if n: Gf—>cisa morphism of € and a an
object of @, the image of 5 under ¢ (f, ¢) maps an element Acf(a) on the
composition

G (o) n

Gy —G() —¢
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which is an element of (Dc)(a) (o( is the morphism associated with 4 by
the canonical bijection from f(a) onto 2° &EHZ,1). If fis of the form
W2, € (G}, ¢) is simply (Dc)(b), and it is easily seen that @ (A, c) is the
canonical bijection from (D¢)(b) onto 2° &, Dc). Hence @(f, c) is
bijective when f is representable. Since each object of 2° & is a direct
limit of representable functors, since the functors f~>€(Gf, ¢) and
f~ 2° & (f, Dc) transform direct limits into inverse limits, and since
@(f, ¢) is functorial in f, it follows that @ (f, ¢) is bijective for all /.

It remains to be shown that the functor G~ Go %2 is an equivalence,
and hence, in particular, that each functor G: 2° & —% which commutes
with direct limits is determined by its restriction to representable func-
tors. In order to do this, we associate with each functor H: 2—% a
functor H': @° &—>% defined as follows: If F: 2°—¢& is an object of
g° &, H'F is defined to be the direct limit of the functor

Hp: @ (a) >F ~ Ha

from ZJF to €. If p: F>G is a functor morphism, Hy is simply the
composition Hgo (D/g), so that H' ¢ can be chosen to be the canonical
morphism h_)m Dp: 1_12 H F—ﬂi_r{l> H;. The reader will verify that
G~ Goh? and H ~ H' are quasi inverse to each other.

1.4. Here is an application of the preceding proposition: let g be a
fixed object of 2°&. Sincedirect limits and products in 2° & are computed
“argument by argument”’, it is clear that the functor ? xg: f~—[Xg
from 2°€ to 2°& commutes with direct limits. Hence this functor is
left adjoint to a functor from Z°€ to 2°&, which will be written
Homageg(g, 7). According to the construction used in the preceding
proof, Homag- (g, ) is, for each object & of 2°&, the functor a~—
D°EW2 x g, h) from D° to 6.

2. Definition of Simplicial Sets

5.1. Let A be the following category: the objects of /A are the ordered
sets [n]= {0, 1,2, ... n}, ncN, and its morphisms are non-decreasing
maps. Consider in particular the following non decreasing maps:

— 3 : [n—1]—[n] is the increasing injection which does not take
the value € [n].

—¢': [n-+1]—[n] is the non decreasing surjection which takes
twice the value ¢€[#n].

If there is no danger of confusion, we will write simply & and o
instead of & and of,.
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These maps verify the following relations:

3£,+1 &= 3f¢+1 ot 1<
ol iSi
o) G i<
o _, 8i={1d[n—1] i=j or i=j+1
gtrol_, 1>7+1. >

5.2. Lemma: Every non decreasing map p. [m]—> [n] can be written in
one and only one way as
(%) w= i B pia oy o 0%y
with n=1,> - >1,=0, 0= g, << ooe <<y << and n=m—1t+Ss.

Let §, <f,_y <*+- <j, be the elements j € [m] for which u(j)=p {7+ 1),
and let 4, <4, <<+-- <i, be the values of i€ [n] which are not taken by p.
It is clear then that (##) holds. Conversely, if u can be written as in (#x),
the indices 7, and §, are easily characterized as above.

We will say that (+) is the canonical decomposition of w in A. It
follows from the lemma that A can be identified with the category A’
generated by the objects [n], the morphisms &, ol,, and the relations (%):
since the relations (x) are verified in A, there exists a unique functor
A’—» A which induces the identity on the objects and on the morphisms
& and ol,. Since every morphism of 4 is a composition of morphisms
¢ and of,, the map 4'([m], [n]) =4 ([m], [#]) is a surjection. Let us
show that it is an injection: let p, »: [m]—[n] be two morphisms of A’
with the same image in A ([m], [#]). Since the relations () are verified
in A’, it is easily seen that 4 and y have a decomposition in A’ of the form
(##). (The unicity of such a decomposition is not given a priori). The
images of these decompositions in A are the canonical decomposition of
w and ». Since these images coincide, the decompositions of u and » will
also coincide, and hence y=v». Q.E.D.

2.3. Finally, note that the epimorphisms 2: [m] —[#] of A are simply
the non decreasing surjections; such an epimorphism has a section, i.e.
a morphism s: [#]—[m] such that ps=1d[n]. Similarly, the mono-
morphisms s: [n]—[m] of A are the increasing injections; such a mono-
morphism has a retraction p, ie. a morphism p: [m]—[x] such that
ps=I1d[n].

2.4. Definition: Let % be a category. A simplicial object of € is a functor
X: A°—>% (resp. a co-simplicial object of € is a functor Y: A—C). A
morphism between simplicial (resp. co-simplicial) objects is a functor
morphism.
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We will write X, (resp. Y") for the image of the object [#] of A°
(resp. of A) under the functor X (resp. Y). Similarly, we will write
«d7 and xs)", or simply 4; and s (resp. Y&; and Yo or simply & and o)
instead of X (&;) and X (o7,) (resp. Y (&) and Y(d7,)). We say that the
d; or the &' are “face operators”’, the s; or the o’ “ degeneracy operators”’.
It is clear that the relations () are still verified when & and of, are
replaced by Y&, and Yo}, Moreover, since A is defined by the objects [#],
the morphisms &;, and ¢/, and the relations (+), the cosimplicial object ¥
is determined by the objects Y* and the morphisms ¢ and o' satisfying (*).
If Y and Z are two cosimplicial objects of ¥, a morphism f: Y—>Zisa
sequence of morphisms f*: Y"—Z" of € such that

Zgiofri=["0"8, and Zgiofrti=f"o Yol Y1, 1.
Similarly, the morphisms 4; and s; satisfy relations dual to (#):

&t =dra Tt i<

i sr=gt st =
() spRdiT i<
dy sp7t=11d =7 or =71

sprard i=j+1.

Moreover, the simplicial object X is determined by the objects X,
and the morphisms d; and s; satisfying (+*x). If X and T are two simplicial
objects of %, a morphism g: X->T is a sequence of morphisms g,:
X, —T, of € such that

" —_— " n — ” .
7@ 08y =8n—1°x%i and 75708, =8u+1°%5% Vi, n.

2.5. If @ is the category & of sets, we say simplicial set or complex
instead of simplicial object of &. According to the notations of the
Dictionary, 4°¢ stands for the category of simplicial sets and 4[x] is
the complex [p] ~ 4 ([p], [#]). 4 [n] is called the standard n-simplex.

If X is an arbitrary complex, the elements of X, are called n-simplices
of X (if #=0, we say also a vertex of X; if n=1, we say also the edges
of X). In particular, the identity map Id[#] is an n-simplex of A4 [#],
called the fundamental simplex of A[n]. We know (see Dictionary,
under ““representable”’) that for each x of X, there exists one and only
one morphism from A[x] to X which sends the fundamental simplex
of A[n] onto x. This morphism will be written

(¥) 4 % An]—>X

and we will say that % is the singular n-simplex associated with %, so that

there is a canonical bijection between n-simplices and singular n-simplices.
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If X is a complex, a subcomplex Y is by definition a subfunctor of X.
This means that for each #, Y, is contained in X,,, and that the face and
degeneracy operators of Y are induced by those of X. Similarly, we call
quotient of a complex X a complex Y such that for each n, Y, is a quotient
set of X, and such that the face and degeneracy operators of Y are
induced by those of X.

Here are a few examples of simplicial sets.

2.5.1. The complex I,: this is the direct limit of the diagram of Fig. 5
A[1] A[1]

a1
\ SN / AN /
4(8% 4 (&) 4{d%Y) 4 (1) a4 (0") A(2e)
A[O]/ NG 0’ NG [0]
Fig. 5

where the standard simplex 4 [1] appears # times and where ¢ is zero if #
is even and 1 if # is odd.

We have in particular I,=A[1].
2.5.2. The simplicial circle Q is the cokernel of the pair of morphisms
A(&9), A(3Y): A[o]=A[1].

2.5.3. If X and Y are two simplicial sets, we will write #om (X, Y)
for the simplicial set [1n] ~>A°#(A[n]x X, Y) of 1.4. Then we get a
functor #om: (4°)° % (4°&)—A°E; moreover, by 1.4. we have iso-
morphisms
9 A°E(X XY, 2) o3 A°8 (X, Hom (Y, Z))
which are functorial in X, Y, Z.

3. Skeleton of a Simplicial Set

3.1. Definition: Let X be a complex, and x¢X,, an m-simplex of X.
We say that x is degenerate if there exists an epimorphism s: [m]—[n]
with n<<m, and an n-simplex v such that x— X (s) ().

Proposition (Eilenberg-Zilber lemma): For each m-simplex x of X,
theve is an epimorphism s: [m]—[n] and a non-degenerate n-simplex y
such that x=X (s)(y). Moreover, the pair (s, y) 1s unique.

Recall the proof given by EILENBERG and ZILBER: the existence of s

and y is obvious. Suppose that (s, y) and (s', ") are two pairs satisfying
the above conditions, and let ¢ and ¢’ be sections of sand s’. We have then

x=X(s) (y)=X(s") ('),

y=X(0) (%), y'=X(o)(x).
Hence

y=X(0)X(s) (v')=X(s' o) (¥).
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Since ¥ is non degenerate s’ ¢ is a monomorphism. If [#] and”[n’,] are
ranges of s and s’, we have »' =, and hence, by “‘symr‘netry , n=n.
It follows that s’¢ is an increasing bijection, i.e. the 1dent1.ty map of _[n],
and that y=2'. Moreover, we have seen that each section ¢ of s is a
ection of s’, which implies s=s". ‘ ‘ . -
i 3.2.We will give now anotherinterpretation of Ellen'berg—leber lernm‘a :
if s: [m]—[n] and s': [m]—[n"] are two epimorphisms of A, the dia-
o [m] = (]
o

w
has clearly an amalgamated sum [#'] 1 [#] in 4. Then the functor

4 A—A°E& commutes with this amalgama.ted'sum, ie. 4 ([n’] i [n])
is identified with the amalgamated sum of the diagram

A(s}

Am]—— A[x]
4 (s’)l
A[n']

et §: ATn]—X and 5": 4[n']—X be two singular su.nphc.es such
flf:tlfloyA (s)[z]&’oA(s’). Let y¢X, and y'eX, be the’ suflph;;es f}f-
sociated with 7 and §’. We then have X'(s) (y)=X(s") (%). yd ;
preceding lemma, there are two ep'imorphlsrns i [’t’L] —[#] elLln o t
[#']—[#'] and non-degenerate simplices z€ X, am,i ,z E,Xp/ (siu;: - sa’
y=2X(t)(z) and y'=X(¢')(z'). Hence ?{(ts) (z)-——X(.t s)(z)'an s-thel;
z=12', by unicity. If 7 is the singular simplex associated w1t}'1 z, we— e
have §=Fo0A(f) and §' =ZoA(¥). Moreover, the equality fs=t¢'s

s, s
implies the existence of a morphism 7: At [n]—> [p] such f’cha.‘c
t=roin, and #=roin,, where iny and in, are the canonical maps from
[#'] and [n] to [#'] sﬂs [#]. We then have §=Z%(47)(4 iny) and §'=

5A(r) A(iny), so that § and §’ can be factored through 4 ([n’] u [n])
The unicity of this factorization follows, for instance., from the f?.ct
that in, is an epimorphism of 4, and hence has a section; then A (iny)
has a section and is an epimorphism of 4°&".

3.3. We will study now another application of ]*:il.enberg—ZﬂbeIr1
lemma: let A be the full subcategory of 4 formed by all objects [p] suc
that p<n. ’iiach functor Y: Lni°—>é” is determi‘ned by thg sets ?’([p]),
which we will also write Y,, and the maps Y (&) and Y(0}_1) which we
will also write yd? and ys?~' or 4; and s; (pgn?. Suc‘h a functorI1s.
called a truncated complex of order n. Then the inclusion functor I,:



28 Chapter II: Simplicial Sets

ﬁl—>A induces a restriction functor R,: 4°6—A°E which can be given
explicitely as follows: if X is a complex, R, X i'; the tru

: , R, ted
Y defined by the equations neated complex

— D - -
Y,=X,, ydl=xd! and ysf'=ysf71 for p=un.

Since the p-simplices are identified with the singular p-simplices
we see that R, is identified with the functor ’

Xm-»A"éa(A[?],X)‘

whereo? takef all v.alues p=mn. This functor is right adjoint to a functor
G,: 4 & —A°& which commutes with direct limits and associates A [#]

.with A[p], for p<n (see 1.3). For each truncated complex Y, let us
introduce (see 1.1 and 1.3) the following functors:

dy: A[p] 5> Y o A[p]
i A[p] 5> Y > A[p]
@)y 41815 Y~ A[p],.

The‘n the morphism ay: l_lr_)n dy—Y of 1.1. is invertible, G,(Y) is equal
to l_lrg dy and G,(Y), to Eg(d’{,)q. But if ¢ is smaller than %, we have
Err;(d'{,)qz(grg d%),; thus R,G,Y is simply lim dy, and we see easily
that the adjunction morphism ¥, (Y): Y—>R;E;Y can be chosen equal
to ay*. Consequently ¥, is snvertible and G, is fully faithful (I, 1.3)

3.4. We will look now at the adjunction morphism @,: G

4. We wil . GR

Id(4°&) quasi inverse to ¥, : ’ "
Proposition: D, is a monomorphism, i.e. for each c

' » , 1.6 omplex X and each

wnteger peN, (D, X),: (G,R,X),—X, is an injection.

‘ letZ =G,,RnX . We know that R, @, (X) is a retraction of ¥, R, (X).
Since ¥, is invertible, R, &, is invertible and (&P, X) » 18 a bijection for
fgz. On the other hand, we have seen that Z is the direct limit of the

unctor

A[p] %> R X s A[p]

from él/RnX to 4°&. In particular, Z is the quotient of a direct sum of

standard simplices 4[p] with p<#. But all ¢-simplices of such a 4[]
are degenerate for ¢ >#, so that the same thing holds for the g-simplices
of Z. 'It is then sufficient to prove the following: let w: Z—>X be a
mo@hzs_m of complexes such that v, is injective for p<wn and that all the
g-simplices of Z are degenerate for ¢>n. Then Yy 1S an injection for all p.
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Let z and 2 be two g-simplices of Z such that ¢g>=. By Eilenberg-
Zilber lemma, there are epimorphisms s: [g]—[#] and s": [¢]—[#'] and
non degenerate simplices x and x’ such that z=Z2 (s)(x) and 2’ =Z (s") (x');
a fortiori, we have p, p'<#. Since y, is injective for r=mn, ,(x) and
¥, (#) are non degenerate. Hence (s, (%)) and (s', y, (x")) are ““Eilen-
berg-Zilber decompositions”” of v, (2) and y,(2'). The equality v, (z)=
v, (') implies then s=¢’, p=2" and x"=«". Hence z=2. QE.D.

3.5. The n-skeleton Sk*X of a complex X is the subcomplex Y of X
such that Y, is formed by all simplices degenerated from g-simplices such
that ¢g<n (i.e. Y, is formed by all xe X, such that there exists an epi-
morphism s: [p]—[g], ¢=<#, and a g-simplex y of X such that x=
X(5) (). |

Corollary 1: For each complex X, @,(X): G, R, X —X induces an
isomorphism from G,R, X into the n-skeleton SkE*X of X.

We know already that (@, (X )), is an injection for each . On the
other hand, each simplex of G,R,X is degenerated from a p-simplex
such that p <. The same holds for the image of G,R,X, which is than
contained in Sk "X. Moreover, if s: [p]—>[q] is an epimorphism of 4
such that ¢g<# and if y is a g-simplex of X,y is the image of some
z¢(G,R,X),, since (®,(X)), is a bijection for g=n. Hence X(s)(y) is
the image of a simplex degenerated from z, which proves that the map
(G,R,X),—~(Sk"X), is a surjection.

3.6. From now on, we will say that a complex X is of dimension =n
if it coincides with its n-skeleton. Then X is isomorphic to G, R, X, and
hence to the quoticnt of a direct sum of standard simplices ATp] such
that p=<#. The converse is also true. Thus we have the following corol-
lary:

Corollary 2: The functors G, and R, induce an equivalence between
the category of truncated complexes of order n and the full subcategory of
A°& formed by all complexes of dimension =n.

Let Y be a subcomplex of X, y a p-simplex of Y, and (s, z) the
“REilbenberg-Zilber”” decomposition of y in X. If g is a section of s, we
clearly have z=X(0) (¥), so that z belongs to Y. It follows in particular
that Y is of dimension <# if X is. In this case, the map Y~sR,Yisa
bijection from the subcomplexes of X onto the subcomplexes of R, X.
Take for example X=A[x]. It is clear then that the fundamental
simplex of A[xn] is the only non degenerate simplex of dimension =#.
Since, on the other hand, the fundamental simplex “generates”’ An],
we see that 4 [«] is of dimension #, and that each subcomplex of 4 [#]
different from A[n] is contained in the (n—1)-skeleton S Bt Aln],
which is usually written An] (it is the “boundary’’ of the standard
simplex of dimension n).
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3.7. Consider now a quotient Y of the complex X. Then Y, is the
quotient of X, by an equivalence relation R, which satisfies the following
condition: if f: [p]—[g] is a morphism of A, the relation x» ~ y implies

¢

X (1) () 2 X () (9)-

If X is of dimension <#, the same holds for Y. The functor Y~»R,Y
defines then a bijection from the set of quotients of X onto the set of
quotients of R, X. Take for example a complex of finite type X: such a
complex is, by definition, isomorphic to the quotient of the direct sum
of a finite family of standard simplices. This simply means that X is of
finite dimension and that, for each p, X, has a finite number of elements.
Hence, if # is large enough, the quotients of X are in a one-to-one
correspondance with the quotients of R,X. But the (R, X), are finite,
and are in a finite number. Consequently, the number of quotients of
R,X, and hence of X, is finite. Similarly, we see that the subcomplexes
of X are in a finite number.

3.8. Again, suppose that X is an arbitrary complex. Then X is the
union of its skeletons:

G=SEIX(SE XS XC...CSkR"XC....

The skeleton Sk°X is of dimension o (or discrete): it has the same
vertices as X and is isomorphic to the direct sum of a family of standard
simplices 4 [0]. More generally, given S% *~1X, we want to find Sk "X.
Let 2™ be the set of non-degenerate n-simplices of X; let (4 [#]y)csn
be a family of standard #-simplices indexed by 2”; and let &: 4 [n],—~X
be the singular simplex associated with the non degenerate simplex o.
We then have the following proposition:

Proposition: With the above notations, the square of Fig. 6.

U A[n),— Sk*1X

ag e

inclusion inclusion

U Am], - skrx

gcxn

Fig. 6
s cocartesian for n=o.

By corollary 2 to 3.6. it is sufficient to check that for each p<#,
the square of Fig. 7

11 (A[n])y— (SE™1X),

ocEXn

inclusion inclusion
(6)p

L (An]g)y— (Sk"X),

Fig. 7
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is cocartesian. This is clear when p < #, since, in that case, th.e vertical
arrows are bijections. For p=mn, the corr'lplement of {1 (4 {n].g)n in
L1 (4 [#],), is formed by the fundamenta}l simplices 1d{#],. Similarly,
the complement of (S% »=1X) in (Sk"X), is formed by ?:11 non degenerate
n-simplices of X. Hence the map (8), induces a b1]ect1(1)n from the
complement of 11 (An],), onto the complement of (Sk"~ X),, so that

the square (x#) is also cocartesian for p=7. . '
In other words, the above proposition means that S k"X is obtained
by attaching to Sk"7'X a certain number of standard simplices 4 [#],

along the boundary ATn] of these simplices.

3.9. To complete this paragraph, let us determine a useful presenta-
tion of A [#]. In order to do this, let us consider the diagram

2 a1t
(%) oéilzljénél n—2]; = o§]21§,,A [n—1);,— 4[n]
where 4 [n——1]i‘ and A[n—2]; ; are copies of 4[n— 1] and A[n—2],
where p is defined by the face operators 4(2;): A[n—1);—~A4[n], and
where u (resp. v) is induced by the morphisms

A@A): An— Z]M-—>A [n—1]; (resp.4( i) An—2], ;= A[n— 17,)-
We can verify then that, for each g, the image of the map
P, U (Afn— 1],-)q—>A (%],

induced by $ on the g-simplices, is the set of g-simplices of_ A[n]. More
precisely, p, induces a bijection from coker (u,, 1‘14) onto 4[n],. Hence
$ induces an isomorphism from coker (u, v) onto 4 [x].

4. Simplicial Sets and Category of Categories

4.1. We know that the functor ¥~—~Ob% from %2t to ﬁ cornmute:s
with inverse limits. This result can also be obtained by no‘tmg that. this
functor is right-adjoint to the functor Dis: & —>%at, which associates
with each set 4 the category Dis 4, whose objects are the elements 9f 4,
and whose only morphisms are the identities. Such a category will be

screte category. '
can(la\fdojv dllet Or be %heycategory of ordered sets (with nf)n—decreafsmg
maps as morphisms). Let ¢: 0»—>%at be the functo? which assomat.es
with an ordered set A the following category 14: Qb4 =4, and Yred
is the subset of 4 x4 formed by all pairs (a, b) su?h t.hat b=<a. The
range and domain maps are the restrictions of the projections pr; and pr?
of AxA onto A; finally, composition is defined by the formual:

(a, B)o (b, ¢)=(a, ¢).
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Then, according to 1.3, the restriction H of 7 to A defines two functors
G: A°€ —>Fat and D:%at—A°E
such that D is right adjoint to G and that Go 44 is isomorphic to H.

4.2. We want to describe more precisely the functor G:

Lemma: If n>2, the inclusion of An] into A[n] induces an is0-
morphism from GA[n] onto G A[n]=i[n]. If n=1, GATn] is a discrete
category; if n=2, GA[n] has 3 objects, denoted by 0, 1 and2; in addition
to the identity morphisms, GA[2] has 4 morphisms: w: 12, v: 0—>2,
w: 0—1 and #ow.

The lemma is trivial if #=1. Suppose then that #>1. By 3.9, since
G commutes with direct limits, GA[n] is identified with the cokernel
of the pair.

Gu
0§£l<lj§nGA [n—2); ; —;_?ogjilgnGA n—1);.
Write [p,] for the subset of [#] formed by all integers different from £,
and [, ;] for the subset of [#] formed by all integers different from &, I.
With these notations, (Gu, Gv) is identified with the pair of morphisms.
ogilélng (5] _—u_)_) oglflgﬁ [l
where #’ and v’ are induced by the inclusions of [#, ;] into [n;] and [#]
respectively. We construct the direct limit of this diagram of categories
as explained in the dictionary. With the notations of this dictionary,
X is identified with the diagram-scheme subordinated to i[n]. In
particular, we can then deduce the structure of GA[2]. Similarly,
when 7> 2, let
a=(a, &) o (@, az)o o (4, b)

be a morphism of Pzi[n]. Then a, a,, a, belong to the same [#;], since
n>2. Hence (a,a,) and (a,a;)o(a, a,) have the same image in
coker (#',v'), and the same holds for aand (a, a,) 0 -+ o (a;,b). By induction
on k, we see then that « and (a, b) have the same image in coker (u', v'),
which shows that two objects of coker («', v') are connected by one and
only one morphism. :

Now let X be a simplicial set. We know that the square of Fig. 8
1 An],— SE"'X

gEZn
(*) inclusion linclusion
1l A[n],—> Sk"X
ocZn
Fig. &

B
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is cocartesian (see I1.3) The same holds for the square of Fig. 9

U GAMn],— GSE* X

e X®

U GAn},—> GSE™X
oEEm

Fig. 9

since G commutes with direct limits. But, for 7> 2, the left arrow is an
isomorphism by the lemma, and hence the same holds for the right
one. Since X:l_i_lzl) SEk"X, we have

G(X)=lim G(Sk"X)=G(Sk*X).

But a description of G(Sk2X) can be given quite easily:

a) Clearly, G Sk 0X =Dis X,. (2.1)

b) Let us apply (%) to the case n=1. The objects of the category
G(Sk1X) are the clements of X,. With each element xecX,, we as-
sociate the morphism x: d x~>dy x. Then the set of morphisms of
G(Sk1X)is generated by the elements of X;, these morphisms verifying
the relation s, %o=1d %, for each %p€ Xg-

¢) Finally, let us apply (x*) to the case n=2. We have then the fol-
lowing proposition:

Proposition: Let X be a simplicial set and X the diagram scheme
defined by the equations: Ob X=X, WEx=X,, by=xdi and ty= xo-
The category GX is then the quotient of the category Pa X of paths of X
by the relations: s v=ldx if xeX
(dy0)o(dy0)=d1 0 if o€X,.

4.3. Corollary: Every adjunction morphism @: GD—>1d(€at) is an
isomorphism (and hence, D is fully faithful).

Recall that for each category €, (D¥),=%at (i [#], %). This implies
that (D%),=95b% and (D%),=Ut €. Moreover, (D%), is the set of
triples (u, v, @) of A € such that w=vou. From these equalities and
from proposition 4.2 we get an isomorphism from GD% onto €. This
isomorphism 1is functorial in ¥ and defines an adjunction morphism
from D to G. Since an adjunction morphism is invertible, each adjunction
morphism is invertible (I, 1.3).

and

5. Ordered Sets and Simplicial Sets: Shuffles

5.4. In 4.1, we defined a functor ¢: O0r—>%at. This functor is fully
faithful and it is right adjoint to the functor O: Gat— 0 defined as
follows: for each category €, we give to the set Ob ¥ a preorder structure

3 Ergebn. Mathem., Bd. 35, Gabriel and Zisman
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such that 2<b if and only if there is a morphism of ¥ with domain a
and range b. Then O% is by definition the ordered set associated with the
preordered set b €.

Now let Di=C and O0G=0" (see 4.1). Then C: 0r—A°& is right
adjoint to O A°E& — 0. Moreover, since both 7 and D are fully faithful,
C is fully faithful. We can also verify directly that O'C is isomorphic
to Id O, by writing the functor O* with the help of proposition 4.2:
if X is a simplical set, we give to X, a preorder such that <y if and only
if there is a sequence 0y, ..., 0, of elements of X, such that d, 0y=x,
dyoy=d, 04, ..., dg0,_1=0,0,, do0,=}. 0 X is then the ordered set
associated with this preordered set.

5.2. If E is an ordered set, CE is, by definition, the complex
[#]~—>%at (i[n], iE). Since 1 is fully faithful, CE is then identified with
the complex [#]~— Or([xn], E). In particular, C[n] is identified with
An]. We will call ¢-th vertex of A[n] the image of the vertex of A[0]
under the morphism 7;, which is associated with the map 0~~—1 from
[0] into [#].

Similarly, let {#} be the set{0, 1, ..., n} ordered by the inequalities

0<1>2<3>4...

C{n} is then simply I, (2.5.1). If g;: A[0]—I, is the morphism associated
with the map O~ from [0] into {n}, we will write ¢ for the i-th vertex
of I, i.e. the image under &; of the vertex of A{0].

5.3. We will study now more closely the complex CE associated with
an ordered set E: an n-simplex of CE is a non-decreasing map x: [#] ~E.
Such a map defines a morphism Cx: C[n]—>C E which is simply the
singular #-simplex % associated with x. The #-simplex x is non-de-
generate if and only if » is an injection. Since C commutes with inverse
limits, C transforms a monomorphism into a monomorphism. Hence,
for each nondegenerate simplex x of CE, the assoctated singular n-simplex
%: A[n]—>CE is a monomorphism. This implies that the image of a
standard simplex in CE is always isomorphic to a standard simplex;
for instance, CE contains no subcomplex isomorphic to the cokernel of
the pair of morphisms 4 (&%), 4(¢7): 4[0] =4[1].

5.4. I} E is a finite ovdered set, CE 1s a complex of finite type; for let
a chain of E by any totally ordered finite subset of E; with each chain ¢
containing #,+1 elements, we associate one and only one increasing
map «x,: [#,]—>E whose image is ¢. If c(1), ..., c(n) are the maximal
chains of E, we then have a commutative diagram

v
(*) 1s5121i§n [n”(i)nc(i)] —'7_; 1§121§n [%”(i)] —~E

s

7
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where % (resp. v) is defined by the inclusion of ¢(i)~c(j) into ¢ (7) [resp.
into ¢(j)]. Moreover, for each integer p, the sequence

Lo ([p), ey mein)) = W O7 (81, [mew)) = Or (8, E)
defined by (x) is exact. This means that the image
L AT mep] = AT &0, CE
of () under the functor C is an exact sequence of A°& (we will say also

that it is a “finite presentation” of CE).

5.5. This presentation will be used mainly when E is the ordered
set [p] x[g]. Since the functor C commutes with products, C([p]x[q])
is identified with A4 [p] x4 [¢]). Moreover, the number of maximal chains

of [p]xl[q] is (p —;q) and each of them has p-+g-+1 elements (see the
Fig. 10, where p=3, g=2. See also MacLaNE’s ““shuffles”, [2] p. 243).

—————— e mmmm e mn >

|

3

1]

s
e e

[ e S

o

Fig. 10

We get then a finite presentation of ATplxA[q]
Aoy ~en] = Up+q) Aln ) —~A[p]x4[4]

1=i<i= (P19) 1=is (73

where #,;=$ ¢ for each 7.

6. Groupoids

Before studying the category ¥r in a similar way as above, we will
establish some simple properties of this category.

6.1. Examples.

6.1.1. If E is a set, Dis E is a groupoid (4.1).

6.1.2. We know that the functor G~—£b G from &7 to & commutes
with direct limits. We can see this if we note that this functor is left
adjoint to a functor Sc: & —>%»: for each set E, the set of objects of
ScE is E, the set of morphisms is E xE, the domain and range-
maps are the projections pry: (x, y)~—-y and pry: (%, y)~—>%. Finally,
composition in Sc¢ E is defined by the formula

(xr y)o(y, z):(x’ Z)
3*
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Each groupoid G isomorphic to S¢(©b G) will be said simply con-
nected. The functor Sc: & — % obviously commutes with inverse limits,
but it does not commute with direct limits: indeed, using the notations
of 2.1, the cokernel of &, &: [0]=2[1] in & is the set [0], while the co-
kernel of S¢ &, Sc &: Sc[0]=2Sc[1] is a groupoid with a single object
whose automorphism group is Z. However, we will use the following
exactness property of the functor Sc: Let 4 and B be two sets, and let
C=AnB, D=AuB. Then the inclusions define a commutative square

ScC—Scd
| l
S¢B—ScD
which is cocartesian when C is not empty:

Let us show on this example how we can use the construction of
direct limits given in the dictionary: for d: T —%at take the diagram

ScB«ScC—>Sc4d

keeping the notations of the dictionary. In particular, X is identified
with the diagram sub-scheme of S¢c D whose set of objects is D and
whose set of morphisms is (4 XA)u (B xB). Let p: g”aX—Hi_}md be
the canonical projection and 7: EE d—S¢ D the functor defined by the
above commutative square. Then j induces the identity on objects, and
jop, and hence also j, obviously induce a surjection on morphisms. In
order to prove that  is an isomorphism, it remains to be shown that for
two morphisms « and 8 of 2z X, the equality § p «=j  § implies asp
(S is the relation defined in the dictionary).

Let ¢ be an element of C. If (2, £) is a morphism of X, the relation
(z, )3 (2, ¢)o(c, t) holds in PeX. If a=(v,x,)o0 - ox,x) is any
morphism of £z X with domain x and range y, we then have

as (Y, %) 0 0%, c)olc, %)
(9, %) o oo 0 (%, )0 (6, ) o (4, ¢)o (6, %)
(9 #) o o (w, c)o(e, ) o (¥i 0o e, %)

Hence each morphism of £z X is equivalent to a morphism determined
by its domain and its range. We then have a~f if « and f have the
same domain and the same range, in particular if j p a=7 $ §.

6.1.3. A groupoid is called pointlike if it has a single object. Each
inverse and direct limit of pointlike groupoids is pointlike. Moreover it
is clear that the full subcategory of Gr formed by all pointlike groupoids

is equivalent to the category of groups. A groupoid G is called connected
if O5 G is not empty and if G (%, y) is not empty for any pair of objects
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(x, y). We will see in 6.1.5. that it is equivalent to say that the category G
is equivalent to a pointlike groupoid.

6.1.4. Let G and H be groupoids. We say that H is a subgroupoid of
G if H is a subcategory of G, i.e. if Ob H and Ur H are subsets of 00 G
and 9t G and if the composition in H is induced by the composition in G.
A maximal connected subgroupoid of G is called a connected component
of G. It is clear that each groupoid G is isomorphic to the direct sum of
its connected components, and we say that G is totally disconnected when
all the connected components are pointlike.

6.1.5. Each groupoid G is equivalent to a totally disconmected groupoid:
for let us choose an object #; in each connected component ¢ of &, and
let G((x,)) be the full subcategory of & whose objects are the x;. We will
see then that the inclusion j of G((x;)) into G is an equivalence by giving
an exhaustive construction of the functors p: G—G({x;) such thatjop
is isomorphic to the identity functor of G and that po7 is the identity
functor of G({(x;)): ‘

In order to do this, let us call a free of G any subgroupoid which is
isomorphic to a direct sum of simply connected groupoids (6.1.2). It is
clear that each tree is contained in a maximal tree and that each maximal
tree A of G has the same objects as G. Moreover, if 4 is an object of &
contained in the connected component i(a), 4 contains one and only
one morphism @, X;u—>a. This allows us to define a functor 74:
G—>G((x;)) which sends each object a onto ¥, and each morphism
f: a—>b onto gyt o fog,. This functor j, satisfies the required conditions.

In the case where G has only one connected component containing
the object #,, the functor makes the following square commutative:

A inclusion G
K A
{10} = G (%)

where {#,} is a groupoid with a single morphism and a single object x,.
The reader can verify that this square is cocartesian.

6.2. Let G be a groupoid and g be an object of G. We will call Poincaré
group of G at g (notation: II,(G, g)) the group G (g, g) of automorphisms
of g. f p: G>H isa morphism of ¥, we will write IT, (p, g) for the
group-homomorphism.

plg, 8): Glg &) —H(pg 98
induced by ¢.

Lemma (“Van Kampen”): Let X, Y and Z be connected groupoids and

vizshx
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a diagram of Gr such that o and B induce injections of Ob Z into b X

z
and Ob Y. If z is an object of Z whose images in X, Y and X11Y are
respectively x, y and t, we have a canonical isomoyphism

IL(Z,

) z
ﬂﬁmﬂimmwgmmum

where the first term is the amalgamated sum of the diagram of groups
v, 9 202 mz, 9 B mx, .

Let C be a maximal tree of Z, 4 and B maximal trees of X and Y which

“extend’” C. We then have a commutative diagram (Fig. 11)

vl z5%x
bl
(%) BLcH 4
Vool
Yy Z2 X
Fig. 11

where ol and B! are induced by « and §, the other morphisms being the
obvious ones. We know that there are two different ways of computing
the direct limit of such a diagram (interversion of direct limits):
According to 6.1.5, the direct limits of the three columns of (x) are
canonically isomorphic to the pointlike groupoids Y (y), Z(2) and X (%).
Hence, passing to direct limits, the diagram () induces morphisms

(%) V() &-2(2) 2 X ()

obtained by restrictions of « and §. The direct limit of () is then canoni-
cally isomorphic to that of (xx), which is a pointlike category whose
Poincaré group is the amalgamated sum of the groups IT; (X, x) and
IT,(Y, y) under I, (Z, 2).

On the other hand, the direct limits of the three rows of (%) are

z

identified respectively with T=X 1Y, with a maximal tree D of T
(see 6.1.2), and with {#}. Hence the direct limit of (#) is isomorphic to
the amalgamated sum of T and ¢ under D, ie. to T(f) (6.1.5). The lemma

follows from the comparison of the two preceding descriptions of the
direct limit of the diagram (*).

7. Groupoids and Simplicial Sets

7.1. Let § be the inclusion of % into %ut and Gr: Got —Gr the
functors €~—% [(Ur¥) ] of I, 1.5.4. If G and D are the functors defined
in §4, let I=GroG and D'=Doj. Then II: A° &% is left to DL:

¢

T

.

v

S

S
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@,—>A°& and is determined up to isomorphism by Ilo h4: according
to 4.1, GA[n] is the category associated with the ordered set [#]; hence
ITA[n] is the simply connected groupoid Sc(#] (6.1.2). Finally, ac-
cording to 4.3, D' is fully faithful.

