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Abstract
There is more than a decade-long history of using static analy-
sis to find bugs in systems such as Linux. Most of the existing
static analyses developed for these systems are simple check-
ers that find bugs based on pattern matching. Despite the
presence of many sophisticated interprocedural analyses, few
of them have been employed to improve checkers for sys-
tems code due to their complex implementations and poor
scalability.

In this paper, we revisit the scalability problem of interpro-
cedural static analysis from a “Big Data” perspective. That
is, we turn sophisticated code analysis into Big Data analyt-
ics and leverage novel data processing techniques to solve
this traditional programming language problem. We develop
Graspan, a disk-based parallel graph system that uses an
edge-pair centric computation model to compute dynamic
transitive closures on very large program graphs.

We implement context-sensitive pointer/alias and dataflow
analyses on Graspan. An evaluation of these analyses on
large codebases such as Linux shows that their Graspan
implementations scale to millions of lines of code and are
much simpler than their original implementations. Moreover,
we show that these analyses can be used to augment the
existing checkers; these augmented checkers uncovered 132
new NULL pointer bugs and 1308 unnecessary NULL tests in
Linux 4.4.0-rc5, PostgreSQL 8.3.9, and Apache httpd 2.2.18.

Categories and Subject Descriptors F.3.2 [Logics and
Meaning of Programs]: Semantics of Programming
Languages—program analysis; H.3.4 [Information Storage
and Retrieval]: Systems and Software

General Terms Language, Measurements, Performance
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1. Introduction
Static analysis has been used to find bugs in systems software
for more than a decade now [9, 14, 15, 18, 20, 25, 28, 29,
31, 35, 56, 59, 71, 88, 93]. Based on a set of systems rules, a
static checker builds patterns and inspects code statements to
perform “pattern matching”. If a code region matches one of
the patterns, a violation is found and reported. Static check-
ers have many advantages over recent, more advanced bug
detectors based on SAT solvers or symbolic execution [18]:
they are simple, easy to implement, and scalable. Further-
more, they produce deterministic and easy-to-understand bug
reports compared to, for example, a symbolic execution tech-
nique, which often produces non-deterministic bug reports
that are difficult to reason about [27].

1.1 Problems
Unfortunately, the existing static checkers use many heuris-
tics when searching for patterns, resulting in missing bugs
and/or reporting false warnings. For example, Chou et al. [24]
and Palix et al. [59] developed nine checkers to find bugs in
the Linux kernel. Most of these checkers generate both false
negatives and false positives. For instance, their Null checker
tries to identify NULL pointer dereference bugs by inspect-
ing only the functions that directly return NULL. However,
a NULL value can be generated from the middle of a func-
tion and propagated a long way before it is dereferenced at
a statement. Such NULL value propagation will be missed
entirely by the Null checker.

As another example, the Pnull checker developed recently
by Brown et al. [18] checks whether a pointer dereference
such as a = b−> f is post-dominated by a NULL test on
the pointer such as if(b). The heuristic here is that if the
developer checks whether b can be NULL after dereferencing
b, the dereferencing can potentially be on a NULL pointer.
However, in many cases, the dereferencing occurs in one of
the many control flow paths and in this particular path the
pointer can never be NULL. The developer adds the NULL



Checker Target Problems Limitations Potential Improvement with Interprocedural Analyses

Block Deadlocks Focus on “direct” invocations of Use a pointer/alias analysis to identify indirect invocations via
the blocking functions (Negative) function pointers of the blocking functions

Null NULL pointer derefs Inspect a closure of functions that Use a dataflow analysis to identify functions where NULL can be
return NULL explicitly (Negative) propagated to their return variables

Range Use user data as array Only check indices directly Use a dataflow analysis to identify indices coming transitively from
index without checks from user data (Negative) user data as well

Lock/Intr Double acquired locks Identify lock/interrupt objects Use a pointer/alias analysis to understand aliasing relationships
and disabled interrupts by var names among lock objects in different lock sites
not appropriately restored (Negative)

Free Use of a freed obj Identify freed/used objects Use a pointer/alias analysis to check if there is aliasing between
by var names (Negative) objects freed and used afterwards

Size Inconsistent sizes between Only check alloc sites Use a pointer/alias analysis to identify other vars that point to the
an allocated obj and (Negative) same object with an inconsistent type
the type of the RHS var

Pnull NULL pointer derefs Report all derefs post-dominated Use a dataflow analysis to filter out cases where the involved
by NULL tests (Positive) pointers must not be NULL

Table 1. A subset of checkers used by [18] and [59] to find bugs in the Linux kernel, their target problems, their limitations, the
potential ways to improve them using a sophisticated interprocedural analysis; the first six have been used by Chou et al. [24]
and Palix et al. [59] to study Linux bugs; the last one was described in a recent paper by Brown et al. [18] to find potential NULL
pointer dereferences; positive/negative indicates whether the limitation can result in false positives/negatives.

test simply because the NULL value may flow to the test
point from a different control branch.

Our key observation in reducing the number of false posi-
tives and negatives reported by these checkers is to leverage
interprocedural analysis. Among the aforementioned nine
checkers, six that check flow properties can be easily im-
proved (e.g., producing fewer false positives and false nega-
tives) using an interprocedural analysis, as shown in Figure 1.

While using interprocedural analyses to improve bug de-
tection appears to be obvious, there seems to be a large gap
between the state of the art and the state of the practice. On
the one hand, the past decade has seen a large number of
sophisticated and powerful analyses developed by program
analysis researchers. On the other hand, none of these tech-
niques are widely used to find bugs in systems software.

We believe that the reason is two-fold. First, an interpro-
cedural analysis is often not scalable enough to analyze large
codebases such as the Linux kernel. In order for such an
analysis to be useful, it often needs to be context-sensitive,
that is, distinct solutions need to be produced and maintained
for different calling contexts (i.e., a chain of call sites repre-
senting a runtime call stack). However, the number of calling
contexts grows exponentially with the size of the program
and even a moderate-sized program can have as large as 1014

distinct contexts [90], making the analysis both compute-
and memory-intensive. Furthermore, most interprocedural
analyses are difficult to parallelize, because they frequently
involve decision making based on information discovered
dynamically. Thus, most of the existing implementations of
such analyses are entirely sequential.

Second, the sheer implementation complexity scares prac-
titioners away. Much of this complexity stems from optimiz-

ing the analysis rather than implementing the base algorithm.
For example, in a widely-used Java pointer analysis [78],
more than three quarters of the code performs approxima-
tions to make sure some results can be returned before a
user-given time budget runs out. The base algorithm imple-
mentation takes a much smaller portion. This level of tuning
complexity simply does not align with the “simplest-working-
solution” [46] philosophy of systems builders.

1.2 Insight
Our idea is inspired by the way a graph system enables
scalable processing of large graphs. Graph system support
pioneered by Pregel [53] provides a “one-stone-two-birds”
solution, in which the optimization for scalability is mainly
achieved by the (distributed or disk-based) system itself,
requiring the developers to only write simple vertex programs
using the interfaces provided by the system.

In this paper, we demonstrate a similar “one-stone-two-
birds” solution for interprocedural program analysis. Our key
observation in this work is that many interprocedural analyses
can be formulated as a graph reachability problem [64, 65,
72, 78, 96]. Pointer/alias analysis and dataflow analysis are
two typical examples. In a pointer/alias analysis, if an object
(e.g., created by a malloc) can directly or transitively reach
a variable on a directed graph representation of the program,
the variable may point to the object. In a dataflow analysis
that tracks NULL pointers, similarly, a transitive flow from a
NULL value to a variable would make NULL propagate to
the variable. Therefore, we turn the programs into graphs and
treat the analyses as graph traversal. This approach opens up
opportunities to leverage parallel graph processing systems
to analyze large programs efficiently.



