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Abstract

Define a graphGr(n) with one node for each triangulation of a convexon. Place an edge between each
pair of nodes that differ by a single flip: two triangles forming a quadrilateral are exchanged for the other pair of
triangles forming the same quadrilateral. In this paper we introduce a tree of all triangulations of polygons with
any number of vertices which gives a unified framework in which several resuttg¢m) admit new and simple
proofs.0 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Triangulating a polygon plays a central role in Computational Geometry, and is a basic step in many
algorithms. A related structure is the triangulation of a%ef n points of the plane. When two adjacent
triangles form a convex quadrilateral then the shared diagonal cipfyed and a new triangulation of
S is obtained. This is a well-known process, that allows the construction of the Delaunay Triangulation
by successive flips selected with a local criterion [6], and that is also useful for enumerative purposes [1].

For a given polygon or point set, its graph of triangulations is defined as the graph having as nodes its
triangulations, that are considered adjacent when they differ by a flip. These graphs are widely studied
in [11]. In this paper we focus on the special and relevant case of convex polygons: all eagoes
have the same graph of triangulations, which we denoté&byn). This graph is isomorphic to the
rotation graphof binary trees of withh — 2 internal nodes, denotdRG(n — 2). The graphRG(n — 2)
has one vertex for each binary tree with- 2 internal nodes, and an edge between nddesmd 7’ if
there is a rotation that chang@sinto 7'. By taking a fixed edge of a convex polygon as a root, any
triangle with base has two additional sides that can each be recursively considered as roots for subtrees;
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in this way we obtain a one to one correspondence between binary trees wighinternal nodes and
triangulations of am-gon in which diagonal flips correspond to rotationsRE&(n — 2) is isomorphic to
Gr(n).In[16] Sleator et al. considered and solved the problem of determining the diam&ex0fby

using 3-dimensional hyperbolic geometry. In [13] Lucas proved that the rotation graph has a Hamiltonian
cycle, with a long and intricate proof, using a particular way of encoding binary trees. Some of the results
in [13] were revisited and some others added in [14], where the authors mention the interest in obtaining
a simpler proof that a Hamiltonian cycle exists. In [12] Lee proved that the graph of triangul&tjan$

can be realized as the skeleton of a congex 3)-polytope called thassociahedrona particular case of

a more general construction knownsecondary polytopef®,17]. This fact and Balinski's theorem for
polytopes [17] show that the vertex-connectivity®@f (n) is n — 3. The realization is also used in [12]

to prove that the automorphism group Gf-(n) is the dihedral grouD, of symmetries of a regular
n-gon. To our knowledge, no general theorem on polytopes, in the spirit of [15], implies the existence of
a Hamiltonian cycle irGr(n).

In this paper we introduce a hierarchy for all triangulations of polygons with any number of vertices,
which are organized in an infinite tree; besides its intrinsic interest this gives us a unified framework in
which several of the above results 6ty (n) — Hamiltonicity, vertex-connectivity, center and group of
automorphisms — admit new and simple proofs.

The paper is organized as follows. In Section 2 we give definitions and preliminary results, all
triangulations of polygons are organized in a tree in Section 3, and in Section 4 we give some applications
of such a structure.

2. Definitions and preliminaries

We use standard notations and terminology in graph theory as in [3]. In particular, the distance between
two nodes: andv, i.e., the length of the shortest path betwaesmdv, will be denotedi(u, v), and the
eccentricity of a nodea — the maximum distance fromto any other vertex — will be denotedu). The
set of nodes with minimum eccentricity is thenterof the graph.

A convex polygonP with n sides will be described by listing its vertices . . ., v, in counterclockwise
order, the arithmetic of the indices being done mod he internal diagonal joining verticas andv;
will be denoteds; ;. For convenience sides of the polygon are considered as diagonals (but the adjective
internal is not used), so in particuldy; . is the edgey;v;;1. Two diagonals ar@oncrossingvhen they
share no interior points.