If X is a simplicial set, proposition 4.2 allows us to give an explicit
description of JI X as follows:

The objects of the groupoid IIX are the vertices of X, the morphisms
of [I1X are generated by the elements of X, and their formal inverses; if
seX,, we have Dy S=0d1s and Ty S= dys; the relations between the
generating morphisms are generated by the following velations:

spx=1dx 1f xeX,
(dy0) o (dz 0)=d1 O if oeX,.

and

7.2. Let I, be the simplicial set defined in 2.5.1, and in, the canonical
injection of the ¢-th copy of A[1]into I,. Consider a morphism f: I,—~X
and let z; be the 1-simplex of X associated with the singular simplex
foin;. We define then a surjection from ngo.d"é’ (I,, X) onto A JIX by

sending f onto the morphism (Vo s o xy lo4, of IIX. We could
also restrict ourselves to the case where # is even. In that case, we could
multiply an element of A°&(I,,, X) by an element of 4°& (I5,, X), by
“sticking I,, and I, one at the end of the other, to obtain Tygip
The above surjection is then compatible with composition of morphisms.

7.3. For each simplicial set X, the groupoid I7 X is called the Poincaré
groupoid of X. We will say that X is connected (resp. simply conmected)
if ITX is connected (resp. simply connected). A connected component
of ITX with be called a connected component of X.

Thus two vertices x and y of X belong to a same connected component
if and only if there is a morphism | from I, into X such that f(0)=x,
fm)=y (see 5.2.1), ie. “if there is a path connecting ¥ and y.” !

7.4. Let X be a simplicial set and x, a vertex of X. By definition, we
call Poincaré group of X at xy the group IT, (X, %) =THL I X, %4) (6.2).
If f: X—7Y is a morphism which sends %, to f(%g)=2Y0, We will write
simply I7; (f, %) or I1, } for the group homomorphism IT, (ZZ(7), xo). Let
then .4°& be the category of simplicial sets with base point, i.e. the
category whose objects are the pairs (X %) formed by a simplicial set X
and one its vertices x,; morphisms fr (X %)~ ) correspond to
morphisms (also written f: X—>Y)of A°¢& such that f (%)= Ye-

1t follows from the definition that I1, is a functor from A°& to the
category of groups.

1 Un peu d’abstraction ¢loigne de la géométrie, beaucoup ( ?) d’abstraction
y rameéne.
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Let (X; %) L (Zy %) £, (Y, y,) be a diagram in A°E. Suppose that
X, Y, Z are connected, and that the components fo and g of | and g are
injective. Applying the functor I, we obtain the following diagram in %»:

mx) &2 11(z) T8 ().
According to 4.2 this diagram satisfies the hypothesis of lemma 6.2.
Hence we have:
Proposition: (“Van Kampen” for simplicial sets.) Under the above
: z

hypothests, and if &, is the common image of both xq and ¥, wm XUY,

we have: (2, 2)

z
(XY, b)) ~ THh(X, %) U Th(Y. 50
This follows from the fact that the square

74 x
S

Z
y-Xx01Y

is cocartesian; and I7 transforms a cocartesian square into a cocartesian
square.

7.5. We see easily that there are products in A°(&). In fact,
(X XY, (%, o)) is the product of (X, %,) and (Y; y). In this paragraph
we intend to show that /T, commutes with finite products. In order to do
this, it is obviously sufficient to show that I commutes with finite
products.

Since the functor IT commutes with direct limits, it is sufficient to

show that IT (4 [n] x 4 [#]) is identified with 14 [#] xIIA[p]. Forin that
case, we have (see 1.1):

IT(X X ) o 1{tim e o) X lim dy () 11 15 (e ) xdy ()

o B o B
~ lim 1T (4 (a) xdy () w1 (I dx (o) < 11 4 (5)
o f o, B

~ it (1T (o)) x lim (I dy (§)) ~ TTX X ITY
o B

where dy: A]X —~4°& and dy: A]Y —A°€ are the functors {1.1) whickL
allow us to represent X and Y as direct limits of representable functors.
We used the fact that in %a¢, the product commutes with direct limits,
which follows from the fact that the functor G~ € x D is left adjoint
to the functor F s Hom (D, F).

Now we check that the product of two simply connected groupoids is
simply connected, and that the canonical morphism

(A n] xA[pl) -1 A %] x [T A[p]

Yy

S

=
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induces a bijection on objects and a surjection on morphisms. The
groupoid on the right is simply connected; hence, in order to complete
the demonstration, it is sufficient to show that IT(4 W] xA[p]) is
simply connected.

Let us go back to the description of 4[] x A[p] given in 5.5. The
{-simplices of 4[n] x A[p] are in a one-to-one correspondence with the
pairs (x,y) where x<y are points of [n] x[#]- The 2-simplices of
An] xA[p] arein a one-to-one correspondence with the triples (%, ¥, 2)
such that x<y=zin [#] x[p). Hencea morphism o a—b of IT (A[n] x
A(p)) may be represented by a path

(xn’ xn—i)o ttt o (xZ’ xl) ° (xl’ xo)

where %g=a, %,==b and x; =< ;41 OT %; = %it1- Tt is left to the reader to
show, by induction, that this path is equivalent to the path

(b, %) o (v, @)
where y is the point (1.1). (Use the description of the relations given in
7.4, and the description of the 2-simplices of 4 [#] x A[p]). Hence the
morphism « is well defined by its domain and its range. Q.E.D.

7.6. In general, IT does not commute with kernels of pairs of morphisms
as shown in the following example: consider the cocartesian square

A[2] > 412
zl Y lu
A2) S X

where i is the canonical injection. The kernel of 4[2] é X is A[2]; but

we have [TA[2]=IIX=Sc[2], and the kernel of f)Sc[Z]:‘_iSc[z] is
Sc[2]+ITA[2].

Chapter Three
Geometric Realization of Simplicial Sets

1. Geometric Realization of a Simplicial Set

1.1. First, let us give some general remarks which will divert us a
little:

For each natural integer 7, the set A([x], [1]) will be totally ordered
by saying that f=g if and only if fo)<gld) for each i¢[n]; moreover,
we can identify the ordered set A([n], [1]) with [n+-1] under the map
forscard f1(0). We define thus a functor [#]~—4 ([#], [1]) from A to 4°
which will be noted 1T, and which can be described as follows:

I[n]=n+1], L&=0 I o' = &tk
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1.2. Let Jop be the category of topological spaces, and I the segment
[0, 1] of R. For each natural integer #, we will write I ] or I**1 for the
product of #+4-1 copies of the topological space I. It is clear that this
product depends on [#] in a contravariant way (the set subordinated to
the topological space I™ is identified with the set & ([n], I) of maps of
[#] into I), so that we have a simplicial topological space ARSY L2
which will be noted I’. The composition

?
A5 1L Top

is then a cosimplicial topological space, which we will write III, and
which can be described as follows:

" =12
migi, pr+1» [+ is the map

(ot oeor by oo (s oo bimas s o B oo )
Ui, ++3 2 is the map
(o> tys oves b tyad) > (Bos wees Bis bigas oo buta) -
From now on, we will write A™ for the subspace of I"*2 formed by all points
(s b1s -+ ks bar1)s SUCH that 0 =t,<H =< - SL,=t, =1 The sequence
A9, A1 ... is obviously a sub-functor of 111, which is written 4 e A—>Top.

1.3. The first part of our work will be to determine the group of
automorphisms of the functor 4 ?. et ® be the group of homeomorphisms
s of the segment [0, 1] such that s(0)=0 [and hence s(1)=1]. The
group ® obviously operates on the functor III; more precisely, each
sc® induces an automorphism s": (fo, t1, --+s b byrq) > (S8g, Sty o)
st,, st, ) of 111" = I"*+2 which is compatible with the face and degeneracy
operators. Moreover, such an s is an increasing map, and hence, it
fixes subset A” of I**? formed by all points (fg, fys +--s b t,.1) such that
0=t =t < - <t,=t,,,. Thus we obtain a homomorphism s~>s’ from
® into the group of automorphisms of 4°.

Proposition: The monomorphism sws? 45 an isomorphism from the
group of homeomorphisms s of I such that s(0)=0 onto the group of auto-
morphisms of the functor A°.

It is clear that the homomorphism s~—s’ is injective; let us show
that it is surjective: let s, $;, ... be continuous automorphisms of
A, AL, ... compatible with face and degeneracy operators. Since s; is
compatible with 8): 4°—> 4%, we have 5, (0, 0, 1)=(0, 0, 1), so that there
exists an se® such that s,=s!, with the above notations. On the other
hand, when o suns through the epimorphisms [n]— [1]of 4, 4°: 4*— A"
runs through the maps (0,4, -+, s, 1) (0, t;, 1), 1<i=n, and we
have A®os,=s,0A4%. Hence $,(0, 81, vy by, 1)=(0, St1, ..o, st,, 1), le.
s,=s". QE.D.

%:
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1.4. Now let us apply proposition 1I, 1.3 to the present case: the
functor 42: A—Jor defines a pair of adjoint functors S: Jop—A°& and
|?]: 4° E—~>Top. . . .

The first one is the singular complex functor, which associates with
each topological space T the complex [n]~(S T)nz%g (4”, T),_a'lso
called the complex of singular simplices of T. The other one 1s 1§ft ad]f)n}t
to the first; the image | X| of a complex X under | ?| is the direct limit

of the functor a
6X: A[%]—’X ~r A"

from A/X into Joe (see 11, 1.3). Usually, we say that | X| i§ the geo-
metric realization of the complex X. Recall that the “ geometric realiza-
tion” functor is characterized (up to a functor isomorphism) by the
following two conditions: | ?| commutes with direct limits; moreover, if
B4 A—A°E is the functor [n]~—>A[n], the composition |?|o/? is
identified with 47: 4 —>TJop. In particular, the realization |4 [#]| of the
standard n-simplex is identified with the geometric simplex of dimension
n,ie. 4".

1.5. In a similar way as in I1, 4.2, let us now determine the functor | ?}.
Again, take the diagram of 11, 3.9

= 41, A
*) ogiléljgnA fn— ‘?‘JM 70§1;1§ Aln 1]; An]

Consider now the geometric realization of the sequence (¥): the
restriction of |p| to |4 [n— 1];] is a homeomorphism f; frem |4 [n— 134
~ 4»—1 onto the i-th face 47 of A" [A? is the intersection of A" CR**?
with the set of points (s« s tas1) such that ¢;=¢;,,]. 1f we compose fi
with |4 (8_)|: |4 (n—2]; ;| =>4 n— 1],], we get a homeorr}orphlsm
f:; from |4 [n— 2], ;| onto A7~ A?. We then have the following com-
mutative diagram (Fig. 12).

{41520 LA =115 14D

lLlfa,; luf‘ lm
LA~ AT v: nar s ar=|am]

Fig. 12

where p’ is defined by the inclusions of 47 into 4%, and where #' (resp. ')
is defined by the inclusions of A7~ A} into 47 (resp. into 47).

It is clear that p’ induces a homeomorphism from coker (w', ') onto
the union of the faces of 4™ (the boundary of 4%). Since | ?| transforms
cokernels into cokernels, and since Lf,and Ll f; ; are homeomorphisms,
we have the following proposition:
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Proposition: If © is the inclusion of A[n] into A[n), |i| is a homeo-
morphism from the geometric realization ‘Z] [n]| of the boundary of A[n]
onto the boundary A" of the geometric vealization A™ of A[n].

Let X be a simplicial set. We know that X is equal to the direct
limit h_r)n SE"X,and hence, that | X| is equal to the direct limit h_)m |Sk"X|,

which we will now describe:

SkOX is identified with the direct sum of a family of standard
simplice 4 [0] indexed by the vertices of X; since the geometric realiza-
tion of 4[0] is the point 4°, we see that |Sk°X | is identified with the
topological direct sum of points indexed by the vertices of X; in other
words, | Sk °X| is identified with X, with the discrete topology.

Suppose that |S%”~'X]| is given, and let us determine |Sk"X];
since the geometric realization functor commutes with amalgamated
sums and direct sums, it follows from II, 3.8 that IS kX ] is identified
with the amalgamated sum of the diagram of Fig. 13

. p e
UL A B> |sEr2X]
[inclusion| l

U |4,

cEZn
Fig. 13

the restriction of p to ]Zl [n],| being defined by the singular simplex
§: A[n]—X. Moreover, |4[n],] is a geometric simplex of dimension #,
say 4%, and |4[#],] is identified with the boundary A% of A7. Hence we
have a cocartesian square (Fig. 14)

U A2 — |SE"X]|
ogEXn

inclusioni l
1l 47— |SE"X|
geln

Fig. 14

which means that |Sk"X| is obtained by attaching to the topological
space |Sk*7'X| a family (45) of geometric #-simplices along their
boundaries. It is equivalent to say that the map [Sk*™'X | —>|Sk"X|
is a homeomorphism from |S&*~*X]| onto a closed subspace of |SEk"X|
(from now on, | Sk *~*X| will be identified with this subspace); that the
complement of |S&*~1X| in |Sk"X]| is identified with the topological
direct sum of the interiors Aof,‘ of the geometric simplices 47; that a sub-
space U of |SE"X| is open if Un|Sk #=1X| is open in |Sk*~X| and
if the inverse image of U in each A7 is open. In particular, the continuous

R

=

i

S

e
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map |&|: A?—|Sk"X]| induces a homeomorphism from Ag‘onto a con-
nected component of |Sk"X|—[Sk n=1X]|; we will call this connected
component the cell of dimension n and index .

1.6. It is a well known fact that two functors adjoint to each o.ther,
in particular S and |?|, have “the same’’ group of autc?mgrphxgr.ns.
According to II, 1.3, the group of automorp_hlsms of |?] is 1dent%f1ed
with the group of automorphisms of A, i.e. with the group ® of strictly
increasing continuous maps s: I —1I such that s(0)=0 a.nd §(1)= 1. We
will see how this group operates on the geometric realization |X| of a
complex X. ' '

The operations of ® in |Sk"X]| and |X| are obviously compatible
with the inclusion of | S&"X]| into | X|. Hence ® preserves each 'connected
component of |S k”XI——\S E71X|, ie. each cell of dlme.nsmn " and
index ¢. Since the continuous map |6]: 45X | is compatible with t}le
operations of ® in A" and | X|, and since & operates transitiva?ly in 4%,
as easily seen by the formula s (tg, - --» tarr) = (Stos -+ st, 1), it follows
that ® operates transitively in each cell of | X|:

Proposition: For each complex X, the cells o/' | X| are the orbits of the
group of automorphisms of the geometric realization functor. '

In particular, if f: XY is a morphism of 4°8, HE |X| =Y is
compatible with the operations of ® on | X| and | Y|. Hence |f| transforms
the cells of | X| into cells of |Y].

1.7. We will now construct a basis of open sets for |X]. In order to
do this, let us show that each open set U,_,of|Sk ”—IX | can be extended
to|Sk"X |:let A= (A,) be a family of numbers belongmg to ’Fhe half open.
interval ]0, 1], and indexed by the non degenerate s1mphc?s o of }i ;
for each ¢cX,, let G, be the barycenter of the geometric simplex 43,

and U, the set of points of A" of the form tG,+(1—8H)M, 0§t§lq;
where M runs through the inverse image |8 (U,-) .of U, in 4,
(notations of 1.3); if U, denotes the union of U,_; V\;lth the images
|&] (U,), for all gcZn, it is clear that U, intersects |Sk " X| along Up—1.
and that we have |§]2(U,)= U, for each ge2"; according to 1.5, U, 18
then open in |Sk "X [ - moreover, let ¥V be a subset of U"n, sucl} that t}}e
intersection VA U,_; (resp. the inverse image V,of Vin U, is open in
U,_, (resp. in U,, Yo€27); then ¥V |Sk* * X| (resp- l&‘.‘l ) iommdes
with VAU, _, (resp. with V,); consequently, V is open 1n |S k*X|, and
hence in U,. This means that we have a cocartesian square (Fig. 15)
.U i&l—l(Un—l) - ljn—l

oEZn

nuv, —U
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where vertical arrows are inclusions, the horizontal ones being induced
by the singular simplices &.

We can now do this construction another time, replacing # by n--1
and U,_; by U,. We construct thus a sequence U, (U, CU, .-
of subsets of | X| which have the following property: U, is open in | Sk "X],
and we have U,=|Sk’X|nU,,;. Since |X| is the topological direct
limit of the | S 7X|, the union U,_, of the U, is an open set of | X| which
will be called the extension of width A of U,_, to |X|. This extension is
compatible with intersection: if U, , and V,_; are two open sets of
|SE»1X]|, we have (U, 1V, y)*=U;_1~V,_;. In particular, if U,_,
and V,_, are disjoint, U?_, and V}_, are also disjoint.

1.8. Still using the notation of 1.7, let x be a point of | X| belonging
to a cell of dimension # and index o; let ¢ be a number belonging to
10, 1[, and 0@, the point of A} whose image under the map |&|: 47 —|X] is
x; finally, let V3 be the image in [X| of the set of points of A7 of the
form (1—1£) O,+tM, 0=<t< ¢, where M runs through the boundary A’
of A%. This image V? is obviously an open neighborhood of » in | Sk "X]|.
Moreover, it is clear that the extension Vg% of width 4 of V% to | X]| runs
through a basis of neighborhoods of x in | X| when ¢ and 4 vary.

Proposition: The geometric vealization of a simplicial set is a Hausdorff
space.

Let x and y be distinct points of | X| belonging to cells of dimensions
m and p respectively. If m < p, the extension of width 4 of ¥} to | Sk ?X|
is disjoint from V; for a well chosen ¢. Hence, according to 1.7, we can
choose & so that V2* and V5* are disjoint. Similarly, if m=gp, x and y
belong to |Sk "X|—|Sk™~1X|, which is an open subset of | Sk "X] iso-
morphic to the topological direct sum of the spaces jZ‘, gel™. For a
well chosen ¢, V¢ and V; do not intersect, so that ¥3* and ¥;>* are again
disjoint.

1.9. Now let us use again the notations of 1.7. If U,_; is open in
|Sk*1X|, we will see that U, ; is a deformation retract of the open
subset U, of |Sk™X| constructed in 1.7: let 7,: IX U, be the retracting
deformation of U, onto |&|(U,_,) such that 7,(1—s,tG,+(1— ) M) =
st G,+{(1—st) M (I is the interval [0, 1]). Since I X U, is identified with
the amalgamated sum of IxU,_, and ];l Ix U, under 161 Ix|6|Y(U,_,)
(see 1.7 and 2.1 below), there is a continuous map 7: I X U,—U,,, which
induces on I X U,_, the canonical projection onto U,_;, and on IXU,,
the composition (s, )~ |&| (7,(s, #)). This map# is a retracting de-
formation of U, onto U,_;.

It follows that U,_, is a deformation retract of the extension U\_,
of U,_y to | X| of width A. For since Uj_, is the direct limit of the spaces

= . - =
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U,, v=n—1, we can define a retracting deforrna‘?ion (s, x)~—>p (s, x) of
U:’}_l ‘onto U,_,, by retracting U, onto U, _, w}'ule s runs through ﬂﬁe
interval [§, 1], by retracting U,., onto U, Wh.lle s rllmsl through the
interval [1, 3], by retracting U,.,onto U,y while s¢ 3, EJ cee ‘i

If we apply this construction to the case where Uf,_1 is one oh the
open sets V) of 1.8, we see that in pa'rtxcular each point x of | X| has a
neighborhood-basis consisting of contractible open sets.

2. Kelley Spaces

51. If ¥ and Z are topological spaces, we write CO(Y, Z) for the
set of continuous maps from ¥ to Z, with the compact-open topology
(see for example HirtoN-WvyLIE, Homology theory, p- 286). .

Suppose that ¥ is locally compact.. If, for each map f: X XY —>Z eu;.x
for each xcX,f, denotes the function y~-f(x, y), we know that the
map f~ (fr)wex 15 @ bijection ;

Ton(X XY, Z) =5 Jop (X,Cc0(Y, z))

and hence that the functor X~>X XY is left adjoint to the functor
Z~-CO0(Y,Z) and commutes with direct limits. .

Now if we suppose that X'is a Kelley space (I, 1.5.3), X‘ls the tf)po-
Jogical direct limit of its compact subsets X'; hence X ><'Y is the dlregt
limit in Jog of the Kelley spaces X' xY; since XxY is Hausdorff, it
is a Kelley space, and we have: .

2.4.4. It X is a Kelley space and Y is locally compact, the equality
X x Y= (X XY),, holds (see 1, 1.5.3). » . .

2.1.2. If Y is a Kelley space, CO (Y, Z) is identified with theltopo-
logical inverse limit in Twp of the spaces CO(Y', Z), where Y' runs
through the compact subsets of Y. Suppose ' then .that X, .Y, Z are
Kelley spaces. Then (XxY)y, is the topological direct limit of the
spaces X' XY’ where X’ and ¥’ run through the corppact' subsets of X
and ¥ respectively; we then have the following identifications:

He (X XY)yes Z) = Top (1im X' XY, Z) o~ '1<1—I_I_l- Top (X' XY, Z)
’ X, ¥ X, ¥
~ lim Top (X', CO(Y', Z)) = lim Top (X’,Ll?n,f_ICO(Y , Z))
08 X
~ Top (hm X, CO(Y, 2)) =2 Tor (X, COWY, Z))
X'
o~ #Hz(X, COx. (Y, z))

where C O, (Y, Z) denotes the Kelley space (coy, Z) . a.ssocia’?ed
with the Hausdorff space C O (Y, Z). Thus we have proved the following

proposition:
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Proposition: In the category of Kelley spaces, the Functor X~ (X XY )y,
is left adjoint to the functor Z~—C Oy, (Y, Z). Hence the functor
X (X XY )y, commutes with direct limits.

2.2. If B is a Kelley space, #e/B denotes, as usual, the category
whose objects are the morphisms &§: X —>B of range B of #e;if £: X—+B
and n: Y—>B are two such objects, a morphism from the first to the
second is a morphism «: X—Y¥ of HAe such that £=now. Sometimes, we
say that X is an object over B, instead of saying that &'is an object of
He/B; we also write X instead of £, and we say that £ is the structural
morphism from X to B.

Now let us consider two objects over B: f: B'—B and &: X—B.
The canonical projection of the fibred product (B’;;X)fe onto the

first factor makes (B' §X) 4. an object over B'; we say that the functor
from He/B to He/B’ which associates with each object X over B the
object (X 1>’§B') . is the change of base functor defined by f. For example,
if B reduces to a point, (B’ §X)xe is identified with (B’ xX),,; in this
case, the previous proposition shows that the change of base functor

commutes with direct limits. “For want of a better one”’, we will use
in general the following proposition:

Proposition: Let B be a Kelley space, f: B'—B an object of He|B, 1 the
injection of He into Jop and 8: T —A2/B a diagram which associates
with 106 T the object 8(f): d(t)—B of He/B. Suppose that lim iod is a
Hausdorff space. Then the canowical morphism -

lim (d () X B, ((lim d ()| x B’
Te—r)( B ) ((t—e—; )B )xe
of Heis a homeomorphism.
We know indeed that (d (t)éB')f‘ is the kernel of the pair of

morphisms & (¢) o pry, fo pry: (A (?) x B') ».= B, where pr; and pr; are the
canonical projections of the product onto its factors. Passing to the
direct limit in A, we get the following diagram (Fig. 16):

@0 5B ). () XB).xe

T Yy

lim (d () x B’ i lim(d@®) xB).p —= B
1 (()X )J(e _lin)( ()X )Ji"e B

Y 4

B, = ((lim d (f) X B,
Fig. 16

inclusion
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=
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where all morphisms are the obvious” ones. By 2.4, v 18 invertible., and
we want to show that w is also invertible; since ((lim d ®) ;;B’) . is the
kernel of the pair of morphisms (Qi_n;d(t)) x By, 3B, itis sufficient
to show that j is a closed injection whose point set image is Ker (e, f).

Since v is invertible and since the direct limit of the sets Subord'%nated
to d (¢) is the set subordinated to 1_12 d (t), we see that the set subordinated
to lim (d(f) xB') . is the direct limit of the sets subordinated to
(@ (t)——>>< B')y.. Let L be the direct limit of the sets subordinat,ed to
(@) éB') .+ Then, passing to the limit, the inclusions (d () %xB )f;""
(d(t) xB') s, define an injection of L into lim (d(t) X B')x.; this in-
jectionisthe compositionof the canonicalsurjectionp: L — EE} (d 0] % B') e
with j. Hence pisa bijection, j is an injection, and wis a bijection (direct
limits commute with changes of base in the category of sets.)

Now let F be a closed subset of E_n;(d (t) ;}<B’)f¢. The “point-set”

equalities (d(f) ;’;B’) .= Ker (d() o Py, fopr,) and Im j=Ker (e, B)
imply that the inverse image F’ of j(F) in () xB’) He coincide,s, with
the inverse image F"' of F in (d(f) ;;B')x,e; since F is closed, F"’, and

hence F', are closed for all . This means that j (F) is closed.

3. Exactness Properties
of the Geometric Realization Functor

3.1. Let us go back now to the geometric realization functor: if X

is a complex, | X| is the direct limit of the functor

8y  An] = X ~— 4"

from A/X to Jop (see 11, 1.3). Hence | X| is HAUSDORFF (§ 1.8? andis a
direct limit of Kelley spaces, i.e. 2 Hausdorff quotient of a filrect sum
of Kelley spaces; by (I, 1.5.3), |X| is a Kelley space. We@‘wﬂl use .t.hls
fact to change our definitions slightly: except when it is cHarly specified
that we use the first definition, we will suppose from now on thatt the
domain of the geometric vealization functor is A°E and its vange is the
category He of Kelley spaces. With this convention, we have the fol-
lowing theorem:

Theorem: The geometric vealization functor | ?|: A°£’—>.%f'e ‘commutes
with finite inverse limits and with divects limats; wmoreover, it is conser-
vative (i.e. a morphism o of A°& is invertible if |o] 1s invertible).

It follows in particular from this theorem that the functor | ?]:
A° &> Ae transforms a product into a product, a cartesian square
(resp. cocartesian) into a cartesian square (T€sp. cocartesian), and'that
it commutes with the kernel (resp. the cokernel) of a pair of morphisms.

4 Ergebn. Mathem. Bd. 35, Gabriel and Zisman
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Consider for instance a morphism f: X—Y of A°& and the cartesian
and cocartesian squares of Fig. 17:

xUx>sX x-1 v
pnl f lf /l J;na
X —Y yELyily

Fig. 17

It is clear that f is the composition of the canonical projection of X
onto coker (pr;, pry), with an isomorphism from cokér (pr, pry) onto
ker (in,, in,) and with the canonical monomorphism from ker (iny, in)
into Y. Hence the continuous map |f|: | X| —| Y] is the composition of the
canonical projection of |X| onto coker (|pry, |pra|) (which is identified
with |coker (pry, pry)|) with an isomorphism from coker (|pr|,|pra})
onto ker (|iny|, |iny|) (which is a closed subspace of | Y| that can be identi-
fied with |ker(iny,iny)|), and with the inclusion of ker (|pry|, |pra))
into |Y].

The above remarks show then that the functor |?| also commutes
with the image formation of a morphism. We see easily, for instance,
that the boundary A [x] of A[#] is the image of the morphism 2 of 1.5;
similarly, the boundary A" of the geometric simplex 4" is the image
of || We then find again the isomorphism |A[n]] = 4" of 1.5.

These few remarks show the importance of the theorem given above.
The demonstration of this theorem will fill the rest of paragraph 3; but
first, we have unfortunately to prove some of the corollaries given above.
Let us show first that | ?| commutes with direct limits:

Let ¢ be the inclusion of #e into Fope. We know already thet io]?]
commutes with direct limits; in other words, for each diagram @: T—A4°6,
@,“[ ?|od is identified with 4 {lim d|; since this space is HAUSDORFF,
lim io|?]od is identified with 7 (lim |?]od), by 1, 1.5.3. Consequently,
¢ (lim | ?| od) is identified with ¢ [lim 4|, and lim | ?|od with |lim 4.

—> — — —

3.2. Let f: X—Y be a monomorphism between complexes. We will
show that |f|: | X|—|Y| is a closed injection. Of course, we may restrict
ourselves to the case where f is the inclusion of a subcomplex X of Y
into V. Let then X" be the set of non degenerate n-simplices of ¥ which
do not belong to X. The argument used in II, 3.8 shows that we have
a cocartesian square (Fig. 18),

U Afn], — Sk"'YouX
cEZ'm i "

U An],~%> Sk"YuX

ccx'n
Fig. 18

i
§\

%
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where i and f,_, are inclusions, and ¢ is induced by the singular simplices
G: An],—Y. Hence the square of Fig. 19
4, — |Sk 1y o X]|
gex'n
| |l

U A], — |SE*YvX]|

geX’'®

Fig. 19

is also cocartesian. But |i|, and therefore |f,,| are closed injections.
Passing to the direct limit, we see that

;| X] = |SEPY U X| > lim|SE" Y v X| = |X]

is a closed injection.

3.3. Let us show now that the geometric realization functor commutes
with kernels: let then

i f
N—-X=Y
g

be an exact sequence of A°€, N being a subcomplex of X, a.nd.i the
inclusion. By 3.2, ||: |V |- X | is a closed injection, so that }t is suf-
ficient to show that |¢| induces a surjection of the set subordinated to
|N| onto the set of xe|X| such that |/ (a)==|g|(); but |f|.and |g| are
compatible with the operations of the group of :flutor.norphlsms of |?|
in |X| and | Y], so that the equality || (®)=|g| (@) 1mp¥1es_ that |f| a}nd gl
coincide in the orbit of @, and hence that they coincide also in the
closure of the cell C which contains ® (§1.6). If cc X, is the non-degener-
ate simplex which defines the cell C and a: 4 [nl-—>X is the.associated
singdlar simplex, we see then that | fo&[:]goa| ;o if 7Y, is thfe non
degenerate simplex which defines the cell |f|(C)=|g|(C) and 7 1s the
associated singular simplex, there are epimorphisms $, ¢: A[n) —:>A [m]
of A°& such that foG=Top and goG=Toyq; from the equcality |Zop|=
|70g| and from the fact that | 7| induces an injection of A™into |Y|, it
follows then that || and |g| coincide in the interiors of |4 [n]\, and hence
in the whole of |4 [n]|. Since the equality |p|=|g| clearly implies p=¢,
we have fog=go0, i.e. f(o)=g (o) and e N. It follows that a belongs
to the image of |4].

3.4. In order to prove that | ?| commutes with finite inverse limit‘s,
i+ rermnains to be shown that | ?] commutes with direct products.‘We will
see first that, for each pair (p, ) of natural integers, the canonical map

|41p] xALq)| 14181 x|414]]

4%
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is a homeomorphism. We use for this the presentation of Fig. 20 given
in II, 5.5.

i} A[ny; c]é U Ane > A[p]xA41q].

1zi<i= (PF9) Bl 2> i (*59) (o) [P} > 4lq]

Fig. 20

In this presentation, ¢(¢) runs through the maximal chains of the
ordered set [p] x[¢]; the morphism # is defined by the inclusions of
the chains of ¢ (z) into [$] X [¢]; the morphism # and v"are defined by the
inclusions of the chains ¢(7) ~c(f) into ¢ (Z) and ¢ ().

Recall that a (p, g)-shuffle is defined by two sequences of integers
6y <ly <+ <i, and f; <fp<'+-<j, such that {i1, ..., %, f1,....7}=
{1,2,..., p+¢q}. With each maximal chain ¢(i), we associate a (p, g)-
shuffle in the following way (Fig. 21):

i

(oY
=~
=
o
oW
s
— .
D
Il
N e

Fig. 21

Assign number from 0 to p-¢ to the elements of ¢(7), in an increasing
order. The sequence 14y, ..., 7, is the increasing sequence formed by the
numbers which are at the right end of the ‘“horizontal sements’’; the
sequence 7;, ..., ], is then formed by the remaining integers. Thus, in
the case represented by the figure, we associate with c(z) the (p, g)-
shuffle (1, 3, 4; 2, 5), and with ¢(§) the shuffle (2, 4, 5; 1, 3).

Let us write sy, s;, ..., 5,4, for the components of a point of R?*?,
to, ty, ---y tgsy for those of a point of R™? and wuy, uy, ..., 4,y .4, for
those of a point of A?TICRPT9+2 We write f; for the map from A?+%~
|4[m.;]| to RPF2XRT? which sends u=(uy, %y, ..., %y, ,14) to the
point of R?*2x R*? defined by the cqualities o

So= g, Sy="T;, .., Sp==1U;,, Sp 1 ="Tp4s11

lo=1tg, =1}, ..., L=, Ly q==Up o1y,
It is clear that f; induces a homeomorphism from A4?%¢ onto the

geometric simplex A, ;, of R?*? x R?*2 defined, in the case represented
by the figure, by the relations

O=sp= t0§81§t1§82§ e ts=1.

If we compose f? with the map |4 [, e = |4 [7,(5] | defined by
the inclusion of ¢(f) ~c(j) into ¢(z), we obtain a homeomorphism f; ;

from |4 [n.4~op]| onto 4,4, (;). In the case of the figure, d.jy is

|

i
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defined by the relations

0=Sy=tySh S8l <= s3=5="1l=1
and 4,;, " 4, by the relations

O=Sy=L <5 =Hh=sy=S=h=Ss,=f=1.

In that case, f; ; is the map (ug, #;, %3, Ug) (g, Uy, Uy, Uy, Ug; Ug, Uy,
Uy, Us).
To sum up, we obtain a commutative diagram (Fig. 22)

| n
L[4 [y ] o LA o] £ 14 T8 A 120

ll_lf{,; lufs
o
U (4o dep) —_v—? UA
Fig. 22

where the maps #’ and v’ are defined by the inclusion of 4,;,~4, (; into
A, and 4. The inclusion of 4., into AP X ATC RP T2 X R allow us
to identify coker (w’, v') with 47 X A% Since LLf; ; and L1 f; are homeo-
morphisms, and since the first row of the diagram is exact, the diagram
induces an isomorphism from |A4[p]xA4[q]| onto A4?xA4?; this iso-
morphism obviously coincides with the canonical map.

3.5. Now let X and Y be two arbitrary complexes. We know that
X and Y are identified with the direct limits of the functors dy: A/ X —A°€
and dy: A]Y —-A°& (see 11, 1.1). From this we deduce, as in II, 7.5 the
following sequence of isomorphisms:

1 V] = [l e o) x i dy )] = [l e () Xy (B)
o B o, B

e li_deX (@) xdy (B)] = l_lfg (14 ()] x|dy (B)])
o, f B
5 {lim|dx (o] x iy B, = (1] <[ Ve
This time, we used the fact that the product commutes with direct
limits in the category of Kelley spaces (2.12). We have to see now that
by putting the isomorphisms desribed above, one at the end of the other,
we get the canonical map from | X x Y| into (|X| x|Y]).. This is easy.

3.6. Finally, let us show that the geometric realization functor is
conservative: let f: X —Y be a morphism of 4°& which is not invertible.
Let us show that |/| is not invertible.

If / is a monomorphism, Y contains a non-degenerate simplex ¢
which is not the image of a simplex of X. Since the orbits of the group
of automorphisms of |?| in |Y| are indexed by the non-degenerate
simplices, the orbit of index o cannot belong to the image of 7.
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If f is not a monomorphism, let us consider the equivalence relation
defined by f: we consider then the subcomplex X % X of X xX whose

g-simplices (x, y) are such that 7, (x) =7,(»)- Then X >1§X contains the

diagonal subcomplex Dy of X x X formed by all simplices (%, x); but
X >1§X is different from Dy. Since the geometric realization functor

commutes with finite inverse limits, X XX is identified with the equiva-
lence relation ([X [|§/<!|X [) . defined by |f| and, by above, this relation

is different from the diagonal of (|X| X |X|)s., which is identified with
| Dy| . Hence the canonical map from | X| into the quotient [ X|/(|X l % | X]) e

is not injective; since |f| factors through this quotient, |f| is not in-
jective.

3.7. Note that | ?| does not necessarly commute with infinite inverse
limits: for example, for each cardinal number ¢, the image of the con-
tinuous map from |4 [1]9] into |4 [1]]° is the subset of |A[1]|° formed by
all points whose components take only a finite number of different
values. ‘

4. Geometric Realization of a Locally Ttrivial Morphism

4.1. We say that a morphism |: Y —> X of A°& is trivial if there exists
a complex F and an isomorphism a: X xF = Y such that pr,=/foa,
where pr; is the canonical projection of X X F onto X. We say then that
F, which is isomorphic to the complex Fi(x)=41[0] ~X;Y for each singular

simplex #%: A[0]—X, is “the” fibre of f. We say that a morphism f:

YV > X of A°E& is locally trivial if, for each singular simplex 6: 4 [n] X,

the projection of the fibred product A[n] XY onto 4[n] is trivial. The
o f

fibre of this projection is then a complex Z,;a; when all fibres F, are iso-
morphic to the same complex F, we say that f is locally trivial with
fibre F; this happens, for instance, when X is connected (II, 7.3).

