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Abstract

The past decade has witnessed the increasing demands on

data-driven business intelligence that led to the proliferation

of data-intensive applications. A managed object-oriented

programming language such as Java is often the developer’s

choice for implementing such applications, due to its quick

development cycle and rich community resource. While the

use of such languages makes programming easier, their au-

tomated memory management comes at a cost. When the

managed runtime meets Big Data, this cost is significantly

magnified and becomes a scalability-prohibiting bottleneck.

This paper presents a novel compiler framework, called

FACADE, that can generate highly-efficient data manipula-

tion code by automatically transforming the data path of

an existing Big Data application. The key treatment is that

in the generated code, the number of runtime heap objects

created for data types in each thread is (almost) statically

bounded, leading to significantly reduced memory manage-

ment cost and improved scalability. We have implemented

FACADE and used it to transform 7 common applications on

3 real-world, already well-optimized Big Data frameworks:

GraphChi, Hyracks, and GPS. Our experimental results are

very positive: the generated programs have (1) achieved a

3%–48% execution time reduction and an up to 88× GC

reduction; (2) consumed up to 50% less memory, and (3)

scaled to much larger datasets.

Categories and Subject Descriptors D.3.4 [Program-

ming Languages]: Processors—Code generation, compilers,

memory management, optimization, run-time environments
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1. Introduction

Modern computing has entered the era of Big Data. Devel-

oping systems that can scale to massive amounts of data is

a key challenge faced by both researchers and practition-

ers. The mainstream approach to scalability is to enable dis-

tributed processing. As a result, existing platforms utilize

large numbers of machines in clusters or in the cloud; data

are partitioned among machines so that many processors

can work simultaneously on a task. Typical parallel frame-

works include, to name a few, FlumeJava [20], Giraph [9],

GPS [58], Hive [61], Hadoop [10], Hyracks [16], Spark [74],

Storm [63], and Pig [56].

However, all of these Big Data systems are written in

managed languages (i.e., Java and Scala), which are known

for their simple usage, easy memory management, and large

community support. While these languages simplify devel-

opment effort, their managed runtime has a high cost—often

referred to as runtime bloat [53, 65, 67–71]—which cannot

be amortized by increasing the number of data-processing

machines in a cluster. Poor performance on each node re-

duces the scalability of the entire cluster: a large number

of machines are needed to process a small dataset, result-

ing in excessive use of resources and increased communica-

tion overhead. This paper explores a new direction to scale

Big Data systems, that is, how to effectively optimize the

managed runtime of a data processing system to improve its

performance and scalability on each machine.

1.1 Motivation

The managed runtime suffers from two major perfor-

mance issues: excessive use of pointers and references lead-

ing to high space overhead (and thus low memory pack-

ing factors) as well as frequent GC runs preventing the

main threads from making satisfactory progress. Compre-

hensive studies across many contemporary Big Data sys-

tems [18] confirm that these overheads lead to signif-

icantly reduced scalability—e.g., applications crash with

OutOfMemoryError, although the size of the processed



dataset is much smaller than the heap size—as well as ex-

ceedingly high memory management costs—e.g., the GC

time accounts for up to 50% of the overall execution time.

Despite the many optimizations [6, 7, 16, 19, 21, 23–

25, 33, 38, 41, 45, 48, 49, 52, 54–57, 60, 61, 72, 73, 76]

from various research communities, poor performance in-

herent with the managed runtime remains a serious problem

that can devaluate these domain-specific optimization tech-

niques.

Switching back to an unmanaged language such as C or

C++ appears to be a reasonable choice. However, unman-

aged languages are more error-prone; debugging memory

problems in an unmanaged language is known to be a painful

task, which can be further exacerbated by the many “Big

Data” effects, such as distributed execution environment,

extremely large numbers of data items, and long running

time. Furthermore, since a great number of existing Big Data

frameworks were already developed in a managed language

(e.g., Java and Scala), it is unrealistic to re-implement them

from scratch. The proposed work aims to solve this fun-

damental problem by developing a systematic optimization

technique that can dramatically improve the performance of

a wide variety of Java-based Big Data systems while still al-

lowing the developers to enjoy all the benefits of a managed

programming language.

1.2 Observations

Our first observation is that there exists a clear boundary

between the control path and the data path in a Big Data

system. The control path organizes tasks into pipelines and

performs optimizations, while the data path represents and

manipulates data. Although the data path creates most of

the runtime objects, its implementation is rather simple and

its code size is often small. For instance, in a typical Big

Data application that runs on a shared-nothing cluster, a

driver controls the pipeline execution on the master node,

while each slave node runs data manipulation algorithms

(e.g., hashing, sorting, or grouping) to manipulate data. The

driver belongs to the control path that does not touch any

data, while data manipulation functions belong to the data

path that creates massive number of objects to represent and

process data items.

Our second observation is that to develop a scalable sys-

tem, the number of data objects and their references in the

heap must not grow proportionally with the cardinality of the

dataset. It is often harmless, however, to create objects in the

control path, because their numbers are very small and inde-

pendent of the size of the input. Our ultimate goal is, thus, to

significantly reduce the object representations of data items

so that they are not subject to the regular Java memory man-

agement. A straightforward way to achieve the goal is to

modify a JVM to create a new (data) heap (in parallel with

the original heap) and allocate all data objects in this heap.

The GC does not scan the data heap, whose memory can be

reclaimed either manually or by techniques such as region-

based memory management [14, 29, 30, 32, 35, 37, 50].

While this approach appears promising, its implementation

dictates a major re-design of the runtime system in a com-

mercial JVM—a metacircular JVM such as Jikes RVM often

does not support very large heaps—which makes it difficult

to prototype and deploy in real-world settings.

1.3 Contributions

To improve practicality, this paper presents a non-intrusive

technique, named FACADE, an alternative approach that

aims to reduce the cost of the managed runtime by limiting

the number of heap objects and references at the compiler

level, without needing any JVM modification. FACADE con-

tains a novel compiler framework—as well as its runtime

support—that can statically bound the number of heap ob-

jects representing data items in each thread. This is achieved

by breaking a long-held object-oriented programming prin-

ciple: objects are used both to store data and to provide data

manipulation interfaces.

FACADE advocates to separate data storage from data

manipulation: data are stored in the off-heap, native mem-

ory (i.e., unbounded) while heap objects are created as fa-

cades only for control purposes such as function calls (i.e.,

bounded). As the program executes, a many-to-one mapping

is maintained between arbitrarily many data items in native

memory and a statically bounded set of facade objects in the

heap. In other words, each facade keeps getting reused to

represent data items. An iteration-based memory manage-

ment mechanism is used to reclaim data items from native

memory: data records allocated in one iteration are deallo-

cated as a whole at the end of the iteration. The GC only

scans the managed heap, which contains a very small num-

ber of control objects and facades.

To enforce this model, we develop a compiler that can

transform an existing Big Data program into an (almost)

object-bounded program: the number of heap objects cre-

ated for a data type in one thread is bounded by certain

source code properties (i.e., a compile-time constant). More

formally, FACADE reduces the number of data objects from

O(s) to O(t ∗ n + p), where s represents the cardinality of

the dataset, t is the number of threads, n is the number of

data types, and p is the number of page objects used to store

data. Details of these bounds can be found in §3.4.

In practice, the reduction is often in the scale of several

orders of magnitude. As an example, for GraphChi [41], a

single-machine graph processing system, FACADE has re-

duced the number of objects created for vertices and edges

from 14, 257, 280, 923 to 1, 363. Although t and p cannot be

bounded statically, they are usually very small, and hence

the total number of objects is “almost” statically bounded.