1.3 Existing Systems
Several graph systems are available today. These systems are
either distributed (e.g., GraphLab [52], PowerGraph [32], or
GraphX [33]) or single-machine-based (e.g., GraphChi [44],
XStream [69], or GridGraph [102]). Since program analysis
is intended to assist developers to find bugs in their daily
development tasks, their machines are the environments in
which we would like our system to run, so that developers
can check their code on a regular basis without needing to
access a cluster. Hence, disk-based systems naturally become
our choice.

We initially planned to use an existing system to analyze
program graphs. We soon realized that a ground-up redesign
(i.e., from the programming model to the engine) is needed
to build a system for analyzing large programs. The main
reason is that the graph workload for interprocedural analy-
ses is significantly different from a regular graph algorithm
(such as PageRank) that iteratively performs computations
on vertex values on a static graph. An interprocedural anal-
ysis, on the contrary, focuses on computing reachability by
repeatedly adding transitive edges, rather than on updating
vertex values. For instance, a pointer analysis needs to add
an edge from each allocation vertex to each variable vertex
that is transitively reachable from the allocation.

More specifically, many interprocedural analyses are es-
sentially dynamic reachability problems in the sense that the
addition of a new edge is guided by a constraint on the labels
of the existing edges. In a static analysis, the label of an edge
often represents the semantics of the edge (e.g., an assign-
ment or a dereference). For two edges a l1−→ b and b l2−→ c, a
transitive edge from a to c is added only if the concatenation
of l1 and l2 forms a string of a (context-free) grammar.

This constraint-guided reachability problem, in general,
requires dynamic transitive closure (DTC) computation [39,
67, 95], which has a wide range of applications in program
analysis and other domains. The DTC computation dictates
two important abilities of the graph system. First, at each
vertex, all of its incoming and outgoing edges need to be
visible to perform label matching and edge addition. In the
above example, when b is processed, both a

l1−→ b and
b

l2−→ c need to be accessed to add the edge from a to c.
This requirement immediately excludes edge-centric systems
such as XStream [69] from our consideration, because these
systems stream in edges in a random order and, thus, this pair
of edges may not be simultaneously available.

Second, the system needs to support a large number of
edges added dynamically. The added edges can be even
more than the original edges in the graph. While vertex-
centric systems such as GraphChi [44] support dynamic
edge addition, this support is very limited. In the presence
of a large number of added edges, it is critical that the
system is able to (1) quickly check edge duplicates and (2)

appropriately repartition the graph. Unfortunately, GraphChi
supports neither of these features.

1.4 Our Contributions
This paper presents Graspan, the first single machine, disk-
based parallel graph processing system tailored for interpro-
cedural static analyses. Given a program graph and a grammar
specification of an analysis, Graspan offers two major perfor-
mance and scalability benefits: (1) the core computation of
the analysis is automatically parallelized and (2) out-of-core
support is exploited if the graph is too big to fit in memory.
At the heart of Graspan is a parallel edge-pair (EP) centric
computation model that, in each iteration, loads two partitions
of edges into memory and “joins” their edge lists to produce
a new edge list. Whenever the size of a partition exceeds a
threshold value, its edges are repartitioned. Graspan supports
both in-memory (for small programs) and out-of-core (for
large programs) computation. Joining of two edge lists is
fully parallelized, allowing multiple transitive edges to be
simultaneously added.

Graspan provides an intuitive programming model, in
which the developer only needs to generate the graph and
define the grammar that guides the edge addition, a task
orders-of-magnitude easier than coming up with a well-tuned
implementation of the analysis that would give trouble to
skillful researchers for months.

Recent work shows the effectiveness of backing static
analyses with Datalog [17, 90] or Database [89]. While lever-
aging Datalog makes analysis implementations easier, the
existing Datalog engines are designed in generic ways, i.e.,
not considering the characteristics of the program analysis
workload. Furthermore, there does not exist any out-of-core
Datalog engine that can process very large graphs on a sin-
gle machine. For example, the Linux kernel program graph
has more than 1B edges. The fastest shared memory Datalog
engine SociaLite [45] quickly ran out of memory while Gras-
pan processed it in several hours (cf. §5.4). While distributed
Datalog engines such as Myria [86] and BigDatalog [74] are
available, it is unrealistic to require developers to frequently
access a cluster in their daily development.

We have implemented fully context-sensitive pointer/alias
and dataflow analysis on Graspan. Context-sensitivity is
achieved by making aggressive inlining [73]. That is, we
clone the body of a function for every single context leading
to the function. This approach is feasible only because the
out-of-core support in Graspan frees us from worrying about
additional memory usage incurred by inlining. We treat the
functions in recursions context insensitively by merging the
functions in each strongly connected component on the call
graph into one function without cloning function bodies.

Results We have implemented Graspan in both Java and
C++; these implementations are publicly available at https:
//github.com/Graspan. Graspan can be readily used as
a “backend” analysis engine to enhance the existing static

https://github.com/Graspan
https://github.com/Graspan


checkers such as BugFinder, PMD, or Coverity. We have
performed a thorough evaluation of Graspan on three sys-
tems programs including the Linux kernel, the PostgreSQL
database, and the Apache httpd server. Our experiments show
very promising results: (1) the two Graspan-based analyses
scale easily to these systems, which have many millions of
function inlines, with several hours processing time, while
their traditional implementations crashed in the early stage;
(2) in terms of LoC, the Graspan-based implementations of
these analyses are an order-of-magnitude simpler than their
traditional implementations; (3) using the results of these
interprocedural analyses, the static checkers in [59] have un-
covered a total of 85 potential bugs and 1308 unnecessary
NULL tests.

2. Background
While there are many types of interprocedural analyses, this
paper focuses on a pointer/alias analysis and a dataflow anal-
ysis, both of which are enablers for all other static analyses.
This section discusses necessary background information on
how pointer/alias analysis is formulated as graph reachabil-
ity problems. Following Rep et al.’s interprocedural, finite,
distributive, subset (IFDS) framework [65], we have also
formulated a fully context-sensitive dataflow analysis as a
grammar-guided reachability problem. However, due to space
limitations, the discussion of this formulation is omitted.

2.1 Graph Reachability
Pioneered by Reps et al. [65, 72], there is a large body of work
on graph reachability based program analyses [16, 42, 61, 80,
91, 92, 97, 99]. The reachability computation is often guided
by a context-free grammar due to the balanced parentheses
property in these analyses. At a high level, let us suppose
each edge is labeled either an open parenthesis ‘(’ or a close
parenthesis ‘)’. A vertex is reachable from another vertex if
and only if there exists a path between them, the string of
labels on which has balanced ‘(’ and ‘)’.

The parentheses ‘(’ and ‘)’ have different semantics for
different analyses. For example, for a C pointer analysis, ‘(’
represents an address-of operation & and ‘)’ represents a
dereference *. A pointer variable can point to an object if
there is an assignment path between them that has balanced
& and *. For instance, a string “&&**” has balanced paren-
theses while “&**&” does not. This balanced parentheses
property can often be captured by a context-free grammar.

2.2 Pointer Analysis
A pointer analysis computes, for each pointer variable, a
set of heap objects (represented by allocation sites) that can
flow to the variable. This set of objects is referred to as the
variable’s points-to set. Alias information can be derived from
this analysis — if the points-to sets of two variables have a
non-empty intersection, they may alias.