Similarly, we say that a morphism u: L—K of Kelley spaces s
trivial, with fibre T, if there is an isomorphism f: (KX T)y. = L such
that pr;—uof, where pr; always denotes the canonical projection of a
product onto its first factor. We say that u is locally trivial if each
point x of K has an open neighborhood U such' that u induces a trivial
morphism from u*(U) into U (these open subsets are Kelley spaces,
by I, 1.5.3). If the fibres of there trivial morphisms are all isomorphic
to the same (KELLEY) space T, we say that w is locally trivial with
fibre T. In the present context, the products we consider are those of the
category He, so that the definition given here does not respect the usual
terminology.

4. Geometric Realization of a 1OCally LTIVIdi iiULpiisus L.

4.2. Theovem: The geomelyic realization fumctor |?|: A°€6—AHe
transforms a locally trivial morphism with fibre F into a locally trivial
morphism with fibre |Fl.

Letf: Y—>Xbea locally trivial morphism with fibre F of 4°&, x a
point of |X |, m the dimension, and ¢ the index of the cell of | X| which
contains x (the notations are those of 1.7 and 1.8). Let U, be the cell
of x and U (resp. U,) be the extension of U, to |X| (resp. to |SE"X |
n=m) of constant width 1 (with the notations of 1.8, U is then the open
neighborhood V3 of ). We will see that |f| induces a trivial morphism
with fibre |F| from |f]*(U) to . We must then construct an isomorphism
a: (UX|F]) .~/ (U) such that pr;=qoa, where ¢: I (U)—~TU is
the morphism induced by If]-

Since U is the direct limit of the U,, since (U x|F|)x. is the direct
limit of the (U, X|F|)x. by 21, and since |f|™2(U) is the direct limit of
the |/|2(U,) by 22. (|f|(U) and |f|*(U,) are identified with the fibred
products (U&ﬁ\Yl))ﬁ and (Uné‘\Yl)Jﬁ, it is sufficient to construct a
direct system of isomorphisms o, (U, <|F o117 (U) such that
pry=4q,°%,, where g,: /() > T, is the morphism induced by \f] -

4.2.1. The construction of a,, is quite simple, since, by hypothesi§,
there is an isomorphism @ from 4 [m] xF onto A[m] X Y which 1s

compatible with canonical projections of these complexes onto Alm].
Since |&| induces an isomorphism from the interior of |4 [m]| onto
U, (U, x|F|)x.and |f|+(U,,) are identified with open sets (?f |A[m] ><F |
and |4 [m] ~><,Y§, by 3.1. We can then take for a,, the isomorphism
induced by |].

Suppose now that we have «,_,, and let us construct &, (n>m).

In order to do this, consider the following commutative diagram of
A= (Fig. 23).

Lu,x|Y] — |f]()
ALY [T (0
U o, —_—
gEXn i
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The bottom square is that of 1.7 (U, is the space |#]|(U,-1)). The top
square is obtained from the bottom one by the change of base If]:
|Y|—|X]|. By 1.7, the bottom square is cocartesian; by 2.2 the same
holds for the top one.

4.2.2. On the other hand, thei somorphism &, _;: (U,_1 X|F|) . ==
|f|2(U,-,) induces, by a change of base, isomorphisms «,: U, x|F|—
Ual§l|Y! which are compatible with the projections-onto U, (see 2.1.1).
Similarly, since f is locally trivial, there are isomorphisms B A[n],xF =%
An], 3{<.Y, which are compatible with the projections onto Aln],.

Since the geometric realization functor commutes with products and
fibred products, |B,| induces, by restriction, isomorphisms

vo: U, x|F| 2 U, x| X| and &, U,x|F| = U,xY.
x| Ix|

By the lemma below, the automorphism 67 oa,, which is compatible
with the canonical projection of U, x|F| onto U,, can be extended to an
automorphism ¥, of U,X|F|, which is compatible with the projection
onto U,. It follows that we have a commutative diagram (Fig. 24):

U.UUX[FI <—Lli],,><{ﬂ _— (Un—lxlFl)fe

u’i’d°‘l’al Llual “n-li
U, x|Y|«—LUx|Y|— [|f|*(U.-
PR LA e AU
Fig. 24

where the horizontal arrows are obvious; moreover, this diagram is
compatible with the canonical projections onto the bases. The ‘“vertical”
isomorphisms induce an isomorphism e, from the amalgamated sum
(U, %|F|), of the upper part of the diagram onto the amalgamated
sum |f|(U,) =% (U"l§f<l| Y]). of the lower part (see 2.2). This completes

the construction of «,,.

4.2.3. Lemma: Let A and F be Kelley spaces, B be a retract of A and
@ an automorphism of (B X F),., with pry=Dpr;o @. Then ¢ can be extended
to an automorphism W of (A X F),, such that pry=pr;o Y.

The map ¢ is of the form (x, )~ (¥, & (%)-y), where @ is a map
from B to Jo#(F, F) satisfying the following conditions:

a) @ (x) is invertible for all xeB.

b) @ is a continuous map from B to € O (F, F) (see 2.1.2).

c) The map @*: x~>® (%) from B to C O(F, F) is continuous
(the inverse of ¢ is the continuous map (%, y) > (x, P (x)-y). 1E 7
is a retraction of A onto B, it is clear that the map ¥= @ o7 also satisfies
a), b), ¢) “mutatis mutandis”. We can then write ¥ (%, ¥)= (x, ¥(x)¥).
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Chapter Four

The Homotopic Category

1. Homotopies

1.1. Let Yand Z be simplicial sets, and let #om (Y, Z) be the complex
defined in 1I, 2.5.3. A vertex of Hem(Y,Z) is a morphism f: Y —Z. If
f and g are two vertices, a 1-simplex 4 of Hom (Y, Z) such that &, h: 7
and d, h=g is a morphism h: AT1]x Y —>Z which makes the following

triangles commutative (Fig. 25).

A0 X Y=Y A[0]x Y=Y
A(a{)xl‘f/ \fA A(aﬁ)xy \zs:4
k
ANIXY > Z AMXY <> Z
Fig. 25

We will say simply that % is a homotopy conmecting f with g .

More generally, let us use the complex I, of 11, 2.5.1 and II, 5.2.1.
We will say that a morphism h: I,xY—>Z is a composed homotopy
connecting f with g when the triangles of Fig. 26

A0]x Y=Y A0 x Y=Y
g XY f eaxY 4
7N v N
IXY— Z I,xY—Z2
Fig. 26

are commutative.

Finally, we will say, that two morphisms f and g from Y to Z are
homotopic if there is an integer # and a composed I.lomotopy of l'ength 7
connecting f with g. The homotopy relation is obv1ousl.y an eq}nval(.ar.lce
relation. Take in particular Y=24 [0]: #om(A[0],Z) is then identified
with Z and the homotopy equivalence classes are simply the conmected
components of Z (see 11, 7.3); the set of these classes is deno.ted by I, Z.
Going back to the general case, it is clear that two morphisms fand g
from Y to Z are homotopic if and only if they belong to the same con-
nected component of #om X, Y).

1.2. An example: Order the set {0, 1, 2} by the relation defined by the
inequalities 0=1=2. Let 7, be the increasing map from {0, 1, 2} X [#]



58 Chapter IV: The Homotopic Category

to [#] defined by the following formulas:
(m (n) @)

ld —_——
et (n—1) |(n—1) %)
i
i
1 G+D) G+ 16
i 4 {4) 0]
i1 (1) () (%)
i i
i
i
1 1) (%) (7)
I(O) (3) 0)
—_———

Fig. 27

7 (0, f) =7, 71, ) =7 i i, A1, f)=1, it =i and 7,(2,f)=i

. n ’ =Y 'n s - Y == d 71’ (2 )=1’ i
the Fig. 27, we t i ot D o the valk -
e ri).g wrote beside each point of {0, 1, 2} X [2] the value taken

By I1.5, the complex associated wi
‘ y 115, 1 with the ordered set {0, 1, 2} X [#] is
}d«zﬁzﬁed with I 2><1.1 [#]. Hence the map 7} induces i morp}hisgn]h:
Czn [:L] —A [n.]; th.ls morphism is a composed homotopy of length 2
connecting the identity of 4[] with the ““projection of 4 [n] onto th
i-th vertex”. ’
g Z11\1'0te h.ere that”if ’L=|='VI/, there is no homotopy connecting the identity
[#] with the ““projection of A[n] onto the i-th vertex”’.

o 1}E 3 If Yand Z are two complexes, we will write temporarily I, (Y, Z)
r the s.et of equivalence classes of 4°&(Y, Z) under homotopy Hence
this set is also identified with the set of connected componenté of the
complex #om (Y, Z) (1.1). We will see that the composition maps

AEX,Y)xA°€(Y,Z) > A°6 (X, Z)
of A°& are compatible with the homotopy relation:

In order to do this, let us associate with each morphism 4: A[n] %

XY the morphism %: 4[n]

; : : X X —>A[n] xY whose components are
tﬁ: canonllfal pZOJectlon of A[n]xX onto 4[n] on the oné) hand, and
morphism i ’
complexgs on the other. We can then defined a morphism of

vy vzt Hom(X, Y) X Hom (Y, Z2)—>Hom (X, Z)

N
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by sending the pair (&, k) belonging to Hom (X, Y), % Hom (Y, Z), to the
morphism Z: A[n] « X —Z defined by the equation [=Fkoh. In other
words,  is the composition

A[n]xX—"»Amxyiz.
The map induced by ¥x,v,z O the O-simplices is simply the composition
map. On the other hand, since the set I1,(A X B) of connected compo-
nents of a product is identified with the product II,(A) xIIy(B), vx,v,z

induces a map
e v 72 T, V)Y, 2) > T (X. 2)
on the connected components; this map is obviously compatible with

the canonical surjection from the O-simplices onto the set of connected
components.

The maps Uy, v,z I the composition maps of a category whose
objectsare the simplicial sets, and whose morphisms are thesets IT(X,Y).
This category will be called the category of complexes modulo homotopy,
and will be written J°F. We will call canonical functor from A°& to
A€ the functor which induces the identity on the set of objects and the
canonical maps from 4°& (X, Y) to I, (X, Y) on the sets of morphisms.

1.4. Proposition: The canonical functor from A°E to A°E commutes
with finite sums and products.

Let (Vi);er bE 2 finite family of complexes and let pr; be the pro-
jection of the product J;TIY,; onto the i-th factor. For each integer #,
the pr; induce a bijection

p,: 4 éa(A m] XX, EISC) "”ing E(An]xX,Y)
and hence an isomorphism

w: Hom (X, igIYi) -~ iglv}fvm X, 7).

Since the functor Il commutes with finite products, the set of
connected of the product T Hom (X, Y)) is identified with the product
of the ITy(Heom (X, Y)) =11, (X, Yi). Consequently, v induces on the
connected components the isomorphism we looked for:

I (p): I, (X: J;[IYA = };‘IHO(X’ Y).

For finite sums, the argument is similar.

1.5. Consider now three complexes X, YV and Z. By 11, 2.5.3, we
have, for each integer #, canonical bijections

gar A°6 (A XX XY, 2) s & (A[n) x X, #om(Y, 2))
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and hence functor isomorphisms

D: Hom(X XY, 2Z) = Hom (X, Hom (Y, Z))
and

ITy(®) = IT,(X XY, Z) I, (X, #om (Y, Z)).

This last isomorphism implies that if f and g are two homotopic
morphisms from Z to Z’, then #o» (Y, f) and #o» (Y, g) are homotopic;
indeed it is sufficient to check that I1,(X, #om(Y,[)) and II,(X,
Hom (Y, g)) coincide for all X; this follows obviously from the equality
I X XY, )=II,(X XY, g). Similarly, we could see that #om(f', Z)
and Hom(g',Z) are homotopic when f' and g’ are two homotopic
morphisms from Y to Y’. In other words, the functor

Hom: (4°6)° x{4°E)—~A°&
defines, *‘ by passing to the quotient’, a functor
(APEY X (M°E)—~A°E

which will still be written #Hom, by an extension of notation.

2. Anodyne Extensions

From now on, for each natural integer »=1 and each natural integer
k=n, we will write A*[#] for the subcomplex of A [n] such that A*[n],is
formed by the increasing maps f: [p]—[#] whose image does not contain
the set [n]— {£}. The geometric realization of the complex A*[n] is the
union of #—1 faces of the geometric simplex A", namely those which
contain the k-th vertex of A”. That is why we will say that A*[x] is the
k-th horn of A [n].

2.1. A set 4 of monomorphisms of A°& is called saturated if it satisfies
the following four conditions: ’

(i) All isomorphisms belong to 4.
(ii) If the commutative square
X —=Y
£ 17
X —Y
is cocartesian and if £ belongs to 4, then 7 belongs to 4 (i.e. 4 is stable
under push out).
(iii) If there exists a commutative diagram
X 5Y 55X

o,k

X SY SX
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such that vou=Id X, vou'=1d X', and if 7 belongs to A, then &
belongs to A (each retract of a morphism of 4 belongs to 4).

(iv) 4 is stable under countable compositions and arbitrary dir'ect
sums: if f;1 X;—>X;1 (=1,2, ...) is a morphism Qf A, then iny:
X, —~limX;isa morphism of 4; if (g,: X ,—Y,) is a family of morphisms
of 4, tilen Ug,: UX,~UY,isamorphism of 4.

The intersection of all saturated sets containing a given set of mono-
morphisms B, is saturated; we will call it the saturated set generated by B.
In what follows, B will be one of the sets B,, B,, B; defined below:

B, is the set of all indusions of A*[n] into 4 [n], n, keN, n21, k=n.

B, is the set of all inclusions of AT1]xA[n]u{e}x4[x] into
A1) x4 [n], neN, e=0,12 (A[n] is the boundary of A[x], 11, 3.6).

B, is the set of all indusions of AM]xYo{e} XX into A[1]xX
(X runs through the simplicial sets, ¥ through the subcomplexes of X,
and ¢ through the numbers 0 and 1).

Theovem: The saturated sets generated by B,, B,, and Bj coincide.

Let A,, A, and 4, be the saturated sets generated respectively by
B,, B, and B;. We will show successively that A,C4;, A3C4, and
A CAs.

2.1.1. Suppose for instance that e=1, and let us show that the
inclusion of A[1]xA4[n]u{e} xA[n] into A[1] >§A [#] belongs to Ay
let ¢(i): [n+-1]—[1]1x[x] be the strict increasing map which takes
the values (0,7) and (1,1), and let C;: An+1]—=4[1] >§A [#] be the
morphism associated with ¢(i) by the functor C: 0r—A°& of 11, 5.1.
On the other hand, let D_; be the complex AN x4 ] ofe} ><4 [n],
and let D, be the union of D_, with the images of Cy, Cy, .-, C; (0§1§n).
In the case, for instance, where n=1, the D; have the following geo-
metric realizations (Fig. 28)

(1.0) (1.1) (1.9) (11 (1.0) 1.3)

(0.0) (0.3) (0.0) (0.3) (0.0) 0.1
|D_4| | Dy| 1D

Fig. 28

1 By an extension of notation {0} and {1} denote respectively the images
of A[0] under the morphisms A(83) and A4 (&§) from A[0]into A[1].
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In the general case, D, is simply A4[1]xA[n] (see for example
IT, 5.5), so that it is sufficient to prove that the inclusions of D;_, into
D, belong to 4,(0=7=<#). This follows from condition (ii) above, and
from the fact that the inverse image of D;_, in A [#] under the morphism
C,is A***[n-+1]. Hence we have a cocartesian square (Fig. 29)

Ai-i—l [n‘*"'l]_u—’Dz_l
}
An+1] 5 D;

Fig. 29

where # and v are induced by C;, the vertical arrows being inclusions.

2.1.2. Let us show now that, for each complex X and each sub-
complex Y, the indusion of 4[1]xY u{e} xX into A4[1] XX belongs
to 4,. As we have noticed in III, 3.2, the argument used in II, 3.8
shows that, if 2" is the set of non-degenerate #n-simplices of X which
do not belong to Y, the square of Fig. 30

U A[n],— YUSE" X

oEZ' N

|

U A[n],— YoSk"X

egx'n
Fig. 30

is cocartesian. Consider then the commutative square of Fig. 31
A (4] X An],o{ey xA[n],) — AM]x(YUSE" X)) U {e} x X
} |
aeJB:l'n(A [1] x4 [#],) — AMIX(YuSEk"X)o{e xX

Fig. 31

where vertical arrows are natural indusions, where 4 [#] is the boundary
of A[n], and where horizontal arrows are induced by the singular
simplices §: A [#]—>X. By condition (iv) of 2.1, the left vertical arrow
belongs to 4,. By condition (ii), in order to complete the proof, it is
sufficient to show that the square in cocartesian; for then the right
vertical arrow belongs to 4,, and hence also the inclusion of

AMIXY u{ed X X=A[1] X (YUSE1X) U (e X X)

into A[1] ><X=1i_m>(A ] X(YUSk"X)o{e} xX) (condition iv of 2.1).

s

.
=
.
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In order to do this, let us consider the commutative diagram (Fig. 32)

{e} xX <—{e}><(YuSk"“1X)—>A[1]x(YuSk”‘lX)
aell"l'n{g} xAnly aeLzl'n{e} x4 [l — Gel-zl,,,A [1]x 4 7],

U @xAml— L gxAml, — U Al]xAD],

Fig. 32

where all morphisms are the obvious ones.
Tt is clear that the amalgamated sums of the rows of this diagram are
respectively 4[1] x (Y uSk "1 X) v {e} X X,

GEJ-EL”(A [1]x A[n],o{et xA[n],), and UE%W(A [1]xA4[n]);

similarly, the amalgamated sums of the columns are respectively
(X, {x(YuSk"X) and AN]X(Y o SEk"X). Moreover, the
amalgamated sum of the amalgamated sums of the columns is A1) x
(YUSE"X)u{e} xX. Since we can compute the direct limit of the
diagram ‘‘row by row’’ or ‘‘column by column”, A1 x(YuSk"X)u
{e} x X is also the amalgamated sum of . eJ_)l_WA [1] x4 [n], and A[1] X

(YUSE"1X)u{e} xX under ae]:l‘:,"(A (1] x A[n],v{e} x4 [n],). Q.ED.

2.1.3. It remains to be seen that the inclusions AF[n]—A4[n] belong
to Ag. Let u? be the map i~ (1, 7) from [n] to [1] x[#] and vZ: (1] %
[n]—[n] be the retraction of u} such that w;(1,1) =71, ok (0, 7) :zklf
i<k and v5(0,{)=Fk if 1=k. We see easily that the morphism C (u.,,):
An]—A[1] xA[n], associated with u® by the functor C of _II..S, in-
duces a morphism from A*[x] to 4[1] x A*[n] v {0} x4 [n]. Slrn;larly,
C(wh): A[1]xA[n]—A[xn] induces a morphism from A [1] X4 [n]u
{0} x4 [n] to A*[n] if k<<n. We then have a commutative diagram
(Fig. 33) .

A [n] —— An] x A*n] o {0} x4 [n] —— A7 [#]
d C(f
A S92 am)xAm] e A

Fig. 33

so that for k< n, the inclusion of A*[n] into 4[xn] belongs to 43 by
condition (iii) of 2.1. .

For k=n (and more generally for 2> 0), we can use in a similar way
the map w: i~(0,4) and retraction #; of w! such that #(0,1)=1,
£(,9)=rkifi<kand 4;,(1,0)=7 il i= k.
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2.1.4. Definition: We call anodyne extension any monomorphism of
A° & which belongs to the saturated set generated by B;, B, or B;.

2.2. Proposition: If K is a subcomplex of L such that the inclusion of K
is an anodyne extension and if Y is a subcomplex of X, then the inclusion

KxXGLxY—-LxX -
s an anodyne extension.

Let A be the set of monomorphisms #: K'—L’ of A°& such that the

morphism
K'XY

K'xX UL XxY—>LxX

induced by # is an anodyne extension. It is clear that 4 is a saturated

set (2.1), so that it is sufficient to check that 4 contains Bj: let then Y’

be a subcomplex of X’ andlet K=A4[1]xY'u{e} x X and L=A[1] x X.
We then have

EXXOLXxY=AU]x(Y'xXuX' xXY)o{e} X X' xX
and
LxX=4A[1]xX'xX,

so that the inclusion of K x X UL X Y into L X X belongs to B; and that
the inclusion of K into L belongs to 4.

2.3. By an extension of the definition, we will also call anodyne
extension the image on an anodyne extension in the category A°& of
complexes modulo homotopy.

Theorem: The set of anodyne extensions of the category A°& of com-
plexes modulo homotopy admits a calculus of left fractions (I, 2.2).

Let A be the set of anodyne extensions of 4°& and 4 the image of 4
in A°€. We must vertify that A satisfies conditions a), b), ¢} and d)
of I, 2.2: conditions a) and b) of 2.2 follow from conditions (i) and (iv) of
2.1; similarly, c) follows from (ii); it remains then to prove d).

Let s: X’ — X be an anodyne extension of 4°€ and f, g: X 32 Y two
morphisms of 4°& such that fos is homotopic to gos. We must prove
the existence of an anodyne extension ¢: Y —Y' of 4°& such that tof
is homotopic to ¢og: let A': I, xX'—Y be a composed homotopy con-
necting fos with gos (1.1) and let {0} and {»} denote the images of 4[0]
under the morphisms &, and ¢, from A4[0] to I,. If we identify X’ to a
subcomplex of X by means of s, the inclusion of {0} x X v {n} x X uI, X X’
into I, x X is an anodyne extension by 2.2. On the other hand, there is a
morphism % from {0} XX u{n} XX I, xX’' to Y which induces f on

s

.
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X={0} xX, g on X=2{n} XX, and &’ on I, xX". We then have a diagram

Fig.
(Fig- 34) {O}XXU{W}XXUIHXX’—LY

lincl.
I, xX

Fig. 34

Let Y’ be the amalgamated sum of this diagram, and ¢ and /4 the
canonical morphisms from Y and I, XX to the amalgamated sum Y’.
By (ii) 2.1, ¢ is an anodyne extension; since % is a composed homotopy
connecting tof with fog, the theorem is proved.

2.3.1. Definition: We will call homotopic category, the category of
fractions of A°€ for the set of amodyne extensions. This category will be
denoted by .

By proposition I, 3.1, the canonical functor Pg: A° & - commutes
with finite direct limits, and hence in particular with finite direct sums.
Proposition 1.4 implies that finite direct sums exist in # and can be
constructed as in A°&. We will see later that the same holds for direct
products.

3. Kan Complexes

In this paragraph, we intend to show that the canonical functor
P;: A°8—>2# has a right adjoint; by I, 4.1, we will then be in the
situation of proposition I, 1.3. According to I, 4.1, it is sufficient to
associate with each complex X an anodyne extension a(X): X—>Xg
such that Xy is left closed for A. In order to do this, we will study first
a certain class of complexes which are left closed for 4.

3.1. Definition: A morphism p: E —>B of A°& is a fibvation in the
sense of Kax (or simply a fibration) if, for each anodyne extension ¢:
K —>L and each commutative square

K-E
(+) b

L— B
there is a morphism w: L—>E of 4°& such that u=wot and v=pow.
A simplicial set X is a KaN complex if the unique morphism X —4[0]
is a fibration in the sense of KAN.

Let p: E —> B be a morphism of 4°# and P the set of monomorphisms
i+ K—>L of A°& such that, for each commutative square of the form (%),
there is a morphism w satisfying the equalities u=wot and c=pow.
It is clear that P is saturated in the sense of 2.1. In order to prove that $
is a fibration, it will then be sufficient to prove that P contains one of the
sets By, B, or By of 2.1.

5 Ergebn., Mathem, Bd. 35, Gabriel and Zisman
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3.1.1. The following properties of fibrations follow directly from the
definitions:

(i bis) Every isomorphism is a fibration in the sense of KAN.
(i bis) If the commutative square

E'—E
v l?
B'— B
is cartesian and if p is a fibration, then ' is a fibration.
(iii bis) If there is a commutative diagram

ESE-SE

ol 7l 9

BA B 5B
such that vou=1Id E, v'ou’=1d B, and if ' is a fibration in the sense
of KAN, then p is a fibration.

(iv bis) consider an infinite countable sequence
L X x, B x, B X,
such that all p, are fibrations. Then the canonical projection p: mX,—X,
—

- . 3 3 . . . . "
is a fibration; if (p,: E,—> B,) is a family of fibrations, the same holds
for T;lj)a: 1;[ E,—11B,.
o
Note in particular that the product X XY of two Kan complexes is
a Kan complex.

3.1.2. Here are other useful properties of fibrations in the sense
of KAN:

If p: E— B is a fibration, #om (X, p): Hom(X, E)—~>Hom(X, B) is
a fibration for each simplicial set X.

Consider a commutative square (Fig. 35)

K> #om(X, E)
il Hom(X, p)
L2 #om(X, B)

Fig. 35

where ¢ is an anodyne extension. We have seen (II, 2.5.3) that the functor
? XX is left adjoint to the functor #em (X, ?): then the morphisms
w': KxX—E and v': L xX — B associated with # and » by the functor
isomorphism

A°¢ (P xX, ) x A°€ (2, Hom (X, 7))

3. Kan Complexes 67

make the following square commutative
KExX*E
ixXl , Ir
LxX~— B
Since 7 is an anodyne extension by 2.2, there isa morphism w’: L XX —E
such thatu'=w'o (i x X)andv'=po w'. The morphism w: L —#om (X, E)
associated with @’ is then such that u=wo1 and v= Heom (X, p)ow.

If we apply our proposition to the case where B=A4[0], #om (X, B)
is identified with A4[0]: hence, #om (X, E) is a Kan complex when &
is a Kan complex.

3.4.3. Ifj: Y >X1sa monomorphism of A°& and E is a Kan complex,
Hom (i, E): Hom(X, E) —>Hom (Y, E) is a fibration.

Consider a commutative square (Fig. 36)

K- #Hom(X, E)

il lyfom(i, E)
L2 #om (Y, E)
Fig. 36

where i is an anodyne extension. The morphisms #': KxXX—~E a.nd
o' L XY —E, canonically associated with # and v, make the following

square commutative:
KxY—KxX

ixYl lu’
LxY— E

KxY

and induce a morphism ¢: (L xY) L1 (K xX)—E. Ifwe identilf(y {’{ and Y
X

with subcomplexes of L and X by means of iand §, (LxY) LI (KXY)
is simply LxYuKxX. By 2.2, ¢ can be extended to a morphism
w': L x X —E; the morphism w: L —#om (X, E), canonically associated
with @', is then such that u=wo7 and v=Hom(i, E)ow.

3.1.4. Proposition: If i1 K —L is an anodyne extension and X a
Kan complex, the map A°E (i, X): A°E(L, X)>APE(K, X)ts a bijection
(with the terminology of 1, 4, a Kan complex is then left closed for the
set A of anodyne extensions of A°&).

It follows from the definitions that A°& (i, X) is surjective. The
proposition follows then from I, 4.1.1.

3.1.5. Corollary: If1: K—L is an anodyne extension and X is a Kan
complex, the morphism Hom(i, X): Hom(L, X)—Hom(K, X) 15 a
homotopy equivalence [in other words, the image of #om (i, X) in 4°6 is
invertible].

5*
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We must show that A°€ (T, #om (i, X)) is a bijection for each com-
plex T. By 1.6 A°& (T, #Hom (i, X)) is simply A°& (T x4, X), whichis a
bijection from A°& (T x L, X) onto A°& (T x K, X) by 3.1.4 and 2.2.

3.2. Now we are able to prove the main theorem of this paragraph.

Theorem: The canonical functor Py: A°E — 3 has a right adjoint.

By 3.1.4 and I, 4.1, it is sufficient to show that,‘fqr each complex X
there is an anodyne extension a(X): X —X, such that Xy is a Kan’
complex: in order to do this, let us call X-4o7~ any triple y= (u, &, u)
formed by an integer #>>1, an integer & such that 0=<k=<# an(;l a

morphism u: A*[n]—>X; we also write #(y), k(y) and u (;) for the
components of the triple y. We then have a diagram (Fig. 37)

LA [n ()]

v(X)i

LA 0s ()]

Fig. 37

%(X)
—_

X

where y runs through the X-horns, where the components of «(X) are
the morphisms #(y), and where v{X) is induced by the inclusions of
A 5 ()] into A [n(y)]. Since v(X) is obviously an anodyne extension
the same holds for the canonical morphism w (X) from X to the amal—,
gamated sum X, of the above diagram. Let us write X5 =Xy, ...,
Kinr1y=X+1 and w, (X)=w (X,); we then have an infinite sequence of
anodyne extensions

X

w{X) w1 (X) s (X
X(1) : X(z) s (X) X(s)-_>-.._

I say now that the direct limit X, of the X, is a Kan complex
apd that the canonical morphism ¢(X): X —X ,, is an anodyne exten-
sion: indeed, the last statement follows from 2.1 (iv); in order to prove
the first one, consider a morphism f: A*[n]—>X . Since A*[n] is a
complex of finite type (I, 3.4), f factors through X,), when # is large
enough. It follows then from the construction of X, ; that the morphism
g: A*[n] —X;, induced by /, extends to a morphism 4: A[n]—+X ;
this proves the theorem. e

3.2.1. Let us now associate with each complex X a Kan complex X
and an anodyne extension «(X): X —X, (this is possible by 3.2). By
1, 4, the map f~~— (P;a(X))(P;/) is a bijection

A°E (T, Xg) > (T, K)

.for each complex T. Moreover, if g: X —Y is a morphism of 5, there
is one and only one morphism gx : Xx —Yy of A°& such that (P;a(Y))og=
P;(gxoa(X)). Also, the map a: X ~-a(X) is an adjunction morphism

.

%xm L
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from the canonical functor Py to the functor X ~—Xy (I, 4.3). Finally,
we can state the following theorem:

Theovem: The functor X~ Xy is an equivalence from S onto the full
subcategory of A°E formed by all Kan complexes.

3.2.2. The canonical functor P;: A°E@—~H commutes with finite
products: let(X;) be a finite family of complexes; by 3.1.1 (iv bis), the
product TJXiK is a Kan complex; by 2.2, the morphism T:I alX)):
UXi—H:[XiK is an anodyne extension. By 3.2.1 and 1.4, we then have

#(T, N X)=A8(T,1] X =T I8 (T, X, =T # (T, X) QED.

3.2.3. Let X, Y,Z be three complexes. By 1.5, we have functor
isomorphisms

KX XY, 2)=FEX XY, Z) =& (X, #om(Y, Zy)) -

By 3.2.1 and 3.1.2, we have
APE(X, Hom(Y, Zy) )= (X, Hom(Y, Zx)) -

Moreover, using 3.1.5, we see that, passing to the quotient, the
functor (Y, Z)~sHom(Y, Zg) from (A°8)° X to A°€ induces a
functor #° XA to #, for which we will use the same notations. Hence
the right adjoint to the functor X ~>X XY from 3 to S is the functor

Zs oom (Y, Zg).
4. Pointed Complexes

If we want to use the results which will be proved in Chapter V,
we are forced now to restate most of the statements of the beginning
of this chapter in termes of pointed complexes. Since the proofs can be
““copied” word for word, we will often omit them.

4.1. A pointed complex is a pair (X, %,) formed by a simplicial set X
and a O-simplex %, of X; then X is called the underlying complex and
x, the base point; we will often write X instead of (X, x,): for instance,
if (X, x,) and (Y, y,) are two pointed complexes, we will write .4°€(X,Y)
for the subclass of 4°€ (X, Y) formed by the morphisms f such that
Fx) =50 If (X, x0), (Y, ) and (Z, z,) are three pointed complexes
and if f and g are elements of .4°& (X, Y) and .4°€ (Y, Z) respectively,
it is clear that the composition gof belongs to .4°& (X, Z); this com-
position law enables us to define the category A°E of pointed complexes:
its objects are the pointed complexes, and its set of morphisms are the
sets . A°E (X, Y) (see 11, 7.4).

When we will speak about the pointed complex 4 [1] it will be tacitly
assumed that the base point is the map from [0} to [1] which sends 0
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to 0; similarly, we will still write A[1] for the pointed complex whose
underlying complex is the boundary of 4[1], and which has the same
base point as 4 [1]. Finally, we will make the circle £ a pointed complex
by choosing the unique vertex of this complex as its base point (see
11, 2.5.2).

4.1.1. Tt is clear that each small diagram of .A°& has a direct and an
inverse limit. Let us say simply that the direct product of two pointed
complexes (X, %,) and (Y, y,) has the product X XY as its underlying
complex, and the pair (%o, y,) as its base point. Similarly the complex
underlying to the direct sum XvY of (X, x,) and (Y, ) is the amal-
gamated sum of the diagram

Afo] B Y
%)
X

of A°&, and its base point is the common image of %, and y,.

AT0] is obviously the zero object of the category .4°¢; if (X, o)
and (Y, y,) are two pointed complexes, there is one and only one
morphism from (X, %) to (Y, y,) which factors through A4[0]; it will
be written 0%, and it will be called the zero morphism. Then the morphism
from X to X XY whose components are I1d X and 0%,y, and the
morphism from Y to X xY whose components are 0¥,y and 147,
induce a monomorphism

ixy: XvY—>XxY.

The image of iy y is the subcomplex X X {yo} w {%p} x Y of X XY 1.

In the sequel, we will write X AY for the pointed complex whose
underlying complex is the amalgamated sum of the diagram

Xvy ELXxY

}

410]

of 4°&, and whose base point is the image of (%, ¥o)- It is easily seen
that the associativity and commutativity properties of the direct product
are transposed to the contracted product X AY.

4.1.2. Let (Y, y,) and (Z, z) be two pointed complexes. We will
write #om (Y, Z) for the subcomplex of Hom (Y, Z) whose n-simplices
are the morphisms f: 4 [n] x Y —Z which send A [n] x{yo} to {z}; we
make Hom.(Y,Z) a pointed complex by taking the zero morphism (4
as the base point. For example, if Y is equal to A[1], a morphism

1 {x,} denotes the image of A[0] under the morphism %o 4[0] > X.
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fe An] X A[1]->Z which sends A[n] {0} to {z} is characterized by its
restriction to 4 [n] x{1}= A[n]; hence we can identify #Hom (A[1], Z)

with Z.
Consider now three pointed complexes (X, %), (Y. 50) and (Z, zp)-

The set .A°& (X, #om. (Y, Z)) is then the subset of A°é.” (X, Hom (Y, Z))
formed by all morphisms ¥ such that the diagram of Fig. 38

Y
A[0] —2> Hom(Y, Z)
v

%o x Hom (Yo, Z)

X — #Hom(A[0), Z)
Fig. 38

of A°& is commutative (u is the zero morphism when we provide
Hom(A[0], Z) with the base point Zo). The isomorphism ¢ of II,‘2.5.3
associates with x a morphism x’ which makes the diagram of Fig.39

commutative: s oy
XxY <S—Alo]xY=Y

X X%, Y lo{
¢
X xA[0]=X ~5 VA

Fig. 39

Hence the morphism %’ induces the zero morphism on X X {¥e} {xg} XY
in other words, «' factors through X AY. It follows that the functor

isomorphism ¢ induces an isomorphism

(%) .@: AEXANY, Z) = .A°€(X,9%m.(Y,Z)).

Now, if we consider the complex A'[n]=A4[»]1 AT0] poinlted by 4[0],
and if 4 is a pointed complex we have the formul.a: A& (A ], A) = A,
so that, according to () the following isomorphism holds:

(*%) AEATAY, 2y Hom (Y, L)

Finally we get isomorphisms #om . (X A Y,Z),=2.4°6 (A [n] A XAY, Z) =
A°E (A’[n] AX, Hom. (Y, Z)) =Hom. (X, Hom .Y, Z)), where the first
and the third are given by (#) and the second by (*).

Thus the isomorphism . induces an isomorphism

P %am.(XA Y, Z) 3?&%. (X, vam.(Y, Z)) .

4.2. The vertices of Hom. (Y, Z) are identified with the mqrphisms
from (Y, ¥o) to (£, z,)- If f and g are two such morphisms, a 1-simplex
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of #om. (Y, Z) such that d; &= f and d, h=g is a homotopy 4 connecting
f with g which sends 4[1] X {yo} to {z}: we will say that % respects base
points. Two morphisms f and g from (Y, ¥,) to (Z, z,) are called homotopic
relatively to base points or simply homotopic if they belong to the same
connected component of #o7. (Y, Z); it is equivalent to say that there
is a composed homotopy %: I, X Y —Z connecting f with g which respects
base points, i.e. such that 4 sends I, X {y,} to {z}-.

