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High dimensional data with low intrinsic dimension is everywhere

300 by 300 pixel images = 90, 000 dimensions
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Principal component analysis (PCA)

Standard tool for dimension reduction if data approximately lies on
a linear subspace
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Figure: Original data and projection onto first principal component
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Figure: Residual
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Random projections vs PCA
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Principal components:
Directions of projection are
data-dependent
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Random projections:
Directions of projection are
independent of the data

Wen random projections can be better:

1. Data is so high dimensional that it is too expensive to
compute principal components directly

2. You do not have access to all the data at once, as in data
streaming

3. Data is approximately low-dimensional, but not near a linear
subspace
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In this talk:

To what extent can information in a high dimensional data set be
preserved if we acquire it through random projections?

I The Johnson-Lindenstrauss Lemma / concentration of
measure

I Connections to sparse recovery

I Preserving non-Euclidean distances (especially `1)

6 / 49



Set-up

I Data as vectors xj ∈ Rn, j = 1, 2, . . . , n

I Recall that
‖x‖p = (

∑n
i=1 |xi |p)1/p , 1 ≤ p <∞, ‖x‖∞ = maxi |xi |

I Data is processed through small number of linear sketches
yk = 〈ak , xj〉 , . . . k ∈ {1, 2, . . . ,m} and m� n

E.g.
I Computing the mean: µ = 1

n 〈1, x〉
I Random sketches: y = 〈a, xj〉 , a = (±1,±1,±1, . . . )

I In matrix-vector form: y = Axy

 =

 A


x
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Linear Dimensionality Reduction

I The Johnson-Lindenstrauss Lemma: “A set of p points in
high-dimensional Euclidean space can be linearly embedded in
m > 9ε−2 log p dimensions without distorting the distance
between any two points by more than a factor of (1± ε)”
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The Johnson-Lindenstrauss Lemma

More precisely,

Theorem (Johnson/Lindenstrauss (1984))

Let ε ∈ (0, 1) and let X = {x1, ..., xn} ⊂ Rn.
Let m ≥ 9ε−2 log n be a natural number. Then there exists a linear
map Φ : Rn → Rm such that

(1− ε)‖xi − xj‖2 ≤ ‖Φxi − Φxj‖2 ≤ (1 + ε)‖xi − xj‖2 ∀i , j ∈ X

I [Alon ’03] m dependence on n and ε optimal up to log(1/ε)
factor.

I With high probability, a random projection Φ works.
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Probabilistic JL constructions

We want a linear map Φ : Rn → Rm such that

‖Φ(xi − xj)‖ ≈ ‖xi − xj‖ for
(n
2

)
vectors xi − xj .

I For any fixed vector v ∈ Rn, and for a matrix Φ : Rn → Rm

with i.i.d. Gaussian entries, E‖Φv‖2 = ‖v‖2 and

P
(

(1− ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + ε)‖v‖2
)
≥ 1− 2e−cε

2m.

This is concentration of measure for Gaussian random
matrices.

I Take union bound over
(n
2

)
vectors xi − xj ⇒

Φ works with probability ≥ 1/2 if m = O(ε−2 log(n))
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From finite sets to continuous subsets

I Suppose K is a bounded subset of Rn and ε > 0 is fixed.

I A finite subset Q ⊂ K is called an ε-net of K if for every
x ∈ K one can find y ∈ Q such that

‖x− y‖2 ≤ ε

I The minimal possible size #Q is the ε-covering number
N(K , ε).

Example: For Bk
2 the Euclidean ball, N(Bk

2 , ε) ≤ (3/ε)k .
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Random projections preserve information

Rn Rm

If S is a k-dimensional subspace of high-dimensional Euclidean
space, a Gaussian random matrix Φ : Rn → Rm with
m ≥ Cε−2 log(#Q) = Cε−2k log(1/ε) will, with high probability,
preserve all pairwise distances between points in the subspace:

(1− ε)‖x− y‖2 ≤ ‖Φ(x− y)‖2 ≤ (1 + ε)‖x− y‖2, ∀x, y ∈ S
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Random projections preserve information

A Gaussian random matrix Φ : Rn → Rm will also preserve the
geometry of a union of low-dimensional subspaces.

[Baraniuk/Davenport/DeVore/Wakin 06] Consider the subset of
k-sparse signals

Sk = {x ∈ Rn : #{i : |xi | > 0} ≤ k}.

ε-covering number this set ≤
(n
k

)
(3/ε)k ≤ ( nk )k(3/ε)k

⇒ If m = O(ε−2k log(n/k)) then with high probability,

(1− ε)‖x− y‖2 ≤ ‖Φ(x− y)‖2 ≤ (1 + ε)‖x− y‖2, ∀x, y ∈ Sk

17 / 49



Random projections preserve information

A Gaussian random matrix Φ : Rn → Rm will also preserve the
geometry of a union of low-dimensional subspaces.

