Dimension reduction via random projections

Rachel Ward

University of Texas at Austin

May 9, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

High dimensional data with low intrinsic dimension is everywhere

300 by 300 pixel images = 90,000 dimensions

High dimensional data with low intrinsic dimension is everywhere

Principal component analysis (PCA)

Standard tool for dimension reduction if data approximately lies on a linear subspace

Figure: Original data and projection onto first principal component

Figure: Residual

Random projections vs PCA

Principal components: Directions of projection are data-dependent

Random projections: Directions of projection are *independent* of the data

Wen random projections can be better:

- 1. Data is so high dimensional that it is too expensive to compute principal components directly
- 2. You do not have access to all the data at once, as in data streaming
- 3. Data is approximately low-dimensional, but not near a linear subspace

In this talk:

To what extent can information in a high dimensional data set be preserved if we acquire it through random projections?

- The Johnson-Lindenstrauss Lemma / concentration of measure
- Connections to sparse recovery
- ▶ Preserving non-Euclidean distances (especially ℓ₁)

Set-up

▶ Data as vectors $\mathbf{x}_j \in \mathbb{R}^n, \quad j = 1, 2, \dots, n$

Set-up

- Data as vectors $\mathbf{x}_j \in \mathbb{R}^n, \quad j = 1, 2, \dots, n$
- ► Recall that $\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, 1 \le p < \infty, \quad \|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$
- ► Data is processed through small number of *linear sketches* $y_k = \langle \mathbf{a}_k, \mathbf{x}_j \rangle, \dots, k \in \{1, 2, \dots, m\}$ and $m \ll n$

E.g. • Computing the mean: $\mu = \frac{1}{n} \langle \mathbf{1}, \mathbf{x} \rangle$ • Denotes electric electr

• Random sketches: $y = \langle \mathbf{a}, \mathbf{x}_j \rangle$, $\mathbf{a} = (\pm 1, \pm 1, \pm 1, \dots)$

In matrix-vector form: y = Ax

$$\begin{bmatrix} \mathbf{y} \end{bmatrix} = \begin{bmatrix} & \mathbf{A} & \\ & \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix}$$

Linear Dimensionality Reduction

The Johnson-Lindenstrauss Lemma: "A set of p points in high-dimensional Euclidean space can be linearly embedded in m > 9ε⁻² log p dimensions without distorting the distance between any two points by more than a factor of (1 ± ε)"

The Johnson-Lindenstrauss Lemma

More precisely,

Theorem (Johnson/Lindenstrauss (1984)) Let $\varepsilon \in (0, 1)$ and let $\mathcal{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\} \subset \mathbb{R}^n$. Let $m \ge 9\varepsilon^{-2} \log n$ be a natural number. Then there exists a linear map $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|\Phi\mathbf{x}_i - \Phi\mathbf{x}_j\|^2 \le (1+\varepsilon)\|\mathbf{x}_i - \mathbf{x}_j\|^2 \quad \forall i, j \in \mathcal{X}$$

The Johnson-Lindenstrauss Lemma

More precisely,

Theorem (Johnson/Lindenstrauss (1984)) Let $\varepsilon \in (0,1)$ and let $\mathcal{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\} \subset \mathbb{R}^n$. Let $m \ge 9\varepsilon^{-2} \log n$ be a natural number. Then there exists a linear map $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$(1-arepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|\Phi \mathbf{x}_i - \Phi \mathbf{x}_j\|^2 \le (1+arepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \quad \forall i, j \in \mathcal{X}$$

- ► [Alon '03] *m* dependence on *n* and ε optimal up to log $(1/\varepsilon)$ factor.
- With high probability, a random projection Φ works.

Probabilistic JL constructions

We want a linear map $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\|\Phi(\mathbf{x}_i - \mathbf{x}_j)\| \approx \|\mathbf{x}_i - \mathbf{x}_j\|$$
 for $\binom{n}{2}$ vectors $\mathbf{x}_i - \mathbf{x}_j$.