The partition of the interior of? into triangles by means of a set of noncrossing diagonals is called a
triangulation of the polygon. The partition uses always- 3 internal diagonals. The set of triangulations
of a polygonP will be denotedZ (P). As a diagonal is described by the indices of its extreme points and
a triangulation is given by the diagonals it uses, we can consider that all cornpelygons, fom fixed,
have the same set of triangulations, that will be denoted simjghy, and its cardinality by, . It is well
known that the numbey, agrees with the Catalan numbg&y_, = (1/(n — 1))(2,1"_‘24) (n > 3) [7]. Related
counting problems for specific triangulations and for non-convex polygons have also been considered
recently [5,8-10].

There is a geometric graph naturally associated with a trianguldtier? (P), whose nodes are the
vertices of P, and whose arcs are the edges of the polygon and the diagonals of the triangulation. When
no confusion is possible, this graph and the triangulation itself will be essentially identified. A vertex of



F. Hurtado, M. Noy / Computational Geometry 13 (1999) 179-188 181

@
o
@/ @é@ l
AN N
//

Fig. 1. The graphs& 7 (5) andG 7 (6).

degree 2 is called aear of T'; every triangulation has at least two ears. We definddheled degree
sequencef T as the sequencld, . ..d,, whered; is the degree of; in the graph associated with As
mentioned above, the vertices Bfare taken in counterclockwise order.

As all triangulation have ears, a triangulation can be easily reconstructed from its labeled degree
sequence: find an ear, remove it, and decrease by one its neighboring degrees; then apply the procedu
recursively. This bijection between(P) and the labeled degree sequences offitke7 (P) will be used
later.

As P is convex, for every two adjacent triangles in a triangulatigne 7 (P) the diagonal of the
quadrilateral they form can biipped resulting in a new triangulatioff, nearly equal to the former
one: we will say thafl; and 7, areadjacentand we writeT; ~ T». More formally: two triangulations
T., T, € T (P) are called adjacent when there are indices; < k < [ (circularly) such the quadrilateral
v;v; vy IS present in botty and7,, andT, = Ty — 8« + 8-

Thegraph of triangulationsG - (P) of the polygonP has one node for each triangulation®fand an
edge between each pair of nodes that correspond to adjacent triangulations, this is, they differ by a single
flip.

All convex polygons with: vertices have the same graph of triangulations, denoted simpliloy).

For smallrn we haveGr(3) = K1, Gr(4) = K», Gr(5) = Cs, wherek,, is the complete graph with
nodes and’,, is the cycle of lengthn. Forn > 6 the situation becomes more intricate. Cases 5,
n = 6 are shown in Fig. 1.

As all internal diagonals can be flipped, every triangulation will have exactly 3 adjacent

triangulations. There are no triangles@h (n), a result we need later which we prove next.

Lemma 2.1. Gy (P) is triangle-free, for every polygoR.

Proof. We describe here the triangulations by the internal diagonals they usel ke (P) be

T ={é1,...,8,-3} and let us denoté/ the diagonal obtained by the flip 6, then itis clear thas; ¢ T
and thats; = ¢ ifand only ifi = j. If T ~ T, andT ~ T, then we can assume without loss of generality
thatT; = {81, 82,...,8,_3}, To = {61, 5/2, ..., 6,_3}. But then(Si ¢ T andé, ¢ T, S0 thatTy *+ T, 0O
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There are certain triangulations specially simple in structure cddled the fan f; is obtained by
joining vertexw; to every other vertex. Note that far= 3, 4, 5 all triangulations are fans. If € 7 (n)
is any triangulation andid-...d, its labeled degree sequence, thET, f;) =n — 1 — d; (this is the
number of diagonals one has to flip in order to go fronto the fanf;). As the labeled degree sequence
determinedl’, so do the number&(T, f;),i =1,...,n.

