
DRust: Language-Guided Distributed Shared Memory with Fine Granularity,
Full Transparency, and Ultra Efficiency

Haoran Ma†⋆ Yifan Qiao† Shi Liu†⋆ Shan Yu† Yuanjiang Niψ Qingda Luψ Jiesheng Wuψ

Yiying Zhang‡ Miryung Kim† Harry Xu†

UCLA† UCSD‡ Alibaba Groupψ

Abstract
Despite being a powerful concept, distributed shared memory
(DSM) has not been made practical due to the extensive syn-
chronization needed between servers to implement memory
coherence. This paper shows a practical DSM implementa-
tion based on the insight that the ownership model embedded
in programming languages such as Rust automatically con-
strains the order of read and write, providing opportunities
for significantly simplifying the coherence implementation if
the ownership semantics can be exposed to and leveraged by
the runtime. This paper discusses the design and implementa-
tion of DRust, a Rust-based DSM system that outperforms the
two state-of-the-art DSM systems GAM and Grappa by up to
2.64× and 29.16× in throughput, and scales much better with
the number of servers.

1 Introduction
The concept of distributed shared memory (DSM) received
significant attention during the early years of distributed com-
puting systems. This era witnessed a plethora of pioneering
efforts, as exemplified by seminal works such as [10, 16–18,
31, 36, 49, 50, 56, 61–63, 80]. DSM offers the power of par-
allel computing using multiple processors and machines and,
more crucially, streamlines the development of distributed
applications with a unified, contiguous memory view.

The initial enthusiasm for DSM was tempered by sig-
nificant performance bottlenecks, primarily due to the
low network speeds prevalent during its nascent stages.
Recent advances in hardware and networking technolo-
gies [3,7,12,19,23,29,33,38,40,42,46,51,54,64,66,74,78]
have revitalized the DSM explorations. Several new DSM
systems [14, 45, 60, 77, 81, 88] were proposed in recent
years to take advantage of these enhanced networks. How-
ever, these systems are still far from achieving satisfactory
performance, exhibiting poor scalability and substantial
slowdown compared to their single-machine counterparts.

⋆ Part of the work was done when Haoran Ma and Shi Liu interned at
Alibaba Group.

This is mainly due to the intensive synchronization operations
needed to ensure memory coherence across servers.
State of the art. The majority of existing DSM sys-
tems [6, 14, 45, 88] adopt an approach to achieve data
consistency by adhering to the following invariant: for each
data block to be accessed, the block is either located on
a single node with potential read and write access, or it
is replicated across multiple nodes with each having read
access only. Prior to a server attempting to access a block, a
DSM system checks the state of the block, invalidates copies
of that block on all other servers, and then transmits the
block to the requesting server. This synchronization process
necessitates multiple network round trips. Even with RDMA,
the incurred latency is still orders of magnitude higher
compared to a single local access, significantly degrading
overall performance. Effectively reducing the number of
synchronizations is, therefore, crucial for minimizing DSM
overhead and rendering it feasible for real-world deployment.

A practical strategy to minimize synchronization overhead
involves implementing high-level protocols to guarantee
exclusive access for each server. For instance, Apache
Spark [91] utilizes an immutable data structure known as
a resilient distributed dataset (RDD) for distributed access.
However, RDD only facilitates coarse-grained distributed
access, limiting each server to accessing a distinct partition
of an RDD. While increasing access granularity enhances
performance, it comes at the expense of reduced general-
ity—Spark is tailored for bulk processing of batch data and
is incapable of supporting distributed applications requiring
object-level accesses, such as social networks where objects
of various types and sizes (e.g., images, connections, etc.) are
created and manipulated upon each user request.
Insights. Our main observation is that synchronization
overheads in existing DSM systems are introduced primarily
due to the use of a generic approach that overlooks semantic
information from programs. For example, many real-world
concurrent programs are engineered with a single-writer-
multiple-reader (SWMR) discipline to ensure correctness
during concurrent operations. Leveraging such information

can potentially eliminate the need to check the state of remote
data blocks before accessing them, leading to dramatically
improved performance. A major challenge is, however, how
to expose such semantics in a sensible way so that the DSM
system can see and act upon it.