► For any fixed vector $\mathbf{v} \in \mathbb{R}^n$, and for a matrix $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ with i.i.d. Gaussian entries, $\mathbb{E} \| \Phi \mathbf{v} \|^2 = \| \mathbf{v} \|^2$ and

$$\mathbb{P}\Big((1-arepsilon)\|oldsymbol{v}\|^2\leq \|\Phioldsymbol{v}\|^2\leq (1+arepsilon)\|oldsymbol{v}\|^2\Big)\geq 1-2e^{-carepsilon^2m}.$$

This is *concentration of measure* for Gaussian random matrices.

Probabilistic JL constructions

We want a linear map $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\|\Phi(\mathbf{x}_i - \mathbf{x}_j)\| pprox \|\mathbf{x}_i - \mathbf{x}_j\|$$
 for $\binom{n}{2}$ vectors $\mathbf{x}_i - \mathbf{x}_j$.

► For any **fixed** vector $\mathbf{v} \in \mathbb{R}^n$, and for a matrix $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ with i.i.d. Gaussian entries, $\mathbb{E} \| \Phi \mathbf{v} \|^2 = \| \mathbf{v} \|^2$ and

$$\mathbb{P}\Big((1-arepsilon)\|oldsymbol{v}\|^2\leq \|\Phioldsymbol{v}\|^2\leq (1+arepsilon)\|oldsymbol{v}\|^2\Big)\geq 1-2e^{-carepsilon^2m}.$$

This is *concentration of measure* for Gaussian random matrices.

► Take union bound over $\binom{n}{2}$ vectors $\mathbf{x}_i - \mathbf{x}_j \Rightarrow \Phi$ works with probability $\geq 1/2$ if $m = \mathcal{O}(\varepsilon^{-2} \log(n))$

From finite sets to continuous subsets

- Suppose K is a bounded subset of \mathbb{R}^n and $\varepsilon > 0$ is fixed.
- A finite subset Q ⊂ K is called an ε-net of K if for every x ∈ K one can find y ∈ Q such that

$$\|\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon$$

The minimal possible size #Q is the ε-covering number N(K, ε).

From finite sets to continuous subsets

- Suppose K is a bounded subset of \mathbb{R}^n and $\varepsilon > 0$ is fixed.
- A finite subset Q ⊂ K is called an ε-net of K if for every x ∈ K one can find y ∈ Q such that

$$\|\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon$$

The minimal possible size #Q is the ε-covering number N(K, ε).

Example: For B_2^k the Euclidean ball, $N(B_2^k, \varepsilon) \leq (3/\varepsilon)^k$.

Random projections preserve information

If S is a k-dimensional subspace of high-dimensional Euclidean space, a Gaussian random matrix $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ with $m \ge C\varepsilon^{-2}\log(\#Q) = C\varepsilon^{-2}k\log(1/\varepsilon)$ will, with high probability, preserve all pairwise distances between points in the subspace:

$$\| (1 - \varepsilon) \| \mathbf{x} - \mathbf{y} \|^2 \le \| \Phi(\mathbf{x} - \mathbf{y}) \|^2 \le (1 + \varepsilon) \| \mathbf{x} - \mathbf{y} \|^2, \quad orall \mathbf{x}, \mathbf{y} \in \mathcal{S}$$

Random projections preserve information

A Gaussian random matrix $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ will also preserve the geometry of a *union* of low-dimensional subspaces.

[Baraniuk/Davenport/DeVore/Wakin 06] Consider the subset of *k-sparse signals*

$$\mathcal{S}_k = \{\mathbf{x} \in \mathbb{R}^n : \#\{i : |x_i| > 0\} \le k\}.$$

Random projections preserve information

A Gaussian random matrix $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ will also preserve the geometry of a *union* of low-dimensional subspaces.