Since data items are no longer represented by heap ob-

jects, the space overhead due to headers and pointers are

significantly reduced; furthermore, the managed heap be-

comes much smaller, resulting in reduced GC effort. For in-

stance, the execution of the transformed page rank program



in GraphChi with the twitter-2010 graph [40] is 27% faster,

consumes 28% less memory, and has 84% less GC time than

the original program.

Why does FACADE operate at the right level? There

exists a body of work that attempts to reduce the number

of objects in a Java execution by employing different levels

of techniques, ranging from programming guidelines [28]

through static program analyses [15, 22, 26, 46, 59] to low-

level systems support [66]. Despite the commendable efforts

of these techniques, none of them are practical enough to

improve performance for large-scale Big Data programs:

sophisticated interprocedural static analyses (such as escape

analysis [22] and object inlining [26]) cannot scale to highly

framework-intensive codebases while purely systems-based

techniques (such as Resurrector [66]) cannot scale to large

heaps with billions of objects.

The design of FACADE crosses the layers of compiler and

runtime system, exploiting native memory to represent data

objects instead of using static analysis to eliminate them.

Practicality is the main reason for this design. On one hand,

the design enables our compiler to perform simple local

(method1-based) code transformation, making it possible for

FACADE to scale to a large codebase. On the other hand, the

combination of code transformation and the leveraging of

the native memory support from a commercial JVM elimi-

nates the need to modify the JVM, enabling FACADE to scale

to a very large heap.

The FACADE compiler is implemented in the Soot com-

piler framework [4, 64] and supports most of the Java 7 fea-

tures. The user’s effort is reasonably small: she only needs to

(1) identify iterations, which are often very well-defined in

Big Data frameworks, as well as (2) specify the data path by

providing a list of Java classes to be transformed. FACADE

automatically synthesizes data conversion functions for data

types that flow across the boundary and inserts calls to these

functions at appropriate program points to convert data for-

mats. We have applied FACADE to 7 commonly-used ap-

plications on 3 real-world, already well-optimized Big Data

frameworks: GraphChi, Hyracks, and GPS. Our experimen-

tal results demonstrate that (1) the transformation is very fast

(e.g., less than 20 seconds), and (2) the generated code is

much more efficient and scalable than the original code (e.g.,

runs up to 2× faster, consumes up to 2× less memory, and

scales to much larger datasets).

2. The FACADE Execution Model

This section discusses the FACADE execution model and

gives an overview of the proposed transformation technique.

2.1 Data Storage Based on Native Memory

We propose to store data records in native memory. Similarly

to regular memory allocation, our data allocation operates

at the page granularity. A memory page is a fixed-length

1 We use terms “method” and “function” interchangeably.

class Professor{

 int id;

 Student[] students;

 String name;

}

class Student{

 int id;

 String name;

}
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4 ...
...
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Figure 1. A data structure in regular Java and its corre-

sponding data layout in a native page.

contiguous block of memory in the off-heap native memory,

obtained through a JVM’s native support.

To provide a better memory management interface, each

native page is wrapped into a Java object, with functions

that can be inserted by the compiler to manipulate the page.

Note that the number of page objects (i.e., p in O(t ∗ n + p))

cannot be statically bounded in our system, as it depends on

the amount of data to be processed. However, by controlling

the size of each page and recycling pages, we often need

only a small number of pages to process a large dataset.

The scalability bottleneck of an object-oriented Big Data

application lies in the creation of small data objects and data

structures containing them; our system aims to bound their

numbers.

From a regular Java program P , FACADE generates a new

program P ′, in which the data contents of each instantiation

of a data class are stored in a native memory page rather than

in a heap object. To facilitate transformation, the way a data

record is stored in a page is exactly the same as the way it

was stored in an object.

Figure 1 shows the data layout for an example data struc-

ture in our page-based storage system. Each data record

(which used to be represented by an object in P ) starts with

a 2-byte type ID, representing the type of the record. For

example, the IDs for Professor, Student[], String, and

Student are 12, 25, 4, and 13, respectively. These types will

be used to implement virtual method dispatch during the ex-

ecution of P ′. Type ID is followed by a 2-byte lock field,

which stores the ID of a lock when the data record is used

to synchronize a block of code. We find it sufficient to use

2 bytes to represent class IDs and lock IDs: the number of

data classes is often much smaller than 215; so is the number

of distinct locks needed. Details of the lock implementation

and the concurrency support can be found in §3.4.

For an array record, the length of the array (4 bytes) is

stored immediately after the lock ID. In the example, the

number of student records in the array is 9. The actual data

contents (originally stored in object fields) are stored subse-

quently. For instance, field id of the professor record con-

tains an integer 1254; the fields students and name contain

memory addresses 0x0504 and 0x070a, respectively.



2 …//other fields

3 int numStudents = 0;

1 class Facade { long pageRef; … }

2 class ProfessorFacade extends Facade{

3 static int id_OFFSET = 0;

4 static int students_OFFSET = 4;

5 static int name_OFFSET = 8;

6 static int numStudents_OFFSET = 12;

7 //no data fields

8 void addStudent

9 (StudentFacade sf){

10 long this_ref = this.pageRef;

11 long s_ref = sf.pageRef;

12 int v = FacadeRuntime.getField(

13 this_ref,

14 numStudents_OFFSET);

15 FacadeRuntime.writeArray(

16 this_ref,

17 students_OFFSET,

18 v, s_ref);

19 FacadeRuntime.writeField(

20 this_ref,

21 numStduents_OFFSET,

22 v+1);

23 }

24 …//other methods }

1

2

1 class Professor{

4 void addStudent(Student s){

7 }

8 …//other methods

9}

5 students[numStudents++]

6 = s;

P P’

17}

25 static void client

26 (ProfessorFacade pf){

27 /*release the binding */

28 long f_ref = pf.pageRef;

29 long s_ref = FacadeRuntime.

30 allocate(Student_Type_ID,

31 Student_Record_size);

32 StudentFacade sf =

33 Pools.studentFacades[0];

34 /*bind sf with a page reference*/

35 sf.pageRef = s_ref;

36 sf.facade$init();//constructor call

37 long p_ref = f_ref;

38 long t_ref = s_ref;

39 ProfessorFacade pf2 =

40 Pools.professorFacades[0];

41 /*bind pf2 with p_ref*/

42 pf2.pageRef = p_ref;

43 StudentFacade sf2 =

44 Pools.studentFacades[0];

45 /*bind sf2 with t_ref*/

46 sf2.pageRef = t_ref;

47 pf2.addStudent(sf2);

48}

3

4

5

10 static void client

11 (Professor f){

12 Student s =

13 new Student();

14 Professor p = f;

15 Student t = s;

16 p.addStudent(t);

P P’

(a) Part I (b) Part II

Figure 2. A transformation example.

2.2 Using Objects as Facades

We propose to create heap objects as facades for a data

type, that is, they are used only for control purposes such

as method calls, parameter passing, or dynamic type checks,

but do not contain actual data. Figure 2 depicts an ex-

ample with five transformations. Suppose all fields of the

Professor class in Figure 1 are also in the Professor class

in Figure 2 (a). For simplicity of illustration, we show the

original, unoptimized version of the generated program, un-

der the assumption that the program is single-threaded and

free of virtual calls. We will discuss the support of these fea-

tures later.