One approach to convey such semantics, as demonstrated
by AIFM [73] and Midas [68], involves exposing APIs that
developers can invoke to specify program regions accessible
only by a single writer. However, this process is cumbersome
and error-prone, demanding a profound understanding of
potential executions and involving substantial program
writing. Our key insight in this endeavor is that the SWMR
programming paradigm aligns seamlessly with ownership
types, which have already been integrated into programming
languages like Rust [75]. Rust is widely employed in the sys-
tem community for dependable and secure implementation
of low-level systems code.

Rust’s ownership type inherently upholds SWMR proper-
ties in any compiled Rust program. The fundamental concept
behind the ownership type is that each value is ensured to
have a single unique variable as its owner throughout the
execution. While multiple references to a value are allowed,
only the owner and mutable references can modify the value.
Moreover, only one of these references is permitted to be
used for modifying the value at any given point.

When developing a DSM system on top of an ownership-
based language like Rust, SWMR semantics are inherently
embedded in any Rust program by design. Effortlessly
extracting such information becomes possible with basic
compiler support, sparing developers from the need for code
rewriting. Utilizing the SWMR semantics from the program
leads to a considerably simplified process for accessing data
in DSM. In the case of a write access, the ownership type
ensures exclusive access to the data. Consequently, DRust
can move the data to the requesting machine, performing
the write there without explicitly invalidating its copies on
other machines. In the case of a read access, data can be
efficiently replicated to (and cached in) each requesting
machine, benefiting from the compiler-provided assurance of
freedom from concurrent writes.

This paper presents DRust, an efficient Rust-based DSM
implementation that enables object-level concurrent accesses
by leveraging the SWMR semantics made explicit by Rust’s
ownership type. DRust automatically turns a single-machine
Rust program into a DSM-based distributed version without
requiring code rewriting. While extracting the ownership se-
mantics appears straightforward, leveraging it to implement
a distributed coherence protocol correctly and efficiently
presents two main challenges.

The first challenge is how to manage memory correctly
and efficiently. Rust’s ownership type system is inherently
designed for a single-machine environment, where the
memory address of an object remains constant post-creation.
This assumption is disrupted in a distributed environment,

where objects may be migrated or duplicated on different
machines. Such actions can lead to the risk of dangling
pointers, potentially breaking memory coherence.

To tackle these issues, DRust builds a global heap spanning
multiple servers based on the idea of partitioned global ad-
dress space [21]. Each object in the heap has a unique global
address in the address space, which can be used for accessing
the object from any server. DRust re-implements Rust’s
memory management constructs to allocate objects in the
global heap. Given that a server can have cached objects (to
accelerate reads), DRust carefully crafts an ownership-based
cache coherence protocol upon the global heap abstraction to
achieve both memory coherence and efficiency (§4.1.1).

In a nutshell, our coherence protocol leverages the owner-
ship semantics to eliminate the need for explicit cache invali-
dation. It allows multiple readers to fetch a copy of the object
from its host server and cache it, but disallows any change to
the global address and the value of the object. When a write
access occurs, it must first borrow the ownership, at which
point DRust moves the object in the global heap to a new
address on the server issuing the write. The address change of
the object automatically invalidates cache copies that use the
stale address and triggers the subsequent readers to update
the cache by fetching the object from its latest address.

The second challenge is how to support transparency in
programming. Rust’s standard libraries and programs were
originally built for running on a single machine, and they can-
not deal with distributed resources in a cluster. For example,
a Rust program running on server A cannot spawn a thread
on another server B, let alone synchronize threads between A
and B. To enable a Rust program to run as is under DRust, we
provide distributed threading utilities by restructuring critical
elements of the Rust standard library, including threading,
communication channels, and shared-state locks (§4.1.2).
Our adapted libraries offer the same interfaces, making
them compatible with single-machine Rust programs, but
internally invoke our distributed scheduler, which determines
where to run the thread and facilitates cross-server synchro-
nization. We built them atop the ownership-based memory
model, enabling the DRust runtime to safely pass references
of objects between threads and automatically fetch the value
from the global heap upon dereferencing.