3. A hierarchy for triangulations

In this section we organize all triangulations of polygons with any number of vertices — equivalently, all
binary trees — as nodes in a certain (infinite) tree. This structure, of intrinsic interest, allows easy proofs
of some properties of the graplis-(n), as shown in Section 4.

The elements of (n), the set of triangulations of the convexpolygon, will lie on the leveh of our
tree. To this end, we will accept as a convention the existence of convex polygons with 0, 1, 2 vertices,
namely the empty set, a point and a segment. This is just a formality, and we will assume hereafter we
deal with the case > 3. EveryT € 7 (n) will have one father, belonging t6 (n — 1), and a number of
sons, belonging t@ (n + 1). Formally: letT € 7 (n) be such tha; ,, € T; we construct its so§’(T) as
the element i/ (n + 1) defined by

Si(T) = {Sp,q | P,q ?én’ Sp,q € T} U {Sp,nJrl | 1< P < L Sp,n € T}
U {Sp,n | i < D < n, 8p,n € T} U {8n,n+l}-

This operation can be quickly understood through a picture (refer to Fig. 2): the cerp@ygon is
opened like an oyster through the diagoéial, having the vertex; as a hinge. Old vertex, splits into
two verticesy, neighboringv,_1, andv, 1 neighboringv;; the same splitting occurs to the diagosa).
Diagonals in the shell containing; are re-labeled if necessary. Finally, the edgg,; is added.

The number of sons of a triangulatidhe 7 (n) is exactly the degree af, in T'; in particular, T will
have at least two sons, named§(7') and S"~*(T) (Fig. 3). B

If T €7 (n)isasonofl € T(n—1) we also say thal is the father off’, and we writel" = father(T')
or simply T = f(T). The fatherf(T) of T is obtained from7Z" by contracting the edge,_1v, (and
retaining the labeb,_1), a usual operation in graph theory. This also shows the unigueness of the father:
different triangulations cannot have a common son. We finally define a binary relafiogi jiby making
T, related toT> if and only if they have the same fathg(T1) = f(T») (we also say thal; and 7, are
brotherg; this is clearly an equivalence relation, havihgn — 1) as quotient set.

Now we have an (infinite) tree that has as nodes, by an obvious induction, all triangulations. Nodes at
leveln are the elements &f (n), that were also the nodes 6 (n) (Fig. 4).

\4
n+l 5

1 Vn-1 vy v \4}

n-1

Vi v

Fig. 2. Construction of the saff (T') of T.
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Fig. 4. Levels three to six of the tree of triangulations.

The two lemmas below relate the son/father operations in the tree with the adjac€rflip bperation
in Gr(n). Proofs are straightforward and omitted.

Lemma 3.1. LetT, Ty, T> € 7 (n). The following properties hold
@) Th~To= f(Ty) = f(Tp) or f(T1) ~ f(T2).
(bl) T ~T and(Si’n eTiNT,= S'(Th) ~ S'(T3).
(02) Ty ~ Tr = SY(T1) ~ SY(T») and S"X(T1) ~ §"(T>).
() Th # T and S (Ty) ~ SI(To) =i = .
(d) Ty~ T, = |#songTy) — #songTy) | < 1.
(e) The sons off induce a subgraph oGy (n + 1) that is a path having as extremes(7) and
S"N(T).
(f1) SX(T) has one neighbor which is a brothé¥ (T'); the remainingz — 3 neighbors are of the form
SY(Wy), ..., SY(W,_3). The analogous property holds f6f—1(T).
(f2) SU(T) (i #1,n — 1) has two neighbors which are its brothers; the remaining 4 neighbors are
of the formS* (Wy), ..., S'(W,_4), where theW; # T are distinct elements &f (n).
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Fig. 5. Layers inG7(5) and inG7(6).

We need some suitable notations for two special triangulations of the comgon: F,, denotes the
fan fromv,, (note the slight departure from previous notation, due to the facwthatfixed), andE,, ;,
fori =2,...,m — 2, is the triangulation in which all vertices excaptare joined withv,,, andv; is an
ear.