Figure 2 (a) shows the class transformation. For illus-

tration, let us suppose both Professor and Student are

data classes. For Professor, FACADE generates a facade

class ProfessorFacade, containing all methods defined

in Professor. ProfessorFacade extends class Facade,

which has a field pageRef that records the page-based ref-

erence of a data record (such as 0x0504 in Figure 1). Setting

a page reference to the field pageRef of a facade binds the

data record with the facade, so that methods defined in the

facade will be invoked to process this record. A reader can

think of this field as the this reference in a regular Java

program.

Transformation 1 ProfessorFacade does not contain

any instance field; for each instance field f in Professor,

ProfessorFacade contains a static field f Offset , specify-

ing the offset (in numbers of bytes) of f to the starting ad-

dress of the data record. These offsets will be used to trans-

form field accesses.

Transformation 2 For method addStudent in

Professor, FACADE generates a new method with the

same name in ProfessorFacade. First, its signature is

changed in such a way that if a parameter has a data class

type (e.g., Student) in P , it now has a facade type (e.g.,

StudentFacade) in P ′. Since a facade does not contain ac-

tual data, the new facade parameter sf in P ′ is used only to

pass the page reference of the data record that corresponds to

the original parameter in P . The first task inside the gener-

ated method is to retrieve the page references (line 10 and 11

in P ′) from the receiver (i.e., this) and sf , and keeps them

in two local variables this ref and s ref . Any subsequent

statement that uses objects (pointed to by) this and s in P

will be transformed to use the page references this ref and

s ref in P ′, respectively. The field accesses at lines 5 and

6 in P are transformed to three separate calls to our library

methods that read values from and write values to a page.

Note that what is written into the array is the page reference

s ref pointing to a student record—all references to regular

data objects in P are substituted by page references in P ′.

Transformation 3 The allocation at lines 12–13 in

P is transformed to lines 29–36 in P ′. FACADE allocates

space based on the student size by calling a library method

allocate, which returns a page reference s ref . Since the

allocation in P involves a constructor call, we need to gener-

ate a new call in P ′. The challenge is how to find a receiver

(facade) object on which the call can be made. FACADE

generates code to retrieve an available StudentFacade ob-

ject from the pool (lines 32–33 in P ′) and bind it with the

page reference s ref (lines 35). In this case, the first fa-

cade in the pool is always available; the reason will be ex-



plained shortly. The constructor in P is converted to a regu-

lar method facade$init in P ′. FACADE generates a call to

facade$init on the retrieved facade object (line 36).

Transformation 4 Variable assignments (lines 14–15)

in P are transformed into page reference assignments (lines

37–38) in P ′.

Transformation 5 Similarly, a call to addStudent on

the Professor object in P (line 16) is transformed to a call

to the same method on the ProfessorFacade object in P ′

(line 47). However, before generating the call site at line 47,

we have to emit additional code to prepare for (1) the re-

ceiver ProfessorFacade object pf2 and (2) the parameter

StudentFacade object sf2 . This preparation can be done in

a similar manner by requesting available facades from dif-

ferent pools and binding them with the corresponding refer-

ences (lines 39–46).

2.3 Bounding the Number of Facades in Each Thread

Since a facade is used only to carry a page reference for a

control task (e.g., parameter passing, value returning, etc.),

the facade is available for reuse once the page reference it

carries is loaded to a stack variable—from this point on, the

page reference will be propagated and used. A key treatment

here is that for a pair of instructions (e.g., s and t) that bind

a facade with a page reference and release the binding, our

compiler guarantees that t is the immediate successor of s on

the data dependence graph. In other words, no instructions

between s and t can read or write the facade object accessed

by s or t. Examples of such instruction pairs include lines 42

and 10, and lines 46 and 11 in P ′ of Figure 2.

The facade is reusable immediately after instruction t

to carry other page references. This treatment enables an

important property in (each thread of) P ′: for any control

instruction that needs a facade of a data type, all facades

in the pool for the type are available for use. This explains

why it is always safe to use the first facade of the pool at

lines 33, 40, and 44. Data instructions that access the heap

do not need facades because they have been transformed to

access native memory using page references.

Clearly, the number of facades needed for a data

type depends on the number of operands of this type

needed in a control instruction. For example, if a call

site in P requires n arguments of type Student, we

need at least n StudentFacade objects in P ′ for pa-

rameter passing (e.g., Pools.studentFacades[0], . . .,

Pools.studentFacades[n - 1]). Since a call instruction

takes many more operands than other kinds of instructions, it

is often the case that the number of facades for type DFacade

in P ′ is bounded by the maximal number of arguments of

type D required by a call in P . Based on this observation, we

can inspect all call sites in P in a pre-transformation pass and

compute a bound statically for each data type. The bound

will be used to determine the size of the facade pool for the

type (e.g., Pools.studentFacades) statically.

This property of P ′ distinguishes our approach from tra-

ditional object pooling, which often requires explicit (run-

time) support for requesting/returning objects from/to the

pool and does not provide any bound guarantee. A detailed

discussion on how FACADE differs from object pooling can

be found in § 5.

It is easy to see that at different points, different facades

may be retrieved from the pool to carry the same page

reference. For instance, in Figure 2 (b), although variable

p (line 16) and parameter f (line 11) refer to the same object

in P , their corresponding facades pf and pf2 in P ′ may not

be the same. In a single-threaded execution, this would not

cause any inconsistency because page references determine

data records and facades are used only to execute control

flow. Multithreading will be discussed in §3.4.

2.4 Performance Benefits

P ′ has the following clear advantages over P . First, each

data record has only a 4-byte “header” space (8 bytes for an

array) in P ′ while the size of an object header is 12 bytes (16

bytes for an array) in P . This is due to the reduction of the

lock space as well as the complete elimination of space used

for GC. Second, all data records are stored in native pages

and no longer subject to garbage collection. This can lead

to an orders-of-magnitude reduction on the number of nodes

and edges traversed by the GC. Third, native-memory-based

data storage reduces the memory access cost. In addition,

FACADE inlines all data records whose size can be statically

determined, which improves data locality and reduces the

cost of memory dereferences.

3. FACADE Design and Implementation

To use FACADE, a user needs to provide a list of data classes

that form the data path of an application. Our compiler trans-

forms the data path to page allocate objects representing data

items without touching the control path. This handling en-

ables the design of simple intraprocedural analysis and trans-

formation as well as aggressive optimizations (such as type

specialization), making it possible for FACADE to scale to

large-scale framework-intensive systems. While our trans-

formations can be formalized and their correctness can be

proved, we describe them in plain language to make the pa-

per accessible to a broad community of researchers and prac-

titioners.

3.1 Our Assumptions

Based on the (user-provided) list of data classes, FACADE

makes two important “closed-world” assumptions. The first

one is a reference-closed-world assumption that requires all

reference-typed fields declared in a data class to have data

types. This is a valid assumption—there are two major kinds

of data classes in a Big Data application: classes represent-

ing data tuples (e.g., graph nodes and edges) and those repre-

senting data manipulation functions, such as sorter, grouper,



etc. Both kinds of classes rarely contain fields of non-data

types. Java supports a collections framework and data struc-

tures in this framework can store both data objects and non-

data objects. In FACADE, a collection (e.g., HashMap) is

treated as a data type; a new type (e.g., HashMapFacade) is

thus generated in the data path. The original type is still used

in the control path. If FACADE detects a data object flows

from the control path to the data path or a paged data record

flows the other way around, it automatically synthesizes a

data conversion function to convert data formats. Detailed

discussion can be found in §3.5.