With our programming abstractions, a Rust application
can start on a single server and gradually spawn its threads to
other servers. Under the hood, DRust employs a runtime to
manage distributed physical compute and memory resources
for the application. The runtime runs as a process on
each node in the cluster, and they work cooperatively for
cross-server memory allocation and thread scheduling. The
runtime prioritizes the current server for object allocation and
thread creation, but it will schedule the resource allocation
request to another server under memory pressure (§4.2.1). To
make cluster-wise decisions such as deciding the target server
for global memory allocation and thread creation, DRust

has a global controller that is launched together with the
application. The global controller communicates with DRust
runtime on each node to collect resource usage information
and applies adaptive policies to achieve load balance (§4.2.2).
Results. We evaluated our system on four real-world applica-
tions in an eight-node cluster. Our evaluation demonstrated
an average of 2.02× and 9.48× (up to 2.64× and 29.16×)
speedup compared with two state-of-the-art DSM systems
GAM and Grappa, respectively. Furthermore, DRust in-
curred a mere 2.42% slowdown compared to the original Rust
program on a single machine with sufficient resources. DRust
is available at https://github.com/uclasystem/DRust.

2 Background in Ownership
Over the past decades, numerous programming languages
have been designed to provide safe memory management and
data sharing. At the core of such a design is often a tradeoff
between memory abstraction level and management effi-
ciency. The ownership concept, and the Rust programming
language built upon, are considered promising solutions
that achieve a sweet spot between abstraction and efficiency.
This section provides an overview of these techniques and
explains how ownership can benefit DSM implementations.
Ownership Type. The ownership model has a long history
in pursuit of memory-safe language designs and type sys-
tems [8, 9, 27, 43, 58, 83]. It has also inspired many systems
for safe and efficient resource management [13, 41, 59, 89].
At a high level, ownership enhances a language’s type system
in a way that guarantees the memory and thread safety of
a program with type checking done at compile time. The
ownership model encompasses a range of concepts, among
which the most important are lifetimes and borrowing.

An ownership-based type system uses lifetimes to control
the allocation/deallocation of objects. It enforces that each
object must have one and only one owner at a time. This
allows the compiler to statically track an object’s lifetime
via its owner, and immediately deallocate the object once its
owner goes out of scope, preventing memory leaks without
using garbage collection that can introduce disruptive pauses
to program execution.

To access an object, a program can create a reference from
its owner, but the reference must “borrow” the permission
from the owner, and “return” it to the owner after the access.
Specifically, the type system allows the creation of multiple
immutable references to an object from its owner for concur-
rent reads but prohibits any write with these references. It
allows only one mutable reference to the object only when
no other (mutable or immutable) references exist. Through
borrowing, the ownership type disallows simultaneous
writers and hence prevents data races. In addition, references
must return the borrowed permission when they go out of
scope. For any program that demonstrates type soundness,
the type checker guarantees that references to an object can
only reside within the object’s lifetime; the object can be

Owned
(by the owner)Modified Shared

Invalid

mut borrow

return

immut borrow

return
deallocation

immut borrowownership transfer

Figure 1: State machine for Rust’s ownership-based memory model.

safely and automatically deallocated when its owner goes out
of scope, by which time it has already lost all its references.

Finally, ownership can be transferred from one owner to
another—e.g., at a function call, the creation of a thread, or
message passing (i.e., via channel). However, the type system
enforces that ownership transfer must occur in the absence of
“borrowing”. In other words, no other references can exist in
scope when transferring the ownership, preventing data races
during ownership transfers.

The guarantees provided by the ownership model with
respect to object lifetime and data sharing can be summarized
with the following four invariants:
1. Singular Owner: each value has one single owner at any

time (which must also belong to one single thread).
2. Safe Borrowing: All references are created from the

owner; permission borrowing and returning guarantees
that references that can be used to access the object must
be valid.

3. Single Writer: Each object allows one mutable reference
at most, and it cannot coexist with any other references in
the same scope.

4. Multiple Reader: Multiple references are permitted only
when all of them are immutable.

The last two invariants are commonly called the single-writer-
multiple-reader (SWMR) property in the DSM literature [57].
Rust Language. Rust offers a practical implementation
of ownership and is designed with a range of zero-cost
abstractions for efficient fine-grained resource management.
Figure 1 depicts the state machine for Rust’s ownership-based
memory model. At a high level, this model restricts that
the owner is always in the O (owned) state, and transitions
between M (modified), S (shared), and I (invalid) must go
through the O state1. Clearly, a distributed implementation
of this approach avoids broadcasts or snooping, and only
requires peer-to-peer message passing.