Let IT; (Y, Z) be the set of connected components of Hom. (Y, Z).
The maps vy y, of 1.3 sends Hom. (X,Y)x #om.(Y,Z) into
Hom.(X,Z) and induce on the components a map

px,v,z: o (X, Y)XIIg (Y, Z) > 11, (X, Z).

We will call category of pointed complexes modulo homotopy (noted
.A°&) the category whose objects are the pointed complexes, whose sets
of morphisms are the I7; (Y, Z), and whose composition laws are the
maps pk y.z; we will call canonical functor from .4°€ to A°E the
functor which induces the identity on the set of objects and the canonical
maps from .A°& (Y, Z) to II; (Y, Z) on the sets of morphisms.

The canonical functor from .4°& to .A°& commutes with finite
direct sums and finite direct products. Moreover, passing to the con-
nected components, the functor isomorphism .@ of 4.1.2 gives an iso-
morphism

I, (®): A°E (X A Y, Z) o5 . T°E (X, Hom. (Y, 2)).

If f, g: X=X’ are two homotopic morphisms of .4°&, we obviously
have .A°6 (f, #om (Y, Z)) = . A°E (g, Hom (Y, Z)), hence

APE(FAY,Z)=.d°6 (gAY, Z)

for all Y and Z; hence f A Y and g A Y are homotopic; since the con-
tracted product is “symmetric”, X A e and X A d are also homotopic if e
and d are homotopic. Hence the functor (X, V) ~>X A Y from . 4°¢ X A°E
to.A°& induces a functor from . A°& x . A°& to . 4° & which will be denote
by the same symbol A. Similarly, the functor #oz. from (.4°&)° %
(.4°&) to .A°& induces a functor, still written Ho., from (.4°&)° x
(.%€) to . A°F.

4.3. A morphism f of .A°& is an anodyne extension if the image of f
under the canonical functor (X, x)~—X from .A°¢ to .A°& is an
anodyne extension (2.3). The set A of anodyne extensions of .A°E
adwits a calculus of left fractions; the corresponding category of fractions
will be called the pointed homotopic category, and will be written s
if (X, x,) and (Y, y,) are two pointed complexes, we will write .# (X, Y)
instead of .o (X, %), (Y, o))

%
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The canonical functor from A°& to .o obviously commutes with
finite direct sums, for which we will still use the symbol v. Similarly,
for each pointed complex Z and each anodyne extension i Y.——>X of
@, the morphism ZAi: ZAY—>Z AX isan ar{odyne.exte_‘r}s_{)on: for
let j: Y —>X be an element of .A°& (Y, X) whose image in A°E(Y, X)
is i. We can obviously suppose that j is the inclusion into X .of a sub-
complex Y; in that case, we have a commutative diagram (Fig. 40)

ZXY U {zg} x X — ZxX
NZx{yeofapx X
} w
¢ A[0]
/ AN
v N
ZAY L ZAX

Fig. 40

of A°&, where u is the inclusion, @ the canonical projection, and where v
induces the canonical projection on Z x Y, and the zero-'m_o?phism on
{zo} xX. The two interior squares are cocartesian by definition Qf the
contracted product; hence the same holds for the large.: square. Since #
is an anodyne extension by 2.2, the same holds for Z A J [2.'1 (11)] ‘

In a similar way, we see that i A Z is an anodyne extension if 7 is one.
Consequently, by passing to the categoriei_gf fra.ctions, the functor
(X,Y)~X AY from (A°8) x(.A°8) to .A°& defines 2 functor from
% . to ., for which we will obviously use the same symbol A.

4.3.1. Let us now associate with each pointed complex Xa poin_’ggc_l
Kan complex Xx and an anodyne extension a(X): X=X K_ogf A°E
(this is possible by 3.2). If p is the canonical functor erm A & ’.co the
category of fractions .7, the map fos(pa(X))to(pf)isa bijection

PE(T, Xg) = . H (T, X)

for each pointed complex T. Moreover, if g: X—~Y isa mo_rgllism of .5,
there is one and only one morphism gg: XYy of . A°€ such.tha‘t
(pa(Y))og=2¢ (gxoa(X)). Thus we define a functor XM?X,.{ which s
right adjoint to the canonical functor p: .A°E—.H and which induces an
equivalence from the pointed homotopic category S onto the full sub-
category of .A°E formed by all pointed Kan complexes. ‘
Finally we see, as in 3.2.2 and 3.2.3 that the canomce.d functor
. . A°&—>.# commutes with finite products. Moreover, passing to the
quotient, the functor (Y, Z)ows Hom (Y, Zg) from' (.A°éa)°‘><.9f to
A& induces a functor from #° . to ., for which we will use the
same notations. Hence the functor Z s Hopm Y, Zy) s 1ight adjotnt to
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the functor X o~ X A'Y from . to .3#. This last statement follows from
the “‘equalities”
HXANY,2)=2 AEXANY, Zy)= A°PE (X, Hom . (Y, Zx))
—~—.9f(X, Hom . (Y, ZK)) .

The last equality follows from the fact that #o#.(Y, T) s a Kan
complex if (T, ty) is a pointed Kan complex. By the definition of 4.1.2,
Heom.(Y, T) is indeed identified with the fibred product of the diagram
of Fig. 41

Hom (Y, T)
iéfom(&'.,, T)
A[0] 2> T=sm(4[0], T)
Fig. 41

so that our statement follows from 3.1.3 and 3.4.1 (ii bis).

4.4. Remark: Let(X, x,) be a pointed complex; for X, take the
complex X, constructed in 3.2, with base point e(X)(x,). Then
X~ Xy is a functor from .4°€ to .4°& and e is a functor morphism
from Id(.4°&) to ?x:if f: X—Y is a morphism of .4°&, we have the
following commutative diagram of .4°&:

£(X)
X— X

! 7 4
| o

Y—Y¥
In the sequel, we will say that (e, ?%) is a Kan envelope.

4.5. As a premium, and also as an exercise in the calculus of fractions,
we will now show that we can give to the simplicial circle Q a co-group
structure in the pointed homotopic category .#: we know that such a
structure is given by a morphism

p:R->02v 0

such that, for each pointed complex T, the induced map . (p, T):
SRV 2, TY=H# (2, T)X.H R, T)—.#(2, T) is the composition
law of a group structure on the set .5 (2, T). It is equivalent to say
that @ satisfies the following three conditions:

(i) The diagram

2 2 ovo
@ QVe
ove 2l ovove

is commutative.

)%
1///
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(i) If : Qv 2 is the morphism whose components are the zero
morphism and the identity morphism, then the composition

0L 0ove50

is the identity morphism of £. N
(iti) There exists a morphism ¢: Q£ such that the composition

02 0v0 % 0v0"250

is the zero morphism (here 4 is the codiagonal morphism whose com-
ponents are both equal to the identity morphism of £).

In order to define @, let us write X for the amalgamated sum of a
diagram of the form .
inclusion

SEHX —X

}
410}
where X is an arbitrary simplicial set; we have for examl_)le, Q0 T—'A [1].
By passing to the quotient, any morphiim f: X; —Y obviously induces
a morphism f: X ¥: if we consider X and Y as pointed complexes
(they have only one vertex), fisevena morphisr.n of pointed complexes.
Consider then the following diagram of .4°& (Fig. 42)

Q=411 2v
4[2]
Fig. 42

~ TN

where s is the morphism whose components are 4(53) and A4(33). The
pointed direct sum £v £ is obviously identified with A1[2], and s with
the indusion of /Il\[-é] into LTE’] Since the square of Fig. 43

A1[2) = Az

incl.l iincl.

A12] = A[2]
Fig. 43

is cocartesian, we see that s is an anodyne extension. Hence, if ¢ is the

canonical functor from .A°& to .5#, we can define ¢ = (g s)*l‘oq(A (8%))
(see the description of the morphisms of a category of fractions, given

in I, 2.3).
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It remains to be seen that @ satisfies conditions (i), (ii) and (iii) given
above. Since this can also be deduced from further considerations, the
verification is left to the reader (see 5.5).

5. Poincaré Group of a Pointed Complex

Let (X, x,) be a pointed complex. We will show that the Poincaré
group 11, (X, %) defined in 11, 7.4. is simply the set A (Q2, X) of morphisms
from the simplicial circle to X.

5.1. Let us show first that, if X is a Kan complex, the image of X,
in the set of morphisms of the groupoid I7(X) is stable under inversion
and composition; in other words, this image is the set of all morphisms.

Indeed, let « be a morphism of /7(X). By 11, 7.2, « is the image of a
morphism f: I, - X. On the other hand, let ¢: I, [#] be the morphism
associated with the following increasing map (Fig. 44)

0<1>2< 3 >4...

Ll
0<n>1<n—1>2...
Fig. 44

This morphism 7 is obviously an anodyne extension, so that the diagram

1, ”n _/> X
A[n]
can be completed by a morphism F: A[#]—X such that Fos=/f. If
A(j): A[1]—+A4[n] is the morphism associated with the increasing map

7: [1]—[»] which sends 0 to 0 and 1 to the integral part of z ;H , the

image of the edge of X defined by FoA(f) in the set of morphisms of
I1(X) is simply a.

5.2. The Poincaré groupoid of a Kan complex X can be described as
follows .

. The set of objects is the set X of O-simplices of X.

The set of morphisms is the quotient of X, by an equivalence velation
such that two 1-simplices s and t are equivalent if and only if the following
conditions are satisfied: dys=dyt; dys=d, t; there is a homotopy h:
AM] xA1]—X connecting the singular simplices § and i, whose restriction
to A[1]x A[1] factors through the camonical projection of A [1]xA[1]
onto A[1].

The domain and vange maps ave induced by dy and d,,.

If [s] is the equivalence class of s under the above relation, the composition
of morphisms is such that [d, o] = [dy o] o [dy 0] for each 2-simplex o of X.

.

4
o

-
u
o
=
-
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It is clear that the above conditions define a groupoid, which will
be temporarily noted G(X). We see then that G(X) is .identiﬁed with
IT(X): for let I'(X) be the groupoid of paths of the.dlagram scheme
d,, dy: X; =2 X,. The identity map of X, and the canonical map from X;
to the set of morphisms of G(X) induce a functor p: I (X)——>G(X)
Since p is obviously compatible with the relations which defined the
quotient J7(X) of I'(X) (II, 7.1),  induces a functor ¢: IT(X) —>G(X).

This functor induces a surjection on morphisms. Let then « and £
be two morphisms of I7(X) such that ga=g . By .5.1, « and g are the
images of two 1-simplices s and ¢ of X ; the equality ga=g¢gf is then
equivalent to [s]=[#], i.e. to the existence of a e X, such that dy 0= S,
d,o=t, dyo=s,dy s=35¢dy . By II, 7.1, we then have a=f, so that g is
an isomorphism.

5.3. The description given in 5.2 can be applied in particular to the
complex #om (T, X) when X is a Kan complex (3.1.2). In that case,
two homotopic morphisms [, g2 T—X, ie. which are connected by a
composed homotopy, ave already connected by a homotopy h: A1) X T —X
(1.1).

Similarly, if (7, ;) and (X, x,) are pointed complexes, and if X 'is a
Kan complex, #om. (T, X) is a Kan complex (4.3 .1): Hence t‘wo morphisms
f, g1 T2 X are homotopic relatively to L and %, tf there is a homotopy
h: A[A] X T —X connecting | with g, which sends AT1] X {Ee} to {xo}-

5.4. Let us now use 5.2 for the description of the Poincaré group of a
pointed Kan complex (X, xg): let X} be the set of 1-simplices s f)f X
such that dys=4d,; s=x,. The singular simplex 3: 4[1] —X associated
with such an s factors through the canonical projection p: A{1] —£, so
that § is of the form s'op. ]

Tt is clear that the map s~s’is a bijection from Xlonto.4°¢ '(.Q, X ).
This bijection is compatible with the equivalence relations defined in
5.2 and 4.2. Hence it induces a bijection of the quotients I (X , %,) and
A°& (2, X). Moreover, since X is an Kan complex, the cangmcal map
from .A°¢ (2, X) to .2# (2, X) is a bijection. Thus we obtain the iso-
morphism from .# (2, X) onto IT, (X, x,) we were looking for.

5.5. Finally, consider an arbitrary pointed complex (X, x): we then
have the diagram of Fig. 45, where (¢, ?%) is a Kafn enyelope (4.4) and
where the vertical arrow is the isomorphism described in 5.4:

A0, %) T # (0, X)
1
IT,(X, xg) —2) L 17, (X, e(X) (%)
Fig. 45
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The map .5#(R2,¢(X)) is obviously bijective [¢(X) is an anodyne
extension]. On the other hand, the morphism v(X) of 3.2 induces an
isomorphism between the Poincaré groupoids. Since the functor IT
commutes with direct limits, it follows that w(X) and e(X) induce
isomorphisms from II(X) onto IT(Xy) and II(Xg). In particular,
IT, (e(X)) is a bijection.

Thus we obtain by composition an isomorphism from (2, X)
onto IT, (X, x,). This isomorphism is functorial in X, and gives to the
sets . (0, X) group structures which are functorial in X. Hence 02
has a cogroup structure. It follows from the definitions that the comulti-
plication law of 2 is the one defined in 4.5.

Chapter Five
Exact Sequences of Algebraic Topology

We give here a unified account of some exact sequences which we meet
in algebraic topology. The proofs we give do not modify in an essential way
those of Puppe. They are more abstract, selfdual and sometimes more
simple ( ?).

We write 0 for the zero category whose set of objects and whose set of
morphisms both are the cardinal number 1. For each object x of a category &
we identify #, as usual, with the functor from & to Z which sends the object
and the morphism of @ to » and Id # respectively.

1. 2-Categories
1.1. A 2-category € is defined by the following:
a set G, called the set of objects of €.
a family of categories #omyg (%, ¥), indexed by €y X &,.
an object of #pmg (%, v) is called a 1-morphism of €;
a morphism of #% g (%, ¥) is a 2-morphism of €.
a family of functors

By, 2 Homg (%, ) X Homg (y, 2) = Homg (%, 2)

indexed by G,x6,xC, and called composition functors. The above
conditions are subject to the following axioms.

for each 4-tuple (x, ¥, z, £) of objects of €, the square (Fig. 46)

Hormeg (%, y) X Home (9, ) X Home (2, 1) 2225 Homg (%, ) X Homg (¥, 1)
Ha,y,2X Idl Haz,y,8
Homeg (%, 2) X Homg (2, 1) L Homg (%, 1)
Fig. 46

is commutative (associativity axiom).

e

.
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for each object x of €, there is an object 4, of Homg (%, y) such that
the triangles of Fig. 47.

0 Hormg (3, 9) 2 Homg (5, 5) X Homg (%)

\ ‘/If‘x. 2,y

%0772(5 (x, y)
and Idxi
Hromgly, ) % 0225 Aoy, 5) x Home (5, 9

N\ Py, z, 2

%amﬁ(y: x)

Fig. 47

are commutative for each object y of € (neutral objects axiom).
If z and ¢ are two objects of €, we will ofte.n writte. # instead of
Homg(t, z) for convenience; if f: x>y isa 4-morphism, fwill then be the

functor

induced by the composition functor g » y; ifq: f>f isa 2-morphism
we will also write o instead of

Homg(t, @) Homg (b, [)—>Homg ¢ 1.

Thus, for each object a of the category H#omg(t, x), o is the functor
morphism 4, , ,(Id a, o).

1.2. The “best-known” 2-category is the category o.f categori.es,
which we denote by €at: the objects of Gat are the categories belong}ng
to the universe %, fixed once for all; if x and y are two such catego.n.es,
Homgy (%, ¥) is the category of functors from ¥ tq y, and the composmf)n
functors are the usual functors. There are obviously many categories
akin to this one: instead of all categories, we can take additive categories
only, instead of all functors, additive functors only ....

1.3. If € is a 2-category, We write €, , for the direct sum of.the
categories Homg (%, ), €, for the set of objects of €, 5 .(the 1—morph1sm§
of §), G, for the set of morphisms of €; o (the' 2-morphisms of €), by ar(ls
t, for the domain and range maps of €, , and iy for t.he map fr<')m €, to S
which associates with each object of €, , the identity morphism of this
object. If « and f are two composabée morphisms of € s(B,x=1 B), we

i , o) or wof for their product. ' .
Wﬂt;ﬁ,lza(rlfy, )we wriga G, , for the category whose set of ob]ecjcs is @:9,
and such that the set of morphisms from an object x to an object y 1S
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the set of objects of Homg (%, ¥), composition maps beeing induced by the
functors i, , .- We write b, and t, for the domain and range maps of
€ 1, and i, for the map x~>1, defined above. It f and g are two com-
posable morphisms of G4 5 (0g&="o f), we write u, 1 (f, 8), &f or g f for
their product. ,

Finally, we write G, , for the following category: the set of its object
is ©,, the set of its morphisms is @,, its range and.domain maps are
Dy Dy =Dy 7y and 1o Dy ="1o t;, and its composition maps are induced by the
functors g, , ,. If « and o’ are two composable maps of €, ,, we write
Mo, (o, &), ' *oe OF o o for their product. In the case where o’ (resp. o)
is of the form i, (f), we will often write fo or fo (resp. «'f or o'x f
instead of ' *a.

These different categories are related by the following conditions:

a) If o, o', B, B are four 2-morphisms such that

na=0pua'=0f
and
oty a="Tot; f=D0g by o' =00 8,
we have

(B o) (Bow) = (B'f) o (' *a).
b) the identity map of G, and the map i;: € —C, define a functor
from €, ; to &g 5.

It is clear that the 2-category € is determined once we know the

diagram of sets
v, 2

i f
G, —C, ¢
T o

and the maps
M2 @2t,>,<b,@2_>@2’ Ho,1 @lrfbo@l%@l
:€ ‘ .
Ho,2 2ror,>,<bab1@2—>@2

B'e§ides, we can show (but we will not use this result) that these
conditions define a 2-category if and only if the following three condi-
tions are satisfied:

(i) oty =1, b, and Dy ry=="Do ;.

(ii) P2 (res'p. Ko.1s Mo,2) is the composition map of a category whose
set of objects is €, (resp. €y, §), whose set of morphisms is €, (resp.
@,, €,), whose domain and range maps are b, and 1, (resp. b, and ¥,
bo'bl and t,1;), and where i; (resp. iy, iy 1) is the map which associates
with each object its identity morphism.

(iii) The relations a) and b) of 2.3 are satisfied.

1. 2-Categories 31

1.4. From now on, we will consider only 2-categories X which satisfy
conditions A and B below:

A. If x and y are two objects of X, Homsy (x,y)is a groupoid.

B. There is an object 0 of X such that, for any object % of X, Homy 0, %)
and Homz (%, 0) are isomorphic to the zero category 0.

Any object satistying condition B will be called a zero object. Among
all zero objects, we will choose one which will be written oy (or simply o),
and we will say that oy is the (distinguished) zero object of X. For each
object x of X, we will write 0% (resp. 0,) for the unique 1-morphism of
domain (resp. range) ¥ and range (resp. domain) og. If x and y are two
objects of X, we write 07 or symply 0 for the 1-morphism 0,07 (it is the

¥y
zevo 4-morphism from x to ¥, which is independent of the choice of og).

In the sequel, we will constantly refer to the 2-category ®r of pointed
groupoids: and object of ®r is a pointed groupoid, 1.e. a pair (G, &)
formed by a groupoid G (belonging to the universe 9 fixed once for all),
and by an object g of G, called base point or indexed point. If x=(G, o)
and y=(H, hy) are two pointed groupoids and if Hom (G, H) is the
category of all functors from G to H, we choose Home, (%, y) to be the
subcategory of Hom (G, H) whose objects are the functors sending g,
to h,, whose morphisms are the functor homomorphisms ¢ such that
@(x) =1d ¥o- Finally, the composition functors of ®t are the obvious
functors.

1.5. If x and y are two objects of a 2-category ¥ which satisfies 4
and B, we will always give to Homy(x,y) a base point by indexing the
point 05. Besides, if z is a third object, we have a commutative diagram
(Fig. 48)

0Zx1d 1dx 0¥

05 oo, 8) ~Ee Hoomg, 9) X Homs (9, 2) < Homz ) X0
lﬂz,y,z l
s Homglw,r) O

Fig. 48

In particular, the composition functor sends the base point (05, 07) of
Homyg (%, ¥) X Homy(y, %) to the base point of Hom (%, %)

1.6. If x and y are two objects of ¥, we write |, y| for the pointed
set I1,(Homyg (%, v)); the base point is obviously the connected com-
ponent of 0. Since the set of connected components of a product of
groupoids is identified with the product of the sets of connected com-
ponents, the composition functors

Uy, 2t Homyg (%, ¥) X Homg (¥, z)efomi(x, 2)

6 Ergebn. Mathem. Bd. 35, Gabricl and Zisman
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induce maps
|%, ¥, 7] |x, ¥| x|y, z| =%, z

and define a category X whose set of objects is ¥,, and whose set of
morphisms of domain x and range y is |, y|, the composition maps
being the maps |, y, 2|. If f: x—=>Y is an object of Homyx (%, y), we will
write [f] for the image of f in |x, ¥|-

We will say that X is the category ¥ modulo homotopy"’; it is clear
that oy is a zero object of this category.

2. Exact Sequences of Pointed Groupoids

Before seeing how we can construct exact sequences in certain
2-categories X satisfying condidions 4 and B, we will first consider

the “standard”’ 2-category Or.

2.1. Let (X, %) and (Y, ¥o) be two pointed groupoids, and f: X >Y
a 1-morphism. Let us write I'f for the following pointed groupoid: an
object of I'f is a pair (x, &) formed by an object x of X and a morphism
hi yo—>f(x) of Y, a morphism from (x, #) to (', h) is a morphism
& x—x' of X such that #'= (f&) o h; the composition of these morphisms
is induced by the composition in X finally, the base point of I'f is the
pair (%,, Id y,). We write $ f: I'f —X for the 1-morphism (%, B)~—>x and
hi: 0—f(pf) for the 2-morphism — i.e. the functor homomorphism —
which associates with each object (x, %) of I'f the morphism %: yo—> 7 (x).

5.2. Given these definitions, it is clear that we can describe I'(pf)
as follows: and object is a pair (%, Ay) formed by a morphism A1 %p—>%
of X and a morphism A: yo—>/(%) of Y; a morphism from (%, &) to
(W, ky) is a morphism & of X such that #,=Eoh, and &'=f(£)oh; these
morphisms are composed “as in X finally, the base point of I'(#7) is
the pair (Id y,, Id %,). The {-morphism p? f=p (p[) associates with
(h, b)) the pair (x, k), where ¥ is the range of 4;; the 2-morphism hip
associates with (%, %) the morphism By 0—>(p ) (B2 D).

If follows from the above description that two objects of I'(p f) are
connected by at most one invertible morphism, i.e. that I'(p f) is equi-
valent to a discrete groupoid (see 1I). More precisely, according to the
conventions of the beginning of the chapter, let us write y,: 0—Y for
the unique functor which sends the point of @ to ¥, and let us write
QY instead of I'y,; this groupoid is discrete, and its set of objects is the
Poincaré group IT; (Y, ¥); it s related to I'(p f) by means of the com-
mutative triangle

ey LT
o
ry

=

R e

.

v

lr{p*f)a] ]\ [r(#*/)] r{tf) ol

@il I /
[N

2OQY)~0
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where ¢ f and 7 f are defined by the equalities
gH@)=(x0,0) and (r/){l)={, 1d xp).

F_ilnally, 1<.at r'f: I(pf)—~8LY be the functor which sends (4, 4,) to
{‘(hl) oh. It is clear that [#'f] is the inverse of [#/] in the categor; Gr
in other words, that #'f is a functor quasi-inverse to 7. ,

f 2.3. A 1-morphism g: QX -0 X is obviously identified with a map
rom 1, (X, %) to II,(X, x,) which preserves the neutral element. In

particular, we write
X RX->0X

or simply o 'for the 1-morphism which induces the map /~-I/T on
IT (X, x;). With the notations of 2.2, we see then that the triangle

I

A
A (p1)00)
02X
[QN

N0y

[rf]

is commutative: here, £2f is the 1-morphism which sends an object
ol Xg—>x, of QX to f(o): y—>y,; similarly, ¢(pf) sends « to the pair
(Id vq, o), w.hlle 7{f) o R2(f) sends « to (f(a?), Id x,); it is then quite
clear that « is an isomorphism from (f(«™), Id %) onto (Id y,, «), which
proves the commutativity of the above diagram. o

2:4. Putting the preceding statements one at the end of the other, we
obtain a commutative diagram of @t (Fig. 49) ,

rety 20

P(Psf) p*/] P(sz) P*1] F(}')f) [p*f] rf [p/1 X [#1 v

A
[rf]
[g7]

0 (F(;bf)) [2p*N)] 0 (r(/,)) ipnl 0x (27 oY

A

Fig. 49

where vertical arrows are isomorphisms.

" However, if g: G—G’ is a 1-morphism such that [g] is invertible,
en 11, (g) I1,(G)—11,(G') is a bijection. Moreover, each 1-morphism
}: XY induces an exact sequence

() 225 1, (x) 295 7, ()

(54
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of pointed sets, and I, (RY) is identified with IL;(Y, v,). Hence we
can deduce from the above commutative diagram the following exact
sequence of pointed sets:

. (gf)

(1) = IL(TH 220 11, 00 20 17, (7) 290 11, () = T (X) 29, 17,(Y).

2.4.1. It is clear that
I, (pf) (/)
(1) — IT(I'f) —— I (X) —— IL (Y)

is an exact sequence of groups. But we have, moreover, that 77, (Y)
vight-operates on II,(I'f) as follows: if (x, k) is an element of I'f, and
if « belongs to IT,(QY)=1II(X), we set (¥, h)e= (», ho). Passing to
connected components, we define the operation we were looking for.

3. Spaces of Loops

Let us return now to the general case of a 2-category X satisfying
conditions 4 and B of 1.4.

3.1. Let f: x—y be a morphism of ¥ and ®f= (I'f, p}, hf) a triple
formed by an object ['f, a 1-morphism p7: I'f->x, and a 2-morphism
hf: 057 —>f - (pf). For each object ¢ of ¥, the triple @f determinesa functor

o (=T

(see 1.1 for the notations (I'f)t and f, and 2.1 for the definition of

I’(fY)). This functor associates with each 1-morphism g: ¢—I'f the pair

((pf)g, (h])* g) which is an object of I'(f), and with each 2-morphism

y: g—g the 2-morphism (pf)*y from ((pf)g, (f)xg) to ((21)¢, (hf)*g')

(see 1.3 for the notation *). It follows from these definitions that we have
a commutative diagram of pointed groupoids (Fig. 50)

(&I (0 b I

lw‘f 1d Lm

¢ t K

I P vt 5

Fig. 50

3.2. If X and Y are two groupoids, and F: X - Y a functor, we will
say that F is comnected if F is surjective on objects and on morphisms
and if, for each object b of Y, the groupoid F* (b) is connected (the
objects of the groupoid F(b) are the objects of X which are sent to b,
and its morphisms are the morphisms of X which are sent to Id &),
Such a functor obviously induces a bijection from I7,(X) onto IT,(Y).

We are now ready to make another hypothesis C on our 2-category X.

C. For each 1\-morphism f. x—y of X, there is a triple (I'f, pf, ki)
such that the functor ¢ f: (I'f)}—I'(f) is conmected for each object t of X.

iR

(os)
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If we go back to the definitions, we see that the connectivity condition
is the conjunction of conditions C; and C,.

C,. For each 1-morphism g: t—>x and each 2-morphism 4: 0—/¢g
there is a 1-morphism g': ¢—I'f such that g= (pHg" and h=(hf)*g"
Moreover, the relations g=(pf)g'= (p1)&" and (hf)*g = (hf)*g" imply
the existence of a 2-morphism y: g’ —g"’ such that (pf)xy=1d g.

C,. Ify: (j)]‘)g’—>(;bf)g” is a 2-morphism such that (f*y)o ((sz) *g’):
(hf)xg", there is a 2-morphism §: g’ —¢'’ such that y= (pf) 0.

3.2.1. If f is the zero morphism 0: 0—y and if the triple (I'f, pf, ki)
satisfies C, we will write Qy instead of I'f, and we will say that 2y isa
space of loops of y.

3.2.2. The 2-category Or of groupoids satisfies condition C: it is
sufficient to define (I'f, pf, hf), as done in 2.1. Moreover, with the
notations of 3.2, C,, the 1-morphism g' is determined in a unique way
by g and 4. Similarly, in 3.2, C,, 0 is determined by y.

3.3. From now on, we will suppose that the 2-category X satisfies
conditions 4, B, C given above.

For each 1-morphism f: x—y of ¥, each triple @f=(I'f, pf. hf)
satisfying C, and each object ¢, the functor ¢f of 3.1 induces a bijection
from IT,(I'f) onto ITy I'(f*):

W1 16 TH =T I'(F).-

This implies that the functor t~~II, I'(f) from (%)° to & is represent-
able by I'f; more precisely, (I'1, (p1, hf)) is a representation of this
functor, so that I'f and [p/] are determined up to an isomorphism of %.

Recause of this unicity “up to homotopy equivalence”, from now
on, we will associate with each {-morphism /: ¥—y a triple @/} chosen
arbitrarily among all those satisfying condition C. We will see in the
sequel in what measure the constructions based on this association
depend on the choice of Dj.

In the particular case where  is the zero 1-morphism oy, I'f is the
space of loops of y (3.2.1) and represents the functor from (%)° to &
which associates with each ¢ the Poincaré group /], (3%, 0) of Homy(t, ¥)
at the point 0. It follows obviously that 2y is given a natural group
structure in the category X.

3.4. In order to study how I'f depends on the 1-morphism /, we will
introduce the following category ./ X: the objects of &/ X are the
{-morphisms of X; its morphisms are the diagrams

x-—f—l*}f

u v
) v ek

xr
<
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where f, [, u, v are 1-morphisms and o: v f—f'u a 2-morphism. The
domain (resp. range) of y is f (vesp. f'). Finally, we define the composition
y''=y oy of the two diagrams

f ! / '
x——>Y ¥ —y
Wwe w <] L
x ' /’ a/ ’ 1" t'laf r
to be the diagram /

x—> Yy

xll yll

where w'' =u'u, v'=v"v, and o”’ = (o % 04) o (v % ).

Let then y be a morphism of o/ ¥. By condition C, of 3.2, there is a
t-morphism I'y: I'f—TI'f such that (pf)Ip)=u(p/) and that
(hf)x(I'y) is the composed 2-morphism

v# (k) =(2f) 4
0 of (pf) = f'u(p])
The class [I"y] of such a 1-morphism is uniquely determined by x (3.3).

3.4.4. In the particular case where ¥ is the 2-category of pointed
groupoids, the {-morphism I'y is also uniquely determined by the
conditions of 3.4; it is the functor (%, By~ (ux, (ex)o (vh)) from I'f
to I'f'.

Moreover, when # and v are equivalences of categories, we see
easily that I'y is an equivalence, or that [I'y] is an isomorphism of ®r.

3.4.2. By 3.4.1, we see also that I'(y ox)=T"(x) oI (x) when 5’ and
4 are two composable diagrams of ®t. More generally, if ¥ is a 2-category
satisfying conditions 4, B and C, the definitions imply the commutativity
of the diagrams o
Iy ———— Ity

%’f)‘ ul ‘wlfl\(ij/’)‘
otf xt______-———-——>

A AT
(f) ——I'(")

(*)

Fig. 51

of Gt associated with a morphism y of s+ X. If we identify |¢, I'f| and’

|t, I'f’| with II, T'(#) and IT, I'(f"*) by means of II,¢'f and II,¢'f’, we see
that |¢, I'y| is identified with IT,(I"y). In particular, if w and v are
homotopy equivalences, i.e. if [u] and [v] are invertible in %, «' and o'
are equivalences of categories for all ¢, and hence IT(I'y)) and ¢, I'x|
are bijections: if [u] and [v] are inwertible, then [I'y] 1s invertible.
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Finally, if (y) and (y') are two composable morphisms of &/ X and
if =y oy, we have ¥"= (g %o (), and hence Iy =I(y" o I'(x)-
Then we have the equality

Iy o)]=[T% 1o L]

which show that I' is a functor from o X to X

3.4.3. In the particular case where y is the commutative diagram

o—>X%

CHE. flf

o—>Y

I'y is a 1-morphism Qx—>0y. We write then Qf instead of I'y, and we
see that Q is a functor from ¥g, to E (1.3).

In the particular case where ¥ the 2-category ®r of pointed groupoids
we see that for each 1-morphism F: X =Y, II,(Q2F) is a morphism of
groups. If we apply diagram (*) of 3.4.2 to the morphism y considered
here (Fig. 52)

(@) &5 (@)

@0z ¢t0y
Qi
Q) =52
Fig. 52

and if we note that [¢*0.], [¢'0,] give to 2x and Qv a group structure
in the category ¥, we see then that [Rflisa homomorphism of K-groups.
Finally, £ can be considered as a functor from X,y to the category of %-
groups.

Moreover, if f and f are two 1-morphisms from x to which can be
connected by a 2-morphism «: f—>/', Q(f) and Q(f'*) coincide for all £.
Hence the same holds for |¢, 2f] and |t, 2f], ie. for [2f] and [Qf].
Hence the equality [f]=[f] implies [Qf]=[QF], so that 2 induces a
functor (still written Q1) from Zto %

3.4.4. Finally, if we take y to be the diagram

o—>Yy

l , Id(lm

x—>Y

I'x is a 1-morphism ¢f: 2y—I'f, whose class ¢ f is uniquely determined
by the conditions (pf) (/)= 027 and (hf)* (g ="1(0,) (see 3.4).
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4. Exact Sequences:
Statement of the Theorem and Invariance

A composable sequence of ¥ of length n (or simply a sequence of X of
length #) is a diagram of X of the form
n fa h
Xy Kyq e T Xy %y Koo

If

&n 4] 81
Y= Yn1 e yz———>y1——>y0
is another sequence of length 7, a morphism from the first to the second
is, by definition, a sequence of morphisms k;: x;—>y; of ¥ such that
By fip1=8isr Pipq fOT 0= i<mn—1. These morphisms are composed in the
obvious way, so that we will be able to speak of the category of composable
sequences of X of length n.

4.1. Let us call selection any pair &= (@, W) formed by two maps D
and ¥ which satisfy the following conditions: the map @ associates with
each object f of o+ X a triple (T'f, p1, hf) satistying condition C of 3.2;
the map associates with each morphism y of &% a {-morphism Iy
of ¥ satisfying the conditions of 3.4.

With each selection & is canowically associated a functor 27 from
olr ¥ to the category of composable sequences of & of infinite length: this
functor associates with an object f: x—y the infinite sequence

...Q?xﬂgzyﬁlﬂgm%[)x 2] Qy lgf] I'f v, U y

defined with the help of 3.4.3 and 3.4.4. It associates with a morphism
f

x ——

(0 «| . ;l

xl yl
of o+ ¥ the following morphism of composable sequences of X (Fig. 53)

E;-sz [241] Qry [2¢1] Ox (21 0 l¢/] I'f /] x (/1 y

[2%v] [QIy] {Qu] (7] Il %l 7]

’;sz'i@lgn'lﬂlg)x' 2] Qy Wi, py AN y

Fig. 53

The equality [#][pf]=[$/] [I'y] follows directly from the definition
of I'y. If we show that we also have [I'y][gf]=[gf1{L2v], then the
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commutativity of the other squares will follow from the last par‘t'of
3.4.3: now by 3.4.2 and 3.4.4, [I'y]le/] and [g/] [.Qv]. are identified
with [['y/] and [y}, where 4 and " denote respectively the com-

positions of Fig. 54

l

o—>Y

l mflm

0
l
x—Y o——7Y
l
x

"l af l,v p18/ de

xl 3 yl 1 yl
Fig. 54
Thus our statement follows from the equality ="
4.2. Theovem: Let X be a 2-category satisfying conditions A, B and C
and . x—~Y, a 1-morphism of X. For each object t of X, the sequence

, it, o1l It fl
x2S AL o R U R VR

is am exact sequence of pointed sets.