The second assumption is a type-closed-world assump-

tion that requires that for a data class c, c’s superclasses (ex-

cept java.lang.Object, which is the root of the class hi-

erarchy in Java) and subclasses must be data classes. This

is also a valid assumption because a data class usually does

not inherit a non-data class (and vice versa). The assump-

tion makes it possible for us to determine the field layout

of a data record in a page—fields declared in a superclass

are stored before fields in a subclass and their offsets can all

be statically computed. A special handling here is that we

allow both a data class and a non-data class to implement

the same Java interface (such as Comparable). Doing this

will not create any page layout issue because an interface

does not contain instance fields. FACADE checks these two

assumptions before transformation and reports compilation

errors upon violations. The developer needs to refactor the

program to fix the violations.

3.2 Data Class Transformation

Class hierarchy transformation For each method m in

a data class D, FACADE generates a new method m′ in a

facade class DFacade such that m and m′ have the same

name; for each parameter of a data class type T in m, m′ has

a corresponding parameter of a facade type TFacade . If D

extends another data class E, this relationship is preserved

by having DFacade extends EFacade . All static fields de-

clared in D are also in DFacade; however, DFacade does

not contain any instance field.

One challenge here is how to appropriately handle Java

interfaces. If an interface I is implemented by both a data

class C and a non-data class D, and the interface has a

method that has a data-class type parameter, changing the

signature of the method will create inconsistencies. In this

case, we create a new interface IFacade with the modified

method and make all facades DFacade implement IFacade .

While traversing the class hierarchy to transform classes,

FACADE generates a type ID for each transformed class.

This type ID is actually used as a pointer that points to

a facade pool corresponding to the type—upon a virtual

dispatch, the type ID will be used to retrieve a facade of the

appropriate type at run time.

Instruction transformation Instruction transformation

is performed on the control flow graph (CFG) of a SSA-

based intermediate representation (IR). The output of the

transformation is a new CFG containing the same basic

block structures but different instructions in each block. The

transformations for different kinds of instructions are sum-

marized in Table 1. Here we discuss only a few interesting

cases. For a field write in (i.e., a.f = b in case 3), if b has a

data type but a does not (case 3.3), FACADE considers this

write as an interaction point (IP), an operation at which data

flows across the control-data boundary. FACADE synthesizes

a data conversion function long convertToB(B) that con-

verts data format from a paged data record back to a heap

object (see §3.5). If a has a data type but b does not (case

3.4), FACADE generates a compilation error as our first as-

sumption (that data types cannot reference non-data types)

is violated. The developer needs to refactor the program to

make it FACADE-transformable.

An IP may also be a load that reads a data object from

a non-data object (case 4.3) or a method call that passes a

data object into a method in the control path (case 6.3). At

each IP, data conversion functions will be synthesized and

invoked to convert data formats. Note that data conversion

often occurs before the execution of the data path or after it

is done. Hence, these data conversion functions would often

not be executed many times and cause much overhead.

Resolving types In two cases, we need to emit a call

to a method named resolve to resolve the runtime type

corresponding to a page reference. First, when a virtual call

a.m(b, . . .) is encountered (case 6.1), the type of the receiver

variable a often cannot be statically determined. Hence, we

generate a call resolve(a ref ), which uses the type ID of

the record pointed to by a ref to find a facade of the appro-

priate type. However, since this information can be obtained

only at run time, it creates difficulties for the compiler to se-

lect a facade object as the receiver from the pool (i.e., what

index i should be used to access Pools.aFacades[i]).

To solve the problem, we maintain a separate receiver

facade pool for each data type. The pool contains only a

single facade object; the resolvemethod always returns the

facade from this pool, which is separated from the parameter

pool. Note that we do not need to resolve the type of a

parameter (say b), because b is not used as a receiver to call

a method. We can simply obtain a facade from the parameter

pool based on b’s declared (static) type, and use it to carry

b’s page reference.

The second case in which we need a resolve is the

handling of an instanceof type check, which is shown in

case 7 of Table 1.

3.3 Computing Bounds

Before the transformation, FACADE inspects parameters of

each method in the data path to compute a bound for each

data type. This bound will be used as the length of the fa-

cade array (i.e., the parameter pool) for the type. Note that

the bound computation is based merely on the static types of

parameters. Although a parameter with a general type may

receive an object of a specific type at run time, a facade of the



Instructions in P Conditions Code generation in P ′

(1) Method prologue (1.1) s is a parameter Create a variable s ref for each facade parameter sf ; emit instruction

of data type in P s ref = sf .pageRef ; add 〈s, s ref 〉 into the variable-reference table v

(2) a = b (2.1) a has a data type Look up table v to find the reference variable b ref for b; emit instruction

a ref = b ref ; add 〈a, a ref 〉 into v

(2.2) Otherwise Generate a = b

(3) a.f = b (3.1) Both a and b have data types Retrieve a ref and b ref from table v; emit a call

setField (a ref , f Offset, b ref )

(3.2) None of them have a data type Emit a.f = b

(3.3) b has a data type, a doesn’t Synthesize a data conversion function B covertToB (long);

(Interaction Point) emit a call a.f = convertToB(b ref )
(3.4) a has a data type, b doesn’t Assumption violation; generate a compilation error

(4) b = a.f (4.1) Both a and b have data types Retrieve a ref from table v; emit a call

b ref = getField (a ref , f Offset); add 〈b, b ref 〉 into v

(4.2) None of them have a data type Emit instruction b = a.f

(4.3) a has a data type, b doesn’t Synthesize a data conversion function long covertFromB (B);

(Interaction Point) emit a call b ref = convertFromB(a.f ); add 〈b, b ref 〉 into v

(4.4) b has a data type but a doesn’t Assumption violation; generate a compilation error

(5) return a (5.1) a has a data type Retrieve a ref from v; emit three instructions:

AFacade af = Pools.aFacades [0]; af .pageRef = a ref ; return af

(5.2) Otherwise Emit instruction return a

(6) a.m(. . . , b, . . .) (6.1) Both a and b have data types; Retrieve a ref and b ref from table v; emit five instructions:

b is the i-th parameter that has type B AFacade af = resolve(a ref ); BFacade bf = Pools.bFacades [i];
af .pageRef = a ref ; bf .pageRef = b ref ; af .m(. . . , bf , . . .)

(6.2) a has a data type, b doesn’t Emit the same instructions as (6.1), except the last call is af .m(. . . , b, . . .)
(6.3) b has a data type, a doesn’t Synthesize function B covertToB (long);

(Interaction Point) emit a call a.m(. . . , covertToB(b ref ), . . .)
(6.4) None of them have a data type Emit a call a.m(. . . , b, . . .)

(7) boolean t = a (7.1) a has a data type and Retrieve a ref from v; emit two instructions:

instanceof B B is a data type AFacade af = resolve(a ref); t = af instanceof BFacade

(7.2) B is an array type Emit t = arrayTypeID(a) == ID(B)
(7.3) None of them have a data type Emit t = a instanceof B

Table 1. A summary of code generation; suppose variables a and b have types A and B, respectively.

general type will be sufficient to carry the page reference of

the data record (as discussed above) from a caller to a callee.

Since we use a separate pool for receivers, the target method

will always be executed appropriately. If the declared type of

a parameter is an abstract type (such as interface) that cannot

have concrete instances, we find an arbitrary (concrete) sub-

type c of this abstract type, and attribute the parameter to c

when computing bounds. FACADE generates code to retrieve

a facade from c’s pool to pass the parameter.