Listing 1 exemplifies a simple accumulator implemented
in Rust (Lines 1–7). The Accumulator struct keeps an integer
val and exposes an interface add to increment the value. Rust
uses a smart pointer type Box<T> to store values on the heap;
this pointer serves as the initial owner of the referenced value,
as shown in Line 10 and 11. Line 13 instantiates Accumulator
a, where the ownership is implicitly transferred from val to
a.val during its initialization. Rust allows the creation of
mutable and immutable references to access the value. For

1A transition from M to S is also possible as an optimization in Rust.

https://github.com/uclasystem/DRust

1 pub struct Accumulator { pub val: Box <i32 >, }
2 impl Accumulator {
3 pub fn add(&mut self , delta: &i32)->i32 {
4 *self.val += *delta;
5 *self.val
6 }
7 }
8 fn main() {
9 // Allocates two integers in the heap.

10 let val: Box <i32 > = Box::new(5); // val is an owner.
11 let mut b: Box <i32 > = Box::new(0); // b is an owner.
12 // Ownership is transferred from val to a.val
13 let mut a = Accumulator{val};
14 { // Only one mutable reference is allowed.
15 let mutr: &mut i32 = &mut *b;
16 // No other reference is allowed now.
17 /* let another_r = &*b; */ // COMPILE ERROR!
18 *mutr = 10; // b == 10
19 }
20 { // Multiple immutable references are allowed.
21 let (b_r1 , b_r2): (&i32 , &i32) = (&*b, &*b);
22 // Mutable reference is prohibited now.
23 /* let b_mutr = &mut *b; */ // COMPILE ERROR!
24 // Passing by references won’t transfer ownership.
25 let sync_add = a.add(b_r1); // a.val == 15
26 let sync_add = a.add(b_r2); // a.val == 25
27 }
28 {// Ownership of a and b is moved to the new thread.
29 // No reference should or can borrow a or b now.
30 let async_add = thread::spawn(move ||
31 a.add(&*b) // a.val == 35
32).join(); // lifetime of a and b ends
33 // Current thread cannot access a and b anymore.
34 /* println!("{}", a.val); */ // COMPILE ERROR!
35 }
36 }

Listing 1: A simple accumulator implementation in Rust.

example, Lines 14–19 create a singular mutable reference
(&mut) to b and set its value to 10. Similarly, Lines 20–27
create two immutable references (&) to b and add them to a via
two function calls. Note that passing references as arguments
in function calls does not transfer their ownership.

Finally, Rust allows spawning new threads for concurrent
programming, as shown in Lines 28–35. A new thread is cre-
ated via thread::spawn, where the use of move captures a and b

in the current scope and transfers their ownership to the newly
spawned thread. Rust performs shallow copying for inter-
thread communication, where only the pointers stored in a and
b are transferred to the child thread while the actual values on
the heap are not moved. Rust guarantees memory safety of a
and b by tracking their ownership. At Line 32, when the child
thread finishes its closure (i.e., not necessarily after join), and
a and b exit the scope (to which their ownership belongs), their
lifetimes terminate and Rust deallocates them from the heap.

3 Motivation
DSM was proposed to eliminate the barrier of distributed
programming by offering the same memory consistency
model as single-machine shared memory. The core of its
design is a software-based cache coherence protocol, which
mimics a hardware-based approach on multi-core CPUs
and synchronizes memory states on different servers by
sending control messages between them. However, it is
notoriously hard to implement cache coherence efficiently

Rust Application

Heap Manager
(§ 4.2.1)

Thread Scheduler
(§ 4.2.1)

DRust Runtime System (§ 4.2)

…

Standard Library (§ 4.1.2)
(Threading, Channel, Mutex, …)

Ownership-Oriented Memory Model (§ 4.1.1)

Affinity Hints (§ 4.1.3)

DRust Abstraction (§ 4.1)

Server 1 Server 2 Server N

Ownership Semantics

Physical Resources (Memory, Compute, etc.)

manage resources

Communication Layer
(§ 4.2.1)

Global Controller (§ 4.2.2)

Figure 2: Design overview of DRust.

at the software level due to the high communication latency
between physically disjointed servers.
High Synchronization Overheads for Coherence. To gain
a high-level understanding of how much improvement can
be achieved by improving the cache coherence protocol,
we performed an analysis by running a real-world applica-
tion DataFrame [67] with a state-of-the-art DSM system
GAM [14] with a fast network. We first ran Dataframe on
a single server with 16 CPU cores and 64GB memory. We
then ran it with GAM on eight servers connected by a 40Gbps
Infiniband network by evenly distributing the same amount of
resources to eight servers (i.e., each server uses 2 CPU cores
and 8GB memory). Our experiments show a 2.4× slowdown
when Dataframe runs on eight servers.