[Baraniuk/Davenport/DeVore/Wakin 06] Consider the subset of *k-sparse signals*

$$\mathcal{S}_k = \{\mathbf{x} \in \mathbb{R}^n : \#\{i : |x_i| > 0\} \le k\}.$$

 $\varepsilon\text{-covering number this set} \leq \binom{n}{k} (3/\varepsilon)^k \leq (\frac{n}{k})^k (3/\varepsilon)^k$

 $\Rightarrow \text{ If } m = \mathcal{O}(\varepsilon^{-2}k \log(n/k)) \text{ then with high probability,} \\ (1-\varepsilon) \|\mathbf{x} - \mathbf{y}\|^2 \le \|\Phi(\mathbf{x} - \mathbf{y})\|^2 \le (1+\varepsilon) \|\mathbf{x} - \mathbf{y}\|^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{S}_k$

- The Johnson-Lindenstrauss Lemma / concentration of measure
- Connections to sparse recovery
- Non-Euclidean metrics (especially ℓ_1)

Sparse recovery

Sparse recovery concerns the "inverse problem": Can we recover a given $\mathbf{x} \in \mathbb{R}^n$ which is *k*-sparse from lower-dimensional projection $\Phi \mathbf{x} \in \mathbb{R}^m$, $m \ll n$.

Sparse recovery

Sparse recovery concerns the "inverse problem": Can we recover a given $\mathbf{x} \in \mathbb{R}^n$ which is *k*-sparse from lower-dimensional projection $\Phi \mathbf{x} \in \mathbb{R}^m$, $m \ll n$.

Definition [Candès/Romberg/Tao (2006)]: Φ : ℝⁿ → ℝ^m has the *restricted isometry property* (RIP) of order k and level ε ∈ (0,1) if

$$(1-\varepsilon)\|\mathbf{x}\|_2^2 \leq \|\Phi\mathbf{x}\|_2^2 \leq (1+\varepsilon)\|\mathbf{x}\|_2^2 \quad \forall \ k\text{-sparse } \mathbf{x} \in \mathbb{R}^n$$

Sparse recovery

Sparse recovery concerns the "inverse problem": Can we recover a given $\mathbf{x} \in \mathbb{R}^n$ which is *k*-sparse from lower-dimensional projection $\Phi \mathbf{x} \in \mathbb{R}^m$, $m \ll n$.

Definition [Candès/Romberg/Tao (2006)]: Φ : ℝⁿ → ℝ^m has the *restricted isometry property* (RIP) of order k and level ε ∈ (0,1) if

$$(1-arepsilon) \|\mathbf{x}\|_2^2 \leq \|\Phi\mathbf{x}\|_2^2 \leq (1+arepsilon) \|\mathbf{x}\|_2^2 \quad orall \ k ext{-sparse } \mathbf{x} \in \mathbb{R}^n$$

We have seen that with high probability, a Gaussian random matrix $\Phi \in \mathbb{R}^{m \times n}$ has RIP if $m \ge \varepsilon^{-2} k \log(n/k)$

RIP of order 2k and small ε implies that Φ is *invertible* and *well-conditioned* over the subset of *k*-sparse signals:

$$\|\Phi(\mathbf{x}_1 - \mathbf{x}_2)\|_2^2 \ge (1 - \varepsilon) \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2, \qquad \mathbf{x}_1, \mathbf{x}_2 \ k$$
-sparse .

This implies that if **x** is k-sparse and Φ has RIP of order 2k,

 $\mathbf{x} = \arg\min_{\mathbf{z} \in \mathbb{R}^n} \|\mathbf{z}\|_0 \quad \text{ subject to } \Phi \mathbf{z} = \Phi \mathbf{x}$

This is not a tractable optimization algorithm (NP hard in general).

Sparse recovery through ℓ_1 minimization

[Candès/Romberg/Tao, Donoho (2006)] RIP of order 2k also implies:

▶ If **x** is *k*-sparse, then

$$\mathbf{x} = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^n} \|\mathbf{z}\|_1$$
 subject to $\Phi \mathbf{z} = \Phi \mathbf{x}$

More generally, if x is "close to" k-sparse, then

$$\mathbf{x}^{\#} = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^n} \|\mathbf{z}\|_1$$
 subject to $\Phi \mathbf{z} = \Phi \mathbf{x}$

is close to x.