Our graph formulation of pointer analysis is adapted
from a previous formulation in [101]. This section briefly

describes this formulation. The analysis we implement is
flow-insensitive in the sense that we do not consider control
flow in the program. Flow sensitivity can be easily added, but
it does not contribute much to the analysis precision [37]. A
program consists of a set of pointer assignments. Assignments
can execute in any order, any number of times.

Pointer Analysis as Graph Reachability For simplicity of
presentation, the discussion here focuses on four kinds of
three-address statements (which are statements that have at
most three operands):

a = b Value assignment a = ∗ b Load
∗b = a Store a = &b Address-of

Complicated statements are often broken down into these
three-address statements in the compilation process by intro-
ducing temporary variables. Our analysis does not distinguish
fields in a struct. That is, an expression a-> f is handled in
the same way as ∗a, with offset f being ignored. As reported
in [101], ignoring offsets only has little influence on the anal-
ysis precision, because most fields are of primitive types.

For each function, an expression graph – whose vertices
represent C expressions and edges represent value flow
between expressions — is generated; graphs for different
functions are eventually connected to form a whole-program
expression graph. Each vertex on the graph represents an
expression, and each edge is of three kinds:

• Dereference edge (D): for each dereference ∗a, there is
a D-edge from a to ∗a; there is also an edge from an
address-of expression &a to a because a is a dereference
of &a.
• Assignment edge (A): for each assignment a = b,

there is an A-edge from b to a; a and b can be arbitrary
expressions.
• Alloc edge (M): for each assignment a = malloc(), there

is an M-edge from a special Alloc vertex to a.

Figure 1 shows a simple program and its expression graph.
Each edge has a label, indicating its type. Solid and dashed
edges are original edges in the graph and they are labeled
M , A, or D, respectively. Dotted edges are transitive edges1

added by Graspan into the graph, as discussed shortly.

Context-free Grammar The pointer information computa-
tion is guided by the following grammar:

Object flow: OF ::= M VF
Value flow: VF ::= (A MA?)∗

Memory alias: MA ::= D VA D
Value alias: VA ::= V F MA? VF

This grammar has four non-terminals OF, VF, MA, and
VA. For a non-terminal T , a path in the graph is called a

1 We use term “transitive edges” to refer to the edges dynamically added to
represent non-terminals rather than the transitivity of a relation.



Program:

1 a = b;

2 b = &c;

3 d = &a;

4 e = malloc(...);

5 *c = e;

6 t = *d;

7 x = *t;

8 y = *x; 

&c

c

b a

&a d

*ceA4

*d t

*tx

*xy
M A

A A A

A

A

A

D

D

D D

D

D

OF VF

VF/VA

MA

VF/VA

VF/VA

MA

VF/VA

MA

OF
OF

VF

Figure 1. A program and its expression graph: solid, horizon-
tal edges represent assignments (A- and M- edges); dashed,
vertical edges represent dereferences (D-edge); dotted, hori-
zontal edges represent transitive edges labeled non-terminals.
A4 indicates the allocation site at Line 4.

T -path if the sequence of the edge labels on the path is a
string that can be reduced to T . In order for a variable v to
point to an object o (i.e., a malloc), there must exist an OF
path in the expression graph from o to v. The definition of
OF is straightforward: it must start with an alloc (M ) edge,
followed by a VF path that propagates the object address to a
variable. A VF path is either a sequence of simple assignment
(A) edges or a mix of assignments edges and MA (memory
alias) paths.

There are two kinds of aliasing relationships in C: memory
aliasing (MA) and value aliasing (VA). Two lvalue expres-
sions are memory aliases if they may denote the same mem-
ory location while they are value aliases if they may evaluate
to the same value.

An MA path is represented byD VA D. Each edge has an
inverse edge with a “bar” label. For example, for each edge

a
D−→ b, the edge b D−→ a exists automatically. D represents

the inverse of a dereference and is essentially equivalent to an
address-of. D VA D represents the fact that if (1) we take
the address of a variable a and writes it into a variable b, (2)
b is a value alias of another variable c, and (3) we perform
dereferencing on c, the result is the same as the value in a.

A VA path is represented by V F MA VF . This has the
meaning that if (1) two variables a and b are memory aliases,
and (2) the values of a and b are propagated to two other
variables c and d, respectively, through two VF paths, c and
d contain the same pointer value. In other words, the path –
c V F a MA b VF d – induces c VA d.

Note that MA, VA, and VF mutually refer each other.
This definition captures the recursive nature of a flow or
alias path. In this grammar, D and D are the open and close
parentheses that need to be balanced.

Example In Figure 1, e points to A4 , since the M edge
between them forms an OF path. There is a VF path from
&a to d, which is also a VA path (since VA includes VF ).
The VA path enables an MA path from a to ∗d due to the
balanced parentheses D and D. This path then induces two

additional VF /VA paths from b to t and from &c to t, which,
in turn, contribute to the forming of the VF/VA path from c
to x, making ∗c and ∗x memory aliases. Hence, there exists
a VF path from e to y, which, together with the M edge at
the beginning, forms an OF path from A4 to y. This path
indicates that y points to A4 . The dotted edges in Figure 1
show these transitive edges.

Traditional Solution The traditional way to implement this
analysis is to maintain a worklist, each element of which is
a pair of a newly discovered vertex and a stack simulating
a pushdown automaton. The implementation loops over the
worklist, iteratively retrieving vertices and processing their
edges. The traditional implementation does not add any phys-
ical edges into the graph (due to the fear of memory blowup),
but instead, it tracks path information using pushdown au-
tomata. When a CFL-reachable vertex is detected, the vertex
is pushed into the worklist together with the sequence of
the labels on the path leading to the vertex. When the ver-
tex is popped off of the list, the information regarding the
reachability from the source to the vertex is discarded.

This traditional approach has at least two significant draw-
backs. First, it does not scale well when the analysis be-
comes more sophisticated or the program to be analyzed
becomes larger. For example, when the analysis is made
context-sensitive, the grammar needs to be augmented with
the parentheses representing method entries/exists; the check-
ing of the balanced property for these parentheses also needs
to performed. Since the number of distinct calling contexts
can be very large for real-world programs, naı̈vely traversing
all paths is guaranteed to be not scalable in practice. As a
result, various abstractions and tradeoffs [41, 76–78] have
been employed, attempting to improve scalability at the cost
of precision as well as implementation straightforwardness.

Second, the worklist-based model is notoriously difficult
to parallelize, making it hard to fully utilize modern comput-
ing resources. Even if multiple traversals can be launched
simultaneously, since none of these traversals add transitive
edges into the program graph as they are being detected, every
traversal performs path discovery completely independently,
resulting in a great deal of wasted efforts.

A “Big Data” Perspective Our key insight here is that
adding physical transitive edges into the program graph
makes it possible to devise a Big Data solution to this
static analysis problem for two reasons. First, representing
transitive edges explicitly rather than implicitly leads to
addition of a great number of edges (e.g., even larger than
the number of edges in the original graph). This gives us a
large (evolving) dataset to process. Second, the computation
only needs to match the labels of consecutive edges with the
productions in the grammar and is thus simple enough to
be “systemized”. Of course, dynamically adding many edges
can make the computation quickly exhaust the main memory.
However, this should not be a concern, as there are already



many systems [34, 44, 52, 68, 84, 87] built to process very
large graphs (e.g., the webgraph for the whole Internet).

3. Graspan’s Programming Model
In this section, we describe Graspan’s programming model,
i.e., the tasks that need to be done by the programmer to use
Graspan. There are two main tasks. The first task is to modify
a compiler frontend to generate the graph. The second task is
to use the Graspan API to specify the grammar. Next, we will
elaborate on these two tasks. We will then finish the section
by discussing the applicability of Graspan’s programming
model to interprocedural analyses.