Once the bound for each data type is calculated, FACADE

generates the class Pools by allocating, for each type, an

array as a field whose length is the bound of the type. The

array will be used as the parameter pool for the type. FA-

CADE generates an additional field in Pools that references

its receiver pool (i.e., one single facade) for the type. Even-

tually, FACADE emits an init method in Pools, which will

be invoked by our library to create facade instances and pop-

ulate parameter pools.

3.4 Supporting Concurrency

Naı̈vely transforming a multi-threaded program may intro-

duce concurrency bugs. For example, in P ′, two concurrent

Thread #0 Thread #n

...

Shared Lock Pool

Param Pool for ZFacade

Receiver Pool for ZFacade

Param Pool for BFacade

Receiver Pool for BFacade

Param Pool for AFacade

Receiver Pool for AFacade

Param Pool for ZFacade

Receiver Pool for ZFacade

Param Pool for BFacade

Receiver Pool for BFacade

Param Pool for AFacade

Receiver Pool for AFacade

... ...

Figure 3. A graphical representation of threads and pools,

where AFacade , BFacade , . . ., and ZFacade are facade

types.

threads may simultaneously write different page references

into the same facade object, leading to a data race. The prob-

lem can be easily solved by performing thread-local facade

pooling: for each data type, the receiver pool and the regu-

lar pool are maintained for each thread. We implement this

by associating one instance of class Pools with each thread;



the init method (discussed in §3.3) is invoked upon the cre-

ation of the thread.

Both implicit and explicit locks are supported in Java.

Explicit locking is automatically supported by FACADE: all

Lock and Thread related classes are in the control path

and not modified by FACADE. For implicit locking (i.e., the

intrinsic lock in an object is used), we need to add addi-

tional support to guarantee the freedom of race conditions.

One possible solution is as follows: for each object o that

is used as a lock in a synchronized (o){. . .} construct

(i.e., which is translated to an enterMonitor(o) and an

exitMonitor(o) instruction to protect the code in between),

FACADE emits code to obtain a facade o′ corresponding to

o (if o has a data type) and then generates a new construct

synchronized (o′){. . .}. However, this handling may in-

troduce data races—for two code regions protected by the

same object in P , two different facades (and thus distinct

locks) may be obtained in P ′ to protect them.

We solve the problem by implementing a special lock

class and creating a new lock pool (shown in Figure 3) that is

shared among threads; each object in the pool is an instance

of the lock class. The lock pool maintains an atomic bit

vector, each set bit of which indicates a lock being used. For

each enterMonitor(o) instruction in P , FACADE generates

code that first checks whether the lock field of the data record

corresponding to o already contains a lock ID. If it does, we

retrieve the lock from the pool using the ID; otherwise, our

runtime consults the bit vector to find the first available lock

(say l) in the pool, writes its index into the record, and flips

the corresponding bit. We replace o with l in enterMonitor

and exitMonitor, so that l will be used to protect the

critical section instead.

Each lock has a field that keeps track of the num-

ber of threads currently blocking on the lock; it is in-

cremented upon an enterMonitor and decremented upon

an exitMonitor. If the number becomes zero at an

exitMonitor, we return the lock to the pool, flip its cor-

responding bit, and zeroing out the lock space of the data

record. Operations such as wait and notify will be per-

formed on the lock object inside the block.

Worst-case object numbers in P and P’ In P , each data

item needs an object representation, and thus, the number

of heap objects needed is O(s), where s is the cardinality

of the input dataset. In P ′, each thread has a facade pool

for a data type. Since the number of facades needed for a

data type is a compile-time constant, the total number of

facades in the system is O(t ∗ n), where t and n are the

numbers of threads and data types, respectively. Considering

the additional objects created to represent native pages, the

number of heap objects needed in P ′ is O(t ∗ n + p), where

p is the number of native pages.

Note that the addition of the lock pool does not change

this bound. The number of lock objects needed first de-

pends on the number of synchronized blocks that can be con-

currently executed (i.e., blocks protected by distinct locks),

which is bounded by the number of threads t. Since intrin-

sic locks in Java are reentrant, the number of locks required

in each thread also depends on the depth of nested synchro-

nized blocks, which is bounded by the maximal depth of run-

time call stack in a JVM, a compile-time constant. Hence,

the number of lock objects is O(t) and the total number of

objects in the application is still O(t ∗ n + p).

3.5 Data Conversion Functions

For each IP that involves a data type D, FACADE automati-

cally synthesizes a conversion function for D; this function

will be used to convert the format of the data before it crosses

the boundary. An IP can be either an entry point at which

data flows from the control path into the data path or an exit

point at which data flows in a reverse direction. For an entry

point, a long convertFromA(A) method is generated for

each involved data type A; the method reads each field in

an object of A (using reflection) and writes the value into a

page. Exit points are handled in a similar manner.

3.6 Memory Allocation and Page Management

The FACADE runtime system maintains a list of pages, each

of which has a 32K space (i.e., a common practice in the

database design [31]). To improve allocation performance,

we classify pages into size classes (similarly to what a high-

performance allocator would do for a regular program), each

used to allocate objects that fall into a different size range.

When allocating a data record on a page, we apply the fol-

lowing two allocation policies whenever possible: (1) con-

tinuous allocation requests get contiguous space (to maxi-

mize locality); (2) large arrays are allocated on empty pages:

allocating them on non-empty pages may cause them to

span multiple pages, therefore increasing access costs. Oth-

erwise, we request memory from the first page on the list

that has enough space for the record. To allow fast allocation

for multithreading, we create a distinct page manager (that

maintains separate size classes and pages) per thread so that

different threads concurrently allocate data records on their

thread-local pages.

The data path is iteration-based. We define an iteration

to be a repeatedly executed block of code such that the life-

times of data objects created in different executions of this

block are completely disjoint. In a typical Big Data program,

a dataset is often partitioned before being processed; differ-

ent iterations of a data manipulation algorithm (e.g., sorting,

hashing, or other computations) then process distinct parti-

tions of the dataset. Hence, pages requested in one iteration

of P ′ are released all at once when the iteration ends. Al-

though different Big Data frameworks have different ways

of implementing the iteration logic, there often exists a clear

mark between different iterations, e.g., a call to start to begin

an iteration and a call to flush to end it.

We rely on a user-provided pair of iteration-start and

iteration-end calls to determine when to recycle pages. Our



experience with a variety of applications shows that iter-

ations are often very well defined and program points to

place these calls can be easily found even by novices with-

out much understanding of the program logic. For example,

in GraphChi [41], a single-machine graph processing frame-

work, iteration-start and iteration-end are the callbacks ex-

plicitly defined by the framework. Although we had zero

knowledge about this framework, it took us only a few min-

utes to find these events. Note that iteration-based memory

management is used only to deallocate data records and it

is unsafe to use it to manage control objects. Those objects

can cross multiple iterations and, hence, we leave them to

the GC for memory reclamation.

In order to quickly recycle memory, we allow the de-

veloper to register nested iterations. If a user-specified

iteration-start occurs in the middle of an already-running it-

eration, a sub-iteration starts; we create a new page manager,

make it a child of the page manager for the current iteration,

and start using it to allocate memory. The page manager for a

thread is made a child of the manager for the iteration where

the thread is created. Hence, each page manager has a pair

〈iterationID , thread〉 identifier and they form a tree struc-

ture at run time. When a (sub-)iteration finishes, we simply

find its page manager m and recursively release pages con-

trolled by the managers in the subtree rooted at m. Recycling

can be done efficiently by creating a thread for each page

manager and letting them reclaim memory concurrently.