Sparse recovery and linear dimension reduction

Recall the crucial concentration inequality for a (properly normalized) Gaussian random matrix: For a fixed $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbb{P}\Big((1-arepsilon)\|\mathbf{x}\|_2^2\leq \|\Phi\mathbf{x}\|_2^2\leq (1+arepsilon)\|\mathbf{x}\|_2^2\Big)\geq 1-2e^{-carepsilon^2m}.$$

Sparse recovery and linear dimension reduction

Recall the crucial concentration inequality for a (properly normalized) Gaussian random matrix: For a fixed $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbb{P}\Big((1-arepsilon)\|\mathbf{x}\|_2^2\leq \|\Phi\mathbf{x}\|_2^2\leq (1+arepsilon)\|\mathbf{x}\|_2^2\Big)\geq 1-2e^{-carepsilon^2m}.$$

- We have seen that Φ having this concentration for an arbitrary x ⇒ Φ has the Restricted Isometry Property with high probability, once m ≥ Ck log(n/k).
- The RIP has also been shown for many structured random matrix constructions, via more complicated arguments, such as random partial discrete Fourier matrices.
- Is there a converse to this result? Does RIP for a matrix Φ imply that Φ satisfies the concentration inequality for an arbitrary x? Not quite, but ...

We can recover a "near" converse result:

Theorem (Krahmer, W. '11) Suppose $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies

$$(1-\varepsilon)\|\mathbf{x}\|_2^2 \le \|\Phi\mathbf{x}\|^2 \le (1+\varepsilon)\|\mathbf{x}\|^2 \quad \forall \mathbf{x} \text{ k-sparse.}$$

Fix $\mathbf{x} \in \mathbb{R}^n$ arbitrary and suppose $\mathcal{D}_{\xi} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with $\xi = \pm 1$ on diagonal. Then

$$\mathbb{P}\Big((1-\varepsilon)\|\mathbf{x}\|_2^2 \leq \|\Phi\mathcal{D}_{\xi}\mathbf{x}\|_2^2 \leq (1+\varepsilon)\|\mathbf{x}\|_2^2\Big) \geq 1 - 2e^{\left(-\frac{c\varepsilon^2m}{\log(n)}\right)}$$

We can recover a "near" converse result:

Theorem (Krahmer, W. '11) Suppose $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies

$$(1-\varepsilon)\|\mathbf{x}\|_2^2 \le \|\Phi\mathbf{x}\|^2 \le (1+\varepsilon)\|\mathbf{x}\|^2 \quad \forall \mathbf{x} \text{ k-sparse.}$$

Fix $\mathbf{x} \in \mathbb{R}^n$ arbitrary and suppose $\mathcal{D}_{\xi} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with $\xi = \pm 1$ on diagonal. Then

$$\mathbb{P}\Big((1-\varepsilon)\|\mathbf{x}\|_2^2 \leq \|\Phi\mathcal{D}_{\xi}\mathbf{x}\|_2^2 \leq (1+\varepsilon)\|\mathbf{x}\|_2^2\Big) \geq 1-2e^{\left(-\frac{c\varepsilon^2m}{\log(n)}\right)}$$

Informally, RIP + random column sign flips implies Johnson-Lindenstrauss concentration for Φ up to a log(*n*) factor in the embedding dimension *m*.

A Geometric Observation

A matrix Φ that acts as an approximate isometry on sparse vectors (an RIP matrix) also acts as an approximate isometry on most maximally flat vectors (i.e., in the Hamming cube {-1,1}^N).

• Follows from $\|\Phi \mathcal{D}_{\xi} \mathbf{x}\|_2 \approx \|\mathbf{x}\|_2$ with $\mathbf{x} = (1, \dots, 1)$.

- The Johnson-Lindenstrauss Lemma / concentration of measure
- Connections to sparse recovery
- Non-Euclidean metrics (especially ℓ_1)

Probabilistic JL embeddings: ℓ_2^n to ℓ_1^m

A random Gaussian matrix can also be used to embed finite subsets of ℓ_2^n into ℓ_1^m :

Proposition

¹ Fix $\mathbf{x} \in \mathbb{R}^n$. Let $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ with standard i.i.d. Gaussian entries. Then

$$\mathbb{P}\left((1-\varepsilon)\|\mathbf{x}\|_2 \leq \sqrt{\frac{\pi}{2}} \frac{1}{m} \sum_{i=1}^m |(\Phi \mathbf{x})_i| \leq (1+\varepsilon)\|\mathbf{x}\|_2\right) \geq 1 - C e^{-c\varepsilon^2 m}$$

¹Plan, Vershynin, One-bit compressed sensing by linear programming, 2012.