Generating Graph For Graspan to perform an interproce-
dural analysis, the user first needs to generate the Graspan
graph, which is a specialized program graph tailored for the
analysis, by modifying a compiler frontend. Note that since
this task is relatively simple, the developer can generate the
Graspan graph in a mechanical way without even thinking
about performance and scalability. In this subsection, we
briefly discuss how we generate the Graspan graph in the con-
text of the pointer/alias analysis. We finish by generalizing
graph generation for other interprocedural analyses.

For the pointer/alias analysis, we generate the Graspan
graph by making two modifications to the program expres-
sion graph described in §2. These modifications include (1)
inclusion of inverse edges and (2) context sensitivity achieved
through inlining. For the former, we model inverse edges ex-
plicitly. That is, for each edge from a to b labeled X , we
create and add to the graph an edge from b to a labeled X .

For the latter, we perform a bottom-up (i.e., reverse-
topological) traversal of the call graph of the program to inline
functions. For each function, we make a clone of its entire
expression graph for each call site that invokes the function.
Formal and actual parameters are connected explicitly with
edges. The cloning of a graph not only copies the edges and
vertices in one function; it does so for all edges and vertices
in its (direct and transitive) callees.

For recursive functions, we follow the standard treat-
ment [90] – strongly connected components (SCC) are com-
puted and then functions in each SCC are collapsed into one
single function, and treated context insensitively. Clearly, the
size of the graph grows exponentially as we make clones and
the generated graph is often large. However, the out-of-core
support in Graspan guarantees that Graspan can analyze even
such large graphs effectively. For each copy of a vertex, we
generate a unique ID in a way so that we can easily locate
the variable its corresponds to and its containing function
from the ID. In the Graspan graph, edges carry data (i.e., their
labels) but vertices do not. Finally, the graph is dumped to
disk in the form of an edge list.

In general, the approach of aggressive inlining provides
complete information that an analysis intends to uncover.
Among all the existing analysis implementations, only Wha-
ley et al. [90] could handle such aggressive inlining but they

only clone variables (not objects) and have to use a binary
decision diagram (BDD) to merge results. In addition, no evi-
dence was shown that their analysis could process the Linux
kernel. On the contrary, Graspan processes the exploded ker-
nel graph in a few hours on a single machine.

Although this subsection focuses on the generation of
pointer analysis graphs, graphs for other analyses can be
generated in a similar manner. Here we briefly summarize the
steps. First, vertices and edges need to be defined based on
a grammar; this step is analysis-specific. Second, if inverse
edges are needed in the grammar, they need to be explicitly
added. Finally, context sensitivity can be generally achieved
by function inlining. The developer can easily control the
degree of context sensitivity by using different inlining
criteria. For example, we perform full context sensitivity and
thus our inlining goes from the bottom functions all the way
up the top functions of the call graph. But if one wishes to
perform only one-level context sensitivity, each function only
needs to be inlined once.

Specifying Grammar Once the program graph is generated,
the user needs to specify a grammar that guides the addition
of transitive edges at run time. Unlike any traditional imple-
mentation of the analysis, Graspan adds transitive edges (e.g.,
dotted edges in Figure 1) to the graph in a parallel manner.
Specifically, for each production in the grammar, if Graspan
finds a path whose edge labels match the RHS terms of the
production, a transitive edge is added covering the path and
labeled with the LHS of the production.

Since Graspan uses the edge-pair-centric model, it focuses
on a pair of edges at a time, which requires each production
in the grammar to have no more than two terms on its RHS.
In other words, the length of a path Graspan checks at a time
must be ≤ 2.

For example, the above mentioned pointer analysis gram-
mar cannot be directly used, because the RHSes of VF, MA,
and VA all have more than two terms. This means that to add
a new VF edge, we may need to check more than two con-
secutive edges, which does not fit into Graspan’s EP-centric
model. Fortunately, every context free grammar can be nor-
malized into an equivalent grammar with at most two terms
on its RHS [65], similar to the Chomsky normal form. After
normalization, our pointer analysis grammar becomes:

Object flow: OF ::= M VF
Temp: T1 ::= A | MA
Value flow: VF ::= T1 | VF T1 | ε
Mem alias: MA ::= T2 D
Temp: T2 ::= D VA
Value alias: VA ::= T3 VF
Temp: T3 ::= V F MA | V F

At the center of Graspan’s programming model is an API
addConstraint(Label lhs, Label rhs1, Label rhs2),
which can be used by the developer to register each produc-
tion in the grammar. lhs represents the LHS non-terminal



while rhs1 and rhs2 represent the two RHS terms. If the RHS
has only one term, rhs2 should be NULL.

Graspan Applicability How many interprocedural analyses
can be powered by Graspan? First, we note that pointer
analysis and dataflow analysis are already representatives of
a large number of analysis algorithms that can be formulated
as a grammar-guided graph reachability problem. Second,
work has been done to establish the convertibility from other
types of analysis formulation (e.g., set-constraint [42] and
pushdown systems [10, 11, 11]) to context-free language
reachability. Analyses under these other formulations can all
be parallelized and made scalable by Graspan.

Note that Graspan currently does not support analyses
that require constraint solving, such as path-sensitive analysis
and symbolic execution. In our future work, we plan to add
support for constraint-based analyses by encoding constraints
into edge values. Two edges match if a satisfiable solution
can be found for the conjunction of the constraints they carry.

4. Graspan Design and Implementation
We implemented Graspan first in Java. Due to performance
issues in the JVM (most of which were caused by the GC
when copying arrays), we re-implemented Graspan in C++.
The Java and C++ versions have an approximate 6K and 4K
lines of code, respectively. Graspan can analyze programs
written in any languages.

4.1 Preprocessing
Preprocessing partitions the Graspan graph generated for
an analysis. The graph is in the edge-list format on disk.
Similar to graph sharding in GraphChi [44], partitioning
in Graspan is done by first dividing vertices into logical
intervals. However, unlike GraphChi that groups edges based
on their target vertices, one interval in Graspan defines a
partition that contains edges whose source vertices fall into
the interval. Edges are sorted on their source vertex IDs and
those that have the same source are stored consecutively and
ordered on their target vertex IDs. The fact that the outgoing
edges for each vertex are sorted enables quick edge addition,
as we will discuss shortly. Figure 2(a) shows a simple directed
graph. Suppose Graspan splits its vertices into three intervals
0–2, 3–4, and 5–6; Figure 2(b) shows the partition layout.

When a new edge is found during processing, it is always
added to the partition to which the source of the edge belongs.
Graspan loads two partitions at a time and joins their edge-
lists (§4.2), a process we refer to as a superstep. Given that
only two partitions reside in memory at a given time, the
size and hence the total number of partitions are determined
automatically by the amount of memory available to Graspan.

Preprocessing also produces three pieces of meta-
information: a degree file for each partition, which records
the (incoming and outgoing) degrees of its vertices, a global
vertex-interval table (VIT), which specifies vertex intervals,
and a destination distribution map (DDM) for each partition

p that maps, for each other partition q, the percentage of the
edges in p that go into q. The DDM is essentially a matrix,
each cell containing a percentage.

Graspan uses the degree file to calculate the size of the
array to be created to load a partition. Without the degree in-
formation, a variable-size data structure (e.g., ArrayList) has
to be used, which would incur array resizing and data copy-
ing operations. The VIT records the lower and upper-bounds
for each interval (e.g., (0, [0, 10000]), (1, [10001, 23451]),
etc.). Graspan maintains the table because the intervals will
be redefined upon repartitioning. The DDM measures the
“matching” degree between two partitions and will be used
by the Graspan scheduler to determine which two to load.