Recall that a sequence
Tn Ty
T,— Ty Ti— 1y

of pointed sets is exact if, for 1=1= n—A, Tiey(Tipa) 18 the inverse
image of the base point of T;_1, under 7;. In the exact sequence of the
theorem, the pointed sets ¢, 29,1t Qx| are groups, the maps by
which they are connected are group homomf)rphls.ms, and |¢, 2 y\‘ rlgh;-
operates on |, I’ f| in a way which is compatible with ¢, ¢f| and with the

operation of |t, Q| on itself defined by right translations.
From now on, we will say that a sequence

fn BN
xn——) Xp—1++° X1 %o

of ¥ is r-exact if, for each object ¢ of %, the sequence of pointed sets

' t
It 5] 22518, o] oo 16 ] = 1 %o
is exact. With this terminology, the sequence Q7 f (4.1) is r-exact.
The proof of the theorem will be given in paragraph 5.

4.3. st invariance Theorem: Let {1 x—Y and [ x’—>.y’ be two 1-mor-
phisms of X such that [f] and [f'] are isomorphic morphisms of X (hence
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there are 1-morphisms %: x—>% and v: y—>y’ such that [«] and [v] are
invertible and satisfy the equation [f'][u]= [v][f]). In that case, the
r-exact sequences
Ox 2n Qy [gf] I'f rf] x 3] y
and
O 2/} Qy lgaf] rf [p1} ¥ ] 3’
of X are isomorphic.
Indeed, there exists a morphism

of o % such that [«] and [v] are invertible. By 3.4.2 and 3.4.3, Q%y
is an isomorphism from 2% onto QFF (4.1).

Theorem 4.3 can be applied, in particular, to the case where [f1=1{/].
Hence, the r-exact sequence 0%} depends only on the class [f] of f, up to
isomorphism.

4.4. The functor
0% for (... @y EBo 12 1)
obviously depends on the choice we made for &. However, this depend-
ence is very ‘‘loose”:

ond invariance Theorem: Let & and &' be two selections relatively to
the same 2-category X which satisfies A, B and C. Then the functors Q%
and %" are isomorphic.

Let us write I"f, 2’5y, Q'f, #'}, Wi qf, ... for theitems corresponding
to I'f, Ry, 21, p1, h f. qf, ... but constructed from the selection &'. Let
us associate with each {-morphism f: x>y 2 1-morphism »f: rf—~I"f
such that (p'f) (wf)=2p1 and (W' f)*(w fy="hf. For each object ¢ of X, we
then have the equality (¢'*/) (@ f)t=¢/'f (notation of 3.1). We deduce that
[wf] is invertible.

Moreover, consider a morphism

f

x————>y

(X) lu ,: a[lv

z — !

of o/ %. We then have equalities (') wf) (L0)=(p
w(p'f) (@) = ') (["7) (wh) and W) * @f) * (I

-

e

(@xpf)o (s hf)=(xxp'frwf)o (wak' frwf)=[(axp o e NI*ET=

o 1y = (L) x @l ,
By 3.2, Gy, there is then a 2-morphism y: wf ) (Lx)—~ (I y) @f) such

that (p'f)*y=1d" N
rf——TIf

wf

w;’l'fi"ﬂr'f'

We have in particular L/l y)=1"7] [.w f] Going baf:k to th(;
definitions, we easily deduce the commutativity of the diagram O

Fig. 55 .
.QFf Q91 Ox (235 Qy lgf] I-,f €27 x y
7
Qwfl| 901 //1 X{[woz] k[woyl {Wf]k [Py
/ g 7
or o x Ty =T
7
IwOr'ﬂXm'py
orf
Fig. 55

Hence there is an isomorphism W: Q%= Q%' f whose components
are the morphisms idy, 1dx [wfl, [w0,], [wo,;], [wOp ] Qwfl,
[w0gry) [Qwo0,], [w0e J1R2w0.], [w0g /) [Quwor] & wf] ... .

Tt remains to be proved that the W{ form 2 functor homomorphism
from Q¥ to Q. This is left to the reader.

5. Proof of Theotem 4.2

By 34 and 3.2, the sequence

| 2 1 A Bt o)
is isomorphic to the sequence
1,1 2o 11, () = T )
1t is then exact (2.4), and the same holds for the infinite sequence
t, b1l it. fl

T f| s e T ey | L g, ol = 9]

where p*+f=$ (0"f)-
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5. Proof of Theorem 4.2 93
. 1 204 : l :
We will show that this infinite sequence is isomorphic to the sequence (I'p2f) Ll (r'pfy (1? 1y x Y
of theorem 4.2; this will prove the exactness of the latter: : i \ o :
: . (r(pNo) | A L
5.1. Let us associate with each 1-morphism f: x — y of ¥ a 1-morphism ‘[ o ', E
rf: Qy—TI'pf such that (p2f) (#f)=g/ and (hpf)*(rf)=1d 02”. When ¥ : (2 x)f e (!%y)t |
is the 2-category of pointed groupoids, 7f is the functor considered in 2.2. ! ! } ! 'i 2
Similarly, let us associate with each object x of ¥ a t-morphism ¢ x 2110)1/ ! 2{% / I; 2}¢z/ U1a Id
§ {or simply o) from 2 to 2 x such that ($0,) (0x)= 0%~ and (40,) * (o %) = !l ’ “ ‘l | !
(h0,)72. If ¥ is the 2-category of pointed groupoids, o x has already been | ! } l !
§ defined in 2.3. In the general case, the definitions imply, for each object ¢, |l = i } {
the commutativity of the square of Fig. 56 | ! ‘l ! ;
!
(ox)t I 1pt0 : 'lqato !
(@22 (Q | A
@0y @0, ¥ . Lp(sty P ' # £
P s | T x ¥
Q022 0 () rp2(f) P25 Iy ———— L)
|
Fig. 56 ||

om0 L o

I
. 1
|
(rp(ﬂ:N ! \/l) i %}
(

Since I, 0 (%’) is the endomorphism &~o&-1 of 1L (+*, 0), |¢, ox| is also

the “inversion map” of the group |t, Qx|. This implies, in particular, Fig. 58
that [ox] is invertible. .
i ke the lecture of paragrap
The morphisms 7/ and ¢ x allow us to construct the following diagram Sketch intended to make
of X (Fig. 57)

5.2. Consider first [#/]:

: ] 5 < a 2 Lemma: Let X F %
—— Ipsf 2L, ey ﬁLFpsf_U’_/J_,Fﬁzf W, ppp L, prlen, O o g
; <A : |
s r
[rp"f]‘ [rp3f] [GJI [rp!f][ [rpfl o] [,f]T . 3 v
q —

; 3 'S |
Q]«,?%([Qi’/] Qppf[-@?f] .QI'f [2pf] Ox [2f .Qy

N /
i [2rpAi9a) [2+f]
. (224 I AM/]

be a commutative square of potnted groupoids. If T is connected, the functor
i d.
I'T: I'F—I'F' is also connecte L
This lemma follows immediately from the definitions: it §hows that
the functor I'¢'f: T(pf)'—~I"p(f), induced by the commutative square

(Fig. 59)

Fig. 57 - e )
(Th) e
F%f) e

Fig. 59

We will show that this diagram is commutative and that the vertical
arrows are invertible; this will prove Theorem 4.2. We obviously have
(#*f][7f]=1[gf], by definition of #f. It will then be sufficient to prove
that [rf] is invertible and that 1R2f1=[p*f][rpf][ox] for each
1-morphism /: x—y. In order to do this, we will constract the diagram
reproduced on the next page. The lateral faces of this diagram will be
commutative, and the vertical arrows will induce bijections on connected
components. Our figure will then allow us to compare the top of the
diagram to the bottom: thus we reduce the general case to the par-
ticular of pointed groupoids, which we considered in paragraph 2.

defined in 3.1, is connected. This functor can be inscribed in a com-
mutative diagram (Fig. 60) t
(29 2 Q1)
(S o s ,(/:)
IpyZ20 Dip ) ——T'p(f)

Fig. 60
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The commutativity of this diagram can be vertified by going back to the
definition of 7f. If we set then ¢} f= (I'¢’f) (¢’ £ /), the functor we obtain
is the composition of two connected functor; hence it is connected.
Since Iy (¢'0,), I, 7 (f) and II,(¢h /) are invertible, IT, (rf)* (i.e. |¢, 7f]) is
also invertible for all . Q.E.D.

5.3. We have now to prove the equality [7f][Qf]=[*f][rpf] [o%].
We note first that the commutativity of the diagrams of Fig. 61

(Ipfy 22 (rpy rpp 2% (rpy
(TP ¢ (o1) o lm () g ot
rpp 2% (ryy e 22

Fig. 61

implies that of the composed diagram (Fig. 62)
P )t

Ty 0 (rpy

(E ) lQ’x/ " q”f

(1) 22 rip)
Fig. 62

Moreover, since [¢5f] and [¢'f] are invertible by above, the same holds
for [I'E], where I'E is the functor from I'($%f)" to I'p2(f) defined by &

(3.4.2). The functor I'Z can be inscribed in the diagram of pointed
groupoids
s PO

( :l'ff) (F 1)
ot oy
P2f / ohf
Ir's
() L0 Tp ()

Fig. 63

If we write ¢ff=(I'E)¢ (p%f), ¢} induces a bijection on conmected
components. Moreover, by 3.4.2, we have

v f=TE) ¢ (p*/) = TU)I(TH) ¢ (p*f) = (I'U) ¢ ($1) -
5.3.1. Consider now the following commutative square of pointed
groupoids (Fig. 64)
(& (ehf, s
otf Id
e pUY. s

Fig. 64
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Because the constructions on groupoids of paragraph 2 are “natural”,
it induces a commutative square (Fig. 65)

Q) > Q)

r{pf)t rpift)
Tp(pf) =>Tp(f)
Fig. 65

which can be “composed’” with the commutative square (Fig. 66)

(2 x) AN ()

(rpf¥ . ripfit
(g2 22 Tp (o)
Fig. 66

obtained from the square (SH of 5.2 by replacing f by p/. If we consider
then the equality ¢hf=(I'U) @5 (pf) of 5.3, we see that we have

(2 (M) (F0) = (@: N 1)

Since we also have (¢°0,) (6%) =0 («) (¢'0,) by 5.1, we then get a com-
mutative square (Fig. 67)

(@) 22 Q@
(rpf)t (o) l l(fﬁ (1)) o(#%)

(o220 T2 ()

Fig. 67

5.3.2. Consider finally the “cube” (Fig. 68)

(P 1y
(Pp2fy —— "> (Tp1Y
{\ (roh (o2 | \rl)‘
! |
L (@ YL @y
ot Tt
! ! | !
L] | ;
| i | i
v e v v
TR 12 |
(rp)alan\ | N
A2 \yt
Q(#) P, Q)
Fig. 68
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The lateral faces this cube are commutative by 5.3.4, 5.3, 5.2, and
3.4.3. By 5.3, 5.2 and 3.2, the vertical arrows induce bijections on
connected components. Since the base of our cube induces a commutative
square of ®r (category of pointed groupoids modulo homotopy), the
image of the top of the cube under 77, is commutative. Hence we have

£, p2flo|t, vpflo|t, ox|=|t, 7] o|t, 2f].

5.3.3. Finally, we have to define the operation of 2y on I'f i.e., we
have to make the group |¢, 2| operate on the set |¢, I'f| functorially in ¢,
and in a way compatible with the map (¢f)’. Since the square of Fig. 69

(gr)
(Q9) = (I
@0y @ f

oW 151

Fig. 69

is commutative, and since the maps I/, (,0,) and I1,(p,f) are bijective,
it is equivalent to make IT,(y") operate on IT,(I'(f)): hence we are
brought back to the case of groupoids (see 2.4.1), and this concludes
the proof.

In particular, if % is isomorphic in X to the zero object, it follows that
IT,(Q )} is ssomorphic to IT,(I'f)".

5.4. Note: It follows from Fig. 58 that, for each object ¢ of X, the
exact sequence of length 4

[t 21|

[t,.Qxl !t,ng_'yl it 41| ‘t, Pf, 1%, pf| lt, x[ 1t f |t, yl

is isomorphic to the sequence
I, () T q()

171,90 =20 11, 00 7 11, riy 225 11, 0 17, ().

Hence, this truncated sequence can be defined for each 2-category
satisfying conditions A and B of 1.4, condition C being unnecessary.

6. Duality

6.1. To put an end to this ‘‘long journey through the desert”’, we will
show how the above results can be ““dualized”’: for each 2-category ), we
write 9)° for the dual 2-category of 9): this 2-category has the same
objects as 9, but its “categories of morphisms” are defined by the
equation Homy- (%, y) = Homy (y, %); moreover, the composition functor

U g,z Homge (%, V) X Homy:(y, 2) ~ Homye (%, 2)
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of 9)° is the composition of the canonical isomorphism from Hozmeg ( y,.x) X
Homy(z, y) onto Homg (z, ¥) X Homy(y, x), with the composition

functor D Homy (2, ¥) X Homyy, %) —>Homy (2, x).

My,

We can say briefly that “we go from §° to 9 by keeping_ the same

object and the same 2-morphisms, while reversing the direction of the

{-morphisms”’. To each property of 9)° corresponds a property of 9,
called its dual. Let us give a few examples:

6.2. From now on, suppose that 9) satisfies conditions A and B of
paragraph 3; then 9° also satisfies these conditions, which are self-dual.
Condition C is “dualized” as follows: .

Let f: x—y be a 1-morphism of 9 and let ¥f=(Cf,1f, kf) bfe a
triple formed by an object Cf, a 1-morphism‘if: y—Cf, and.a 2-morphism
kf: 0—(if)f. For each object ¢ of 9), the triple ¥f determines a functh
vt (CH—I(f) (for each object z of ), z denotes the grogpmd
Homy (2, 1), and f, the functor #omy(f,1): y:—>% ) Mor‘e precisely,
,f associates with each 1-morphism g: Cf ——'>t the pair (g@f), g (& f)),
which is an object of I'(f). Similarly, v, f associates with each .z—mo'rphlsm
y: g—g the 2-morphism p * (if), so that we have a commutative diagram

(Fig. 70) Cps g, s,

‘lwf ‘ i ll

Y
p{fe) fe
I'(t) =y~ %,
Fig. 70

We can say that the 2-category 9)° satisfies condition C of 3.2 if
and only if ) satisfies condition C°: . ' '

C°. For each 1-morphism f: x—y of 9, the.re is a triple (Cf,1f, kf)
such that p, f: (CH,—I(f) is connected for all objects t of .

6.3. Let «/~'9) be the following category: an object of .ﬂr'@ is a
{-morphism f: x>y of §; the morphisms of /'Y are the diagrams

/
XY

k2 ﬂ iv
() l 2.l
¥r—Y
where u, v, f, f are 1-morphisms and B: fu—svf a 2—morp1}ism. The
domain (resp. range) of g is / (resp. /). We define the composition of
r :
x —>Y x’ —_—y
“ v with oW g 17
() i ., i (@) | 2y
£ —sy P

r Iz

7 Ergebn. Mathem. Bd. 35, Gabriel and Zisman
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as the diagram

1\

x y

@ o el

" /y '
X IZ y

|

where f''= (v'*f)o (B *u).

6.3.1. From now on, suppose that ) satisfies A, B.and C°, and let us
associate with each object f: x—>y of o' 9 a triple (Cf, ¢f, kf) satisfying
C°. Let us associate also with each morphism

y

(0) “1 B l”
, r

x* —7"’3’

of &9 a 1-morphism Co: Cf—>Cf such that (Ce)(f)=(Gf)v and
(Co)* (k) = (GF)*B)o ((kf')*u). When y is the zero object of 9, we
write X% instead of Cf, and we say that T x is the suspension of x. The
functor f~-|Z'x, 1| is isomorphic to the functor which associates with ¢
the Poincaré group of the groupoid Homeg (%, f) at the point 0f. Hence
the suspension of % 1s given a natural P-cogroup structure.
When g is the morphism
0o—> %

| gi’

o——>Y

we write Zf instead of Cg. Thus we obtain a functor 2 from 91 (1.3)
to J); this functor induces, by passing to the quotient, a functor (still
written ) from 9 to 9.

When g is the morphism

we write jf instead of Cp.

6.3.2. The maps which associate with each object f: x—y of K728
the sequence

[f] fif] if Zf P P
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of §), and with each morphism
X —1 s y

(0) 1 ﬁl"

x5 y'
of ') the morphism of Fig. 71

{f1 y (if] ct [i1] S [£1] Sy [Zif] zC

[u]l [v]l [Cel =z “]L [Zv] [ZCel
, i F , Fif
% g y, /1] Cf’ i1 ' [z Z'y’[ if’] ZC}"
Fig. 71

determine a functor from 'Y to the category of sequences of 9. The
objects 2%, Xy, 2C f, ... are cogroups of 9, and the morphisms 21,
[Z7f] ... are cogroup homomorphisms.

1f different values are chosen for Cf, if, kf, Ce, the above functor
will be replaced by an isomorphic functor.

Finally, the sequence (%) is l-exact. In other words, for each object ¢
of ¥, the sequence of pointed sets

| Ey ] A |z g 2 (O L8y, ) L |, o]

is exact.

6.4. Suppose now that ¥ —9) satisfies conditions A, B, C and C°.
it follows then from 6.3.1 and 3.3 that the sets |, y| and [« 0y
are both identified with the Poincaré group of Homs (x, ) at the point
05 - Consequently, the functor yr Zx from X to X is left adjoint to the
functor y~—Qy.

Under the same conditions, if y is a group of &, it follows from a well-
known argument that the two group structures on | X%, y|=|x, £ ¥,
defined respectively by 2% and y, coincide, and make |x, Qy| an abelian
group. Hence 27 is an abelian group of X; in particular, 2t is always an
abelian group of X; similarly, Z*t is an abelian cogroup of &.

Still under the same conditions, consider the following morphism (@)
of 'Y
I'f——o

(0) f”l (h/);,l

x—————)

f

[recall that %f is 2 morphism of the groupoid Homy(I'f, ), and hence
that it is invertible]. Then C (o) is a morphism XI'f—~Cfot . We could
define in a similar way a canonical morphism I'f—>QC7.

7‘
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7. First Example: Pointed Topological Spaces

7.1. Let X and ¥ be two topological spaces with base points &, and y,
respectively, and #».(X, Y) the pointed complex whose #-th compo-
nent is the set of continuous maps 4 from 4" XX to ¥, which send
A" X, to y, (4" is the geometric simplex of dimension #). With such a
map 5, we can associate the map B (d, x)~— (4, h(d,.x)) from A" x X to
A" x Y. If Z is a third complex, with base point #,, we can then define
a morphism of complexes

vy z: Hom. (X, Y) X Hom Y, L) —~Hom. (X, Z)

by sending the pair (k, k) belonging to #om. (X, Y), X #om. (¥, Z), to
the map : 4" x X—>Z defined by the equation I =ko .

Since the functor I7, which associates with each complex K its
Poincaré groupoid ITK, commutes with finite products (II, 7.5), »xv, z
induces a functor

Uxy, z: IT #ome. (X, Y) xIT Home. (Y, Z) —IT om. (X, Z) .

Tt is then clear that we can define a 2-category .¥op as follows: the
objects are the pointed topological spaces, the categories H#om zop (X, ¥)
are the groupoids I7 #%.(X, Y), and the composition functors are the
functors uyy, z induced by »xy z. The 1-morphisms of .Zop are the
continuous maps which send base points to base points; similarly, we
see easily that we can describe the 2-morphisms as follows: let « and
be two maps from I x X to ¥ such that « (¢, &) =B (£, )=y, (I= [0, 1]);
we will say that « and 8 are homotopic if there is a map h: IXIXX—Y
such that h(s, £, ®,) =1y,, R (0, ¢ @) =a(, x), h(1,¢, ) =B (¢, ), h(s, 0, )
=« (0, 2) =H(0,%) and h(s, 1, &) =a(1, ®)=F(1,®); this relation is
obviously an equivalence relation, and we write [«] for the equivalence
class of «. If f and g denote the maps &~—« (0, ®) and x~—>a(1, ®), f
and g depend only on [a], so that [«] is an equivalence class of homo-
topies between f and g. With the notations of 1.3, we then have b [a]=f
and t,[«]=¢g; the composition laws given explicitely in 1.3 are the
“obvious”’ laws.

7.2. Let us show now that the 2-category .Zop satisfies conditions
A, B and C of paragraph 3: condition A follows from the definition;
for o, it is sufficient to take a topological space consisting of a single
point. Then the objects of the category .Zop are the pointed topological
spaces, its morphisms are the homotopy classes of continuous maps
which send base points to base points.

If f: XY is a continuous map which respects the base points &,
and y,, we construct I'f, pf and Af as follows: first, let E(Y, y,) be the
function space whose points are the continuous maps y: I—¥ such that
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y(0)=y,, its topology being the compact open topology; then I'f is the
subspace of E (Y, y,) XX formed by all pairs (y, x) such that y(1)=F{x);
similarly, pf sends (y, x) to @, and we define (&) (¢, y, 2)=17 (8.

7.3. The 2-category of pointed topological spaces also satisfies
condition C° of 6.2: for each map f: X—Y which sends the base point
x, of X to the base point y, of Y, we can construct the triple (Cf, ¢f, f)
of 6.1 as follows: if Z and T are two pointed topological spaces with
base points 2z, and &, respectively, write Z AT for the pointed space
obtained from Z x T by identifying the points of Z X {to} o {zo} X T; the
image of this subset in Z AT will then consist of a single point, which
will be the base point.

In particular, if 0 is taken as a base point for the segment I=[0, 1],
I A X is obtained from the cone with base X by identifying the points of
the generating line through a,. The canonical isomorphism uf from X
onto the base of I A X is thus obtained by the composition of the map
g~ (1, 2) from X to I xX with the canonical projection of I XX onto
I AX. For Cf, we choose the amalgamated sum of the diagram

p = B ¢
7
Y

the base point of Cf being the image of y, under the canonical injection
if of ¥ into the amalgamated sum. Finally, the 2-morphism &f must be
an equivalence class of homotopies between the zero map from X to Cf
and the map (if) of; for kf, we take the equivalence class of the com-

osition . .

P IxX can. proj. IAX can. map Cf

7.4. Suppose now that, with the notation of 7.3, f is the injection of

a subspace X of ¥ into ¥. We say that the pair (¥, X) has the homotopy

extension property if each continuous map from (IxX) {0} xY to a
space T can be extended to I xXY.

When L is a simplicial set and K is a subcomplex of L, the pair (L}, IK])
satisfies the homotopy extension property. Indeed, by chapter 111, '1_f %
denotes the inclusion of (411X K)u ({0} x L) into A[1] XL, M is identified
with the inclusion of (IX|K|)u({0}X|L]) into IxX |L|. Since ¢ is an anodyne
extension of 4°6, (IxX|K|)w({0}x|L|) is a deformation retract of IX|L|:
our statement follows immediately from this fact (see VII, 1.7).

7.5. Lemma: Let (¥, X) be a pair with the homotopy extension property,
and let h: IxX—X be a retracting deformation of X onto &,. Then the
canonical projection of ¥ onto ¥/X is a homotopy equivalence.

Recall first that a retracting deformation of X onto &, is a map h
such that h{1, ®)=h(, x,)=x, and k(0 x)=a. On the other hand,
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¥Y/X denotes the quotient obtained from ¥ by identifying the points of
X, the image of X in ¥/X being the base point.

Let g be the map from (IxX)u({0} x¥) to ¥ whose restriction to
I'xX, is h, the restriction to {0} XY being the identity map of ¥. On the
other hand, let f be an extension of ¢ to IxY. Then the map f;:
y~>f(1,y) is the composition of the canonical projection p: ¥ —¥/X
with a map s: ¥/X—¥. By definition of s, sop is homotopic to Id Y.
On the other hand, f defines, by taking the quotient, amape: I x (¥/X)—
¥/X such that e(0, z)=# and e (1, Z)=pos.

7.6. If (¥, X) has the homotopy extension property (f being the
indusion of X into ¥), the pair (Cf, I A X) also has this property: let
g: IX(I AX) {0} xCf—T be a continuous map. Since IxCf is simply
the amalgamated sum of the diagram

IxX 2, (1A X)
ll xf
IxY
an extension of g to I xCf is uniquely defined by an extension to IXY
of the restriction of g to I xXu{0} x Y.
In particular, transitivity of amalgamated sums imply the existence
of a canonical isomorphism from C /I A X onto ¥/X. Hence we have a

projection p of Cf onto ¥/X. Since I A X is contractible, lemma 7.5
implies the following proposition.

Proposition: If the pair (Y, X) has the homotopy extension property, f
denoting the inclusion of X into Y, the canonical profection p of Cf onto
Y/X is a homotopy equivalence.

If we replace Cf by ¥/X in PupPE’s exact sequence
- [ZC, TV [2Y, T1—-[ZX, T]—[CT, T]—[¥Y, T]-[X, T]
we get the exact sequence
- [2YX), T1—-[2Y, T+ [ZX, T]—[Y|X, T]—>[Y, T]—[X, T]
called BARRATT’S exact sequence.

[According to general use, we used the notation [X, T] instead of our
notations | X, T| or .Top (X, T).]

8. Second Example:
Differential Complexes of an Abelian Category

8.1. If o7 is an abelian category, a differential complex, (or simply a
complex) of & is a sequence X of pairs (X,,, ) where X,, is an object of
o/ and 4} a morphism df: X, ,,~>X,, such that dy_y0dX=0. Usually,
we write d, or simply 4 instead of 4%, and we say that 4 is the boundary
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or the differential. If X and Y are two complexes, a morphism
]C::Pe}r? f&' is a sequence of morphisms f,,:‘ X,—~Y, of & such' that
d,of,s1="1,0d, for all ncZ. These morphisms are composed in an
obvious way, and determine a category K (&) called the category of
complexes of L. |
8.2. If &7 is the category &/# of abelian groups, we will first assoc1ateff
with each complex X of abelian groups a groupoid H X: tpe set o
objects of ITX is ker d_,; the set of morghlsms of ITX is the dlrec’i: sum
ker d_, @ coker dy; since dyod, is zero, dy induces a map d from Coker ;ll
to Ker d_,; the domain of a morphism (, /) of. H X s thgn chosen ho
be x, while the range is x-+4df; finally, composition 1s defined by the

formula: (x-+df, g (x, f)= (x, f+g).

Now, let X and Y be two complexes of abelia'.n groups. Recall ‘d}at
the tensor product X®Y is the complex Z dgﬁned by the follovs?ng
conditions: the #-th component Z, of Z is the dlrect. sum of the abe 1113111
group X,®Y,, the sum being taken over all pairs (?, g) such tha
p+g=mn; if x belongs to X, and y to Y,, we have definition

A(x®y)= ([d%) ®y+ (— 1P x@(dy)

the first term on the right side belonging to the summand X, ;® Y, of
Z._., the other to the summand X,® Y, 4. .
" in the sequel, we will write C for the canonical functor from X XH' Y
to II(X®Y) defined as follows: if (x, ) is an ob]t?ct of ITX ><HY,. ie.
an element of X,x Y, C(x,y) is simply x®y; if (=, }f), (y,8) is a
morphism of ITX X JTY and if f and g’ denote representatives of fand g
in X; and Yy, C((x, 1), (3, g)) is the pair (*®y, h) where h denot;s the
canonical image (¥*+df)®g+[®y of (x+4/)®@g +®yin Zyjd; Z,.
let X and Y be two
8.3. Let us return now to the general case, .
cornp?exes of an abelian category .o, and let #om (X, Y).be the following
complex of abeling groups: its n-th component is the product

T (X,, Y, I = (fP)pEZ is an element of .this product, df is
fieezfined by the equality
3 peg=2ly— (—1) oo D peg-
If X, Y and Z are three complexes of &7, we write
vg vzt Hom(X, V)@ Hom (Y, Z) —Hom (X, Z)

for the morphism of complexes which sends the elemer;t (f ®(g,) of
Hoom, (X, V)@ #om,(Y,Z) to the element ((—1)""gmofy) of
Hottpin(X, Z).
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8.4. We are now ready to define a new 2-category & (&), which we
will call the 2-category of complexes of «7: an object of ®(&) is a
differential complex of «&7; if X and Y are two such complexes, the
category of morphisms Homg a7 (X, Y) is the groupoid II #om (X, Y)
defined by the complex #om(X,Y) (8.2). Finally, the composition
functors

ps v 2 1T Hoom (X, ¥) X T Hoom (Y, Z) 1T #Hom (X, Z)
are obtained by the composition of the canonical functor from
II #oom (X, Y) X IT #Hom (Y, Z) to II(Hom(X,Y)®Hom(Y, Z))

defined in 8.2, with the functor ITvx y ; induced by vx v 7 (8.3).

The 1-morphisms of domain X and range Y are the morphisms of
complexes from X to Y. If f and g are two such 1-morphisms, a 2-mor-
phism f—g is a pair (f, v) whose last component is a class of elements ¢
of Hom (X,Y) such that g—f=dt+td; two elements ¢ and s of
Homy (X, Y) belong to the same class of they are homotopic, i.e. if there
is a we Homy(X, Y) such that {—s=du—ud.

8.5. The 2-category of complexes of &7 satisfies conditions A, B
and C of 3.1. Condition A is clear, as well as the existence of a zero
object (it is the complex with all components equal to zero). Take then
a 1-morphism f: X—>Y; we can then construct the triple (I'}, p/, Af)
as follows:

I'f is the “simple total” complex associated with the “double”
complex of Fig. 72

0 0 0 —2
—d —dey
v, ——Y, Y., —1
h fo f-1
dy .
X; X, ! X e 0
0 0 o -
1 0 —1

8. Second Example: Differential Complexes of an Abelian Category 105

We then have (I'f),= X,,® Y, 11, the boundary operatord: (I'f), = (I'Ha—1
inducing on X, the morphism X, —X, 1@ Y, with. components d,_, and
f,,and on Y, the morphism Y, ;—>X, 1@ Y, with components 0 @d
— 4. The components of the {-morphism pf: I'f —X are the canonical
projections of X,® Y, ., onto X, (n€Z). Finally, we choose f to l?e the
class of the element ¢ of Homwy (I'f, Y) whose n-th component is the
canonical projection of (I'f),=X,®Y,, onto Y, 41-

Note that with the choice we made for I'f, the space of loops 2Y
of a complex Y is defined by the formulas:

(Q Y)n: Yvn—i—l and dﬁy = d;{-!-l .
8.6. The 2-category of complexes of & also satisfies condition C°,
which is dual to C (6.2). For each {-morphism f: X —Y, we can construct

the triple (C/, if, kf) as follows: . . )
C fpis the “simple total” complex associated with the “double

complex of Fig. 73

-------- o —> o —> 0 - —1
do ] dey
"""" Yl_'—'_’Yo'—_’Y—l ¢
—-h —fo‘[ —fa
—dy —dy
--------- Xl———>X0————>Xﬁ1--—----- —+1
-------- g ——> 0 ——> 0 == 2
i 's ;
+1 0 —1
Fig. 73

Hence we have (Cf),=X,-1@Y,, the boundary operator inducing on
X,_; a morphism with components —d, and —f,_,, and on Y, a
morphism with components 0 and d,_1. The n-tl} component‘ of the
4-morphism if: Y —=C f is the canonical monomorphism from Y, into the
direct sum X,,_,®Y,. Finally, we choose kf to be the cl.a.ss of the elements
s of Homy (X, Cf) whose n-th component is the additive 1nverse of the
canonical monomorphism from X, into (Cflur1=X,® Vi1

Note that with this choice of Cf, the suspension 2 X is defined by the
formulas: (ZX),=X,_; and 42X —_dF_;. Hence we have 2=0"and

Cf=Z(T'f) (see 6.4).
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Remark: Let H, be the homology functor from K (&) to &7, i.e. the
functor X ~—ker d¥_ /coker X (ncZ). We can see that with each

7-exact sequence of complexes X Lystz , the functor H, associates an

exact sequence

Hy(f) Hy (g)

H,(X)

2,(Y) H,(Z).

If /: X—Y is an epimorphism, ker f and I'f have :che same homology
for all #; if f is a monomorphism, coker f and Cf have same homology
for all =.

Chapter Six

Exact Sequences of the Homotopic Category

‘We will give here some applications of the preceding chapter to simplicial
sets. We will also seize the opportunity to prove statements which will be
used in the proof of the fundamental theorem of chapter VII.

1. Spaces of Loops

1.1. Let (X, x,), (Y, ¥0), (Z, %) be three pointed simplicial sets,
and let us write /7' (X, Y) for the Poincaré groupoid of the complex
Hom. (X, Y). Since the Poincaré groupoid of a product of simplicial sets
is identified with the product of the groupoids of these simplicial sets
(I1, 7.5), the morphism

Hom (X, Y)x Hom. (Y, Z)>Hom. (X, Z)
defined in IV, 4.2, induces, by passing to Poincaré groupoids, a functor
Iy 2 II'X,Y)xII'(Y,2)->IT'(X, Z).

Besides, it is clear that the /7y y ; are the composition functors of a
2-category whose objects are the pointed complexes: this 2-category
satisfies conditions A and B of V, 1, and will be written ((.4°4)).

Since the set of connected components of a simplicial set is simply the
set of connected components of its Poincaré groupoid, we see that
A6 (X, Y)=1II; (X, Y) is simply | X, V| (see IV, 4.2 and V, 1.6). Hence
there is no reason to make a distinction between the categories .A°&
and ((.4°&)) defined in IV, 4.2 and V, 1.6. We will take care, however,
not to identify the notations |X, Y| and .2# (X, Y) when Y is not a
Kan complex (IV, 4.3).

1.2. Let . Ran be the full sub-2-category of ((.4°€)) whose objects are
the pointed Kan complexes: this sub-2-category has then less objects
than ((.4°4)), but its categories of morphisms and its composition
functors are IT" (X, Y) and I1y vy, ; when X, Y and Z are Kan complexes.
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The 2-category .Ran, which obviously satisfies A and B, also satisfies
condition C of V, 3:

Let X and Y be two pointed Kan complexes, x, and y, their base
points, and f: X—Y a morphism such that F(xg)=19y; we can then
construct I'f, #f and &f as follows:

For I'f, take the fibred product of the diagram

Hom. (A[1],Y)

-1

X—;—>Y

where ¢ is induced by the inclusion of A[1]into 4 [1] when Y is identified
with Fpm. (A 1], Y) (IV, 4.1.2). It follows from the lemma below and
from IV, 3.1.1 (ii bis) that I'/ is also a Kan complex.

For pf, we take the canonical projection pry of the fibred product
onto the factor X. As for the canonical projection pr, of I'f onto
Hom.(A[1], Y), it is canonically associated, by IV, 4.1.2, to a rl}orphi§m
A[1] AT'f—Y, ie. to a homotopy connecting the zero morphism with
¢opry=fopr;. The equivalence class of this homotopy, in other words
its canonical image in IT" (I'f, Y), will be precisely &f.

1.2.1. Lemma: Let Y be a pointed Kan complex and ©: K—L a mono-
morphism of pointed complexes. Then the morphism

Hom. (5, Y): Hom. (L, Y)—>Hom. (K, Y)
is a fibration.
The lemma follows form IV, 3.1.3, IV, 3.1.1 (ii bis) and from the fact
that the square of Fig. 74

Hoom (L, Y) 225 Hom (L, Y)
Hom (i, Y) lx’om G, Y)
Hom . (K, Y)— Hom(K, Y)

Fig. 74

is cartesian.

1.2.2. Tt remains to be seen that the triple (I'}, p/, Af) which we hgve
just constructed satisfies condition C of V,3:lett: T—>Xbea 1-morph%sm
of .Qan and s: 0—Jo¢ a 2-morphism; we must look first for a 1—morphls‘m
v: T—I'f such that t=(pf)or and h= (hf)*7. In order to do t‘hls,
consider a homotopy H: A[1] AT—Y whose equivalence class is h
(see IV, 5.3); the restriction of H to T=A[1] AT is fot, so that the
morphism Hy: T—>Hom.(A[1], Y), canonically associated with 'H )
satisfies the equality eo H;= fo t. Hence we can choose for 7 the morphism
with components ¢ and H, .
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Consider now two 1-morphisms 7, v': 7 3I'f and |

. ; LU T2 et t=(pfloT,
t=(pflot, h‘= (hf)* 7 and &' = (hf)«7'. We still have to show that, for
each 2—rr’10rphlsm a: t—1' such that (f+a)o k=7, there is a 2-morphism
a: T—1' such that a= (pf)*«. In order to do this, let us examine the
product AT1] x4[1] x T (Fig. 75)

T

2/

A]

E) 4

a[1]

Fig. 75

Let H: A[1]x{0}xT—Y be a morphism such that the equivalence
class of the composition of H with the canonical isomorphism from
A_[ﬂ « T onto A[1]x{0}x T is k (H is thus defined on face 3 of our
‘Flgure). Similarly, let H': A[1] x{1} X T— Y be a morphism correspond-
ing .to % (H' is defined on face 4). Finally, let 4 be a homotopy with
equivalence class @, and B: {1} XxA[1]XT—Y the morphism induced
by ]‘o{l (B is defined on face 1). Since we have W= (fxa)oh, there is a
;norphslsndlr al:dA[1]><A[1]><T—>Y which induces H, H’ ’and B on
aces 3, 4 and 1 respectively, and which sends 4[1 x4

{0} x4 1] x T to the base point y, of ¥ (% is the tEag,e poi[rgc >(§f{ t%}:) agglf
1V, 5.21. Passing to the quotient, a; defines a morphism «,: 4 [;] A
(A[1] X T)—Y with which is canonically associated a mor;)hism 5"
AN X T —#om.(A[1], Y). It is then sufficient to choose « to be tlfé

equivalence class of the morphism 4{1] X T —1I"f whose components are
A and og.