A detailed examination reveals that such a slowdown stems
primarily from its complicated coherence protocol. GAM
runs a directory-based protocol, which assigns each DSM
cache block a home node. Upon each object read/write, the
home node tracks the state of its cache block and updates
all cache copies for the state change, incurring extensive
computation and network overhead. We broke down the
average time spent on each component when accessing one
object in the DSM. Reading a 512-byte (i.e., GAM’s default
cache block size) uncached object in GAM takes 16µs, while
the actual time to read the object over the network is only
3.6µs. In other words, maintaining cache coherence takes
77% of the total time. This large memory access overhead
significantly increases operation latency, hindering the
practical deployment of distributed shared memory. With the
single writer invariant inherent in the ownership model, we
expect that most of this overhead can be eliminated, leading
to significant (>2×) speedups for each access.

4 Design
DRust is an efficient DSM framework atop the Rust pro-
gramming language. As shown in Figure 2, it consists of

1 // Unmodified Rust code.
2 pub struct Accumulator { pub val: Box <i32 >, }
3 impl Accumulator {
4 pub fn add(&mut self , delta: &i32)->i32 {
5 *self.val += *delta;
6 *self.val
7 }
8 }
9 fn main() {

10 // Allocates two integers in the distributed heap.
11 let val: Box <i32 > = Box::new(5);
12 let b: Box <i32 > = Box::new(10);
13 let mut a = Accumulator{val};
14 // a.val and b will be fetched to local.
15 let local_add = a.add(&*b); // a.val == 15
16 // Only refs to a and b are shipped to remote.
17 let remote_add = thread::spawn(move ||
18 a.add(&*b)).join(); // a.val == 25
19 }

Listing 2: DRust seamlessly transforms an unmodified accumulator
implemented in Rust into a distributed version.

Rust-based programming abstractions for DSM (§4.1) and a
runtime (§4.2) that manages distributed physical resources.

DRust is compatible with standard Rust. Listing 2 illus-
trates how the accumulator (shown in Listing 1) runs on
DRust distributively without requiring code rewriting. The
program starts running on a single machine A and the DRust
runtime gradually allocates its memory and spawns new
threads on different machines. Specifically, Lines 10–13 cre-
ate Accumulator a and b where a.val and b are in the global
heap. We use a global allocator to allocate objects in the
global address space and hence these objects may be allocated
on a different server. Line 15 synchronously adds b to a by
fetching both values a.val and b to A’s local memory (if they
are allocated somewhere else). Line 17 spawns a new thread
and ships the function closure to perform add asynchronously.
This thread will be scheduled on a different server B if A’s
compute power has been saturated. In this case, DRust
performs shallow copying and only ships the pointers stored
in a and b to B without actually moving objects in the global
heap. The newly-created thread relies on the DRust runtime
to detect data locations and fetch objects upon dereferencing.

4.1 DRust Programming Abstraction

DRust provides each thread with a local stack and abstracts
distributed memory as a shared global heap. Each server
allocates thread stacks and backs one partition of the global
heap with its physical memory. DRust re-implemented
core memory management constructs including Box, &, and
&mut for transparent heap access. This approach hides the
complex details of memory allocation/deallocation, moving
objects, and coherence maintenance (§4.1.1). DRust supports
distributed threading and synchronization by adapting Rust’s
standard libraries atop the core language constructs (§4.1.2).
Furthermore, DRust offers affinity annotations that allow
developers to build more efficient applications by expressing
data affinity semantics (§4.1.3).

Partition 0Thread

Partitioned Global HeapAligned Private Stack

Partition 1

Partition N

…
Server N

Server 1

Server 0

Virtual Address

Thread

Thread

Figure 3: The address space layout of DRust. The stack is private to
each thread but they share an aligned address space to ease migration,
while the heap is globally shared and partitioned across servers.