Probabilistic JL embeddings: ℓ_2^n to ℓ_1^m

A random Gaussian matrix can also be used to embed finite subsets of ℓ_2^n into ℓ_1^m :

Proposition

¹ Fix $\mathbf{x} \in \mathbb{R}^n$. Let $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ with standard i.i.d. Gaussian entries. Then

$$\mathbb{P}\left((1-\varepsilon)\|\mathbf{x}\|_2 \leq \sqrt{\frac{\pi}{2}} \frac{1}{m} \sum_{i=1}^m |(\Phi \mathbf{x})_i| \leq (1+\varepsilon)\|\mathbf{x}\|_2\right) \geq 1 - C e^{-c\varepsilon^2 m}$$

What if $\|\mathbf{x}\|_2$ above is replaced by $\|\mathbf{x}\|_1$?

That is, given an arbitrary set of *n* points in \mathbb{R}^n , does there exist a linear map $T : \mathbb{R}^n \to \mathbb{R}^{c \log(n)}$ which preserves pairwise ℓ_1 distances between points in the set?

¹Plan, Vershynin, One-bit compressed sensing by linear programming, 2012.

Dimension reduction in ℓ_1

In high dimensions, ℓ_1 norm is more meaningful than ℓ_2 for nearest neighbor comparisons.

- ► Consider *d* points in ℝⁿ, each coordinate of each point drawn i.i.d. from some underlying distribution.
- Let dmaxⁿ_p be farthest point from origin and dminⁿ_p be closest point to origin with respect to ℓⁿ_p metric. Then²

$$\lim_{n\to\infty}\mathbb{E}\left[\mathsf{dmax}_p^n-\mathsf{dmin}_p^n\right]\asymp n^{1/p-1/2}.$$

²Hinneburg, Aggarwal, and Keim. *What is the nearest neighbor in high dimensional spaces*?, 2000.

Dimension reduction in ℓ_1

In high dimensions, ℓ_1 norm is more meaningful than ℓ_2 for nearest neighbor comparisons.

- Consider *d* points in ℝⁿ, each coordinate of each point drawn i.i.d. from some underlying distribution.
- Let dmaxⁿ_p be farthest point from origin and dminⁿ_p be closest point to origin with respect to ℓⁿ_p metric. Then²

$$\lim_{n\to\infty}\mathbb{E}\left[\mathsf{dmax}_p^n-\mathsf{dmin}_p^n\right]\asymp n^{1/p-1/2}.$$

- For ℓ_2 , all points become equidistant up to a constant.
- For ℓ_p with p > 2, all points become completely equidistant
- l₁ is only "simple" metric where the difference between nearest and farthest neighbor increases with dimension

²Hinneburg, Aggarwal, and Keim. *What is the nearest neighbor in high dimensional spaces*?, 2000.

The curse of non-Euclideanity

Hardness result for ℓ_p to ℓ_p embedding:³ for each 1 ≤ p ≤ ∞, there are arbitrarily large *n*-point subsets X such that any linear mapping T : ℝⁿ → ℝ^m satisfies

$$\left(\frac{m}{n}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p} \leq \|T(\mathbf{x}-\mathbf{y})\|_{p} \leq \left(\frac{n}{m}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p}$$

for some $\mathbf{x}, \mathbf{y} \in X$.

³Charikar, Sahai '02, Lee, Mendel, Naor '05

The curse of non-Euclideanity

Hardness result for ℓ_p to ℓ_p embedding:³ for each 1 ≤ p ≤ ∞, there are arbitrarily large n-point subsets X such that any linear mapping T : ℝⁿ → ℝ^m satisfies

$$\left(\frac{m}{n}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p} \leq \|T(\mathbf{x}-\mathbf{y})\|_{p} \leq \left(\frac{n}{m}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p}$$

for some $\mathbf{x}, \mathbf{y} \in X$.

▶ For *p* = 2, everything is nice!