4.2 Edge-Pair Centric Computation
Graspan supports in-memory and out-of-core computations.
For small graphs that can be held in memory, our preprocess-
ing only generates two partitions, both of which are resident
in memory. For large graphs with more than two partitions,
Graspan uses a scheduling algorithm (discussed shortly) to
load two partitions in each superstep, joins their edge lists,
updates their edges, and performs repartitioning if necessary.
Each superstep itself performs a fixed point computation —
newly added edges may give rise to further edges.

The computation is finished when no new edges can be
added. The updated edge lists may or may not be written
back to disk depending on the next two partitions selected by
the scheduler. This iterative process is repeated until a global
fixed point is reached, that is, no new edges can be added
for any pair of partitions. Since the VIT and the DDM are
reasonably small in size, they are kept in memory throughout
the processing.

In-Memory Edge Representation The edge list of a vertex
v is represented as two arrays of (vertex, label) pairs, as shown
in Figure 2(c). The first array (Ov) contains “old” edges that
have been inspected before and the second (Dv) contains
edges newly added in the current iteration. The goal is to
avoid repeatedly matching edge pairs (discussed shortly).

Parallel Edge Addition Algorithm 1 shows a BSP-like
algorithm for the parallel EP-centric computation. With two
partitions p1 and p2 loaded, we first merge them into one
single partition with combined edge lists (Line 1 – 2). Initially,
for each vertex v, its two arrays Ov and Dv are set to empty
list and the original edge list of v, respectively (Line 4 and
Line 5). The loop between Line 6 and Line 24 creates a
separate thread to process each vertex v and its edge list,
computing transitive edges using a fixed-point computation
with two main components.

The first component (Line 7 – 14) attempts to match each
“old” edge in Ov that goes to vertex u with each “new” edge
of u in Du. The second component (Line 15 – 20) matches
each “new” edge in Dv with both “old” and “new” edges in
Ou and Du of vertex u. The idea is that we do not need to
match an “old” edge of v with an “old” edge of u, because
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Figure 2. (a) An example graph, (b) its partitions, and (c) the in-memory representation of edge lists.

Algorithm 1: The parallel EP-centric computation.
Input: Partition p1, Partition p2

1 Combine the vertices of p1 and p2 into V

2 Combine the edge lists of p1 and p2 into E

3 for each edge list v : (e1, e2, . . . , en) ∈ E do in parallel
4 Set Ov to ()

5 Set Dv to (e1, e2, . . . , en)

6 for each vertex v : (Ov, Dv) whose Dv is NOT empty do in
parallel

7 Array mergeResult ← ()

8 Let V1 be the intersection of the target vertices of Ov and
V

9 /*Merge Ov with only Dv of other vertices*/
10 List listsToMerge ← {Ov}
11 foreach Vertex v′ ∈ V1 do
12 Add Dv′ into listsToMerge

13 /*Merge the sorted input lists into a new sorted list*/
14 mergeResult ←

MATCHANDMERGESORTEDARRAYS(listsToMerge)

15 /*Merge Dv with Ov ∪Dv of other vertices*/
16 Let V2 be the intersection of the target vertices of Dv and

V

17 listsToMerge ← {Dv,mergeResult}
18 foreach Vertex v′ ∈ V2 do
19 Add Ov′ and Dv′ into listsToMerge

20 mergeResult ←
MATCHANDMERGESORTEDARRAYS(listsToMerge)

21 /*Update Ov and Dv*/
22 listsToMerge ← {Ov, Dv}
23 Ov ← MERGESORTEDARRAYS(listsToMerge)
24 Dv ← mergeResult −Ov

this work has been done in a previous iteration. Ov and Dv

are updated at the end of each iteration.
An important question is how to perform edge matching.

A straightforward approach is that, for each edge v L1−−→ u, we
inspect each of u’s outgoing edges u L2−−→ x, and add an edge
v

K−→ x if a production K ::= L1 L2 exists. However, this
simple approach suffers from significant practical limitations.
First, before the edge is added into v’s list, we need to scan

v’s outgoing edges one more time to check if the same edge
already exists. Checking and avoiding duplicates is very
important – duplicates may cause the analysis either not to
terminate or to suffer from significant redundancies in both
time and space.

Doing a linear scan of the existing edges is expensive –
it has an O(|E|2) complexity to add edges for each vertex,
where |E| is the total number of edges loaded. An alterna-
tive is to implement an “offline” checking mechanism that
removes duplicates when writing updated partitions to disk.
While this approach eliminates the cost of online checks, it
may prevent the computation from terminating — if the same
edge is repeatedly added, missing the online check would
make the loop at Line 6 keep seeing new edges and run in-
definitely.

Our algorithm performs quick edge addition and online
duplicate checks. Our key insight is that edge addition can
be done in batch much more efficiently than individually. To
illustrate, consider Figure 2(a) where vertex 0 initially has
two outgoing edges 0 → 1 and 0 → 4. Adding new edges
for vertex 0 is essentially the same as merging the (outgoing)
edges of vertex 1 and 4 into vertex 0’s edge list and then
filtering out those that have mismatched labels.

In Algorithm 1, to add edges for vertex v, we first compute
set V1 by intersecting the set of target vertices of the edges
in Ov and the set V of all vertices in the loaded partitions
(Line 8). V1 thus contains the vertices whose edge lists need
to be merged with v’s edge list. If an out-neighbor of v is not
in V , we skip it in the current superstep — this vertex will be
processed later in a future superstep in which its partition is
loaded together with v’s partition.

Next, we add Ov into a list listsToMerge together with
Du of each vertex u in V1 (Line 10 – 12), and merge these
lists into a new sorted list (Line 14). Since all input lists are al-
ready sorted, function MATCHANDMERGESORTEDARRAYS
can be efficiently implemented by repeatedly finding the min-
imum (using an O(log |V |) min-heap algorithm [13]) among
the elements in a slice of the input lists and copying it into the
output array. This whole algorithm has an O(|E|log |V |) com-
plexity, which is more efficient, both theoretically and em-
pirically, than scanning edges individually (O(|E|2)) because
|V | is much smaller than |E|. Furthermore, edge duplicate
checking can be automatically done during the merging — if
multiple elements have the same minimum value, only one



is copied into the output array. Label matching is performed
before copying — an edge is not copied into the output if it
has an inconsistent label.

Line 15 – 20 perform the same logic by computing a new
set of vertices V2, and merging Dv and all the edges (i.e.,
Ou ∪ Du) of each vertex u ∈ V2. At Line 20, all the new
edges to be added to vertex v are in mergeResult . Finally, to
prepare for the next iteration,Ov andDv are merged (Line 23)
to form the new Ov; Dv is then updated to contain the newly
added edges (excluding those that already exist in Ov).

Example Figure 2(c) shows the in-memory edge lists at the
end of the first iteration of the loop at Line 6 in Algorithm 1.
In the next iteration, thread t0 would merge O0 with D1 and
D4, and D0 with O2 ∪D2, O3 ∪D3, and O5 ∪D5. O0 and
O1 (and O4) do not need to be merged again as this has been
done before.

Another advantage of this algorithm is that it runs com-
pletely in parallel without needing any synchronization.
While the edge list of a vertex may be read by different
threads, edge addition can only be done by one single thread,
that is, the one that processes the vertex.

4.3 Postprocessing
When a superstep is done, the updated edge lists need to be
written back to their partition files. In addition, the degree
file is updated with the new vertex degree information. The
(in-memory) DDM needs to be updated with the new edge
distribution information.