4.1.1 Memory Management

Next, we discuss how DRust (re)implements the memory-
related language constructs in Rust to achieve memory safety
and memory coherence.
Address Space. As shown in Figure 3, DRust maintains
an identical address space layout on all servers. It exposes
distributed memory as a coherent shared heap to applications.
Embracing the idea of partitioned global address space
(PGAS) [21], it partitions the heap space and assigns each
server a unique address range. The stack, in contrast, is pri-
vate to each thread. However, DRust aligns the stack space on
each server and pads stacks to avoid overlapping. This stream-
lines thread migration between servers as it allows a thread to
keep its private stack address unchanged when being moved.
Coherence Protocol in a Nutshell. For efficiency, DRust
employs a call-by-reference model for newly created threads.
Upon creation of a thread, the DRust runtime only passes
references or Box pointers to objects to the newly created
thread. Upon dereferencing, objects are fetched to the server
where the thread is executed.

When a read access of an object is issued on a server,
our runtime simply fetches a copy of the object from its
hosting server and places it in its local cache. As a result,
multiple copies of the same object may exist on different
servers. This allows multiple servers to read the object at
the same time from their respective cached copies. Fetching
a copy of the object for read does not change the object’s
address in the global space. When a write access occurs on
an object, the server issuing the write must first obtain the
object’s write access permission through a mutable borrow.
Our reimplementation of mutable borrow (discussed shortly)
moves2 the object in the global heap to a new address that
belongs to that server. In doing so, the object’s cached
copies on other servers are automatically invalidated without
sending explicit invalidation messages—subsequent reads
on these servers must obtain an immutable reference to the
object through an immutable borrow from its owner pointer,
which has been updated to the new address immediately after

2The term “copy” is used to describe the process of adding an object into
the cache without changing its global address. The term “move” means re-
locating the object into a server’s heap partition, which requires changing its
global address.

Owner Address

Local Copy Address

Global Address Owner AddressMutable
Reference

Immutable
Reference

Global AddressBox Pointer

Color

Color
Local Copy Address

16 bits

Global AddressColor

Rust Original (64 bits) Protocol Extension (64 bits)

upon read access
upon write access

for faster read

for synchronization

Figure 4: DRust repurposes Rust pointers and references to contain a
global heap address and an extension field for its coherence protocol.

the mutable borrow returns. Upon identifying the owner’s
address change, each immutable borrow would direct a server
to fetch a fresh version of the object from the new address as
opposed to relying on a stale copy residing in its cache.

Note that this is a general protocol that covers the case
that the object is on the same server that issues the write—as
long as the server moves the object into a different location
in the global heap, no other servers can read the stale copies
of the object. However, this is not efficient as each local write
requires moving the object to a new address. To address this
inefficiency, DRust employs a pointer-coloring technique,
inspired by the designs of many concurrent garbage collec-
tors [1, 52]. Discussed at the end of this subsection, this tech-
nique offers a more efficient solution for handling local writes.
Pointer Layout. In order to support this protocol, each
pointer must remember not only the object’s global address,
but also the address of the cached copy in a server’s local
cache (to avoid redundant remote fetches). As such, we
modify Rust’s pointer structure, as illustrated in Figure 4.
DRust internally extends each Rust Box pointer and reference
with an additional 64-bit field, which is used differently for
read and write access. At a high level, the field records the
address of the cached copy for faster read accesses; for write
accesses, this field records the address of the object’s owner
for post-write synchronization. Additionally, DRust reserves
the highest 16 bits in the global address field as “color” bits.
These bits record the version number of the pointer and play
a crucial role in DRust’s efficient handling of local writes.

Next, we discuss how DRust reimplements Rust’s owner-
ship operations to realize the distributed coherence protocol.
For ease of presentation, this subsection focuses on a simpli-
fied version of the protocol. A complete coherence protocol
and its proof of memory coherence are available in [53].
Mutable Borrow. Mutable borrow creates a mutable ref-
erence that holds exclusive access to the referenced object
for writing. Algorithm 1 outlines the procedures for both
dereferencing and dropping a mutable reference. When
performing dereferencing, DRust first checks the object’s
location (Line 2) and performs direct access if the object’s
address belongs to the heap partition of the machine A that
executes the access. Otherwise, DRust moves it to A’s heap
partition (as opposed to caching it) (Line 3). The move,
conducted in the following three steps, changes the object’s

Algorithm 1: Access logic for mutable references.
Input: A mutable reference m containing a global address

m.g and the owner address m.o.
Output: A local memory address to be written to.