Lemma 3.2.

(a) The path formed by the sons Bf is exactlyS1(F,) ~ S?(F,) ~ --- ~ §""2(F,) ~ §""1(F,).
(b) S_"*l(Fn) = Foy1, §"2(Fy) = Ent1n-1-

(c) S'(E.x) ~ S/(F,) & i =j (observe thas*(E, ;) does not exi$t

Lemma 3.1 tells us how to lift structures @iy (n) through the tree. Every substructureGs (n) can
be exactly lifted down t@; (n + 1) via S* or via §”~* (that we will denote occasionally as the “layes®
and the “layer”s”1). If we allow complete blow-up then every node@f (n) has to be substituted by
the path formed by its sons, and we have to deal with many “new” adjacencies. For lifting up we see that
adjacencies are maintained or contracted at the father’s level. Lemma 3.2 will be exploited in Section 4.
By thinking G (n + 1) as decomposed into layesé, whereS* andS"~* are graphs both isomorphic
to Gr(n), one can imagin& r(n + 1) as a kind of cylinder (see Fig. 5).

4. Applications of the hierarchy of triangulations

4.1. Gr(n) is a Hamiltonian graph

The tree of triangulations introduced above is a suitable tool that gives a reasonably simple constructive
proof of the Hamiltonicity ofGr(n).

Theorem 4.1. Gr(n) is a Hamiltonian graph for > 5. More precisely, there is a Hamiltonian cycle in
which F,, and E, ,,_ are neighbors.

Proof. We proceed by induction om. G (5) is Cs and Es 3 is a neighbor offs (Fig. 1). Let us assume
now thatGr (k) has a Hamiltonian cycl€ as in the statement. By Lemma 3.1, we obtain a copg of
in Gr(h + 1) via S*; and a second disjoint copy vigl—1. For every node: of G (h) the nodesS*(x)
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Fig. 6. Constructing a Hamiltonian cycle @Gy (h + 1) given such a cycle i r (k).
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Fig. 7. Intertwining the sons df, andEj, ;> whens, is odd.

and S"~%(x) are connected with the path formed by the sons.dkll the nodes ofG; (h + 1) belong to
some of these paths. By Lemma 3.2, we h&{e!(F,) = F,.1 andS"2(F,) = Ej 1151

If the orders, of Gr(h) is even, we simply travel througfi (2 4+ 1) as in a cogwheel (Fig. 6, center).

If #, is odd, the construction of the cycle starts similarly (Fig. 6, right), but the so#% ahd Ej, ,_»
have to be intertwined suitably.

Let us recall that, (the Catalan numbe€;,_,) is odd if and only ifx = 2¢ + 1 for somek, so
h is odd too. ThenF,, has an even number of sons afg,_, has an odd number of sons (there is
no S"~2(E;.,_»)). The situation is depicted in Fig. 7, where we can also see the completion of the
Hamiltonian cycle. O

4.2. Connectivity 067 (n)

As a second example of application of the hierarchy introduced above, we compute here the
connectivity of the grapld; - (rn) by inductively lifting down through the tree.

Theorem 4.2. The vertex-connectivity of the grajghy (n) (n > 5) is equal ton — 3.

Proof. As the degree ia — 3 we only have to prove that the graph remains connected when any
vertices are suppressed. This is cleardcee 5. We assume that the property holds fioe= 2 and we
proceed by induction: we prove tha@t- (2 + 1) is still connected after the removal of any $&tof 7 — 3
nodes. There are two cases.