Repartitioning If the size of a partition exceeds a thresh-
old (e.g., a parameter), repartitioning occurs. It is easy for
Graspan to repartition an oversized partition since the edge
lists are sorted. Graspan breaks the original vertex interval
into two small intervals, and edges are automatically restruc-
tured. The goal is to have the two small vertex intervals to
have similar numbers of edges, so that the resulting partitions
have similar sizes. The VIT needs to be updated with the new
interval information. Repartitioning can also be triggered in
the middle of a superstep if too many edges are added in the
superstep and the size of the loaded partitions is close to the
memory size.

Scheduling When a new superstep starts, two new parti-
tions will be selected by the scheduler to join. Since a par-
tition on which the computation was done in the previous
superstep may be chosen again, Graspan delays the writing
of a partition back to disk until the new partitions are chosen
by the scheduler. If a chosen partition is already in memory,
significant amounts of disk I/O can be saved.

We have developed a novel scheduling algorithm that has
two objectives: (1) maximize the number of edge pairs that
can potentially match and (2) favor the reuse of in-memory
partitions. For (1), the scheduler consults the DDM. While
the percentage information recorded in the DDM measures
the matching opportunities between two partitions, it is an

Program Ver #LoC #Inlines
Linux kernel 4.4.0-rc5 16M 31.7M
PostgreSQL 8.3.9 700K 290820

Apache httpd 2.2.18 300K 58269

Table 2. Programs analyzed, their versions, numbers of lines
of code, and numbers of function inlines.

overall measurement that does not reflect the changes. Hence,
we add another field to each cell of the DDM that records, for
a pair of partitions p and q, the change in the percentage of
the edges going from p into q since the last time p and q are
both loaded. If p and q have never been loaded together, the
change is the same as the full percentage.

Using δ(p, q) to denote this change, our scheduler selects a
pair of partitions that have the largest δ(p, q) + δ(q, p) score.
If multiple pairs of partitions have similar scores (e.g., in
a user-defined range), Graspan picks one that involves an
in-memory partition. These delta fields in the DDM also
determine the termination of the computation — for p and
q whose δ(p, q) + δ(q, p) is zero, no computation needs to
be done on them. Graspan terminates when the delta field in
every single cell of the DDM becomes 0.

Reporting Results Graspan provides an API for the user to
iterate over edges with a certain label. For example, for the
pointer analysis, edges with the OF label indicate a points-to
solution, while edges with the MA and VA label represent
aliasing variables. Graspan also provides translation APIs
that can be used to map vertices and edges back to variables
and statements in the program.

5. Evaluation
We built our frontend based on LLVM Clang. Our graph
generators for the pointer/alias and dataflow analysis have
1.2K and 800 lines of C++ code, respectively. To use Graspan,
the pointer/alias analysis has a grammar with 12 productions
(i.e., invoking the API function addConstraint 12 times)
while the dataflow analysis has 2 productions. We first
performed the pointer analysis. The dataflow analysis was
designed specifically to track NULL value propagation. It
was built based on the pointer analysis because it needs to
query pointer analysis results when analyzing heap loads and
stores.

We used the call graph generated by LLVM to perform in-
lining. Three large system programs were selected: the Linux
kernel, the PostgreSQL database, and the httpd server. Their
detailed statistics are reported in Table 2. Linux kernels are
not directly compilable with LLVM. Thanks to the LLVM-
Linux project [6] that provides kernel patches for LLVM
compilation, we were able to build the kernel version 4.4.0-
rc5 (the latest version supported by LLVMLinux). Although
we spent much effort trying to link as many modules as pos-
sible, some modules might still not be appropriately linked at
the time of evaluation.



For the other two systems, we picked their latest versions
that could be successfully compiled by LLVM. #Inlines
reports the total number of times functions are inlined – the
larger this number, the more calling contexts a program has.
For the Linux modules that were not linked appropriately,
inlining only occurred inside.

Since our goal is to enable developers to use Graspan on
development machines, we ran Graspan on a Dell desktop,
with a quad-core 3.2GHZ Intel i5-4570 CPU, 8GB memory,
and a 1TB SSD, running Linux 4.2.0. The size of the Java
heap given to Graspan was 6GB. 8 threads were used when
the EP-centric computation was performed.

Our evaluation focuses on the understanding of the follow-
ing four research questions:

• Q1: Can the two analyses we implemented find new bugs
in large-scale systems? (§5.1)
• Q2: How does Graspan perform in terms of time and space

and how does it compare to existing graph systems? (§5.2)
• Q3: How do Graspan-based analysis implementations

compare with other analysis implementations in terms
of development effort and performance? (§5.3)
• Q4: How does Graspan compare with other backend

systems when processing analysis workloads? (§5.4)

Since our analyses have already achieved the highest level
of context sensitivity, we did not compare their precision with
that of existing analyses. The main goal of this evaluation
is to (1) demonstrate the usefulness of these interprocedural
analyses through the detection of new bugs, and (2) show the
efficiency and scalability of Graspan when performing such
expensive analyses that would be extremely difficult to make
scalable otherwise.

5.1 Effectiveness of Interprocedural Analyses
To understand the effectiveness of our interprocedural anal-
yses, we re-implemented the seven static checkers listed in
Table 1 in Clang. We used these existing checkers as the base-
line to understand whether the combination of interprocedural
pointer/alias and dataflow analyses are able to improve them
in finding new bugs or reducing false positives (as described
in Table 1 in §1). Note that our interprocedural analyses are
not limited to these checkers; they can be used in a much
broader context to find other types of bugs as well (e.g., data
races, deadlocks, etc.). We would also like to evaluate our
analyses on commercial static checkers such as Coverity and
GrammaTech. Unfortunately, we could not obtain a license
that allows us to publish the comparisons, and hence, we had
to develop these checkers from scratch.

We have added a new interprocedural checker UNTest that
aims to find unnecessary, over-protective NULL tests – tests
on pointers that must have non-NULL values – before deref-
erencing these pointers. Although these checks are not bugs,
they create unnecessary code-level basic blocks that prevent
compiler from performing many optimizations such as com-

Checker BL(4.4.0) GR(4.4.0) BL(2.6.1)
RE FP RE FP RE

Block 0 0 0 0 43
Null 20 20 +108 23 98
Free 14 14 +4 4 21

Range 1 1 0 0 11
Lock 15 15 +3 3 5
Size 25 23 +11 11 3

UNTest N/A N/A +1127 0 N/A

Table 3. Checkers implemented, their numbers of bugs re-
ported by the baseline checkers (BL), and new bugs reported
by our Graspan analyses (GR) on top of the BL checkers on
the Linux kernel 4.4.0-r5; RE shows total numbers of bugs re-
ported while FP shows numbers of false positives determined
manually; to provide a reference of how bugs evolve over
the last decade, we include an additional section BL(2.6.1)
with numbers of true bugs reported by the same checkers
in 2011 on the kernel version 2.6.1 from [59]. UNTest is
a new interprocedural checker we implemented to identify
unnecessary NULL tests; ‘+’ means new problems found.

mon sub-expression elimination or copy propagation, leading
to performance degradation. Hence, these checks should be
removed for compiler to fully optimize the program.

We manually checked all bug reports from both the
baseline checkers and our analyses (except those reported by
UNTest as described shortly) to determine whether a reported
bug is a real bug. Since some of these checkers (such as Block,
Range, and Lock) are specifically designed for Linux, Table 1
only reports information w.r.t. the Linux kernel. For checkers
that check generic properties (i.e., Null and UNTest), we have
also run them on the two other programs; their results are
described later in this section.