[Baraniuk/Davenport/DeVore/Wakin 06] Consider the subset of
k-sparse signals

Sk = {x ∈ Rn : #{i : |xi | > 0} ≤ k}.

ε-covering number this set ≤
(n
k

)
(3/ε)k ≤ ( nk )k(3/ε)k

⇒ If m = O(ε−2k log(n/k)) then with high probability,

(1− ε)‖x− y‖2 ≤ ‖Φ(x− y)‖2 ≤ (1 + ε)‖x− y‖2, ∀x, y ∈ Sk
18 / 49



I The Johnson-Lindenstrauss Lemma / concentration of
measure

I Connections to sparse recovery

I Non-Euclidean metrics (especially `1)
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Sparse recovery

Sparse recovery concerns the “inverse problem”: Can we recover a
given x ∈ Rn which is k-sparse from lower-dimensional projection
Φx ∈ Rm, m� n.

I Definition [Candès/Romberg/Tao (2006)]: Φ : Rn → Rm has
the restricted isometry property (RIP) of order k and level
ε ∈ (0, 1) if

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22 ∀ k-sparse x ∈ Rn

We have seen that with high probability, a Gaussian random matrix
Φ ∈ Rm×n has RIP if m ≥ ε−2k log(n/k)
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RIP of order 2k and small ε implies that Φ is invertible and
well-conditioned over the subset of k-sparse signals:

‖Φ(x1 − x2)‖22 ≥ (1− ε)‖x1 − x2‖22, x1, x2 k-sparse .

This implies that if x is k-sparse and Φ has RIP of order 2k ,

x = argmin
z∈Rn
‖z‖0 subject to Φz = Φx

This is not a tractable optimization algorithm (NP hard in general).
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Sparse recovery through `1 minimization

[Candès/Romberg/Tao, Donoho (2006)] RIP of order 2k also
implies:

I If x is k-sparse, then

x = argmin
z∈Rn
‖z‖1 subject to Φz = Φx

I More generally, if x is “close to” k-sparse, then

x# = argmin
z∈Rn
‖z‖1 subject to Φz = Φx

is close to x.
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Sparse recovery and linear dimension reduction

Recall the crucial concentration inequality for a (properly
normalized) Gaussian random matrix: For a fixed x ∈ Rn,

P
(

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22
)
≥ 1− 2e−cε

2m.

I We have seen that Φ having this concentration for an
arbitrary x ⇒ Φ has the Restricted Isometry Property with
high probability, once m ≥ Ck log(n/k).

I The RIP has also been shown for many structured random
matrix constructions, via more complicated arguments, such
as random partial discrete Fourier matrices.

I Is there a converse to this result? Does RIP for a matrix Φ
imply that Φ satisfies the concentration inequality for an
arbitrary x? Not quite, but ...
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We can recover a “near” converse result:

Theorem (Krahmer, W. ′11)

Suppose Φ : Rn → Rm satisfies

(1− ε)‖x‖22 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2 ∀x k-sparse.

Fix x ∈ Rn arbitrary and suppose Dξ ∈ Rn×n is a diagonal matrix
with ξ = ±1 on diagonal. Then

P
(

(1− ε)‖x‖22 ≤ ‖ΦDξx‖22 ≤ (1 + ε)‖x‖22
)
≥ 1− 2e

(
− cε2m

log(n)

)

Informally, RIP + random column sign flips implies
Johnson-Lindenstrauss concentration for Φ up to a log(n) factor in
the embedding dimension m.
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A Geometric Observation

I A matrix Φ that acts as an approximate isometry on sparse
vectors (an RIP matrix) also acts as an approximate isometry
on most maximally flat vectors (i.e., in the Hamming cube
{−1, 1}N).

I Follows from ‖ΦDξx‖2 ≈ ‖x‖2 with x = (1, . . . , 1).
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I The Johnson-Lindenstrauss Lemma / concentration of
measure

I Connections to sparse recovery

I Non-Euclidean metrics (especially `1)
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Probabilistic JL embeddings: `n
2 to `m

1

A random Gaussian matrix can also be used to embed finite
subsets of `n2 into `m1 :

Proposition
1 Fix x ∈ Rn. Let Φ : Rn → Rm with standard i.i.d. Gaussian
entries. Then

P

(
(1− ε)‖x‖2 ≤

√
π

2

1

m

m∑
i=1

|(Φx)i | ≤ (1 + ε)‖x‖2

)
≥ 1−Ce−cε

2m

What if ‖x‖2 above is replaced by ‖x‖1?

That is, given an arbitrary set of n points in Rn, does there exist a
linear map T : Rn → Rc log(n) which preserves pairwise `1 distances
between points in the set?

1Plan, Vershynin, One-bit compressed sensing by linear programming, 2012.
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Dimension reduction in `1

In high dimensions, `1 norm is more meaningful than `2 for nearest
neighbor comparisons.