1.3. Let f: X —Y be a morphism of pointed K
the infinite sequence ’ e complexes. By ¥, &

[247]
(%) 0y 4 Qrf [Qﬁf]QX [2f] oV {g1] rf [p1] X 7] %

isan 7—exa?t sequence of “ the category of pointed Kan complexes modulo
homotopy”. Moreover, if T is an arbitrary pointed complex and

1 Apply IV, 5.2 to the Kan complex #om . (T, ).
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a(T): T—1g is an anodyne extension such that Ty is a Kan complex,
the sets .A°&(T,Y), A°€(T, x), .A°&(T,I'f), ... are canonically
identified with the sets T8Iy, Y), A8 Ik, X), A°E Tk, ), -
or with the sets .5¢ (T, Y), (T, X), H(T, I'f).... Hence we can also
consider () as an 7-exact sequence of .A°& or of ..
By 1.2, 2Y is the fibred product of the diagram of Fig. 76
Hom. (A[1],Y)

A[0] = Hom (A[0), ¥) — Hom. (A1, Y)=Y
Fig. 76
This fibred product is obviously identified with Hom.(R,Y), where 2
is the simplicial circle (11, 2.5.2). Hence it follows from V, 3 that, for
each pointed Kan complex, there is a _canonical isomorphism from
P& (T, Hom. (82, Y)) onto I1, (#om- (T,Y)). Ttis easily seen that this
isomorphism 4 can also be obtained from the canonical isomorphisms
AE(T, Hom. (@, Y))=.4°E(T~ Q,Y)=.A°8(Q, Hom. (T,Y))
described in IV, 4.1.2 and from the isomorphism
.A°€(Q, Hom T, Y)) = IL(J/U%. (T, Y))
described in 1V, 5.4.

1.4. Let p: E->B be a fibration, ¢, and b, base points of E and B
such that 2 (e,) = by, and F the fibve of p over by, i.e. the fibred product
of the diagram E

s
A[0]—> B
This will be summed up by saying that the sequence
FHESB
is a fibration (¢ denotes the inclusion of F into E).

Lemma: If B is a Kan complex, the morphism 1. F —I'p whose cont-
ponents are the inclusion i of F into E and the zero morphism from F to
Hom. (A1), B) is a homotopy equivalence.

F can be identified with a subcomplex of I'p by means of j; we will
then construct a homotopy 7, connecting a retraction of  with 1dI'p,
such that ehy,=phy, if b, and A, are the components of A:

AT = Dp 2 #Hom.(A11], B)
h,l le
E LN B

Fig. 77
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In order to construct 4,, let us write &: [1] X[ i i
) ) : 11— [1] for the increasin
rgap.whlch sends (1, 0), (0,0), (0,1) to 0 and (1, 1) to 1. The imagi
(B): A[1]xA[1]—A4[1] of % under the functor C of II, 5.1 defines

then, by passing to the quotient, a morphism
1AM AA]—>A41]

which is a hgmotopy C(?nnecting the zero morphism with the identity of
A1) 4[] is contrac.tlble!). Since 4[1] is contractible, the same holds
for #om.(4[1], B): indeed, with the morphism

Hom.(l, B): Hom . (4[1], B)—>Hom.(A[1] A 4[1], B)
is canonically associated a morphism
U': A1) A Hom . (A[1], B)—Hom.(A[1], B)

which connects the zero morphism and the identity of s£o».(A[1], B)
(IV, 4.1.2). For %y, we can then take the composition ’

A xTp 25 AU ATp 22228 A (4] A Home (A[1], B) —> Hom.(A[1], B).

' ‘In order to construct %, we note that, by the Kan extension con-
dition, there is a morphism A, such that p o sy=eo hyand ;| {1} xI'p=1d
‘It follows.that po (1] {0} xI'p) is zero, and hence that %, sends {0} XF}S
lTlt.O the fibre. Since we can choose %, on 4[1] xF as V\;e like, it is suf-
ficient to require in addition that the restriction of %, to 4 [1] >;F should
be the canonical projection onto F.

The above lemma implies the existence of an infinite sequence

QAU efD) J 1 J
2B q OF [24] OF [27] .QBD] lg7] F [i] E [#]

B

of the. pointed homotopic category; this sequence is obviously iso-
morphl.c to the sequence (*) of 1.3; hence it is 7-exact and depends
functorially on p. In particular, each commutative diagram (Fig. 78)
FLELB
/ e b
lI & ll pl ll
F'—FE'— B
Fig. 78
of .A°& whose rows are fibrations ind i
i uces the foll i
Saexam of o (P 70 owing commutative
OB [71*[g/) F (4] E 7] B
[lel ] MJ {b]l
L op R, o E’ B’

Fig. 79
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2. Cones

5.1. We intend now to show that the 2-category .Ran also satisfies
condition C°, dual to C (V,6.2); in order to do this, let us consider
first a morphism f: X —Y between arbitrary pointed sets. We will call
cone of f (notation Cf) the amalgamated sum of the diagram

X—Y

&

ANIAX

where ¢ X=A M]AX—>4A1]aX is the morphism induced by the in-
clusion of A[1] into 4[1]; we also write if for the canonical injection
of Y into the amalgamated sum Cf. Hence the canonical morphism
from A[1] A X to Cf is a homotopy relatively to base points connecting
the zero morphism with (if)f; the equivalence class of this homotopy
is a 2-morphism of ((.4°¢)), which will be written k7.

Since ((.A°&)) is a 2-category satistying conditions 4 and B of V.1,
the triple (Cf, ¢f, kf) defines, for each pointed simplicial set T', functor
from the groupoid (Cf)r to the groupoid I'(f7) (V, 6.2). Our triple does
not satisfy completely condition C°: however, we have the following
result:

Lemma: If T is a pointed Kan complex, the functor from (ChHr to
I'(fy) defined by the triple (C1, i}, k), is connected.

Let i: Y =T be a 1-morphism and &: 0—>%-f a 2-morphism. Since
T is a Kan complex, there is a morphism K: A[1] AX—T whose class
is k. If we write 7 for the morphism from the amalgamated sum Cf to
T whose components are K and 7, we then have 7 (if) = ¢ and 7 (kf) = k.

Now let 7,71 Cf=T be two {-morphisms, and let i= r(¢f),
i'=7'(if), k=rx(kf) and k=7 (kf). We must show that, for each
2-morphism a: 7—>¢' such that (axf)ok=Fk', there is a 2-morphism
a: r—>7' such that a=ax(if). The construction of « is similar to that
given in 1.2.2. This completes the proof.

2.2. We are now ready to verify condition C° in the 2-category .Ran:
suppose then that X and Y are Kan complexes; unfortunately, in that
case, Cf is not general a Kan complex. However, take an anodyne ex-
tension a: Cfj—C'f such that C'fisa Kan complex, and let ¢'f= a(if)
and &' f=a=(kf).

If T is a pointed Kan complex, the functor (C'f)r—I'(f7) defined by
the triple (C'f,i'f, k'f) 1is obviously the composition of the functor
ar: (C'Hlr—(ChHz induced by a, with the functor defined by the triple
(C#, if, kf). Since the latter is connected by 2.1, it is sufficient to verify
that @y is connected: since each morphism from Cf to T can be extended
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to C’'f, ar induces a surjection on objects. On the other hand, let 7,7":
C'f=2T be two objects of (C'f); and let f: ja->j'a be a morphism of
the groupoid (C/)r.

Since the extension

(AMIXCHUANM]XC f) =4[] xC'f

is anodyne by IV, 2.2, each morphism B: A[1] X Cf—T whose equi-
valence class in (Cf)7 is 8 (see IV, 5.2), can be extended to a homotopy
A: A[1]xC'f—T between § and §’. The image o of 4 in (C'f)y is such
that B=a=*a; this complete the proof.

The preceding remarks and paragraph V, 6 imply in particular that
22Y is a . -abelian group for each pointed Kan complex Y.

2.3. Let us return now to arbitrary pointed simplicial sets X and Y.
We will call suspension of X (notation: X X) the pointed complex 2 A X,
where 2 is the simplicial circle (II, 2.5.2). Thus the suspension of X is
simply the cone of the zero morphism X —0.

If 2 XY is a morphism of pointed complexes, the commutative
diagram

xtsy

Id Xl lOY
0X

X—— o

induces a morphism jf from Cf to the cone ZX of 0¥. Hence, if we
consider Cf as an amalgamated sum, the components of jf are the
canonical morphism from 4[1] A X to 2'X and the zero morphism from
Y to 2 X.

Theorem: For each morphism f: X —Y of .A°E, the infinite sequence

zf

O x-v-LceLhrx

Zif

Y2 yep Pl sex

induces a l-exact sequence of the pointed homotopic category.

Recall (V, 6.3.2) that our theorem means that, for each pointed
complex 7', the infinite sequence of pointed sets

(21 T) HGLT) (61 T) HLT)

W)p ...y, TVEEED s zx, Ty o (Cf, TV o2 (v, T) 205 o (X, T)

is exact. Note also that the sequences (i) and (i); depend ““functorially”’
on f.

We will prove this theorem by comparing the sequence (i) to sequences
which we know to be l-exact by V, 6. In order to do this, consider the
Kan envelope (e, ?x) of IV, 4.4, and let us write Cy f instead of (C/)g,
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X Z instead of (XZ)g, ix[ instead of e(Cf) - (¢f) and jg f instead of
(7f)x- We then have the commutative diagram of Fig. 80

x byt zx 2 zy 2 yep s x|
ixx le(cn la(zx) e(zml \E(ixf) lmm lxe(‘m

h R

CKf Y] ZKX et ZKY ZCKf —EWZZKX H

\Ex(ixl)le(z‘cxf) le(ZEKf)
N

3 Cofoo 22X
xCrl spmm 2%
Fig. 80

Since all vertical arrows are anodyne extensions by 1V, 4.3, the sequence
(i) is isomorphic, in the pointed homotopic category, to the infinite
sequence

Zrligf)

i) x—— vt B x L B Y IS B Cref

When X and Y are Kan complexes, the latter sequence is l-exact
by 2.2 and V, 6.3.2.

If we suppose only that X is a Kan complex, we have a commutative
diagram (Fig. 81)

7 v if if zf

ct X Zy
(i) Idxl @ lem ® le/ ® me ® l,:zm
Cg—5 > ZX 5> 2

Fig. 8t

X Vi

g ig

where g is the composition ¢(Y)f and where &f is induced by e(Y).
Since the square 2 is obviously cocartesian, f and all vertical arrows
of the diagram are anodyne extensions (IV, 4.3). The rows are then iso-
morphic in the pointed homotopic category, which takes us back to the
preceding case.

Finally, when we make no hypothesis on X and Y, we have a
commutative diagram (Fig. 82)

it zf

x v -4s ¢y X IY

(iv) e(x) l lin. le’/ lZe x) lz in,

Xg—— V' —— Ciny) Iy

1, ( iling) X " Sing)
Fig. 82

8 Ergebn. Mathem. Bd. 35, Gabriel and Zisman
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where Y is the amalgamated sum of Xy and Y under X, in; and in,
are the canonical morphisms, and where &' f is induced by in,; all vertical
arrows are anodyne extensions, so that the rows are isomorphic in the
category .5 in fact, in, is an anodyne extension since the first square
is cocartesian, and ¢'f is another one since the square
XAaA1] — Cf

eB)AI| et

X n4[1]— C(iny)
is also cocartesian. This takes us back to the preceding case, and hence
completes the proof.

2.4. Wekeep here the same notations asin 2.3, and we suppose moreover
that f is a monomorphism of .A°&. We write then Y/X for the amalga-
mated sum of the following diagram of .4°&:

xLy

ox!

¢
0

Since 0% is the composition of the morphism &: X —A1]AX of 24
with the zero morphism A[1]AX-—o0, Y/X is also identified with
CH(411] A X); in other words, the diagram of Fig. 83

X5 AMAX— o
1o .
y-—- Cf —YX

Fig. 83

is commutative. (Here, g is the morphism from the amalgamated sum
to Y/X whose components are the canonical projection p from Y to
Y/X and the zero morphism.) If / denotes the morphism A [1] AA4[1]—
A[1] of 1.4, we write & A[1]AAU]AX —>A[1] A X for the morphism
I A1d X. This morphism is a homotopy relatively to base points con-
necting the zero morphism with the identity of A[1] A X. In other words,
A[1] A X is contractible. Applying lemma 2.4.1 below to the mono-
morphism A [1] A X —CFf, we get

Proposition: If f: X—Y is a monomorphism of pointed simplicial
sets, the canomical morphism from Cf to Y[X has an invertible image in
the pointed homotopic category.

If f is a monomorphism, the sequence (i) of 2.3 is thus isomorphic
(in.5#) to the infinite sequence

xLytyxiSrxZsy...

This sequence is a J-exact sequence of ..

2. Cones 115

>.4.1. Lemma: Let w: U—V be a monomorphism of simplicial sets. If
U is contractible, the canowical projection p of V onto V|U has an invertible
tmage in ..

The proof is similar to that of lemma V, 7.5. Since U is contractible,
there is a composed homotopy 4: I, xU—U (relatively to base points)
connecting the zero morphism with 1d U. Let then g be the morphism
from (I, X U) w ({0} x V) to ¥V whose restriction to I, xUis h, and which
is induced by Id ¥V on {0} XV (we identify U to a subcomplex of V by
means of #). Consider then the commutative diagram of A°& of Fig. 84

(I, x U)o ({0} x V)=V
(1) incl.l . \{ya
I, XV o> V'

Fig. 84

where V' is the amalgamated sum of the full line diagram, and where ¢
and G are the canonical morphisms. In this diagram, ¢ is an anodyne
extension, and G is a homotopy (relatively to base points) connecting ¢
with a morphism f from V to V'; finally f factors through p by means of
a morphism 7: V/U—V". Let then ¢ be the morphism of .J# defined by
the following diagram of .A°& (see I, 2.3)
ViUV <V

Since we have f=7op, the composition gop in .5 is defined by the
diagram P -
V=V V.
Since, by construction, [f] = [¢] in the category .A°&, we have gop =
1d V¥ in the pointed homotopic category.

Let us now write p’ for the projection of V' onto V'|U and ¢':
V|U—V'JU for the morphism induced by ¢. The square

v -y
(i) o I

Vv’ e Vi
is cocartesian, and hence ¢’ is an anodyne extension; but in the category
., the morphism po g is represented by the diagram

viu Zh viu < viu

(see T, 2.3): in order to show that pog= Id(V/U) in the pointed homo-
topic category, it is sufficient to find a homotopy H (relatively to base
points) connecting ¢’ with p’o7: we note then that G induces, by passing
to the quotients, a morphism from I, X (V/U) to V'|U, and this is the
homotopy we were looking for.

8*
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3. Homotopy Groups

3.1. Let X be an arbitrary pointed complex. By 2.3, the suspension
XX of X is simply the contracted product £ A X. Moreover, the functor
Y s ¥ A X from .2 to .2 isleft adjoint to the functor Z ~—#om . (X,Z )
described in 1V, 4.3.1. It follows that the functor Y ~»Y A X commutes
with direct sums, and hence that the canonical morphism

QRAX)v(R2rX)>QvrX

is an isomorphism. If we compose this isomorphism with the morphism
@ A X deduced from IV, 4.5, we give to 0 A X a cogroup structure of the
category ..

When x: X—X' is a morphism of .5, the induced morphism
Sx: XXX X' is obviously a cogroup homomorphism. In the sequence
(i) of Theorem 2.3, in particular, the morphisms 2'f, Xif, 27f ... are
cogroup homomorphisms.

Finally, suppose that X is a cogroup of o and let 6: X>XvX
be the comultiplication of this cogroup. Then the cogroup structures
of O A X which are deduced from ¢ A X and £ A8 coincide, and make
0 A X an abelian cogroup. In the sequence (i) of theorem 2.3, in particular,
the objects 22X, 2?Y, ... are abelian cogroups.

3.2. Let T be a pointed complex, and set
IO, T=.# (A1, 1), ILT= HEZAN, T, ..., I, T= o (ZPAT).

By 3.1, the sets I7, T have a group structure for n=1: we will say that
II, T is the n-th homotopy group of T ; this group is abelian for n= 2.
The set IT, T is simply the set of connected components of T. Let us
consider then IT, T: for each pointed complex Y, we can identify Y
with ¥ A A[1] by means of the following composed morphism of .A4°&’:

Yoy Y} 25 Y x A1) —=> Y A d[1].

In particular, zA [1] is simply the simplicial circle 0. By 1V, 5,
II, T is thus identified with the Poincaré group of T at its base point.

More generally, 2"A[1] is identified with the contracted product
A"Q of n copies of Q. If p is the canonical projections of A[1] onto 2,
the composition

g A[1] -+ x A[1] 222

can.

Qx---x QA A

is an epimorphism of .4°&. Besides, if follows from the definition of £
as cokernel of the pair of morphisms

A@Y), A& 4[0] = 4A[1],

L #(EX,2) ZEEDL o (EX, T)— # (X, T)
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that the square

incl.

4 2hoapy
l lQn
A[0]— A2

where A= pti +1A 171 x A[1]x A[1]%, is cocartesian. Hence the potnt-
n=ptq

ed complex A"£2 s obtained from the n-dimensional cube by contracting the
“boundary” of the cube to a point.

3.3 If X is a pointed complex and T a pointed Kan complex, we have,
by IV, 4.2 and IV, 4.3.1, a functor isomorphism

H(EX, T)ox H(X,QT)

where 2 T= #om. (R, T) (see1.3). Hence, for each n=1, we have functor
isomorphisms

H(X, T) o H (T X, QT) o - o H (X, Q2'T).

For each morphism f: Z—T of pointed Kan complexes, the exact
sequence

(X, 1) 22,

o x, T2 e (x,2) 50 (X, T)

induces then an isomorphic exact sequence

(X, pf) XD
—

H(X,Z)

In particular, if X is equal to A[1], we have the exact sequence of
homotopy groups:

Lz

I, f oyt I, f

11, T— II,T'{ =25 1,2—~I1,T .

* Similarly, consider a pointed Kan complex B and a fibration (1.5)

FLHELB
The exact sequence .
_ .0B—FL BB
of 1.5 and the functor isomorphisms I1,T =% H#{A[1], T) define an
exact sequence of the homotopy groups of a fibration

...I,B—> ILF I, [T, B—» [I,F = IT,E %> 1T, B.

ILE

This exact sequence depends “ functorially”” on p.

3.4. We will now give another definition of the homotopy groups,
which will be needed at the end of this chapter. We will see indeed that
the pointed complex A™(2 is isomorphic in . to the complex A [n][4[n]

X, T).
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obtained from A[n] by contracting its boundary to a point. Thus, for
each pointed complex T, we will have an isomorphism

I,Tox #AMWAR], T)

which we will use later.
Indeed, it is clear that, in the category .4°&, the morphism A[&,]:
A[n]—>A[n-+1] induces an isomorphism -

Am)|An]=ATn+1)]A°[n+1].
Since A°[n+1] is contractible (a homotopy connecting the identity

of A%[n+1] with the zero morphism is given by C (1,,), IV, 2.1.3), we
then have an isomorphism

A Am]=4[n+1]

in the pointed homotopic category (2.4.1).

Let us now write / for the canonical injection of Alx] into A[x]. It
follows from the definitions that the two following squares of .A4°& are

cocartesian:

An] — A1) A A [n)] AL cf
2l | | }
An] 7 Cf 410} — CflA[n]
Fig. 85

Hence the same holds for the composition of these two squares (Fig. 86)

Zl[n]——>A[1]1\Zl[n]

|
Alo}— CflATn]

Fig. 86

In other words, C /4 [n] is the cone of the zero morphism A[n]—o0, ie.
we have Cf/A[n]=2XA[x] in the category .4°&.

But, in the pointed homotopic category, we have the following iso-
morphism:

— C#A[n)==C}, for A[n] is contractible

—Cf=A4[n)|A[n] by 2.3

_Am]=An—1]A[n—1] (e>1).
We deduce an isomorphism (#>1):

An]jA[r)=E(An—1]jA[n—1]).
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Since by definition, 2=A4[1]/4 [1]=ZA[1], it follows from the above
isomorphism that

A)JA[n]=2"1Q=2"A[1]. QED.

4. Generalities on Fibrations

4.4.Let p: E->Band p’: E'—B' be two morphisms of a category €.
A morphism from p to p’ (see V, 4) is a pair (#, v) formed by morphisms
w: E->E' and v: B—B’ such that p’u=1vp. These morphisms are com-
posed in an obvious way, so that we will be able to speak of the category
of morphisms of €, written #. In particular, if p and p’ are two iso-
morphic objects of this category, we will say that p and p’ are isomorphic
morphisms of €.

4.4.1. For example, consider, the case of the category 4°&. By
definition, (o A°&) (p, p') is.the fibred product of the diagram of sets

of Fig. 87

A°&(E, E')
A°E(E, ')
4°6(B, B) 2222, g° & (E, BY)

Fig. 87

This leads to write #m (p, p') for the fibred product of the following

diagram of 4°& (Fig. 88)
Hom (E, E)

Hom(E, p')

Hoom(B, B) 22D Soom (E, B)
Fig. 88

Thus an #-simplex of #om (p, p') is a pair (h, k) which makes the fol-
lowing diagram commutative:
An] XE 2> E’
Jamxe ¥
An] xB—> B’

The face and degeneracy operators are obvious; moreover, Hom (P, p') is
a Kan complex if p’ is a fibration (IV, 3.1.1 and IV, 3.1.2) and B’ is a
Kan complex.

4.1.2. Two morphisms from p to p' are said to be homotopic if they
belong to the same connected component of #om (p, p'). The set of these
connected components will be written II,(p, p)). It p': E"—>B" is a
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third morphism of 4°&, it is clear that the composition map
(lr £°8) (b, P) X (sl A°8) (#', ")~ (r 4°6) (B, ")
is compatible with the homotopy relations, and induces a map
II,(p, #') <1y (', #7) =11y (p, ?”) .

Thus we define the category of morphisms of A°¢ modulo homotopy:
its objects are the morphisms of A°&, its sets of morphisms are the
sets ITy(p, ). If p and p’ are two isomorphic objects of this category, we
will say that p and p’ have the same homotopy type.

4.1.3. Suppose now that E is a subcomplex of E’, that B is a sub-
complex of B’, and that p: E B is induced by p’. Then we say that p
is a deformation vetract of p’ if there is a pair (%, k) such that the square

A] XE 2> E'
|amixy i

k
A[1]xB 2> B’

is commutative, that the restrictions of z and & to {O}xE":’E’ and
{0}x B'=2 B’ are the identity morphisms of E’ and B', and that the
restrictions of # and k to A[1]xE and A[1] x B factor through the
canonical projections onto E and B. Such a pair (k, k) is a 1-simplex
of Hom (P, p'); we will say that it is a retracting deformation of p’ onto p.

If p is a deformation retract of #', it is clear that p and p’ have the
same homotopy type (4.1.2).

4.2. Let us return now to the notations of 4.1.1, supposing that the
bases B and B’ coincide. We write then Homy (b ,p") ot Homp(E, E") for
the fibre of the canonical map

Hom (p, p')—>Hom(B, B)

over the identity morphism of B (1.4; note that Id B is a 0-simplex of

Hom (B, B)). If p' is a fibration, Homg(p, p') is a Kan complex by
1V, 5.1.1 and V, 3.1.2.

The n-simplices of #omg (P, P') correspond then to the morphisms
h: An) X E—E’ of A°& such that the triangle
An]xE ——E'
P°p>4 ‘/17
B
commutes (pr, is the canonical projection onto the second factor); the

O-simplices, in particular, are identified with the morphisms #:
E—E' of A°& such that p'u=p. These morphisms are composed in an
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obvious way and allow us to define the category of complexes over B,
whose objects are the morphisms p of A° & with range B. We say that
p and p’ (or sometimes E and E') are isomorphic relatively to B, if they
are jsomorphic objects of this category.

4.2.4. Let p: E—>B and p': E'—B be two morphisms of 4°¢ V\:iﬂ"l
the same range B. Two morphisms %, u': E —E’ suchthatp=pu=p1%,
are called homotopic relatively to B if they belong to the same connect<?d
component of #omp (p, p). The set of these connectec} components will
be written [Ty (p, p)- 1 p' E'—>Bisa third morphism with range B,
the composition map

A& (E, By x A°E (', E")—~>4°€ (B, ET)

induces a map

3, 2) x5, ) > 115 (P, ")

This allows us to define the category of complexes over B modulo homo-
topy: the objects are the morphisms of 4°¢ with range B; .the sets 9f
morphisms are the sets IIg(p, p") -+-- If p and p’ are two isomorphic
objects of this category, we will say that p and p’ have the same homotopy
type relatively to B.

4.2.2. With the notations of 4.2.1, suppose now that E isa subcomp}ex
of E' and that p is the restriction of p’ to E. We say thaft p (or E) isa
deformation rvetract of p' (or E') relatively to B if there 1s a morPhlsm
h: AT XE —FE’ such that p'oh=7p"oPre anfi thé.lt the re,stnc’aon of
J to E'=2{0}xE' (resp. to AT xE) is the identity of E (re§p. the
canonical projection onto E); such an A will be called a retracting de-
formation of E’ onto E relatively to B.

Ifpisa deformation retract of ' relatively to B, p and p’ have the
same homotopy type relatively to B.

4.3. Let us return now to the notations of 4.1.1 and to the definition
of Hom(p, p')- The commutative square (Fig. 89)
Hom (B, B) Z2LE, #om (E, E)

#om(B, ) AHom(E, ')

Hoom (B, B) T2 om (E, B)
Fig. 89

induces then a morphism plp': Hom(B, E)—> #Hom (b, D) whose com-
ponents are Hom (p, E") and Hom (B, ")

Proposition: If 1 Y—=X is a monomorgbh?'sm qnd p E.——>B a
fibration, the morphism ip: Hom (X, E)—Hom (i, p) is a frbrabron.
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Consider a commutative square (Fig. 90).

U #om(X, E)
“) , L
V2 Hom(i, p)

Fig. 90

where # is an anodyne extension; we even suppose that « is an inclusion.
Let then b,: V —#om (Y, E) and by: V —>Hom (X, B) be the components
of .b; let @': UxX—E, by: VxY—E and by: V xX—>B be the mor-
phisms canonically associated, by adjunction, with a, b, and b, (11, 2.5.3).
The relation #om (i, E) o a= b, o u implies a'g (Uxi)="bromXxY),s0 that
f" and 4] coincide on the intersection U X Y of their domains. Hence there
is a square (Fig. 91)

VquUxX-i»E
incl.
el
VxX — B
Fig. 91

suc}} that the restrictions of ¢’ to V' x Y and U x X are equal respectively
to by and a'. Moreover, the relations

Hom (Y, p)oby= Hom (i, B)ob, and Hom (X, ploa="Dbyou

imply that pbj=b, (V'x1) and pa’="by(uxX). Hence our square is
commutative. Since the vertical arrow on the left is an anodyne ex-
tension by IV, 2.2, there is a morphism d': V x X —E whose restriction
to VxYuUxX is ¢ and such that b, =pd’. Then the morphism
d: V—>H#om (X, E), canonically associated with d (I, 2.5.3), satisfies
the required equalities du=a and (¢/p) d=20. ’

When Y is the empty complex, ¢/p is identified with Hom (X, P)
and we get 1V, 3.1.2 again; when B is equal to A[0], i/p is identified with
Hom (i, E) and we get V, 3.1.3.

4.3.1.‘We say that a morphism p: E—B of A° & has the path lifting
property if, for each commutative square of the form

there is a morphism w: A [1]—E such that wj=1u and pw=71.

Corollary: Let p: E—~B be a morphism of A°E. Then the following
statements are equivalent:

|
.
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(i) p 4s a fibration;
(il) for each monomorphism 12 ¥ =X, the moyphism
ilp: Hom(X, E)—>Hom(i, P)

has the path lifting property.

The implication (i)=> (ii) follows from proposition 4.3. On the other
hand, statement (i1) means that, for each subcomplex Y of a complex X,
and for each commutative square '

A1] Yol xX —E
lincl. Lp e = 0’ 1
Al]xx B
there is a morphism ¢: A1) xX —E whose restriction to A1} xY v
{e}xXisa and which is such that pc= b. This implies (i) by IV, 3.1.

4.3.2. Let us return now to the notations of 4.3 in the particular
case where X=A{n] and y=A[n] (11, 3.6; then Y is empty if #=0).
A point (a, b) of Hom i, p)is then given by a singular simplex b: 4[n]—~B
of the base, and a “lifting” a: An]—E of the restriction of b to Aln]
(hence we have poa:b\Zl [#]). A point e of Hom(A[n), E) over (a, b)
is a singular simplex ¢: An]—E such that poe="> and e\Z] [n]=a.

Since ifp: Hom(An], E)—Hom(i, p) is 2 fibration by 4.3, the

fibre F, , over a point (a, b) of Hom (i, p) is a Kan complex. It follows
that two vertices of a same connected component of F,; are the end-
points of a same {-simplex: in other words, consider two singular sim-
plices ¢, A[n] _E and ¢ A[n]—~E such that e(,\ZI n]= 31M m]=a
and pe,=pe="0; the vertices ¢, and & belong to the same connected
component of the fibre F, , if there is a morphism %: 4[1] xA[w]—~E
such that b|4[1] % An] and pok factor through the canonical pro-
juctions of A[1] xAn] and 4[1] x A[n] onto A[n] and A[n]. Then we
will say simply that € and e, are B-equivalent. We will also say that the
elements of E,, canonically associated with e, and ¢, are B-equivalent.

Lemma: Two degenerate simplices of E of dimension n ave B-equivalent
if and only they if are equal.

This lemma follows directly from 4.3.3 below:

4.3.3. Lemma: Let x and y be two degenerate simplices of dimension
n of a simplicial set E. The relations d;x=d;y for 0=i<n imply the
equality x=Y.

Let p and g be such that x=s,d,% and y=S,d,%. If p=g, the lemma
is proved. If not, suppose that p <g. Then we have x=SdpX¥= Spdp Y=
$pdpSy 0 Y = $pSg—19pdg V= $;5p g Y =5 £ with §=s,d,d, Y- We deduce
that d,x =d;5, g—=&and x =54y %= s,y y ="
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5. Minimal Fibrations

5.4. Let p: E—B be a fibration and i the inclusion of A[#] into
4 [n]. We say that p is a minimal fibration (or that E is minimal over B)
if two B-equivalent simplices of E (4.3.2) are always equal. It is equi-
valent to say that each connected component of a fibre of ¢/p:
%0?/2.([] [n], E)—#om (i, p) of 4.3.2 has exactly one vertex.

‘ Since i/p is a fibration we can state this last condition in a slightly
different way: let ¢ and f, be two 1-simplices of Hom (4[], E) such
that (i[p)ty= (i/p)?; and d,t;=4d,t, (e=0 or 1). Since ¢/ is a fibration,
t}‘lere is a 2-simplex ¢ of #om (4 [n], E) such that 4, ,0=1, d,oc=1, and
(i]p)o=s,t [where t=(i/p)ly= (i/p)t,]. This shows that d,_, () and
d,_,(t;) are B-equivalent; hence these vertices coincide when E is
minimal over B, and the converse is clear. In other words, we see that
$ is a minimal fibration if and only if for each diagram (Fig. 92)

AN x d[n]ofe}xAm] ——E

H,
i » neN,e=0o0r1
H,
A[1] x4 [n] ’ B
Fig. 92

such that a= H,j=H,j and b=pH,=pH,, the restriction of H; and
H, to {1— ¢} x4 [n] coincide.
Note the following two properties of minimal fibrations:
5.1.4. If the commutative square
E'—E
v P2
B'— B
is cartesian and if p is a minimal fibration, the same holds for $'.
5.1.2. For each commutative diagram (Fig. 93)
ESE-SE
o Pt
BB — B
Fig. 93

such that vou=1d E and v’ ou'=1d B, p is a minimal fibration if " is
one {see IV, 3.1.1 iii bis}.

5.2. Theorem' (existence of minimal fibrations): For each fibration
p: E—B, there is a simplicial subset E' of E such that the vestriction p'

of p to E' is a minimal fibration and is a deformation retract of p relatively
to B.
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Consider the B-equivalence relation defined in 4.3.2, and choose a
simplex in each equivalence class (we will say that such a simplex, as
well as the associated singular simplex are selected) ; we require only that
each degenerate simplex should be selected, which is possible by lemma
4.3.2.

Let then E' be a subcomplex of E whose simplices are all selected,
and which is maximal for this property. Then any selected n-simplex e
of E, such that & |A[n] factors through E’, belongs to E': for let E’ be
the smallest subcomplex of £ containing E’ and e; the simplices of E”
belong to E’, are degenerate, or coincide with e; hence they are all
selected ; hence we have E'=E'.

Let us shows now that the restriction p’ of p to E'is a deformation
retract of p relatively to B, which will imply our theorem, by IV, 3.4.1:
let (D, k) be a pair formed by a subcomplex D of E containing E’ and
by a homotopy 4: A[1] xD—E between the inclusion of D into E and a
retraction of D into E’, and such that the homotopies h| A XE’ and
poh factor through the canonical projections of A[1] XE’ and A1} xD
onto E’ and D. We can obviously suppose that (D, k) is maximal for
these properties, and show then that D=E:

1f this is not true, there is a simplex ¢ of E which does not belong to D,
and whose dimension is as small as possible. Then the restriction of the
singular simplex & to An] factors through D, and the smallest subcomplex
D' of E which contains D and e make the squares of Fig. 94 cocartesian
(11, 3.7).

A — D AT1] %A ] —— 4[1]xD

incl. incl. incl, incl.

A —— D' Ap] %A ] 222 A% D’
Fig. 94

In order to contradict the maximality of (D, &), by extending % to D',
it will then be sufficient to construct a homotopy k: 4[1] x4 [n] —E,
connecting & with a selected singular simplex, whose restriction to
A1) x A[#] coincide with that of ho{4[1]x &), and for which pok
factors through the canonical projection of 4[1] % A[n] onto 4 [x]. This
is equivalent to say that, in the fibration i/p of 4.3.2, we can lift any
edge in such a way that the lifting of the origin a is given and that the
lifting of the end b is chosen among given representatives of the different
connected components of the fibre of b. This is obviously possible.

5.3. Theorem: Two minimal fibrations p: E—~B and p': E'— B which
have the same homotopy type velatively to B, are isomorphic velatively to
B (4.2.1 and 4.2).
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Let u: E—E’ and v: E'—E be morphisms of complexes over B
such that v and Id E on the one hand, #v and Id E’ on the other, are
homotopic relatively to B. We will deduce from lemma 5.3.1 below that
uv and vu are isomorphisms relatively to B, so that the same will hold
for # and v.

5.3.1. Lemma: Let p: E—DB be a minimal fibration, and let w: E—~E
be a morphism such that pu=p. If u is homotopic to 1d E relatively to B
(4.2.1), u 1s an isomorphism of A°E.

By 4.2, #omg(p, p) is a Kan complex. It follows that # is homotopic
to Id E relatively to B if and only if there is a homotopy % between 1d E
and # such that pA factors through the canonical projection of A[1] XE
onto E. :

a) Let us show first that « is a monomorphism, by proving inductively
on #, that u,: E,—E, is an injection. We begin the induction with
n=—1, by defining E_, =@. Suppose then that «, is injective for r <#
and #=>0. Let x and »’ be two n-simplices such that %, (%)=, (x). The
singular simplices % and % associated with x and %’ are such that
%|An]=#1]4[n] (by induction hypothesis) and poX=po&'. Hence
we have a commutative diagram (Fig. 95)

A1) x A[n]w{1}xd[n] ——= E

ho(Idx %)
incl. . b
l w % J(
B

AT x4 [n)

Fig. 95

poXopr,

where v is the common restriction of both Ao (Id X %) and %o (Id X %) to
A[M]xAw]u{t}xA4[n]. By 5.4, the morphisms ho(IdXx %) and
ho (Id x #) also have the same restriction to {0} x4 [#], which is equiv-
alent to the equality x = «".

b) Suppose now that #,: E,—E, is surjective for » <<%, and consider
an n-simplex x of E. For each integer ¢, 0<¢=#, there is a (n—1)-
simplex y; of E such that #,_, (y;) =d,x. By a), these y, are determined
in a unique way, and define a morphism y: 4 [#]—~E such that
poy=po®|Aln)).