For the first six baseline checkers that found many real
bugs in older versions of the kernel (used by [59] in 2011 to
check Linux 2.6.x and by Chou et al. [24] in 2001 to check
Linux 2.4.x), they could find only 2 real bugs in Linux 4.4.0-
r5 (with the Size checker). This is not surprising because
they were designed to target very simple bug patterns. Given
that many static bug checkers have been developed in the
past decade (including both commercial and open source), it
is likely that most of these simple bugs have been fixed in
this (relatively) new version of Linux. For example, the Null
checker detected most of the bugs in [59] and [24]. In this
current version, while it reported 20 potential bugs, a manual
inspection confirmed that all of them were false positives.

Unnecessary NULL Tests We used our interprocedural
analyses to identify NULL tests (i.e., if(p)) in which the
pointers checked must not be NULL. We have identified
a total of 1127 unnecessary NULL tests in Linux, 149 in
PostgreSQL, 32 in httpd. These are over-protective actions in
coding, and may result in performance degradation. Because
these warnings are too many to inspect manually, we took
a sample of 100 warnings and found these tests are truly



void*probe_kthread_data(
task_struct *task){

void *data = NULL;
probe_kernel_read(&data);

/*data will be
dereferenced after
return.*/
return data;
}

long probe_kernel_read
(void *dst){
if(...)
return -EFAULT;

return
__probe_kernel_read(dst);
}

#define page_private(page)
((page)->private)

bool swap_count_continued
(...){
head=vmalloc_to_page(...);
if(page_private(head)

!= ...){
...

}
}
page*vmalloc_to_page(...){
page *page = NULL;
if (!pgd_none(*pgd)){
//...
}
return page;
}

(a) NULL deref in kernel/kthread.c (b) NULL deref in mm/swapfile.c

Figure 3. Two representative bugs in the Linux kernel 4.4.0-
rc5 that were missed by the baseline checkers.

unnecessary. This is the first time that unnecessary NULL
tests in the Linux kernel are identified and reported.

New Bugs Found Our analyses reported 108 new NULL
pointer dereference bugs in Linux, among which 23 are false
positives. All of these 85 new bugs involve complicated value
propagation logic that cannot be detected by intraprocedural
checkers. Figure 3 shows two example bugs.

in Figure 3 (a), function probe kthread data invokes
probe kthread read to initialize pointer data. However,
in probe kthread read, if a certain condition holds, an er-
ror code (-EFAULT) is returned and the pointer never gets ini-
tialized. Function probe kthread data then returns data
directly without any check and the pointer gets dereferenced
immediately after the function returns to its caller. In Figure 3
(b), page private may dereference a NULL pointer since
function vmalloc to page may return NULL. This bug was
missed by the baseline because the origin of the NULL value
and the statement that dereferences it are in separate functions.
These types of bugs can only be found by interprocedural
analyses. In fact, we show these two bugs because they are
relatively simple and easy to understand; most of our bugs
involve more than 3 functions and more complicated logic.

For PostgreSQL and httpd, we detected 33 and 14 new
NULL pointer bugs; our manual validation did not find any
false positives among them.

Linux Bug Breakdown Table 4 lists the new bugs and
NULL tests in Linux into modules. We make two observa-
tions on this breakdown. First, the code quality of the Linux
kernel has been improved significantly over the past decade.
Note that the bugs we found are all complicated bugs detected
by our interprocedural analyses; the baseline checkers could
not find any (shallow) bug in this version of the kernel. Sec-
ond, consistent with the observations made in both [24] and
[59], drivers is still the directory that contains most (NULL
Pointer) bugs. This is not surprising as drivers is still the

Modules NULL pointer defs Unnecessary NULL Tests
arch 0 75

crypto 0 15
init 0 1

kernel 4 (2) 65
mm 3 (0) 84

security 0 78
block 6 (2) 31

fs 19 (3) 84
ipc 0 17
lib 0 39
net 10 (8) 269

sound 15 (5) 83
drivers 25 (3) 286
Total 108 (23) 1127

Table 4. A breakdown of the new Linux bugs found by our
analyses; in parentheses are numbers of false positives.

largest module in the codebase. On the other hand, drivers
is also the module of which developers are most cautious
(perhaps due to the findings in [24] and [59]), demonstrated
by the most unnecessary NULL tests it contains.

5.2 Graspan Performance
Table 5 reports various statistics of Graspan’s executions
(C++ version). Note that there is a large difference between
the initial size and the post-processing size of each graph.
For example, in Linux, the number of edges increases 3-5
times after the computation, while for httpd, the Graspan
graph for pointer analysis increases more than 100 times. The
computation time depends on both program characteristics
and analysis type. For example, while the pointer analysis
graph for httpd has a large number of edges added, its
dataflow analysis graph does not change as much and thus
Graspan finishes the computation quickly in 11.4 minutes. We
found that this is because our dataflow analysis only tracks
NULL values and in httpd the distances over which NULL
can flow are often short.

We have also attempted to run these graphs in memory
on the desktop we used and all of them except the dataflow
analysis of httpd ran out of memory. While the initial size
of each graph is relatively small, when edges are added
dynamically, the graph soon becomes very big and Graspan
needs to repartition it many times to prevent the computation
from running out of memory.

The Graspan section of Table 6 reports the breakdown of
Graspan’s running time into computation and I/O (i.e., disk
writes/reads). Clearly, the EP-centric computation dominates
the execution. While Graspan needs to perform many disk
accesses, the I/O cost is generally low because most disk
accesses are sequential accesses. Compared against the Java
version of Graspan, its C++ version is 2 – 5 × faster due to
(1) the elimination of garbage collection as well as (2) the
increased memory packing factor and decreased I/O costs.



Prog Pointer/Alias Analysis Dataflow Analysis
IS=(E,V) PS=(E,V) PT SS T IS=(E,V) PS=(E,V) PT SS T

Linux (249.5M,52.9M) (1.1B,52.9M) 91 secs 27 1.7 hrs (69.4M, 63.0M) (211.3M, 63.0M) 65 secs 33 11.9 hrs
PSQL (25.0M,5.2M) (862.2M,5.2M) 10 secs 16 6.0 hrs (34.8M,29.0M) (56.1M, 29.0M) 35 secs 16 2.4 hrs
httpd (8.2M, 1.7M) (904.3M, 1.7M) 3 secs 13 8.4 hrs (10.0M, 5.3M) (19.3M, 5.3M) 9 secs 16 11.4 mins

Table 5. Graspan performance: reported are the numbers of vertices and edges before (IS) and after (PS) being processed by
Graspan, Graspan’s pre-processing time (PT), numbers of supersteps taken (#SS), and total running time (T).

Analysis Graspan ODA [101] SociaLite [45]
CT I/O

Linux-P 99.7 mins 46.6 secs OOM OOM
Linux-D 713.8 mins 4.2 mins - OOM

PostgreSQL-P 353.1 mins 4.5 mins > 1 day OOM
PostgreSQL-D 143.8 mins 57.1 secs - OOM

httpd-P 497.9 mins 7.6 mins > 1 day > 1 day
httpd-D 11.3 mins 3.3 secs - 4 hrs

Table 6. A comparison on the performance of Graspan,
on-demand pointer analysis (ODA) [101] implemented in
standard ways, as well as SociaLite [45] processing our
program graphs in Datalog. The Graspan section shows a
breakdown of the running times into computation time (CT),
I/O time (I/O), and garbage collection time (GC); P and D
represent pointer/alias analysis and dataflow analysis. OOM
means out of memory.

Linux-pointer Linux-dataflow PostgreSQL-pointer

httpd-pointer httpd-dataflow PostgreSQL-dataflow

0%

20%

40%

60%

0%

10%

20%

30%

0%

10%

20%

30%

40%

0%

5%

10%

15%

20%

0%

20%

40%

60%

0%

10%

20%

30%

40%

Figure 4. Percentages of added edges across supersteps.