Since each thread t is assigned a page manager upon its

creation, the pair identifier for its default page manager is

〈⊥, t〉; ⊥ represents the fact that no iteration has started yet.

Data records that need to be created before any iteration

starts (e.g., usually large arrays) are allocated by this default

page manager and will not be deallocated until thread t

terminates.

We have transformed all data classes in the JDK in-

cluding various collection classes and array-based util-

ity classes. Commonly-used native methods such as

System.arraycopy and Unsafe.compareAndSwap are

manually modeled. We have also implemented a set of op-

timization techniques, including (1) inlining of large arrays,

primitive type wrappers (e.g., Integer), and objects that can

be determined immutable statically; (2) static resolution of

virtual calls based on a points-to analysis; and (3) use of a

special “oversize” class to allocate large arrays whose size

is bigger than 32K; pages on this class can be deallocated

earlier when they are no longer needed (e.g., upon the re-

sizing of a data structure). Details of these optimizations are

omitted from this paper.

3.7 Correctness Argument

It is easy to see the correctness of the class transformation

and the generation of data accessing instructions, because

the data layout in a native memory page is the same as in

a heap object. This subsection focuses on the following two

aspects of correctness.

Facade usage correctness If a page reference is assigned

to a facade that has not released another page reference, a

problem would result. However, it is guaranteed that this

situation will not occur because (1) a thread will never use

a facade from another thread’s pool and (2) for any index i

in a facade pool p, the page reference field of p[i] will never

be written twice without a read of the field in between. The

read will load the page reference onto the thread’s stack and

use it for the subsequent data accesses.

Memory management correctness Iteration-based

memory management coverts dynamic memory reclamation

to static reclamation and it is very difficult to make it cor-

rect for general objects in a scalable way. FACADE performs

iteration-based deallocation only for data items in native

memory. Data items allocated in one iteration represent the

data partition processed in the iteration. These items will of-

ten not be needed when a different data partition is processed

(in a different iteration). Since practicality is our central de-

sign goal, we choose not to perform any conservative static

analysis (e.g., escape analysis [22]) to verify whether data

items can escape. A real-world Big Data application is often

framework-intensive and the heavy use of interfaces in the

program code makes it extremely difficult for any interpro-

cedural analysis to produce precise results. Instead, we sim-

ply assume that instances of the user-specified data classes

can never escape the iteration boundary.

The memory management correctness thus relies on the

user’s correct specification of data classes. Admittedly, a

considerable amount of user effort is needed to understand

the program and perform specifications. §4 reports our own

experiences with finding data classes for real-world pro-

grams that we have never studied.

4. Evaluation

The implementation of FACADE is based on the Soot

Java compiler infrastructure and consists of approximately

40,000 lines of Java code. We selected 3 well-designed Big

Data frameworks and used FACADE to transform their data

paths. Our evaluation on 7 common data analytical applica-

tions on both single machines and clusters shows that, even

for already well-optimized systems, FACADE can still im-

prove their performance and scalability considerably.

4.1 GraphChi

Transformation GraphChi [41] is a high-performance

graph analytical framework that has been well optimized

for efficient processing of large graphs on a single ma-

chine. Since we had not had any previous experience with

GraphChi, we started out by profiling instances of data types

to understand the control and data path of the system. The

profiling results show that ChiVertex, ChiPointer, and

VertexDegree are the only three classes whose instances

grow proportionally with the input data size. From these 3

classes, FACADE detected 18 boundary classes that interact



with data classes but do not have many instances themselves.

Boundary classes have both data and non-data fields. We al-

low the user to annotate data fields with Java pragmas so that

FACADE can transform these classes and only page allocate

their data fields.

With about 40-person-hour work (to understand data

classes, profile their numbers, and annotate boundary classes

for a system we had never studied before), FACADE trans-

formed all of these classes (7753 Jimple instructions) in 10.3

seconds, at a speed of 752.7 instructions per second. Iter-

ations and intervals are explicitly defined in GraphChi—it

took us only a few minutes to add callbacks to define itera-

tions and sub-iterations.

Test setup We tested the generated code and compared

its performance with that of the original GraphChi code.

The experiments were performed on a 4-core server with

4 Intel Xeon E5620 (2.40GHz) processors and 50GB of

RAM, running Linux 2.6.32. We experimented extensively

with two representative applications, page rank (PR) and

connected components (CC). The graph used was the twitter-

2010 graph [40], consisting of 42M vertices and 1.5B edges.

We used the Java HotSpot(TM) 64-Bit Server VM (build

20.2-b06, mixed mode) to run all experiments. The state-of-

the-art parallel generational GC was used for memory recla-

mation. This GC combines parallel Scavenge (i.e., copying)

for the young generation and parallel Mark-Sweep-Compact

for the old generation to quickly reclaim unreachable ob-

jects. GraphChi uses a parallel sliding windows algorithm

that partitions data into shards. Since the number of shards

has only little impact on performance (as reported in Figure

8(c) in [41] and also confirmed in our experiments), we fixed

the number of shards to 20 in our experiments.

Performance GraphChi determines the amount of data

to load and process (i.e., memory budget) in each iteration

dynamically based on the maximum heap size. This is a

very effective approach to reduce memory pressure and has

been shown to be much more efficient than loading a fixed

amount data per iteration. We ran P and P ′ with the same

maximal heap size so that the same amount of data is loaded

in each iteration (i.e., guaranteeing the same I/O time in both

executions). Note that P ′ actually does not need a large heap

because of the use of native memory. We tried various heap

sizes and found that the smallest heap size for running P ′

was 2.5GB while P could not execute when the heap was

smaller than 4GB.

Table 2 shows the detailed performance comparisons.

Note that our performance numbers may look different from

those reported in [41], because their experiments used SSD

and a C++ version of GraphChi. In Table 2, P ′ outper-

forms P for all configurations. The performance improve-

ments FACADE has achieved for PR and CC over twitter-

2010 are, respectively, 26.8% and 5.8%; larger gains were

seen when we experimented with smaller graphs (discussed

shortly). The generated program P ′ not only has much less

App ET(s) UT(s) LT(s) GT(s) PM(M)

PR-8g 1540.8 675.5 786.6 317.1 8469.8

PR’-8g 1180.7 515.3 584.8 50.2 6135.4

PR-6g 1561.2 694.0 785.2 270.1 6566.5

PR’-6g 1146.2 518.8 545.6 49.3 6152.6

PR-4g 1663.7 761.6 811.5 380.7 4448.7

PR’-4g 1159.2 499.2 580.0 50.6 6127.4

CC-8g 2338.1 1051.2 722.7 218.5 8398.3

CC’-8g 2207.8 984.3 661.0 50.3 6051.6

CC-6g 2245.8 1005.4 698.2 179.5 6557.8

CC’-6g 2143.4 951.6 628.2 49.3 6045.3

CC-4g 2288.5 1029.8 713.7 197.4 4427.4

CC’-4g 2120.9 932.7 630.4 50.6 6057.0

Table 2. GraphChi performance comparisons on twitter-

2010: reported are the total execution times (ET), engine up-

date times (UT), data load times (LT), garbage collection

times (GT), and peak memory consumptions (PM); each ap-

plication has two runs (e.g., original run PR and facade run

PR’) under three different memory budgets (e.g., 8GB, 6GB,

and 4GB); time and memory are measured in seconds and

megabytes, respectively; PM is computed by calculating the

maximum from a set of samples of JVM memory consump-

tions collected periodically from pmap; graph preprocessing

time is not included; numbers that show better performance

are highlighted.