By definition of y, the composed morphisms

AN An) 25 AU]x E——E
and

M ATn] ~ An] 2> E
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coincide on {1} x4 [#] and define a morphism @ such that the diagram

inclusion b
A1) xAn] oo B
Fig. 96

is commutative. Since the morphism on the left is an anodyne extension,
we can complete commutatively”’ the diagram by a morphism @:
A[1] xA[n]—E. Let then Z be the restriction of @ to 4 [w]={0} x4 [#]
and z¢ E, the simplex associated with 7. We then have the commutative

diagram of Fig. 97
A x A[n]o{oyxA[n]——>2E

incl.l 2 . lp
he(IdxZz)
A[1]xA ]

Fig. 97

po%opr;

By 5.4, @ and ko (Id xZ) have the same restriction to {1} x4 [n],
whence the equality x=1,(2).

5.3.2. Corollary: Two minimal fibrations which are deformation retracts
of p: E—B relatively to B, are isomorphic relatively to B (4.2).

5.4. Recall (I1, 4.1) that a morphism p: E —» B of A°& is called locally
trivial if, for each n€N and each n-simplex x of B, there is a cartesian
square of the form

FxAnl=><xE
o . IE2
An] — B

1f b is a vertex of the image of %, the complex F is obviously isomorphic
to the fibre of p over b. For a locally trivial morphism, this fibre is
determined, up to isomorphism, by the connected component of B which
contains .

Theorem: Each minimal fibration is locally trivial.

By 5.1.1, the fibred product A[xz] x E is minimal over 4[n] for
.0

each simplex x of B. Hence it is sufficient to show that E is trivial over B
(111, 4.1) when B is a standard simplex A[x#]. In that case, let
us write f for the identity morphism of 4[x], and g: An]—>A4[n]
for the morphism induced by the constant map of [#] onto the element
0 of [#]. Since the homotopy C (%) of IV, 2.1.3 connects f wit.h g, the
fibred products 4[] i><¢vE and 4 [n]gxp E are isomorphic relatively to



128 Chapter VI: Exact Sequences of the Homotopic Category

A[#] by 5.4.1 below. But the former is identified with E, while the latter
is simply the product A [#] XF, where F denotes the fibre of p over the
image of g.

5.4.1. Proposition: Let p: E — B be a minimal fibvation, and f,g: A =B
two homotopic morphisms. Then the minimal fibrations A ><E —A and

A XE-—A are isomorphic relatively to A. g
g -
We can easily restrict ourselves to the case where we have a homotopy

% connecting f with g. Consider then the commutative diagram (Fig. 98)
A xE’—“> (A[1]x4) XE J‘—AgxﬁE
Qol . Qi " i qu

A 2 AMlx4a < 4

Fig. 98

where vertical arrows are canonical projections and where %, 7, (resp.
4y, 7,) are induced by the morphism 4 (83) xA: A= A[0] x4 —A[1] x4
(resp. by the morphism 4 (&%) x A). On the other hand, let %, (resp. 4,)
be the homotopy between 4 (&0 0y) and the identity morphism of 4 [1]
(resp. between the identity morphism of 4[1] and 4 (Bo0y)) (see I, 2.1).
By lemma 4.4.2 below, there is a retraction 7, of §, (resp. 7; of 7;) and a
homotopy &, (resp. %,) connecting f, 7, with the identity morphism of
(A[1] x A) ><E (resp. connecting the identity morphism of (4 [1] X 4) ><E

with 7, 71) Wthh is “compatible” with the homotopy hyx A (resp
hy x A) of the base A[1] xA. It follows easily that # 7, and 7, 7; are iso-
morphisms (inverse to each other) of the category of complexes over A
modulo homotopy (4.2.1). Hence ¢, and ¢; have the same homotopy
type relatively to 4 and the proposition follows from 5.3.

5.4.2. Lemma: Let p: E— B be a fibration, j: A~ B a monomorphism
of A°&, q: B—A a retraction of §, and h a homotopy connecting 1d B with
7q. Then there is a vetraction v of the canonical projection pry: A ><E —E

and a homotopy k connecting 1d E with (pry) v, such that the followmg
square 1s commutative:
A1) XE AE

lz}[ﬂxp l

A[1]xB 2B
(We would obviously have a similar statement if /# were a homotopy
connecting j¢ with Id B).

Proof of the lemma: We are looking for an edge % of the complex
Hom(E, E), whose starting point is the identity morphism of E. The
image of % under the morphism # (pr,, E) must be the composition

a: A1) x(4 xE)—>A xEL"»E
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The image of % under the morphism #% (E, p) must be the composition
b A XE-"EE A% B B.
But (a, b) is an edge of the complex #o (pry, ) (4.1.1). Since pryis a

monomorphism, there is, by 4.3 a lifting of (a, b) into #om (E, E).

5.4.3. Corollary: All fibres of a fibration with connected base have the
same homotopy type (i.e. are isomorphic objects of A°8).

By 5.2, we are lead back to theorem 5.4.

5.5. Let us return now to the homotopic category S (resp. to the
pointed homotopic category .2#) and let us call representative of a
morphism f of # (resp. of .5#) any morphism ¢ of A°E (resp. .A4°8)
whose image in # (resp. ..2¢) is isomorphic to f (4.1). Since each morphism
f of # (resp. of .#) is associated with a diagram of A°& (resp. of . 4°&)
of the form Xy

e
y

where ¢ is an anodyne extension (I, 2.3), we see that each morphism
has a representative. To complete this paragraph, we will see that one
can always choose as representative a minimal fibration, i.e. a morphism
having remarkabel “geometric™ properties (5.4).

5.5.1. Proposition: For each morphism p: E->B of A°&, there is a

. nl
commutative triangle [

N oF
B

such that a is an anodyne extension and p’ a fibration.

Let us call p-horn any 4-tuple y= (n, &, u, v) formed by an integer
n=1, an integer k such that 0=<k=#, and morphisms « and v of A°&
making the square of Fig. 99 commutative:

A ]S E

lmcl, lp
Aln] =B
Fig. 99

Write 7 (p), k(y), % (y), and v(y) for the components of y. We then have
a commutative square (Fig. 100)

LA [n ()] 5 28, g

incl. 4
LAmnp)] ~*B
Fig. 100

9 Ergebn. Mathem .Bd. 35, Gabriel and Zisman
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where y runs through the p-horns, and where the components of u(p)
[resp. of v(p)] are the morphisms % (y) [resp. v(y)]. Since the vertical
arrow on the left is an anodyne extension, the same holds for the
canonical morphism w () from E to the amalgamated sum E? of E and
11 A4 [#(y)] under 11_’111"(”) [n(y)]. 1f 7 (p): Ef—B denotes the morphism

‘hduced by the square above, and if we define 7,4 (p) = (7, (p)) and
Et, = (EP)m®), we get the following commutative diagram of .A4°
(Fig. 101) ‘

11, w (7, ) Eg w(7s p) Eg .

E w (p) E
\\:P%AP) 715 (P)

B

Fig. 10t

If Et, is the direct limit of the Ef, this diagram induces morphisms
w, (p): E—~>Ef and n(p): Ef,—B of A°&. Since w(m;(p)) is an
anodyne extension for all 4, w,, (p) is an anodyne extension; moreover,
it is clear that 7, (p) is a fibration (see the proof of IV, 3.2).

5.5.2. From 5.5.1 and 5.2, we deduce that, for each morphism 5:
E—» B of A°&, there is a commutative triangle

E ——>E'
P4
B

such that p' is a minimal fibration and that the image of 4 in the homo-
topic category o is invertible. This proves our statement of 5.5.

Moreover, if we consider again the proof of 5.2, in the case where E
and B have base points ¢, and by, and where p (gg) = by, We See€ that the
retracting deformation constructed at that time respects base points,
provided that &, should be “selected”. This proves 5.5 for the case of
pointed complexes.

5.6. A Kan complex 4 is said to be minimal if the morphism $:
A—A[0] is a minimal fibration.

Lemma: Any minimal pointed Kan complex A, such that 1T, A veduces
to a point for all neN, s isomorphic to A[0].

Let a be the base point of 4. We obviously have an isomorphism
Sk1A ~¢ SE1A[0]. Suppose then that Sk A is isomorphic to S&"A[0]
for 7 <, and let us show that A has only one n-simplex, and hence that
Sk A is isomorphic to Sk*A[0]. If this were not true, 4, would contain
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a non degenerate simplex x. The singular simplex %: 4[#] 4 as-
sociated with x sends A[#] into Sk*—1A, i.e. into the complex {a}
generated by a. Hence % factors as follows:

An] =2 A[n)|A ] = A.

The canonical bijection
11,4 = # (A[n]|A[n], 4)

of 3.4 associates with such a y an element of I, A. Since II, A reduces
to a point, ¥ is homotopic to the zero morphism (relatively to the base
points of A [#] |A[#] and 4). In other words, % is A [0]-equivalent to the
zero morphism in the sense of 4.3.2. Since 4 is minimal, % is the zero
morphism.

5.6.1. Whitehead's theovem: Let f: X—>Y bea morphism of the pointed
homotopic category, X and Y being connected. Then | is an isomovphism
of . if and only if IT,1 is an isomorphism for each integer n =1.

The maps I, f: I1,X —»IT,Y are obviously bijective if f is an iso-
morphism. In order to prove the converse, we can certainly replace f
by any isomorphic morphism of .o#. Hence, by 5.5, we can suppose that
X and Y are Kan complexes, and that f is a minimal fibration with
fibre A. The exact sequence of homotopy groups (3.3)

veo I ATLX ~ I, Y >II A1, X ~II,Y
shows then that 1T, 4 has only one point for all ne N. Hence by 5.6, 4 is

isomorphic to A4[0] in the category 4°&. Since f is supposed to be locally
trivial, f is an isomorphism of A°€.

Chapter Seven

Combinatorial Description of Topological Spaces

1. Geometric Realization of the Homotopic Category

1.4. In this chapter, topological spaces will be denoted by thick
capital letters X, ¥, Z ... We will write #om (X, ¥) for the simplicial
set whose #-th component is Jog (4*x X, Y), and II,(X, Y) will be the
set of connected components of Hoz (X, Y). The morphisms of complexes

Vx, v,Z" Hom (X, Y) X Hom (Y, Z) —Hom (X, Z) ,

which are defined ““as inV, 71", induce then, by passing to connected
components, maps
oxy.z: Lo(X, Y) X (Y, Z)—~11,(X, Z).

g%
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These maps are the composition maps of the category Jop of Topological
spaces modulo homotopy: its objects are the topological spaces, its sets
of morphisms, the sets J7,(X, Y).

1.2. Now let us consider again the pair of adjoint functors
S: Jop—>A°€ and |?|: A°E—>Top
of 111, 1.4. For any complex X, topological space ¥ and integer %, we
then have a natural isomorphism
(%) Top(|An]x X
Since |4 [#]| is the compact space A" and since |4 {n] x X| and 4" X |X]
are naturally isomorphic by 111, 3.1 and 111, 3.1.1, we have natural

isomorphisms
Top(d" x| X, ¥) = A°&(An)x X, SY),

Y) oz A°6(A[n] x X, SY).

hence an isomorphism

() Hom (| X|,Y) =x Hom (X, SY)

and finally by passing to connected components, an isomorphism
Tou(X|, V) =2 I8 (X, SY).

As in IV, 1.5, we deduce from these ‘‘equalities” that the geometric
realization funcior defines, by passing to the quotient, a functor from
A°€ to Tope (which will also be written |?]). Similarly, S defines by
passing to the quotient a functor which is right adjoint to | 2|: A°& —Top
(we will also write S for this adjoint functor).

1.3. Let § be an anodyne extension of A°&. We will see in 1.6 and 1.7
that the geometric realization 7] of 7 is an isomorphism of Jor. Hence

the functor | ?|: A°6 —TJop is the composition of the canonical functor

P;: A% — i defined in 1V, 2.3.1 with a functor
\21: o —>Tor
which will still be called geometric realization. Moreover, by I, 1.3.1, the

functor || ?] is left adjoint to the composed functor Pzo S, which we will
note &, and which we will also call singular complex functor.

Fundamental Theorem (MILNOR): The geometric realization functor

W2\ o —Tor
is fully faithful.

The proof of this theorem will be given in paragraph 3. Note however
that, by proposition I, 1.3, the fundamental theorem implies that &
induces an equivalence from a category of fractions of Jop onto .
Taking IV, 3.2.1 into account, we see finally that the homotopic category
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H is equivalent to the category of Kan complexes modulo homotopy, or to
the full subcategory of Top formed all topological spaces which are 150-
morphic in Top to the geometric realization of a simplicial set; or finally,
to a category of fractions of Top.

1.4. We will show now that the geometric realization of an anodyne
extension of A°& is an invertible morphism of op: in order to do
this, recall first that a continuous map p: X B is called a fibration
in the sense of SERRE if, for each integer n=1 and each pair of continuous

maps f:"—>B,g: I'"'x{0}~>X

such that pog=f|I"~* x {0}, there is a continuous map h: I"—X such
that g==h|I"~*x {0} and f=poh (I denotes the interval [0, 1]).

The notion of a fibration in the sense of SERRE has a local character
with respect to the base: if p: X—>Bisa continuous map and if each
point of B has an open neighborhood U such that the map from p*U)
to U, which is induced by p, is a fibration in the sense of SERRE, then p
is a fibration in the sense of SERRE. Indeed, if f and g are the above
maps, we can subdivide I" in cubes small enough so that f maps each
cube of the subdivision into an open set U of B such that p(U) is a
fibration over U. We can then define gradually, on the cubes of the
subdivision, an extension h of g.

For instance, if X and B are Kelley spaces (I, 1.5.3) and if pis a
trivial morphism in the sense of 111, 4.1, then p is obviously a fibration
in the sense of SERRE. By above, the conclusion still holds when p is a
locally trivial morphism of Kelley spaces. In particular, if g: X—>Bis a
locally trivial morphism of A°&, then |g|: | X|—|B| is a fibration in the
sense of SERRE (VI, 5.4 and 1T, 4.2).

1.5. The image of a fibration in the sense of SERRE under the singular
complex functor is a fibration in the sense of Kax: let p: X—B be a
fibration in the sense of SERRE. Since S is right adjoint to the geometric
realization functor, the existence of a square of A°& of type (1) is
equivalent to the existence of a square of Twp of type (2) (Fig. 102)

A*[n] 5> SX |4 )| > x
(1) incl.l i lSp (2) [incl.]l v lp
Aln] =SB 1A[n]] 2 B

Since p is a fibration in the sense of SERRE, and since the continuous
map |incl.| is obviously isomorphic to the inclusion of I*~*x {0} into
I" (V1, 4.1), there is a continuous map §: |A[n]] =X such that pos=y
and soincl.|=f. The morphism 7: 4 [#n]—SX, canonically associated
with s, is then such that 7| A*[n]=¢ and x= (Sp)7.
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1.6. When B reduces to a point, the unique map p from X to Bis
obviously a fibration in the sense of SERRE. Since SB is then identified
with A[0], it follows that the singular complex SX of any topological
space X is a Kan complex.

In order to show that the geometric realization Jj| of an anodyne
extension j of A°& is an invertible morphism of Zo, it is thus suificient
to apply the results of IV, 3.1.5 and the equalities Joz(|j], X) =
A°&(j, SX).

1.7. To conclude, we will give a geometric demonstration of the fact
that the geometric realization of an anodyne extension of A°€ is an
invertible morphism of Jop. To this end, consider the subset E of
Ur Top determined by the homeomorphisms onto subspaces satisfying
the following property: if i: A—Bis an injection belonging to E, there
is a continuous map h: [«, f] X B—>B (a, fcR) such that h(B, b)=b,
h(t i(a)=i(a), h(x, b)ci(A) for any b in B, a in A, and ¢ in [«, §] (if
i is the inclusion of the subspace A4 into B, we say that Aisa deformation
retract of B). It is clear that if i belongs to E, it is invertible in Joe.
We will show that if s is an anodyne extension of A°&, then |s] is an
element of E. The property we want to prove will then be an immediate
consequence of 1.2.

The set E has the properties stated in IV, 2.1, namely:
isomorphisms belong to E.

E is stable under push-out

E is stable under retractions

E is stable under countable compositions and arbitrary direct sums.

Let us verify for instance that E is stable under “countable inclusion”.

Let .
X, X, C .. <X, < CX=1im X,

be a sequence of topological spaces. We suppose that for each » ,we have a
. . 1 1

retracting defor1mat1on hy: [1—1— Py

Jp(@®)=h, (1 - w) (then j,(x)€X,_,). Finally, let H,: [0,1]X X, —-X,,

be the function defined by

} x X, X, and we define

1
x for each l>1—m
1

H,(t x)= . . 1
h”_p(t,]n_¢+1°"'°]"(w)) for 1€ 1—%_—?’ 1_m ’

The H, define a continuous map H: [0, 1] X X - X which is a retracting
deformation of X onto X,.

On the other hand, since the geometric realization of the inclusion
A*[n]—4 [#] belongs to E, it follows from IV, 2.1.4 that E contains the
seometric realization of all anodyne extensions of 4°&. Q.E.D.
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2. Geometric Realization
of the Pointed Homotopic Category

2.1. Let (X, x,) be a pointed topological space. The canonical map
x§ from 4° to X, whose image is @, is then a vertex of the singular
complex SX. We will define then

.S(X, xp)= (SX, ap)

and we will also call .S: .Fopg—.4°& the singular complex functor.
Similarly, let (T,%,) be a pointed simplicial set. With the singular
complex £,: A[0]—T is then associated a map|y|: 4°—|T| whose image
will be denoted by . Again we will define

1T, )= (T}, &)

and we will say that .|?|: .4°€—.Jop is the geometric realization
functor.

It is clear that the bijection
Tor(|T|, X) =2 4°¢ (T, SX)

induces a bijection from the subset .Zox(.|T|, X) of Jog(|T|, X) onto
the subset .A°&(T,.SX) of A°&(T,SX). Hence .|?| is left adjoint
o .S.

2.2. Now let Z and ¥ be two pointed topological spaces, with base
points #, and y,. We will denote then by Hom.(Z,Y) the subcomplex
of the complex s (Z, Y) of 1.1, whose #-th component is formed by all
continuous maps f from 4" xZ to ¥ which send 4" x{2o} to {y,} (see
V, 7.1). For each pointed complex (X, x,), the isomorphism (x%) of 1.2
induces then an isomorphism

Hom.(.|X|, ¥) ox Hom. (X, .SY),
and hence, by passing to connected components, an isomorphism
|.1X], ¥| =x|X,.SY]|

(Notations are those of chapter V; the set | X, .SY| has also been de-
noted by IT3(X,.SY) in IV, 4.2). Hence we see that the geometric
realization functor defines, by passing to the quotient, a functor from
.J® to the category. Fop of pointed topological spaces modulo homo-
topy (this category was denoted by .%op in V, 7). The functor thus
defined will also be denoted by .|?|. Similarly, .S defines a functor
which is right-adjoint to .|?|: .A°&—.Top; we will still write .S for
this functor.

2.3. For each pointed topological space ¥,.SY is a pointed Kan
complex by 1.6. Hence the pointed complex . SY is left closed relatively



136 Chapter VII: Combinatorial Description of Topological Spaces

to the set .4 of anodyne extensions of .A°& (IV, 4.3). Hence we see as
in 1.6, that the geometric realization of an anodyne extension of A°E
is an invertible morphism of . Zop. Hence .| ?| is the composition of the
canonical functor

P A& — ¥ with a functor
A2 = Top

which we will also call geometric realization. By I, 1.3.1, this functor is
left adjoint to the “singular complex”’ functor P zo.S, which will also
be denoted by . &.

Fundamental Theorem (MILNOR): The geometric vealization functor is

A2N: o —.Top
is fully faithful.
The demonstration will be given in paragraph 3. We deduce, as
usual, that the pointed homotopic category .5 is equivalent to a
category of fractions of .Jog ... .

2.4. Let (Z, 2,) and (T, ;) be two pointed complexes such that the
geometric realization |T| of T is locally compact. By IIL 2.4.1 and
111, 3.1, the canonical map from |Z x T| to the cartesian product of the
topological spaces |Z| and || is a homeomorphism. Moreover, since the
geometric realization functor commutes with direct limits, the image
of the square of Fig. 103

Zx{tyol{ayxT—ZxT

A[0] ZAT

Fig. 103

under the geometric realization functor is still a cocartesian square. It
follows that |Z A T| s identified with |Z| A|T| when | T| is locally compact.

If we consider now a morphism f: XY of pointed complexes, the
geometric realization of the square

X Y
g Tl
AMIAX —Cf

of VI, 2.1 is cocartesian. Since |A[1] A X] is identified with IA|X]| by
above, we sce that |Cf] is simply C|f| (V, 7.3). More generally, the in-
finite sequence

Il 24 1} 11|
|X| Lo | Y| |Cf| = | EX|—|ZY] ...
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is identified with the sequence
ilf il ZH
1%L |v) 2 o 2 2 x| =5 2] Y

2.5. The singular complex functor .. allows us to define the homo-
topy groups of a pointed topological space T by means of the formula

n,T=I11(.9T).
By VI, 3.2, we then have (S" being the n-sphere)
II,T— . (Z*A[1], . S T) = ||| Z*A[1]|], T| =|2"S°, T| = | 8%, T|.

Hence, by definition, II, T is identified with the set of morphisms
from the sphere of dimension # to T', these morphisms being those of the
category of pointed topological spaces modulo homotopy.

When p: X—B is a morphism of pointed topological spaces, such
that p is a fibvation in the sense of SERRE (1.4), and when F denotes the fibre
of p over the base point of B, it follows from 1.5 that the sequence

SF2% sx-2. SB
is a fibration (V1,1.5). Hence, by VI, 3.3, we have an exact sequence of
homotopy groups

...IT,B— ILF— IT, X =% I, B— II,F ~I,X>510,B.

3. Proof of Milnor’s Theorem

3.1. We know that with the adjunction isomorphisms
Toa(I1X1,¥) x # (X, #¥) and Top(1X],¥) == KX, . FY),

which we described in 1.3 and 2.3, are canonically associated functor

morphisms
YX: X F|X| and PX: X ZLIX|.

By I, 1.3, theorems 1.3 and 2.3 will be proved if we show that the
morphisms WX (resp. . ¥ X) are isomorphisms of o (resp. of .2¢) when
X runs through the objects of J# (resp. of .2¢). This will be a consequence
of the following lemma:

Lemma (M1LNOR): For each object X of .o, and for each integer n=0,
the maps

II(PX): II,X - 1IL,(Z|X])

are bijections.

The lemma is proved by induction on #. It is clear that I7,(( ¥ X) is
an isomorphism. On the other hand, since each object X of .5 is iso-
morphic (in .#) to a pointed Kan complex, we can suppose that X is
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a Kan complex. In that case, the morphism
Hom (A[1], X)—>Hom . (A[1], X)=X

of .A°&, which is induced by the inclusion of A[1] into 4[1], is a fibra-
tion with fibre QX = #om. (2, X) (VL, 1.2.1). :

By VI, 5.2, there is a fibration F <, E—iX , which is minimal and
which is a deformation retract of p relatively to X. Since #om . (4[1],X)
is contractible by VI, 1.4 (proof of the lemma), E is also contractible.
Moreover, ' is locally trivial by VI, 5.4 and

S.|F| =2 s 5|2 s x|

is a fibration by 1.4 and 1.5. It follows that the commutative diagram
of Fig. 104
F % E * X

WF WE WX
.S.|F|— .S .|[E|—.S .|X]|
Fig. 104

induces a morphism between the exact sequences of homotopy groups
(Fig. 105).

...IO,E —> IL,X — M, ,F — I, E..

Iz (.WE) H,.(.‘PX). Oyu-1 ((PF) Iy (.WE)
L, (.S |E))— IT,(.S .| X|)— II,_y(.S .|F|) —> IT, 1 (.S .|E]) ...
Fig. 105

Since E is isomorphic to 4 [0] in .5, the same holds for .S .|E], so that
ILE,II, ,E,IT,(.S .|E|) and IT,_; (.S .|E|) reduce to a point. Hence we
have IT,X=II, ,F and IT,(.S .|X|)=II,_,(.S .|F|). Hence we have
II,X=1II,(.S .|X|), by induction on # (for n=1, the above isomorphisms
come from V, 5.3.3). '

3.2. It remains to be shown that ¥ X or. P X are invertible:

a) Suppose first that X is a connceted pointed complex. Then the fact
that .¥X is invertible following from 3.1 and from WHITEHEAD'S
theorem {VI, 5.6.1).

b) Suppose now that X is a complex without a base point (i.e. an
object of #). It is easy to see that we can restrict ourselves to the case
\zhere X is connected, and we choose an arbitrary vertex x, of X. Define
X= (X, %,) and write s: (T, {;)~~T for the “ forgetful”” functor from .5#
to . Withen have equalities i(. & AX ) =&)X} and TX:i(.E[’XV).
Since . WX is invertible by a), ¥ X is also invertible.

|
i
%
|
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¢) Finally, suppose that X is an arbitrary pointed complex. 1f we apply
a) to the connected component of X which contains the base point, and
b) to the complex without base point X, the invertible of .¥'X will
then follow from the following lemma:

Lemma: Let X and X' be two objects of ., Y and Y' the connected
components of X and X' containing the base points. Finally, let f: X > X'
be a morphism of A such that if is invertible, as well as the morphism
g: Y Y’ induced by f. Then f is invertible.

The proof of this lemma is left to the reader. It follows obviously
from the fact that f is determined by the restriction of f to the connected
component of the base point of X on the one hand, and by the restriction
of f to the other connected components on the other hand.

Appendix One

Coverings

1. Coverings of a Groupoid

1.1. Let G be a groupoid and R/G the full subcategory of ¥»/G whose
objects are the morphisms p: R—G such that for each commutative

square ‘
Sclo] —>R

o

Sef1] s
there is a unique morphism s: S¢ [1]— R satisfying the equalities ps=7
and sqg=1. An object of R/G is called a covering of G. Recall that, if
p: R—>G and p": R’—G are two coverings of G, a morphism from the
first to the second is a morphism f: R—> R’ such that p'f=2.

1.2. Let G°& be the category of contravariant functors from the
groupoid G to the category of sets. Such a functor is called a local system
on G (we choose contravariant functors for reasons of notations only).
We will first give an equivalence between the categories R|G and G°6 .-

Let p: R—G be a covering of G, and x an object of G. We write
L(p) (%) or p72(x) for the set of objects of R which project onto . Let
%' be such an object: by definition of coverings, each morphism «: y—>%
of G can be lifted in a unique way to a morphism «’: ¥’ —x" of R. Hence
the morphism o« defines a morphism L (p) (&)1 &'~ y' from L(p) (%) to
L(p) (y). Wecan check directly that the maps x~~L($) (x) and a~—L ($) (@)
define a local system L(p) on G. Write L: RjG—G°& for the functor

p—L(2)-
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Conversely, let L be a local system, and write R(L): R{L)—>G for the
following groupoid over G: The set of objects of R(L) is the direct sum
léIGL (x) and R(L) maps the direct summand L (x) of LE_[GL (%) onto x;
x x
the morphisms of R(L) are the pairs (a, #') formed by a morphism
a: y—>x of G and an element x” of L(x); The range of («; #") is ' L (x),
and its domain is L{«) ()€ L(y); the image of (a, &) under R(L) is «;
finally, composition is defined by the formula

(o )0 (B, L{) () = (x0B, %)
We can check directly that R(L) is a covering of G. Moreover, if

R: G°&—R/G is the functor L~ R (L), we can deduce easily the following
theorem:

Theovem: The functorsL: R|G—G°& and R:G° € —R/G are equivalences
quasi inverse to each other.

1.3. Corollary: Let p: R—G be a covering of the growpoid G. Then the
following statements are equivalent.

(i) The local systemL(p): G°—~& isa representable functor.
(ii) R is simply connected.
(iti)y The covering p is universal; i.e. for each covering q: S—G, for

each object x of R and each object y of S such that p (x)=q(y), there is one
and only one functor f: R—S such that gof=p and y =f(x).

1.4. Let f: H—>G be a morphism of groupoids. For each covering
p: R—>G, we write f(p) for the projection of the fibred product H >G<R

onto the first factor. It is clear that f1(p) is a covering of H; and we
write R/f for the functor p~—f71(p). Similarly, we write f°6: G°6€ —>H"¢
for the restriction L~ Lo f°. We then have a diagram (Fig. 100)

R/H <L R/G
LHR L”R
meellcoe
Fig. 106
which is commutative up to isomorphisms; in other words, (f°&)ol is
isomorphic to Lo (R/f) and (R/f)oR is isomorphic to Ro (f°E).
Proposition: R]f is an equivalence if and only  1s an equivalence.
If f is an equivalence, f°& is an equivalence. Conversely, if f°& is an

equivalence, the functor f*, which is left adjoint to f°&, is an equivalence,
and hence it is fully faithful. Since the square

Heels6oe
hHT f Th‘;
H - ¢
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is commutative up to isomorphism (see II, 1.3), and since W and
are fully faithful, f is fully faithful. Hence f induces an equivalence [’
trom H onto the direct sum G’ of all connected components of G which
intersect the image of f (by II, 6.1.5). The statement follows then from
the fact that the inclusion of G’ into G induces an eqiuvalence from
G'° & onto G° & if and only if G’ is equal to G.

2. Coverings of Groupoids and Simplicial Coverings

2.1. Let X be a simplicial set. We write R/X for the full subcategory
of A°&|X whose objects are the morphisms #: E—X such that for each
commutative diagram

Af0]— E
1o, b

An] X
there is a unigue morphism s: A[n]—~E satisfying
pos=v, sol=1u.

The objects of R/X are the coverings of X, and R/X is the category of
coverings over X.
Let j: X' —X be a morphism of A°&, and p be a covering of X. The

cartesian square

X' xE—E
' 4
bk

defines a covering p' of X'. The correspondence R/f: R/X —+R/X’ so
defined is a covariant functor. We will sometimes write f1(p) for the
morphism p’. The functor R/f is the change of base functor.

Consider in particular a vertex a€X, and let @: A[0]—X be the
singular simplex defined by a. Since there is only one morphism
A[n]—A[0] for each =, it follows from the definitions that each simplex
of a covering E of A[0] is determined by one of its vertices, and hence
that we have E—=SE°E. Thus we can identify the category R/4[0] with
the category of sets, and consider that the range of the functor RjZ is €.
We will say that R/a is the fibre functor of R/X over a.

2.2. We can give another description of R/X, more consistent with the
usual definitions of coverings in Jop. It can be stated as follows:

Proposition: Let p: E—~X be a morphism of A°E. Then p is a covering
if and only if it is a locally trivial morphism with discrete fibres.

The proof is easy and is left to the reader.
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2.3. Let X be a simplicial set, and G a groupoid. In this paragraph,
we will study how the functors I7 and D, defined in 11, 7.4, actonR/X and
R/G. We note first that IT induces in a natural way a functor ITy:
A°E|X —~%r[IX and that D induces similarly a functor D¢: 9r|G—
A°&|DG. We still write IT, and Dy for the restrictions of these functors
to R/X and R/G. .

Proposition: The functors IIy and Dy transform coverings into co-
verings. Hence IIx and Dg induce functors R|X —RJIIX and R|G—>R/DG,
which will still be denoted by the same symbols.

Proof:
2.3.4.Letp: R—>Gbea covering, and let

Alo]— DR
(1) | le
A[n]— DG

be a commutative diagram. To this diagram corresponds, by adjunction,
the following diagram of ¥»:

Sc[o]— R
@ L b

Scln]—G

This diagram can be completed “ commutatively’’ in a unique way by a
morphism Sc{#]—>R (induction on #): but this means that (1) can be
completed commutatively ” in a unique way by a morphism 4 [#]—D R,
i.e. that Dp is a covering of DG.

23.2. Letp: E—>X be a covering of X and let

Sc[o]— IE

(3) l l oy
So[1]— IIX

be a commutative diagram. Having (3) is the same as having an object e
of ITE whose image under I7p is one of the end points of a given mor-
phism f of IIX. We have to show that there is a unique morphism of
ITE such that one of its end points is e, and whose image under ITpisi.

In order to prove the existence of the lifting, we note that f can be
represented by a morphism &: I,—~X (see 11, 7.2); hence we have a
commutative diagram

A[0]——E

4 b

I, —X

T . e W»&?ﬁ»ﬁ’mﬂmﬂm

e
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This diagram can be completed “commutatively” is a unique way by a
morphism #: I,—E. The morphism of JTE associated with # is a lifting
goff.

Consider now a morphism &'t I,—~X which also represents /. As
above, we associate with it a unique morphismy': I,—~E,anda morphism
g’ of ITE which is a lifting of . It remains to be shown that g'=¢. But,
considering the description of the relations in the Poincaré groupoid of a
simplicial set (I, 7.1), it is sufficient to give the demonstration for the
following case:

Consider a morphism ¢: 4[2]—X, and write o: I,—~A4[2] B: I1=
A[1]->A[2] for the morphisms associated with the increasing maps of
Fig. 107

0<<1>2 o<1

| o)) ema |

0<2>1 o<1
Fig. 107

(see II, 5.1). Set £=coa and g=gof. Then the commutative diagram

A0] - E
ls
¥
A2 X
can be completed “ commutatively’” by a morphism 7: A[2]—E, and
hence we have n=7oa, 7= 7o, and consequently g=g (seeIl, 7.1).

2.4. We will see now that the functor II, is an equivalence R/X =
R/IIX. The adjunction morphism ¥: 1d 4°€ —DIT defines for each
simplicial 'set X a morphism PX: X —»DITX and hence a change of
base functor

R/¥X:R/DIIX—-R/X.

Write Dy for the composed functor (R/¥X)oDpx: RIIITX —~R/X. We see
easily that Iy is left adjoint to Dy. Moreover, if aeX,, the diagram

lix
R/X —RJIIX
Dx
NS
&

where the oblique arrows represent the fibre functors over a, is com-
mutative up to isomorphism. It follows that the adjunction morphism

1d (R/X) —Dy Iy
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induces an isomorphism on the zero-skeleton for each covering of X,
and that the adjunction morphism

IT,Dy—>1d(RIITX)

induces an isomorphism on objects for each covering of IIX. Hence
theorem 2.4.1, which was our ain, follows from proposition 2.4.2 below
(the proof of this proposition is left to the reader).

2.4.4. Theorem: The functor Dy and ITy define an equivalence between
the category R|X and RIIIX.

2.4.2. Proposition: Let X be a simplicial set (vesp. let G be a groupoid)
and let | be a morphism of R|X (vesp. R/G); if | induces an isomorphism
on O-skeletons (vesp. on objects), [ is an isomorphism.

2.5. Now let f: X’—X be a morphism of A°&. The change of base
functors induce two diagram (Fig. 108)

R/X —» RITX R/X —2 RIIIX
(1) |m l“’”’ 2) lR” lR/Hf
R/X' —— RIIX’ R/X' ——— RIIX'
IIx Dxs

Fig. 108

Diagram (2) is commutative up to isomorphism, because D commutes
with inverse limits, and hence with fibred products. Since (I1y, Dy)
and (IIy., Dy.) are pairs formed by equivalences quasi inverse to each
other, the same holds for (1).

2.6. It follows from 2.5 that R/f is an equivalence if and only if
R/IIf is an equivalence. But we saw in 1.4 that R/IIf is an equivalence
if and only IIf is an equivalence; when X and X' are connected, this
last statement means that f induces an isomorphism between the
Poincaré groups:

Theorem: Let |+ X'—X be a morphism of connected simplicial sets.
Then R|f is an equivalence if and only if f induces an tsomorphism between
the Poincaré groups of X' and X.

3. Simplicial Coverings and Topological Coverings

3.1. Recall that a morphism p: E—X of Jop is said to be locally
trivial with fibve F is, for each point @ of X, there is an open subset
U of X containing # and a homeomorphism from UxF onto p*(U)
such that the diagram

UxF = p*(U)
PN P
U

Fig. 109

TN e T
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is commutative (see ITI, 4.1). Thus, when E, X and F are Kelley spaces,
the definition given here does not coincide with that of II1, 4.1. Note
however that a locally trivial morphism of X is a locally trivial mor-
phism of Zog if F is locally compact; this happens, in particular, when F
is a discrete space.