I Consider d points in Rn, each coordinate of each point drawn
i.i.d. from some underlying distribution.

I Let dmaxnp be farthest point from origin and dminn
p be closest

point to origin with respect to `np metric. Then2

lim
n→∞

E
[
dmaxnp − dminn

p

]
� n1/p−1/2.

I For `2, all points become equidistant up to a constant.

I For `p with p > 2, all points become completely equidistant

I `1 is only “simple” metric where the difference between
nearest and farthest neighbor increases with dimension

2Hinneburg, Aggarwal, and Keim. What is the nearest neighbor in high
dimensional spaces?, 2000.
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The curse of non-Euclideanity

I Hardness result for `p to `p embedding:3 for each 1 ≤ p ≤ ∞,
there are arbitrarily large n-point subsets X such that any
linear mapping T : Rn → Rm satisfies(m

n

)|1/p−1/2|
‖x−y‖p ≤ ‖T (x−y)‖p ≤

( n

m

)|1/p−1/2|
‖x−y‖p

for some x, y ∈ X .

I For p = 2, everything is nice!

I For p = 1, linear dimensionality reduction with constant
distortion is not possible in general.

3Charikar, Sahai ’02, Lee, Mendel, Naor ’05
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Dimension reduction in `1 for sparse vectors

The negative result for dimension reduction in `1 is a worst case
bound over arbitrary sets of n points

If x ∈ Rn is s-sparse, the situation is much better:

Proposition (Berinde, Gilbert, Indyk, Karloff, Strauss ’08)

There exists a linear map T : Rn → Rm with m ≥ Cε−2s log(n)
such that the following holds uniformly over all s-sparse x ∈ Rn:

(1− 2ε)‖x‖1 ≤ ‖T x‖1 ≤ ‖x‖1.

Such a matrix is said to have the 1−restricted isometry property
(1-RIP).

Probabilistic construction of such a T : sparse binary random
matrix with d = cε−1 log(n) ones per column. Corresponds to
adjacency matrix of an (s, d , ε) lossless expander graph
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Question: can we say anything about dimension reduction in `1 in
between the worst-case setting where dimension reduction is not
possible, and the setting of sparse vectors, where very strong
dimension reduction is possible?
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An interpolation norm

Given x ∈ Rn, partition its support into disjoint subsets
S1, S2,S3 . . . of size s according to the decreasing rearrangement
of x. The following is a norm:

‖x‖1,2,s :=

√√√√dn/se∑
`=1

‖xS`‖21

1. When s = 1, ‖ · ‖1,2,s ≡ ‖ · ‖2.
2. When s = n, ‖ · ‖1,2,s ≡ ‖ · ‖1.
3. For any s, ‖x‖1,2,s = ‖x‖1 if x is s-sparse.

Related to classical interpolation norms appearing in Banach space
literature
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Theorem (W., 2014)

Fix x ∈ Rn. Fix s < m ∈ N. There is a distribution on linear maps

Ψs : Rn → Rm such that, with probability exceeding 1− 2ne−
ε2m
s ,

(.63− ε)‖x‖1,2,s ≤ ‖Ψsx‖1 ≤ (1.77 + ε)‖x‖1,2,s

1. When s = 1 and ‖ · ‖1,2,s = ‖ · ‖2, Ψ is a Gaussian matrix,
and we recover `2 to `1 JL embedding result up to factors .63
and 1.77
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general
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Theorem (W., 2014)

Fix x ∈ Rn. Fix s < m ∈ N. There is a distribution on linear maps

Ψs : Rn → Rm such that, with probability exceeding 1− 2ne−
ε2m
s ,

(.63− ε)‖x‖1,2,s ≤ ‖Ψsx‖1 ≤ (1.77 + ε)‖x‖1,2,s

3. If x is s-sparse, ‖x‖1,2,s = ‖x‖1 and we recover that
s-sparse vectors in `n1 embed into `m1 , with m = O(s log(n))
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Summary

I The Johnson-Lindenstrauss Lemma says that a set of n points
in high-dimensional Euclidean space can be mapped down to
m = O(ε−2log(n)) dimensions while preserving pairwise `2
distances up to 1± ε, and a Gaussian random matrix can be
used for such an embedding.

I The Johnson-Lindenstrauss embedding property implies the
Restricted Isometry Property (RIP), and has applications to
sparse recovery. A near-converse result is also true: any
matrix with the RIP, with column signs randomly flipped, will
be a Johnson-Lindenstrauss embedding.

I In many cases, `1 distance preservation is more meaningful
than `2 distances. Although there is no analog of the
Johnson-Lindenstrauss for `1, we may consider a block norm
which interpolates between `1 and `2, and derive near-`1
embedding results for approximately sparse vectors through
this interpolation.
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Thank you!
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