GC time (i.e., an average 5.1× reduction); data load and en-

gine update time has also been reduced primarily due to in-

lining and direct memory accesses.

For PR, the number of objects for its data classes has

been reduced from 14, 257, 280, 923 to 1, 000 memory pages

+11 ∗ (16 ∗ 2 + 1) = 1, 363—other than the main thread,

GraphChi uses two thread pools, each containing 16 threads,

and each thread has a pool of 11 facades—which leads to

dramatically decreased GC effort. The cost of page creation

and recycling is negligible: the time it took to create and

recycle pages was less than 5 seconds during the execution

of PR’ with 5 major iterations and 159 sub-iterations.

For P , its memory consumption is bounded by the max-

imum heap size, while the memory usage for P ′ is quite

stable across different memory budget configurations. This

is because our heap contains only objects in control path,

whose numbers are very small; the off-heap data storage is

not subject to the GC and is only determined by the amount

of data processed. For both P and P ′, their running time

does not vary much as the memory budget changes. This is

primarily due to the adaptive data loading algorithm used

by GraphChi. For systems that do not have this design, sig-

nificant time increase and the GC efforts can often be seen

when the heap becomes smaller, and thus, further perfor-

mance improvement can be expected from FACADE’s op-

timization. Note that under a 4GB heap, P consumes less

memory than P ′. This is because the GC reclaims objects

immediately after they become unreachable while FACADE
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Figure 4. (a) Computational throughput of GraphChi on various graphs (X-axis is the number of edges); each trend-line is

a least-squares fit to the average throughput of a program. (b) Memory usage of external sort (ES) on Hyracks. (c) Memory

usage of word count (WC) on Hyracks.

Data ES ES’ WC WC’

3GB 95.5 89.3 48.9 57.4

5GB 178.2 167.1 72.5 180.8

10GB 326.3 302.5 OME(683.1) 1887.1

14GB 459.0 426.0 OME(943.2) 2693.0

19GB 806.4 607.5 OME(772.4) 3160.2

Table 3. Hyracks performance comparisons on different

datasets: reported are the total execution times of ES, ES’,

WC, and WC’ measured in seconds; OME(n) means the

program runs out of memory in n seconds.

allows dead data records to accumulate until the end of a

(sub-)iteration (i.e., trades off space for time).

Scalability We measured scalability by computing

throughput, the number of edges processed in a second.

From the twitter-2010 graph, we generated four smaller

graphs with different sizes. We fed these graphs to PR and

CC to obtain the scalability trends, which are shown in Fig-

ure 4 (a). An 8GB heap was used to run P and P ′. For both

versions, they scale very well with the increase of the data

size. The generated program P ′ has higher throughput than

P for all the graphs. In fact, for some of the smaller graphs,

the performance difference between P and P ′ is even larger

than what is reported in Table 2. For example, on a graph

with 300M edges, PR’ and CC’ are 48% and 17% faster

than PR and CC, respectively.

4.2 Hyracks

Hyracks [2, 16] is a data parallel platform that runs data-

intensive jobs on a cluster of shared-nothing machines. It

has been optimized manually to allow only byte buffers to

store data and has been shown to have better scalability than

object-based frameworks such as Hadoop. However, the user

functions can still (and mostly likely will) use object-based

data structures for data manipulation.

After FACADE transformed a significant portion of the

high-level data manipulation functions in Hyracks, we eval-

uated performance and scalability with two commonly-used

applications, word count (WC) and external sort (ES). It took

us 10 person hours to find and annotate these user-defined

operators; FACADE transformed the 8 (data and boundary)

classes in 15 seconds, resulting in a speed of 990 instructions

per second. Iterations are easy to identify: calls to iteration-

start and iteration-end are placed at the beginning and the

end of each Hyracks operator (i.e., one computation cycle),

respectively.

Test setup We ran Hyracks on a 10-slave-node (c3.2x

large) Amazon EC2 cluster. Each machine has 2 quad-

core Intel Xeon E5-2680 v2 processors (2.80GHz) and 15G

RAM, running Linux 3.10.35, with enhanced networking

performance. The same JVM and GC were used in this

experiment. We converted a subset of Yahoo!’s publicly

available AltaVista Web Page Hyperlink Connectivity Graph

dataset [5] into a set of plain text files as input data. The

dataset was partitioned among the slaves in a round-robin

manner. The two applications were executed as follows: we

created a total of 80 concurrent workers across the cluster,

each of which reads a local partition of the data. Both WC

and ES have a MapReduce-style computation model: each

worker computes a local result from its own data partition

and writes the result into the Hadoop Distributed File System

(HDFS) running on the cluster; after hash-based shuffling, a

reduce phase is then started to compute the final results.

Unlike GraphChi that adaptively loads data into mem-

ory, Hyracks loads all data upfront before update starts. We

ran both P and P ′ with an 8GB heap. When the heap is

exhausted in P , JVM terminates immediately with out-of-

memory errors. Naı̈vely comparing scalability would create

unfairness for P , because P ′ uses much native memory. To

enable a fair comparison, we disallowed the total memory

consumption of P ′ (including both heap and native space)

to go beyond 8GB. In other words, an execution of P ′ that

consumes more than 8GB memory is considered as an “out-

of-memory” failure.

Performance and scalability Table 3 shows a detailed

running time comparison between P and P ′ on datasets



of different sizes (which are all generated from the Yahoo!

web graph data). P ′ outperforms P for all the inputs except

the two smallest (3GB and 5GB) ones for WC. For these

dataset, each machine processes a very small data partition

(i.e., 300MB and 500MB). The GC effort for both P and

P ′ is very small, and hence, the extra effort of pool accesses

and page-based memory management performed in P ′ slows

down the execution. However, as the size of the dataset

increases, this effort can be easily offset from the large

savings of GC costs. We can also observe that P ′ scales to

much larger datasets than P . For example, WC fails in 683.1

seconds when processing 10GB, while WC’ successfully

finishes in 3160.2 seconds for the 19GB dataset. Although

both ES and ES’ can scale to 19GB, ES’ is about 24.7%

faster than ES.

Figure 4 (b) and (c) show the memory usage comparisons

for ES and WC, respectively. Each bar represents the mem-

ory consumption (in GB) of the original program P while a

red line connects the memory consumptions of P ′ for dif-

ferent datasets. If P runs out of memory, its memory con-

sumption is not shown. It is clear to see that P ′ has smaller

memory footprint than P in almost all the cases. In addition,

P ′ has achieved an overall 25× reduction in the GC time,

with a maximum 88× (from 346.2 seconds to 3.9 seconds).

4.3 GPS

GPS [58] is a distributed graph processing system developed

for scalable processing of large graphs. We profiled the exe-

cution and identified a total number of 4 (vertex- and graph-

related) data classes whose instances grow proportionally

with the data size. Starting from these classes, FACADE fur-

ther detected 44 data classes and 13 boundary classes. After

an approximate 30-person-hour effort of understanding these

classes, FACADE transformed a total number of 61 classes

(including 10691 Jimple instructions) in 9.7 seconds, yield-

ing a 1102 instructions per second compilation speed.

We used three applications—page rank, k-means, and

random walk—to evaluate performance. The same (Amazon

EC2) cluster environment was used to run the experiments.

Due to space limitations, here we only briefly describe our

experimental results.