Figure 4 depicts the percentages of added edges across
supersteps, measured as the number of added edges divided
by the number of edges in each original graph. In general, an
extremely large number of edges are added within the first
10 supersteps (e.g., more than 500M for Linux), and as the
computation progresses, fewer edges are added.

5.3 Comparisons with Other Analysis
Implementations

Data Structure Analysis [47] To understand whether
Graspan-based analyses are more scalable and efficient than
traditional analysis implementations, we wanted to compare
our analyses with existing context-sensitive pointer/alias and
dataflow analyses. While we had spent much time looking for
publicly available implementations, we could not find any-
thing available except the data-structure analysis (DSA) [47]
in LLVM itself. DSA (implemented in 2007) is much more
complicated than our pointer/alias analysis implementation
— it has more than 10K lines of code while our pointer/alias
analysis (i.e., the graph generation part) only has 1.2K lines

of code. According to a response from the LLVM mailing
list [8], DSA was buggy and removed from LLVM since ver-
sion 3.3. We tried to use LLVM 3.2 but it could not compile
any version of the Linux kernel due to lack of patches.

On-demand Pointer Analysis [101] As no other implemen-
tations were available, we implemented the context-sensitive
version of Zheng and Rugina’s C pointer analysis [101] our-
selves. We took the expression graph generated by our fron-
tend and used a worklist-based algorithm to compute tran-
sitive closures, following closely the original algorithm de-
scribed in [101]. The ODA section of Table 6 reports its
performance. For all but httpd, ODA either ran out of mem-
ory or took a very long time (longer than one day) on the
same desktop where we ran Graspan. For example, when
processing Linux, it ran out of memory in 13 minutes. When
we moved it onto a server with 32 2.60GHZ Xeon(R) proces-
sors and 32GB memory, it took this implementation 3.5 days
to analyze Linux and it consumed 29GB out of the 32GB
memory. On the contrary, Graspan finished processing Linux
in a few hours with less than 6GB memory on the desktop
with a much less powerful CPU.

5.4 Comparisons with Other Backend Engines
Datalog Since Datalog has been used to power static anal-
yses, it is important to understand the pros/cons of using
Graspan v.s. a Datalog engine as the analysis backend. While
there are many Datalog engines available [7, 45, 74, 86],
SociaLite [45] and LogicBlox [7] are designed for shared-
memory machines while others [74, 86] are distributed en-
gines running on large clusters. Since a distributed engine is
not a choice for code checking in daily development tasks,
we focused our comparison against shared-memory engines.
LogicBlox is a commercial tool that has been previously used
to power the Doop pointer analysis framework [17] for Java.
However, it was the same licensing issue that prevented us
from publishing comparison results with LogicBlox. Hence,
this subsection only compares Graspan with SociaLite, a
Datalog engine developed by Stanford that has been demon-
strated to outperform other shared-memory engines.

The SociaLite section of Table 6 reports SociaLite’s
performance on the same desktop. SociaLite programs were
easy to write — it took us less than 50 LoC to implement
either analysis. However, SociaLite clearly could not scale
to graphs that cannot fit into memory. For both pointer/alias
and dataflow analysis, it ran out of memory for Linux and



PostgreSQL. For httpd, although SociaLite processed the
graphs successfully, it was much slower than Graspan.

GraphChi To understand whether other graph systems can
efficiently process the same (program analysis) workload, we
ran GraphChi — a disk-based graph processing system —
because GraphChi is the only available system that supports
both out-of-core computation and dynamic edge addition.
GraphChi provides an API add edge for the developer to add
an edge; it maintains a buffer for newly added edges during
computation and uses a threshold to prevent the buffer from
growing aggressively. When the size of the buffer exceeds
the threshold, the edge adding thread goes to sleep and the
function always returns false. The thread periodically wakes
up and checks whether the main data processing thread
comes to the commit point, at which the edges in the buffer
can be flushed out to disk. GraphChi does not check edge
duplicates and thus its computation would never terminate
on our workloads. We added a naı̈ve support that checks,
before an edge is added, whether the same edge exists in
the buffer. Note that this support does not solve the entire
problem because it only checks the buffer but duplicates may
have been flushed to shards. Checking duplicates in shards
would require a re-design of the whole system.

We ran GraphChi on the same desktop to process the
Linux dataflow graph. GraphChi ran into assertion failures in
133 seconds with around 65M edges added. This is primarily
because GraphChi was not designed for the program analysis
workload that needs to add an extremely large number of
edges (with many duplicates) dynamically.

6. Related Work
Static Bug Finding Static analysis has been used exten-
sively in the systems community to detect bugs [1, 9, 14, 15,
18, 20, 25, 26, 28–31, 35, 48, 49, 56, 59, 70, 71, 88, 93] and
security vulnerabilities [19, 21, 40]. Engler et al. [29] use
a set of nine checkers to empirically study bugs in OS ker-
nels. Palix et al. [59] implemented the same checkers using
Coccinelle [58]. Commercial static checkers [2–5] are also
available for finding bugs and security problems. Most of
these checkers are based on pattern matching. Despite their
commendable bug finding efforts, false positive and negatives
are inherent with these checkers.

Interprocedural analyses such as pointer and dataflow
analysis can significantly improve the effectiveness of the
checkers, but their implementations are often not scalable.
There exists a body of work that makes program analysis
declarative [17, 90] — analysis designers specify rules in
Datalog and these rules are automatically translated into
analysis implementations. However, the existing Datalog
engines perform generic table joining and do not support disk-
based computation on a single machine. While declarative
analyses reduce the development effort, they still suffer from
scalability issues. For example, although the pointer analysis
from Whaley et al. [90] can scale to reasonably large Java

programs (e.g., using BDD), it only clones pointer variables,
not objects. Furthermore, there is no evidence that they can
perform fully context-sensitive analyses on codebases as large
as the Linux kernel on a commodity PC.

Grammar-guided Reachability There is a large body of
work that can be formulated as a context-free language (CFL)
reachability problem [94]. CFL-recognition was first studied
by Yannakakis [94] for Datalog query evaluation. Work by
Reps et al. [38, 62, 64–66] proposes to model realizable paths
using a context-free language that treats method calls and re-
turns as pairs of balanced parentheses. CFL-reachability can
be used to formulate a variety of static analyses, such as poly-
morphic flow analysis [61], shape analysis [63], points-to and
alias analysis [16, 78, 79, 79, 80, 91, 92, 97, 99, 101], and in-
formation flow analysis [51]. The works in [42, 43, 54] study
the connection between CFL-reachability and set-constraints,
show the similarity between the two problems, and provide
implementation strategies for problems that can be formu-
lated in this manner. Kodumal et al. [43] extend set con-
straints to express analyses involving one context-free and any
number of regular reachability properties. CFL-reachability
has also been investigated in the context of recursive state
machines [11], streaming XML [10], and pushdown lan-
guages [12]. Recent work uses CFL-reachability to formulate
pointer and alias analysis [16, 78, 79, 79, 80, 91, 92, 97–
99, 101]. and specification inference [16].

Graph Systems State-of-the-art graph systems include disk-
based systems [36, 44, 50, 69, 84, 87, 100, 102], shared-
memory systems [57, 75], as well as distributed systems [22,
23, 32, 33, 52, 53, 55, 60, 68, 81–83, 85]. Graspan is designed
specifically for the transitive closure computation workload
with two features that the existing systems do not have:
repartitioning and quick edge duplicate checking.

7. Conclusion
Graspan is the first attempt to turn sophisticated code analysis
into scalable Big Data analytics, opening up a new direction
for scaling various sophisticated static program analyses (e.g.,
symbolic execution, theorem proving, etc.) to large systems.
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