Recall also that, in the category of topological spaces, we call
covering over the space X any morphism of range X which is locally
trivial, with discrete fibres. We denote by R/X the full subcategory of
Jou|X whose objects are the coverings.

For each continuous map f: X' —X, as in 2.1, we define, by means
the fibred product, a change of base functor

R/f: RIX—>R/X".

When f is the inclusion of a point & into X, R/f associates with the cov-
ering p: E—>X the discrete topological space p* (x) over {x&}. We say
also that p~-p1(x) is the fibre functor over .

3.2. We will study now the way the functors S and | ?| defined in
II1, 1.4 transform coverings. As in paragraph 2, we see that S and | ?|
induce functors

Sx:RIX—>A°€|SX and |?|x: R/X—(Zon)/|X]

and as above, there functors actually take their values in the categories
R/SX and R/X. Indeed:

Theorem: The image of a topological covering under the stngular
complex functor is a covering of A°&. The geometric rvealization of a
covering of A°& 1is a topological covering.

Proof: In order to prove the first part, we note that since the functors
S and |?| are adjoint, a square of A°& of type (2) is equivalent to a
square of Jop of type (1) (Fig. 110)

a2 LE Af0] — SE
(1) a4 P (2) 4w |s»
aLx An]— SX
Fig. 110

Suppose then that p is a covering. In order to prove that Sp is a cov-
ering, it is sufficient to prove that the commutativity of (1) implies the
existence and the unicity of a continuous map s: 4"—E such that
pos=y and f=s04". To that end we can restrict ourselves first to the
case n=1 (path lifting). When # is arbitrary, we can then define s by
lifting into E the segments of 4” whose origin is the image of 4“ (notice
that p is a fibration in the sense of SERRE (VII, 1.4)).

10 Ergebn. Mathem. Bd. 35, Gabriel and Zisman
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Now let p: E—X be a covering over X. By 2.2, p is a locally trivial
morphism with discrete fibre over each connected component of X.
Since the geometric realization of a simplicial set reduced to its O-skeleton
is a space with the discrete topology, theorem 4.2 of chapter IIT shows
that |p|: |E|—|X] is a morphism of Ae which is locally trivial with
discrete fibre over each connected component of X.

By 3.1, such a morphism is a covering of Joe. Q.E.D.

Remark: Let e X and ac X, It follows from the proof of the theorem
that the diagram of Fig. 111

RIX—<—R/SX R/X o> R/IX]
N X s AN /
NS NS
& &

Fig. 111

where oblique arrows are fibre functors over & or a, are commutative
up to isomorphism.

3.24. Let ¥: Id 4°€—S | 2| be the adjunction morphism given by
proposition 11, 1.3. For each complex X, the morphism PX: X—S|X]|
defines a change of base functor R/¥X. Write Sy for the composition
(R/¥X)oSx: R/|X|—R/X. This functor is right adjoint to |?|x, and
moreover, we have the following theorem:

Theovem: The functors | ?|x and Sx define an equivalence between the
categories R|X and R||X]|.

Proof: The proof is similar to that of theorem 2.4. It is a consequence
of proposition 2.4 and of a similar proposition about topological coverings
over a locally connected space [recall that the geometric realization of a
complex is locally connected (111, 1.10)]:

.2.2. Proposition: Let

22 ot PR

NS

X

be a morphism of R[X, where X is a locally conmected topological space. I f
the vestriction of f to fibres is an isomorphism, [ is an isomorphism.

3.2.3. Remark: Let [: X’'—>X be a morphism of A°&. Since the
functors |?| and S commute with fibred products (III), the square of

Fig. 112 5
¢ R/X 5, Ry|X| R/X «—=—R/|X]

RIf RIIfI R/fl iR“”
? g Sy
R/X L Ry x| R/X <X R/|X|

Fig. 112

are commutative up to functor isomorphism.
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3.3. We saw in paragraph 3.2.1 that | ?[x: R/X —R/|X]| is an equiv-
alence. Now we intend to show that, if the space X satisfies certain
conditions, then Sy: R/X—R/SX is also an equivalence. In order to do
this, we will show first that the composition 1o S: Top—Yr associates
with each space X the Poincaré groupoid G (X), which is traditionally
defined as follows:

The diagram scheme subordinated to G(X) is a quotient of the
diagram scheme 4, dy: (SX);=3(S X), where d; (resp. d,) denotes the
domain map (resp. the range map). The objects of G (X) coincide with
the elements of (SX)g, i.e. with the points of X; the set of morphisms
of G(X) is the quotient of (SX), by an equivalence relation such that
f~g if and only if conditions 1) and 2) are satisfied: 1) f(0)= g (0) and
f(1)=g(1); 2) there is a map h: AAXA—>X such that R(0, ?)=f,
h(1, ?)=g, h(t, &)=f(e)=g(e) for all tc T and e=0,1% '

If f and g are two composable morphisms of G(X), and if f and g
arerepresentativesof fand gin (SX);,go f is by definition the equivalence
class of the map g#f defined by the following equations: g * fO)=F(29)
if 0<t<1 and g*f(t)=g(2¢t—1) if $=t=1. With this definition of
composition, G(X) is a category, and even a groupoid, because each
morphism f, with representative f, has an inverse which is the equivalence
class of the map f~ defined by f~({)=Ff(1—9).

We can prove then that G (X) is isomorphic to /1S X, by an argument
similar to that of IV, 4.2.

We call Poincaré group of X at @, and we denote by I (X, ), the
group IT,(SX, x). It follows from the preceding remarks that this
definition coincide with the classical definition, and also with that of

- VII, 2.5.

3.4. Let (IISX)°& be the category of local systems on IISX: by 3.3
it is the category of local systems on X, as usually defined in topology.
Write Dy for the composition

Sx Isx L
R/ X ——>R/SX—=RIIISX —— (IISX)°&.
Since IT x and L are equivalences of categories, the study of Sy reduces
to that of Dy.

The functor Dy can be given explicitely as follows:

Let p: E—X be a covering of X and « a 1-simplex of X with starting
point  and end point y. For each point @ of the fibre p(y), thereis a
unique 1-simplex v of E such that we have pov=u, v(1)=0. Let
v(0)=u* (@) ; we define thus a map #*: p~*(y) —>p~* (). If o' is another
1-simplex of X such that » and «’ represent the same morphism of
I1SX, the maps »* and «'* are equal.

1 We identify here the interval I'={0, 1] of R with 4* be means of the
map i~ (0, t, 1).
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The functor Dy is then given by the equalities:
(Dxp) @) =p7(®), (Oxp)@)=u*

3.5. Proposition: If the space X is locally pathwise connecied, the
functor S is fully faithful.

3.6. Theovem: If X is a locally pathwise conmected space, such that
each point has a simply connected open neighborhood, the functor Sx:
R/X—>R/SX is an equivalence of categories.

In both cases, it is sufficient to prove the corresponding property for

Dy: in view of the description of this functor given in 3.4, the demon-
strations are then “well known”’, and are left to the reader.

3.7. Let us return now to the situation of theorem 3.2.1: Sy is an

equivalence of categories. But Sy was defined by the equality
Sy = (R/¥PX)o S

and we proved in chapter III that |X | is locally pathwise connected, and
that each point of | X| has a contractible neighborhood. Hence the topo-
logical space |X| satisfies the hypothesis of theorem 3.6. Hence the
functor S|y, and also R/¥ X, are equivalences of categories.

Let us apply the result of 2.6; we obtain then the following particular
case of MILNOR’S theorem:

3.7.4. Theorem: Let X be a simplicial set, x, a vertex of X, and
Y. 1d A°E—S|?| an adjunction morphism. The morphism Y X induces
an isomorphism of Poincaré groups

II, (P X, %) I (X, %) =3 IT (S| XY, %)

3.7.2. Corollary: (‘‘Van Kampen” for geometric realizations.) Let X
be a connected simplicial set, and A and B connected simplicial subsets of X
such that A B==X and A~ B is connected. Then if %y (40 B)y, we have
a canonical 1somorphism

1L (|x

IL{|ANBY, %)

,XO)NH]_(IAI, %) i Hl(IBI: %) -

This is an immediate consequence of 3.7.1 and 1I, 7.4.

Appendix Two

The Homology Groups of a Sitﬁplicial Set

1. A Theorem of Eilenberg

1.1. Let X be a simplicial set and C,X the free abelian group gener-
ated by the #n-simplices of X. The face operators dr: X,—~X,_, induce
a homomorphism of abelian groups 6&7: C,X—->C, ;X. Setting

A R

R e

A B R B

s S e R S——
i i i MR e e T L e e T e
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i=n
8,= > (—1)* &7, we obtain a differential abelian group
Fpur )

G X0 X—>Co X,

which will be denoted by C, X. By definition, the #-th homology group
of C,X will be written H,X and called the n-th homology group of X.
This group depends functorially on X.

If Y is a topological space, it is a well-known fact that the #-th
homology group of the singular complex SY is, by definition, the #-th
singular homology group of ¥; it is denoted by H,Y and depends func-
torially on ¥; we will see that the theorem of MmNor (VII, 1.3)
implies that, for every simplicial set X, H, X is canonically isomorphic to
H,|X|. Chapter VII gives therefore as a premium a new proof for the
well-known theorem of EILENBERG.

1.2. Let ¥X: X—S|X| be the morphism which is canonically
associated with the adjunction isomorphism

Ton (2], Y)>A°E(Z,SY)

of 111, 1.4. By MIiLNoR’s theorem (VII, 3.1), ¥ X induces an isomor-
phism of the homotopic category #. In order to show that H, X is identi-
fied with H,| X|, it is sufficient to prove that H, (¥ X) is invertible, or
that the functor H, may be factorised through .

By Lemma 1.4 below, we know that H,f=H,g if f and g are con-
nected by a homotopy. This means that H, may be factorised through
the category A°& of complexes modulo homotopy. As # is a category
of fractions of A°&, it remains to prove that H,s is invertible when s is
an anodyne extension (IV, 2.1.4).

Let us write = for the set of monomorphisms of 4°& such that H,sis
invertible. It is clear that X contains the inclusion of A*[#] into A[n]
(IV, 2), because that inclusion induces an isomorphism in 4°&. More-
over, 2 is saturated in the sense of IV, 2.1: in fact, conditions {1,
(iti) and (iv) are trivial, so we only have to prove (ii). With the notations
of IV, 2.1, the square

CeX — C, Y
G| |Can

CoX'— C Y

is cocartesian, because the functor X~—C,X commutes with direct
limits. Our assertion follows therefore from Lemma 1.3 below.

1.3. Lemma: Let
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be a cocartesian square of differential abelian groups, such that o is a
monomorphism. If H,a is invertible for every n,the same is true for H, B.

In fact, the exact sequence

, O
@0 o

0 4. pdc
induces an infinite exact sequence
..HA->HB®HC—->HD->H, |A....

As H,x and H,_,« are invertible, we have an exact sequence

(Hpy, —Hn ) (Hp B, Hp0)

0 - H, A H,B®H,C H,D 0.
This again means that the square
H A2 H B
Ha ocl lH,, 8
HC—H,D
Hy8

is cocartesian, so that H, § is invertible if H, a is.

1.4. Lemma: Homotopic morphisms of simplicial sets f,g: X3Y
induce homotopic maps of differential groups Cyf, Cig: C4 X2C4Y.

In fact, it is clear that we can reduce the proof to the case where I g
are connected by a homotopy %; in that case, f==/hg, and g =he;, where
€ and ¢ stand for 4(8}) x X and A4(8%) x X (IV, 1.1). Thus, it is suf-
ficient to prove that Cy (g,) and Cy (¢;) are homotopic, i.e. to find group
homomorphisms s,: C,X~—>C,,,(4[1]xX) such that ds,+s,_10=
C, (&) —C,(g,). Let 7;: [n+41]—[1] be the non-decreasing map which
takes ¢ +1 times the value 0, so that 7;¢C,.,(4[1]). Notice then that
C, X is a simplicial group, and just set

i=n

nx=1§0(— 1)i(ri» XS?%) s

S

with notations from II, 2.4.

The definition of s, is perhaps more understandable if we notice
that s, is a morphim from the functor C,: 4°€—.2/4 to the functor
XoasCp (A1 x X). As C, X is the free abelian group X,ﬁl) generated
by X,,, s, may be identified with a morphism of set functors from 7, to
C,.1- But, as ?, is isomorphic to 4°& (4 [#], ?), s, is canonically asso-
ciatedwithan element s,e C,,,(A[1]x A[n]) = (0 ([n+1], [1] x [])) (z),

e n
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i

R

R

i

A

R
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with notations from II, 5. This s, is the alternating sum of the increas-
ing maps g, 01, 0z, --- represented by the following chains (II, 5):

——_>4‘_——)'f .« ,}——)1\ Pt > _——>4\ R ?___>?
! i t H ' i H
1 i
2o : : | , o | ; { 1
————— —>:-——--—-—>' S N (P N
0 1 2 n—1 " 0 1 2 n—1 n
P i S >A 4 : FSdaiie i S >4 Pt >
i 1 t t : 1 | f I
Q2 : : i : : On | : : :
' I ! ! H 1 I I ]
——— > —> .. L e t . | . F
0 1 2 #n—1 " 0 1 2 n—1 %
Fig. 113

2. The Reduced Homology Groups of a Pointed
Simplicial Set

2.1. Let (E, ¢) be a pointed set. The free abelian group (E, e)(z)
generated by (E, ) is, by definition, the quotient of the free abelian
group E (Z), generated by E, by the relation ¢=0.

If (X, %) is a pointed simplicial set, we will write C, X for the dif-
ferential group whose #-th component C,X is the free abelian group
generated by the pointed set (X,,, x); the boundary operator is defined
“asin 1.1”. If n=0, the n-th homology group of ¢, X will be denoted by
H,X and called the n-th reduced homology group of (X, x).

The groups H,X and H,X are simply related: let Z be the differen-
tial group such that Z,=0if n<0,Z,=Z if n =0, the boundary operator
d,: Z,—Z,_, being defined as follows: 4,=0 if w0 or if # is odd;
d,=1d Z if n> 0 is even. We then have by definition a canonical exact

sequence
0—>Z*—>C*X—>C"*X—>O,

inducing the usual infinite sequence of homology groups. As H,Z,=0
if #==0 and H,Z=17Z, we see that

HX~HX if n>0
and that there is an exact sequence
0—>Z—>H,X—>H,X 0,
where Z is identified with the subgroup of Hy,X generated by the con-

nected component of X containing x (notice that HyX is identified with
the free abelian group generated by the connected components of X).
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2.2. Consider now a morphism f: X —Y of .4°& and the cocartesian

square
x Ly
e} it |
AU AX —Cf

of VI, 2.1. As the functors C,:.A° & —sf# commute with direct limits,
the square
CeX — C,Y

Ca(A[1]AX) — Cs(CH
is also cocartesian and induces by 1.3 an infinite exact sequence

(én if, I'in )
—_——

As A[1] A X is isomorphic to 4[0] in A°&, we have H,(A[1]1AX)=0
and the infinite exact sequence

(fa) .. By (CH22L B X

Haif

LIy 3 a,cf ..., n=o.

Moreover, the commutative square

x5y
IXm l
X A[0]

induces a morphism between the corresponding infinite sequences

) o Hy CH 2L B, X—— H,Y — H,(C))

lirm it lz l lﬁn(m
0g) .. Hppy (EX) — H, X —— H,A[0] — H,(ZX)

an+1 0

In particular, we have isomorphisms H, ,(ZX) = H,(X),n=0
and commutative triangles G410

H,,(ChH

an+1f
lﬁnn(if) Hn(X)
. o
H,, (ZX)/ 0

H,Cf...,n=0.

s

.
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3. The Spectral Sequence of Direct Limits

In the sequel, .# stands for an abelian category with exact infinite
direct sums. We intend to give a brief account of the spectral sequence of
a fibration. This paragraph is preparatory.

3.1. Let &/ be a small category. Recall that we have associated with ./
a simplicial set D& (II, 4.1), which may be described as follows:
(Dof)y=20b o and, if n>0, (D), is the set of all n-sequences of &/,
i.e. the set of the following diagrams of &/

a, a,_; ... azi”—aleaiao.
Such a diagram will be denoted by a=(a,, ..., %, «,); the face and

degeneracy operators are defined by the formulas

dda=rta, die=D>dua

B2 (0, e s Ol 83) == (G o ee s o)
Aoy, ey 0g) = (O oov s Ligps X1 Oy Kigy - e s o), O<i<n
A I P ‘;‘1) = (Og—1s -+ > O1)
and
STy e s 0) = (s oov s Hypy, 1A @y, 0y oen s %)

with the preceding notations.

3.2. Consider now the category &/.# of functors from & to 4.
For every object L of &4 and each n-sequence o, we set La=La,, the
notations being those of 3.1. We define then a simplicial object Cy (7, L)
of A by setting C,, (7, L) = 1&1 L«, where o Tuns through the n-sequences

of o7 ; if we identify Lo with a subobject of C, (7, L), the restrictions of
the operators dg, @; (1>0), s; to Lo are respectively the following com-
posed morphisms

Loy Wy

Lo—2> L(dj o)

id L™

Lu L{d o) Co_y(, L)

Cn—l (’M’ L)

1d Mo

Lo L(s}a)

If we set §,=2 (—1)"d}, (Cx(Z, L), 05) becomes a differential

Cn+1 ('ﬂ’ L) .

1=0
group, whose homology objects will be denoted by H, (o, L).

3.3. Proposition: Let L: sf—.M be a functor from a small category </
to an abelian category M with exact infinite direct sums. The notations
being those of 3.2, Hy(sZ, L) is identified with l_i_n;L and H,(s7, L) is
identified with the n-th left satellite EmZ L of the functor im*: A M > M
given by L~—lim L. — =
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Indeed, Hy(oZ, L) is just the cokernel of the pair

do,dy: Il La=2 U La.
aEAr4 a€Ob4d

But this gives the usual construction of the direct limit of L. Notice then
that C, («7, L) is an exact functor in L, so that an exact sequence of L’s
gives rise to the usual infinite sequence of homology objects. This means
that the H, (s, L)’s are part of an exact connected sequence of functors.
In order to prove that this sequence is universal, it is sufficient to prove
that, foreach L, thereis an epimorphism p: M — L such that H, (+/, M) =0
if #> 0. This is done in 3.4 below.

3.4. Let N= (N a),cop s be a family of objects of 4, indexed by Ob 2.
Notice first that objects C, (<7, N) and operators s} and 4 (j>0; we do
not define @} here) may be defined with the help of the same formulas
as in 3.2. Write then ¢*N for the following functor from &/ to .#:
(#*N) (a) =, i_laN (ba), where «: x—>a runs through the morphisms of &/

with range a; if £: a—b belongs to Ur &, (#* N) (§) induces on the sum-
mand N(bx) of (s*N) (a) the canonical monomorphism from N(ba),
which is identified with the summand N(b&«) of index £x of (Z*N) (b),
into (Z*N) (b).

We have then

C, (o, #*N) = LL(7*N) (ag) = LLLIN(3f),

where o runs through the #-sequences a,, DI a, and § through the
morphisms with range a,. As («, f) may be identified with the (» +1)-
sequence a, & By, Ly B, we have the equality C, (o7, 4*N) =x
C,+1(oZ, N). Moreover, an easy verification shows that the operators
'‘q? and ’'s? of C, (o7, i*N) are related to the operators 4; and s of
Cy (£, N) by the formulas

ran __ gn+l ra _ mt1
a; =diy S§ =Siy1-

Setting '8, = 2 (—1)t'd}, we have
o
$p'0, "0, 1856 =1d if #>0

and
Qdl 478, s5=1d, dish=Id.

Thus, the existence of a homotopy operator (s§, sy, ...) implies that
H,(sf,i*N)=0 if n>0and Hy(s/,#*N)= L Na.

Now, if L is any object of &£.#, let N be the family of objects L a of
M (acDbsF), and set M =1*N. For each acObsf let pa: ( U Lda)—>La
Ta=a

S

-

S

s

S

R

R
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be the morphism whose component of index « is La. The morphisms
painduce obviously a functor epimorphism p: M — L ; moreover, we have
already seen that H, (&, M)=0if n>0.

3.5. We consider now two small categories 7, # and a functor

f: B—of. We write [ : LM —>BM for the functor Lo Lof. It is awell
known fact that /, admits a left adjoint functor f*, which may be des-
cribed as follows (Kax [4]): let a be any object of &7, and fla the “left
fibre of f over a”, i.e. the category whose objects are the pairs (b, &)
formed by an object b of # and @ morphism §: }b—>a of o ; a morphism
(b, &) — (1", &') between two objects of f/a is just a morphism f: b—5" of
4, such that the triangle

1o &

18 a

e

is commutative ; the composition of morphisms is defined in the obvious
way.

1f N: B4 is a functor, and « an object of <7, we define (f*N) (a)
as the direct limit of the functor (b, §)~—>Nb. We may write this as

follows
(/*N) (@) = lim N(pr, x) .
x€fla

If &: a—a’' is a morphism of &7, we define

(7% N) () lim N(pry x)—>lim N(pr,5)
z€fla vEfla’
as the morphism induced by the functor fla: (b, &)~ (b, af) from
fla to fla’.

For example, if & is the subcategory o/, of &, which has the same
objects as &7 and whose only morphisms are the identities, then N is
simply a family of objects Na of M (acDb o). 1f f is the inclusion
from &/, to &7, f*N coincides with the functor 7* N defined in 3.4.

3.6. Theovem: Let s/, % be small categories, | B oL a functor, and N :
B—>M a functor from B to an abelian category M with exact infinite
divect sums. There is a spectral sequence

E% ,=lim#((L,/*) N) =>limZ, N

e S R

where im¥L o5 H,(s/, L), imP N o H,(#B, N) and L, f* are respectively
the left satellites of lim L, }}r_ri N and f*.
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Consider, in fact, the commutative triangle

BM LA

F‘;\ /x
M

where I, and Iy associate with meQb.# the constant functors from &/
and & to.# with value m. The functor 1}2@, left adjoint to I, is iso-

morphic to the composition 1_ir_>n”’o f*. In order to get the usual spectral

sequence of a composite functor (CARTAN-EILENBERG, XVI, 3 or
GROTHENDIECK), we have only to verify that:

(i) the left satellites of f* exist;
(ii) for each NeOb #.#, there is an epimorphism p: N'—N such
that im#N’'=0, (L, f*) N'=0 and lim#(f* N’) = 0 if #>0. This is done
— —
in 3.7 below.

sy

3.7. It is a well known fact (see ROHRL) that, in order to prove the
existence of the satellites L, f*, it is sufficient to construct a big enough
family of f*-acyclic objects of #.4#, i.e. a family F satisfying a) and b):

a) For each exact sequence 0—>N'—>N-—>F—0 of A, such that
Fe&, the sequence 0—>/*N'—f* N—f*F is exact.

b) For each exact sequence 0—N'—+N-—>N"—0 of #B.M, there is an
exact commutative diagram (Fig. 114)

0—F —-F—F'—90
Lol

0-——>N'——>N-—aN"-——>O

oL
0 0 0
Fig. 114
with F', F, F"" ¢ &#.
If j: B, is the inclusion functor (see 3.5), we may choose for &#
the family (7* P)peg, - Indeed, it is easy to verify that, if acOb o/ and
if k: (f/a)o—>(f/a) is the inclusion, the square

By M > (]a) M

% E*

BM —— (fla) A

is commutative (7: (f/a)y—>%, is induced by pry: (b, &)~—b). This
proves a) by 3.4, if we notice that, for each acOb &, (f*N) a is equal
to h__)m (p7,x N). The condition b) follows directly from 3.4 and the func-

toriality of the construction N«~—j*N.

i

i

e

e

i abiniis

S

Lo

=
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This proves condition (i) of 3.6. In order to prove (ii), it remains to
prove that 1_1_12;" fE*P)=0if n>0 and Pc 3B, #. This follows from 3.4

and from the commutativity of the diagram

Ayl LByt

A

AgM I BM
which itself follows from the equality ff=1f,.

3.7. Remark: The simplicial objects C* (7, L) of 3.2 may be given a
more sophisticated presentation with the help of the standard construc-
tions of GODEMENT-HUBER: thus, if ¢: &/,—&7 is the inclusion (3.5), it
turns out that the standard construction of /A, which is associated
with the trivial construction of o, # and the pair of adjoint functors
i, and ¢*, gives rise to 1_i§-acyclic resolutions in &/.#. The functor
1i_rr_}”: LM —M maps these resolutions onto the differential objects
Cy(, L).

3.8. Remark: Consider the commutative square

B LAl

Pris ’a

(f/“)//m A
tim

where a is an object of &7 and ?a is the evaluation functor L~—La.
In view of what has been proved in 3.6, we may calculate the left satel-
lites of f* (?a)o f* with the help of resolutions by objects of the form
j*P; as ?a is an exact functor, ((L,*) N) a coincides with the value
on N of the g-th satellite of (?a)o f*:lirg(ﬁ“) o prys- As pry 4 is exactand
transforms 7* P into a lim-acyclic object, this last value coincides with
l_iI_nJ;ﬂa) (Npr).

This generalizes the Kan-construction, recalled in 3.5, since it
shows that L f* may be calculated with the help of the g-th satellites
Ergf]’/“): (t/a) M —AM of lig"/“).

4. The Spectral Sequence of a Fibration

4.1. We want first to show a connection between the homology
groups of a simplicial set and the constructions of the preceding para-
graph:

Let X be a simplicial set and consider the functor p: A]X —A, which
maps an object 4 [m] 2. X of AJX onto [n]eDbd (II,1.1). If $°:
(4/X)°—A° is the functor induced by #, and if [#]eObA4°, the objects



158 Appendix II: The Homology Groups of a Simplicial Set

of p°/[n] (3.5) are the pairs (J, u) formed by a singular simplex
5: A[m]—X (y¢X,) and a morphism u: [n]—[m] of A. It follows that
there is a unique morphism from (¥, u) to (§o (4u), 1d [#]); the map,
which associates with x¢ X, the connected component of p°/[#] contain-
ing (#, Id[#]), is a bijection of X, onto the set of connected components
of p°/[#] (a connected component is a maximal connected full sub-
category); moreover (%, Id[n]) is a final object of the connected com-
ponent containing it. It then follows that if F: p°/[n] —A is a functor,
lim F may be identified with the direct sum ) é_)l( F(%, 1d[n]).

The preceding considerations show that, for any functor
L: (4)X)°—.#, the simplicial object p°*L: A°—.#, which will also be
written Cy (X, L), is given by

C,(X,L)= Il L%.
x€Xy
Moreover, the restriction of the face operator d}: C, (X, L)—~C,_{(X, L)
to the direct summand L%, is the composition

La T~ i"dgx

L% L(d}x) C,_.(X, L),

where o stands for the following morphism of 4/X

Afn—1] 22, A

AN .
A
Tx

1=
We again set §,= 2, (—1)*d}, thus obtaining a differential object
i=0
of #, whose homology objects will be written H, (X, L). If A =&
and if L is the constant functor of value Z, we have the equality
H,(X,L)=H,X (1.1). More generally, if .# is arbitrary and if L is a
constant functor of value McOb.#, we will write simply H, (X, M)
instead of H,(X, L).

4.2. Proposition: Let X be a simplicial set and L: (4]X)°—~. M a
functor, where M is an abelian category with exact infinite divect sums.
For any n, there is a natural isomorphism from H,((4/X)°, L) onto
H,(X, L) (see 3.2 and 4.1 for notations).

As the functor p°*: (4)X)°M —~A°M is exact by 4.1, it follows
from 3.6 that H,((4/X)°, L) can be identified with H, (4°, p°*L), so
that we have to prove the following: if C is a simplicial object of M, and

i=n

if we set as usual 8,= Y, (—1)d}, the n-th homology object H,C of

1=0
(C, 84) may be identified with Ergnc .
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This, however, is a well known fact (by DoLp-PUPEPE, it is equivalent
to an even simpler assertion on differential objects of #): first of all,
H,C coincides with 1_121) C, since the diagram %, 8t [0]==2[1] of 4 is
coinitial in 4 (i.e. for any functor F with domain 4, lgn_F coincides
with the inverse limit of the diagram F¥ &, F &t: F[0]= F[1]). Moreover,
the functors H,,? give rise to an exact connected sequence of functors.
For this reason, we have only to prove the existence, for any L€ 0b (4°4),
of an epimorphism ¢g: L'—~L such that l_igan’.:HnL’zo if #>>0. The
notations being those of 3.4, set &/ = A°. If we choose for L' a functor
i* N, where N is just a family (V,)yeN of objects of M, we have only
to prove that H,L'=0 (3.4). Replacing all the N, by 0 with the ex-
ception of one, we may suppose that N,= M for some #, and N, =0 if
m==n. In that case, (1*N),, is the direct sum of A([m], [n]) copies of M,
and H,, (i*N) is equal to H,, (4{n], M), the notations being those of 4.1.
The simplicial set 4 [0] being a retract by deformation of 4 [#] (IV, 1.2),
the proposition follows from Lemma 4.3 below.

4.3. Lemma: Let f, g0 X=3Y be homotopic maps between simplicial
sets. For any object M of M, the map H, (f, M), induced by f, coincides
with H,(g, M).

The proof is similar to that given in 1.4. See also 4.8 below.

4.4. Let f: X—Y be a morphism of 4°¢ and Alf: A X—A|Y the
functor which maps 4 [#]—> X onto 4[x] 5 v, We will give in 4.5
below a simple description of the functor (AP (A[X) M —(A]Y) A
(3.5). On the other hand, we have given in 4.2 a simple description of the
homology groups H,, ((4/X)°, L), where LEQB((A/X)%//).

In order to apply §3 by combining these two descriptions, we
consider an arbitrary small category <7, and a functor L: o —~M, and
suppose La invertible for any acr .o/, Define then L71: o/°—.4 by
I1g—Laif acOb.o/ and L o= (La)™ if acUWr -

Proposition: (The notations and assumptions are those 3.3.) If L 15
invertible for any acUrof, there are natural isomorphisms between the
objects H, (57, L) and H,(sZ°, L).

Indeed, with the notations of 3.2, C, (&%, L) is equal to L La,,
where « runs through the n-sequences *

n 22}
A, < Ay 1 .- ay <y

of 7. It is easy to verify that the morphisms
(=1)"UL(e,...0): Lay—~>La,

make up an isomorphism of differential objects from C, (&, L) onto
Cy (F°, L),
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4.5. We return now to a morphism f: XY of 4°&; we consider a
singular simplex y: A[n]—Y of ¥ and the pull-back E,=4[n]xX of
the diagram X Y

i/
An]->Y

Thus, v is an object of 4/Y and (4/f)]y (4.4) is nothing but AlE,.

Define a covariant (resp. contravariant) local system on X as a
functor L: A|X —.# (vesp. L: (4/X)°—.#), such that La is invertible
for any morphism «. By 4.4, 4.2 and the preceding remark, if L is a
contravariant local system on X, the value on y of the #n-th satellite
(L,(4]f)*) L is equal to H,(E, L|E), where L|E, is the composition

(4fprs)° L

(A]E)* — (4]X)° M

Suppose moreover that f is a fibration: in that case, we will see below
that (L, (4/)¥)L7*: y~—H, (E,, L|E) is a covariant local system on Y.
The associated contravariant local system will be denoted by J#(f, L)
and called the local system of fibre homology. By 3.6, we have proved:

Theovem: Let f: X—Y be a fibration of A°& and L a contravariant
local system on X, with values in an abelian category with exact infinite
divect sums. There is a spectral sequence

Ei'qui’(Y’ ‘%(i; L)) in_{_q(X, L) )
the notations being those of 4.1.

4.6. We still have to prove the following: if L is a contravariant
local system on X, the functors y~—H, (E,, L|E)) are covariant local systems
on Y. In fact, consider a morphism

Aw'] > An]
Ny
Y

of A/Y and the induced morphism H,(F;, L): H,(E,, L|E)—H,(F, L|E).
In order to prove that H,(F, L) is invertible, it is sufficient to look at
the special cases t=4(2}) and t=4(0},). In the first case, ¢t has a retraction
s such that ¢s is homotopic to Id 4 [»]; apply then VI, 5.4.2 with £ =F,
B=A[n], A=A[n—1]; by 4.9 below H,(E, L) is invertible. In the
second case, £ has a section s such that s¢ is homotopic to Id4[n+1];
apply then VI, 5.4.2 with E=F,, B=A[n+1], A=4n].

4.7. In order to prove 4.9 below, let L be a contravariant local system
on a simplicial set Y. We associate with L a local system oL on II'Y
(appendix 1, 1.2), i.e. a functor oL: (/T Y)°—.# where II'Y is the
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Poincaré groupoid of Y. If xcY,, we set (oL)x=LZ, where % is the
singular simplex associated with x; it remains to associate with each
scY; an invertible morphism (eL)s: (oL)(dys)—(oL)(dys), which is
compatible with the relations given in II, 7.1. This is done by the
formula (oL)s = (LB) (L), where o and B are the following morphisms
of AJY

a

Af0] —=Z— A[1] A1) > A[0]

N N
Y Y

A8

Conversely, let P be a local system on ITY. We define then a contra-
variant local system 7 P on X as follows: let n,: [0] —[#] map 0 onto 0;
for any x¢X,,, we define (v P)X= P(X (n,)x); for any morphism

A[m] Ny [#]

y

of A]Y, let #: [1]—[n] be such that 7,=9 8 and en,=90); we then
define (z P) (A &) to be PJ.

It is easy to verify that the functors ¢ and 7 are quasi-inverse to
each other. Thus, p: L~—pL is an equivalence of the category of contra-
variant local systems on Y onto the category of local systems on ITY .

This shows in particular that, i/ Y is connected and simply connected,
each contravariant local system on Y is isomorphic to a constant one.

4.8. Lemma: Let f, g: X=3Y be homotopic morphisms of A°& and L
a contravariant local system on Y, with values in M. There is an iso-
morphism i: f1L =g gt L such that the triangle

Hy(X,4)
H,(X,[*L) ———H, (X, g*L)
Hg(f, L) Hyglg, L)
H,(Y,L)
is commutative for all q.

In this lemma, fL stands for the composition

(41x)° 255 (A]y)e —
we write H,(f, L) for the morphism induced by /. Clearly, we can reduce
the proof to the case where f and g are connected by a homotopy A:
f=he,, g=he. In that case, if pr,: A1} xX—X is the canonical
projection, it is clear that the local systems on IT(4[1] x X), associated

2+ Tewilon Mathem TRA 28 (ahriel and Zisman
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with 51 L and pry ey th 1L (4.7), are isomorphic. Hence, there is an iso-
morphism of p75*e5 141 L onto A1 L, and we are reduced to the case where
Y is equal to A[1] XX, f=¢&, g=¢& and L=p73*N, N being a contra-
variant local system on X.

In this last case, g5 'L and &1L are both equal to N; we choose
i=1d N and construct morphisms s,: C,(X, N)=>C,,{4[1]xX, L)
such that 8,,18,+5,_10,=C. (&1, L) —C, (&, L) (4.1). In order to
define s,, notice that the (n-+1)-simplices of A[1] XX are the pairs
(z;, ), where y€ X, ., and where 7; is defined as in 1.4; notice also that
L(t;, y)=Ny. We define the restriction of s, to the direct summand

=N
N« of C,(X, N) as the alterning sum Z (—1)*;, where x; is the com-
position ‘ =0
Nigl) i
N&—" N (x5 2) = L (v, x70) —— Con (A1 X X, L),
in being the canonical monomorphism of index (7;, x57 %). This gener-
alizes the construction given in 1.4.

4.9. Lemma: Let X:_u_’_Y be morphisms of A°E such that vu and uv

v
are homotopic to the identities of X and Y respectively. If L is a contra-
variant local system on Y, the morphisms

H,(u, L): H,(X, uL)~H,(Y, L)

are isomorphisms for each g.
In fact, if #v is homotopic to Id Y, we have by 4.8 a commutative
diagram
_ Hglw, L)
H,(X,uL) S
LN

L Hat¥,9)
Hy(v,u™1L)

H,(Y, v u?L)

H,(Y,L)

In the same way, if v is homotopic to Id X, there is a commutative
diagram
H,(X,uL)
~

Ho(X, 1) Z Hgy(v, w1 L)

H,(X,u 0w L) H,(Y, v utL)

—_——
Hy(u, v-lutL)

Therefore, H, (v, w>L) is an epimorphism and a monomorphism, hence
an isomorphism inverse to H, (u, L).
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