GPS is overall less scalable than GraphChi and Hyracks

due to its object array-based representation of an input

graph. However, its extensive use of primitive arrays, which

is similar in spirit to what FACADE intends to achieve, leads

to relatively small GC effort. For example, GC accounts for

only 1–17% of the running time. The set of inputs we used

includes the twitter-2010 graph, the LiveJournal graph, and

5 synthetic supergraphs of LiveJournal (e.g., the largest su-

pergraph has 120M vertices and 1.7B edges). Compared to

the original implementation P , the generated version P ′ has

achieved a 3–15.4% running time reduction, a 10–39.8% GC

time reduction, as well as an up to 14.4% space reduction. P

and P ′ have about the same running time on the smallest

graph (with 4.8M vertices and 68M edges). However, for all

the other graphs in the input set, clear performance improve-

ments can be observed on P ′.

4.4 Summary

Although we had never studied any of these frameworks be-

fore, we found that the majority of the manual effort was

spent on profiling each system to understand the data path

and setting up the execution environments. Once we identi-

fied an initial set of data classes, the effort to specify itera-

tions and annotate boundary classes was almost negligible.

It would have taken much less time had the developers of

these frameworks used FACADE themselves.

5. Related Work

Optimizations of Big Data applications While there ex-

ists a large body of work on optimizing Big Data applica-

tions, these existing efforts focus on domain-specific opti-

mizations, including, for example, data pipeline optimiza-

tions [7, 16, 19, 21, 33, 38, 41, 55, 73, 76], query optimiza-

tions [23, 25, 45, 52, 54, 56], and Map-Reduce-related opti-

mizations [6, 24, 47, 57, 60, 61, 72]. Despite the commend-

able accomplishments of these optimizations, Big Data per-

formance is fundamentally limited by memory inefficiencies

inherent with the underlying programming systems. Zing [1]

is a commercial system developed by Azul that can lower

the latency for Java-based Big Data applications by making

larger in-memory indexes. This paper attempts to solve this

problem by limiting the number of objects used to represent

data records, an approach that is orthogonal to, and will pro-

vide benefit for, all existing optimization techniques.

Region-based memory management Region-based

memory management was first used in the implementations

of functional languages [8, 62] such as Standard ML [35],

and then was extended to Prolog [50], C [29, 30, 32, 37], and

real-time Java [13, 17, 39]. More recently, some mark-region

hybrid methods such as Immix [14] combine tracing GC

with regions to improve GC performance for Java. Although

our iteration-based memory management is similar in spirit

to region-based memory management, the FACADE execu-

tion model is novel and necessary to reduce objects in Java

applications without modifying a commercial JVM. There

are many static analyses (such as region types [13, 17]) de-

veloped to support region-based memory management. Most

of these analyses focus on the detection of region-allocatable

objects, assuming that (1) a new programming model will be

used to allocate them and (2) there already exists a modified

runtime system (e.g., a new JVM) that supports region-based

allocation. On the contrary, FACADE is a non-intrusive tech-

nique that compiles the program and allocates objects based

on an existing JVM, without needing developers to write

new programs as well as any JVM modification.

Reducing objects via program analysis Object inlin-

ing [26, 46] is a technique that statically inlines objects in

a data structure into its root to reduce the number of point-



ers and headers. Free-Me [34] adds compiler-inserted frees

to a GC-based system. Pool-based allocation proposed by

Lattner et al. [42–44] uses a context-sensitive pointer analy-

sis to identify objects that belong to a logical data structure

and allocate them into the same pool to improve locality.

Design patterns [28] such as Singleton and FlyWeight

aim to reuse objects. However, these techniques have lim-

ited usefulness—even if we can reuse data objects across

iterations, the number of heap objects in each iteration is

not reduced and these objects still need to be traversed fre-

quently by the GC.

Shuft et al. [59] propose a static technique that exploits

prolific types—types that have large numbers of instances—

to enable aggressive optimizations and fast garbage collec-

tion. Objects with prolific types are allocated in a prolific

region, which is frequently scanned by GC (analogous to to

a nursery in a generation collector); objects with non-prolific

types are allocated in a regular region, which is less fre-

quently scanned (analogous to an old generation). The in-

sight is that the instances of prolific types are usually tempo-

rary and short-lived. FACADE is motivated by a completely

opposite observation: data types have great numbers of ob-

jects, which are often long-lived; frequently scanning those

objects can create prohibitively high GC overhead. Hence,

we allocate data records in native memory without creating

objects to represent them. Moreover, FACADE adopts a new

execution model and does not require any profile.

Object pooling is a well-known technique for reducing

the number of objects. For example, Java 7 supports the use

of thread pools to save thread instances. Our facade pool dif-

fers from traditional object pooling in three important as-

pects. First, while they have the same goal of reducing ob-

jects, they achieve the goal in completely different ways: FA-

CADE moves data objects out of the heap to native memory

while object pooling recycles and reuses instances after they

are no longer used by the program. Second, the facade pool

has a bound; we provide a guarantee that the number of ob-

jects in the pool will not exceed the bound. On the contrary,

object pooling does not provide any bound guarantee. In

fact, it will hurt performance if most of the objects from the

pool cannot be reused, because the pool will keep growing

and take much memory. Finally, retrieving/returning facades

from/to the pool is automatically done by the compiler while

object pooling depends on the developer’s insight—the de-

veloper has to know what objects have disjoint lifetimes and

write code explicitly to recycle them.

Resource limits systems Starting with mechanisms as

simple as the setrlimit system call, limits have long been sup-

ported by POSIX-style operating systems. Recent work such

as resource containers [12] provides a hierarchical mecha-

nism for enforcing limits on resources, especially the CPU.

HiStar [75] organizes space usage into a hierarchy of con-

tainers with quotas. Any object not reachable from the root

container is garbage collected. At the programming lan-

guage level, a lot of work [11, 36] has gone towards resource

limits for Java. FACADE can be thought of as a special re-

source limits system that statically bounds object usage for

each thread. However, FACADE does not bound the general

memory usage, which still grows with the size of dataset.

PADS, value types, and Rust Most of the existing ef-

forts for language development focus on providing support

for data representation (such as the PADS project [27, 51]),

rather than improving performance for data processing. Ex-

panded types in Eiffel and value types in C# are used to de-

clare data with simple structures. Value types can be stack al-

located or inlined into heap objects. While using value types

to represent data items appears to be a promising idea, its

effectiveness is actually rather limited. For example, if data

items are stack allocated, they have limited scope and cannot

easily flow across multiple functions. One the other hand, al-

ways inlining data items into heap objects can significantly

increase memory consumption, especially when a data struc-

ture grows (e.g., resizing of a hash map) and two copies of

the data structure are needed simultaneously.

Moreover, these data items are no longer amenable to

iteration-based memory management—they cannot be re-

leased until their owner objects are reclaimed, leading to

significant memory inefficiencies. Rust [3] is a systems pro-

gramming language designed by Mozilla that allows devel-

opers to specify what memory gets managed by the GC and

managed manually. While Rust may enable future develop-

ment of scalable Big Data systems, the goal of FACADE is

to transform a large number of existing programs written in

Java without letting developers rewrite programs.

6. Conclusions

Growing datasets require efficiency on all levels of the pro-

cessing stack. This paper targets the performance prob-

lem caused by excessive object creation in a managed Big

Data system, and proposes a compiler and runtime FACADE

that achieves high efficiency by performing a semantics-

preserving transformation of the data path of a Big Data

program to statically bound the number of heap objects rep-

resenting data items. Our experimental results demonstrate

that the generated programs are more (time and memory) ef-

ficient and scalable than their object-based counterparts.
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