³Charikar, Sahai '02, Lee, Mendel, Naor '05

The curse of non-Euclideanity

Hardness result for ℓ_p to ℓ_p embedding:³ for each 1 ≤ p ≤ ∞, there are arbitrarily large n-point subsets X such that any linear mapping T : ℝⁿ → ℝ^m satisfies

$$\left(\frac{m}{n}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p} \leq \|T(\mathbf{x}-\mathbf{y})\|_{p} \leq \left(\frac{n}{m}\right)^{|1/p-1/2|} \|\mathbf{x}-\mathbf{y}\|_{p}$$

for some $\mathbf{x}, \mathbf{y} \in X$.

- ▶ For p = 2, everything is nice!
- For p = 1, linear dimensionality reduction with constant distortion is not possible in general.

³Charikar, Sahai '02, Lee, Mendel, Naor '05

Dimension reduction in ℓ_1 for *sparse* vectors

The negative result for dimension reduction in ℓ_1 is a *worst case bound* over arbitrary sets of *n* points

Dimension reduction in ℓ_1 for *sparse* vectors

The negative result for dimension reduction in ℓ_1 is a *worst case bound* over arbitrary sets of *n* points

If $\mathbf{x} \in \mathbb{R}^n$ is *s*-sparse, the situation is much better:

Proposition (Berinde, Gilbert, Indyk, Karloff, Strauss '08) There exists a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ with $m \ge C\varepsilon^{-2}s\log(n)$ such that the following holds uniformly over all s-sparse $\mathbf{x} \in \mathbb{R}^n$:

$$(1-2\varepsilon)\|\mathbf{x}\|_1 \leq \|T\mathbf{x}\|_1 \leq \|\mathbf{x}\|_1.$$

Such a matrix is said to have the 1-restricted isometry property (1-RIP).

Dimension reduction in ℓ_1 for *sparse* vectors

The negative result for dimension reduction in ℓ_1 is a *worst case bound* over arbitrary sets of *n* points

If $\mathbf{x} \in \mathbb{R}^n$ is *s*-sparse, the situation is much better:

Proposition (Berinde, Gilbert, Indyk, Karloff, Strauss '08) There exists a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ with $m \ge C\varepsilon^{-2}s\log(n)$ such that the following holds uniformly over all s-sparse $\mathbf{x} \in \mathbb{R}^n$:

 $(1-2\varepsilon)\|\mathbf{x}\|_1 \le \|T\mathbf{x}\|_1 \le \|\mathbf{x}\|_1.$

Such a matrix is said to have the 1-restricted isometry property (1-RIP).

Probabilistic construction of such a T: sparse binary random matrix with $d = c\varepsilon^{-1} \log(n)$ ones per column. Corresponds to adjacency matrix of an (s, d, ε) lossless expander graph

Question: can we say anything about dimension reduction in ℓ_1 in between the worst-case setting where dimension reduction is not possible, and the setting of sparse vectors, where very strong dimension reduction is possible?

An interpolation norm

Given $\mathbf{x} \in \mathbb{R}^n$, partition its support into disjoint subsets $S_1, S_2, S_3 \dots$ of size *s* according to the decreasing rearrangement of \mathbf{x} . The following is a norm:

$$\|\mathbf{x}\|_{1,2,s} := \sqrt{\sum_{\ell=1}^{\lceil n/s \rceil} \|\mathbf{x}_{S_{\ell}}\|_{1}^{2}}$$

1. When s = 1, $\|\cdot\|_{1,2,s} \equiv \|\cdot\|_2$. 2. When s = n, $\|\cdot\|_{1,2,s} \equiv \|\cdot\|_1$. 3. For any s, $\|\mathbf{x}\|_{1,2,s} = \|\mathbf{x}\|_1$ if \mathbf{x} is *s*-sparse.