(i) W c S*. Then we have a path between any two given nadesas follows: fromx to S"~1( £ (x)),
then toS"~1(f(y)), and finally toy. The same proof applies when all the removed nodes belong to the
layer §" 1,
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(i) W ¢ St and W ¢ S"1, so every one of these two layers is a connected subgraph -of
Gr(h +1) — W. We can also be certain that we have some path $6m) to $*~1(w) in G through
brothers (a “family” path) because there aref such paths irGr(h + 1), every two are disjoint, and
t, > h — 3. So it is enough to prove that from any node we can reach either theSlapethe layers’—*
through a “family” path inG. Let x = S'(y) € G, with i # 1, h — 1. If both family paths fromx to S*
and "~ are broken them = S’(y) will have at least one neighbor of the forsi(z) in G. The vertex
S’ (z) hash — 5 neighboring vertices of the for$i () in G (h + 1) other thanS’(y), and the situation
is symmetric forS (y); asGr(h + 1) is triangle-free we get in such a way a total @f 2 10 vertices in
Gr(h +1). Not all the family paths associated with thege-210 vertices can get broken @, because
2h — 10> h — 5, so inG we can move fromx, and inside the laye§’, to a suitable vertex, then to an
extreme layer. O

We see thatGy(n) is a maximally connected graph, i.e., the vertex-connectivity is equal to the
minimum degree.

4.3. Center and automorphism group@f- (n)
Here we give a last example of application of the hierarchy of triangulations.
Theorem 4.3. The center of57(n) consists of the fans f1, f>, ..., f..

Proof. As it is clear that the eccentricity of a fan is equalite- 3, it remains to show that if a triang-
ulation T is not a fan ther(T) > n — 3 or, equivalently, that there exists such thatd(T, T') > n — 2.

We prove this claim by induction on starting withn = 6 since forn < 6 all triangulations are
fans. The case = 6 is easily dealt with by inspection since there are only three different types of
triangulations. IfT € 7(n + 1) is not a fan £ > 6), there is an ear vertexof T such that its removal
gives a triangulation? € 7 (n) which is not a fan. By rotating the labels @f if necessary we can
assume thab gets the label 1, so thal = SY(T). By induction there Is a triangulatioW € 7 (n)
such thatd(T', W) > n — 2, which by isomorphism translates indgS1(T), SY(W)) > n — 2. So we
getd(T, " Y(W)) =d(SYT), " tW)>n—1=m+1) —-2. O

As a corollary of the former theorem, we can now completely determine the automorphism group
of Gr(n). Since any two convex polygons are equivalent with respect to their triangulations, we are
free to work with a regular polygon. It is clear that any symmetry of the regular polygon will induce a
corresponding automorphism on the graph of triangulations, since adjacencies will be preserved. We nex
show that there are no more automorphisms.

Corollary 4.4. The automorphism groug (Gr(n)) is isomorphic to the dihedral groum, of
symmetries of a regular polygon withsides.

Proof. Itis straightforward to see that the distances between fans are
_[n=3, ifj=i+£l,
d(fi, fi) = {n — 4, otherwise,
where the indices are taken moduloNow leto be in I'(G7(n)) and consider the action af on C,
which being the center of the graph is an invariant set of vertices. Because of the above relations on the
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distances, i f1 = f; then eithefo f>, = fi11 OFr o f> = fi_1. In the first case it follows that f3 = fi,2
and in the second casgz = f;_». Proceeding in this way we see thats either a rotation or a reflection
of the index sefn]. This shows that the restriction 6f(Gr(n)) to the center is equivalent to the dihedral
groupD,,.

The second part of the proof is to show that an automorphism is completely determined by its action
on the center or, in other words, thabit- = 1 theno = 1. LetT be any triangulation anghd . .. d, its
(ordered) degree sequence. We know &@t, f;) =n — 1—d;, buto is trivial on the fans by hypothesis
and an automorphism preserves distances, hence

doT, fj)=d(cT,of;))=d(T, f;)=n—-1—d,.

As mentioned in the preliminaries, this implies tifa= o T, and we conclude that=1. O
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Note added

After this paper was ready for publication we have learned of reference [4], where the authors give
independent proofs of Theorems 4.2 and 4.3 similar to ours in spirit.
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