An interpolation norm

Given $\mathbf{x} \in \mathbb{R}^n$, partition its support into disjoint subsets $S_1, S_2, S_3 \dots$ of size *s* according to the decreasing rearrangement of \mathbf{x} . The following is a norm:

$$\|\mathbf{x}\|_{1,2,s} := \sqrt{\sum_{\ell=1}^{\lceil n/s \rceil} \|\mathbf{x}_{S_\ell}\|_1^2}$$

- 1. When s = 1, $\| \cdot \|_{1,2,s} \equiv \| \cdot \|_2$.
- 2. When s = n, $\|\cdot\|_{1,2,s} \equiv \|\cdot\|_1$.
- 3. For any s, $\|\mathbf{x}\|_{1,2,s} = \|\mathbf{x}\|_1$ if x is s-sparse.

Related to classical interpolation norms appearing in Banach space literature

Theorem (W., 2014) Fix $\mathbf{x} \in \mathbb{R}^n$. Fix $s < m \in \mathbb{N}$. There is a distribution on linear maps $\Psi_s : \mathbb{R}^n \to \mathbb{R}^m$ such that, with probability exceeding $1 - 2ne^{-\frac{\varepsilon^2 m}{s}}$,

$$(.63 - \varepsilon) \|\mathbf{x}\|_{1,2,s} \le \|\Psi_s \mathbf{x}\|_1 \le (1.77 + \varepsilon) \|\mathbf{x}\|_{1,2,s}$$

1. When s = 1 and $\|\cdot\|_{1,2,s} = \|\cdot\|_2$, Ψ is a Gaussian matrix, and we recover ℓ_2 to ℓ_1 JL embedding result up to factors .63 and 1.77

Theorem (W., 2014) Fix $\mathbf{x} \in \mathbb{R}^n$. Fix $s < m \in \mathbb{N}$. There is a distribution on linear maps $\Psi_s : \mathbb{R}^n \to \mathbb{R}^m$ such that, with probability exceeding $1 - 2ne^{-\frac{\varepsilon^2 m}{s}}$,

$$(.63 - \varepsilon) \|\mathbf{x}\|_{1,2,s} \le \|\Psi_s \mathbf{x}\|_1 \le (1.77 + \varepsilon) \|\mathbf{x}\|_{1,2,s}$$

2. When s = n and $\|\cdot\|_{1,2,s} = \|\cdot\|_1$, we find that $m \ge cn \log(n)$ - can't hope for dimension reduction in ℓ_1 in general

Theorem (W., 2014) Fix $\mathbf{x} \in \mathbb{R}^n$. Fix $s < m \in \mathbb{N}$. There is a distribution on linear maps $\Psi_s : \mathbb{R}^n \to \mathbb{R}^m$ such that, with probability exceeding $1 - 2ne^{-\frac{\varepsilon^2 m}{s}}$,

$$(.63 - \varepsilon) \|\mathbf{x}\|_{1,2,s} \le \|\Psi_s \mathbf{x}\|_1 \le (1.77 + \varepsilon) \|\mathbf{x}\|_{1,2,s}$$

3. If **x** is *s*-sparse, $\|\mathbf{x}\|_{1,2,s} = \|\mathbf{x}\|_1$ and we recover that *s*-sparse vectors in ℓ_1^n embed into ℓ_1^m , with $m = \mathcal{O}(s \log(n))$

Summary

- The Johnson-Lindenstrauss Lemma says that a set of n points in high-dimensional Euclidean space can be mapped down to m = O(ε⁻²log(n)) dimensions while preserving pairwise ℓ₂ distances up to 1 ± ε, and a Gaussian random matrix can be used for such an embedding.
- The Johnson-Lindenstrauss embedding property implies the Restricted Isometry Property (RIP), and has applications to sparse recovery. A near-converse result is also true: any matrix with the RIP, with column signs randomly flipped, will be a Johnson-Lindenstrauss embedding.
- In many cases, ℓ₁ distance preservation is more meaningful than ℓ₂ distances. Although there is no analog of the Johnson-Lindenstrauss for ℓ₁, we may consider a block norm which interpolates between ℓ₁ and ℓ₂, and derive near-ℓ₁ embedding results for approximately sparse vectors through this interpolation.

Thank you!

References

- Ward, "A unified framework for linear dimensionality reduction in ℓ_1 ". arXiv preprint arXiv:1405.1332 (2014).
- Krahmer, Ward. "New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property." SIAM Journal on Mathematical Analysis 43.3 (2011): 1269-1281.