1 Function DEREFMUT(m):
2 if ¬ISLOCAL(m.g) then
3 m.g← MOVE(CLEARCOLOR(m.g))

4 return CLEARCOLOR(m.g)

5 Function DROPMUTREF(m):
6 c′← GETCOLOR(m.g)+1
7 WRITE(m.o, APPENDCOLOR(m.g, c′))

global address. DRust (1) copies the object into A’s heap at an
address p, (2) updates the mutable reference with the address
p, and (3) asynchronously requests the remote server that
previously stored the object to deallocate the original object.

A challenge arises with its original owner Box, which now
becomes a dangling pointer, pointing to an invalid memory lo-
cation. Fortunately, the integrity of the system is maintained
by the single-writer invariant (referenced as Invariant 3). This
invariant ensures that while the mutable reference remains
alive, no other entity, including the original owner, can access
the data. To ensure correctness, when this new reference is
dropped, DRust synchronously updates the original owner
Box, redirecting it to the new address p (Line 7). As a result,
the original owner always possesses the latest view of the
object. Additionally, all modifications made through this
mutable reference are visible in all subsequent accesses, as
they necessitate borrowing permission from the updated
owner Box. The single-writer invariant also eliminates the
possibility of simultaneous updates to the owner, ensuring
that updating the owner is free from concurrency issues.
Immutable Borrow. Immutable borrowing allows concurrent
reads to the same object from immutable references on the
same or different servers. As detailed in Algorithm 2, DRust
handles the dereferencing of immutable references by first
checking the object’s location (Line 2). For remote objects,
DRust creates a local copy in the per-node read-only “cache”
and records its local address in the reference’s extension
field (see Figure 4). This preserves the original global
address of the object, ensuring that any new immutable
reference—whether it is derived from the owner Box or from
another immutable reference—can always access the original
object from the global heap.

As opposed to being a separate memory space, our “cache”
provides a “virtual” aggregation of all local copies main-
tained on each server. These copies reside in the regular heap,
managed by a per-node hashmap H. This hashmap maps each
global address to a pair of its local address and the number
of local immutable references to the local copy. To prevent
redundant copies of an object on the same server, DRust
checks the hashmap H before creating a new local copy

Algorithm 2: Access logic for immutable reference.
Input: A shared immutable reference r containing a global

address r.g and a local copy address r.l, and a local
cache hashmap H.

Output: A local memory address for reading.
1 Function DEREF(r,H):
2 if ISLOCAL(r.g) then
3 return CLEARCOLOR(r.g)

4 else
5 if r.l=Null then
6 ATOMIC {
7 if r.g∈H then
8 ⟨l′,cnt⟩← GETENTRY(H, r.g)
9 r.l← l′

10 UPDATEENTRY(H, r.g, ⟨l′, cnt+1⟩)
11 else
12 r.l← COPY(CLEARCOLOR(r.g))
13 INSERTENTRY(H, r.g, ⟨r.l,1⟩)
14 }

15 return r.l

16 Function DROPREF(r,H):
17 if r.l ̸=Null then
18 ATOMIC {
19 ⟨l′, cnt⟩← GETENTRY(H, r.g)
20 UPDATEENTRY(H, r.g, ⟨l′, cnt−1⟩)
21 }

(Line 7). If a local copy is already present, DRust increments
its reference count in H and updates the extension field in the
immutable reference to point to this copy (Lines 8–10). If no
existing copy is found, a new one is created (Lines 12–13).
Since the hashmap uses objects’ global addresses as keys, if
an object has been modified by another server since its last
read, its global address must have changed, making cache
lookup fail even if a (stale) local copy exists.

DRust actively updates the reference count of each local
copy when an immutable reference is either dereferenced
or dropped, as outlined in Lines 10 and 20. Utilizing these
counts, the DRust runtime periodically scans the “cache” and
lazily reclaims unreferenced copies (i.e., those with a zero ref-
erence count) under memory pressure (§4.2.1). This mecha-
nism, in conjunction with the safe borrowing invariant (2), pre-
vents the local cache from memory leaks or illegal accesses.
Owner Access without Borrow. DRust treats a direct memory
access via the owner Box as a pair of mutable/immutable
borrow and return. Depending on the reference type, DRust
uses the extension field of Box accordingly and executes
the read/write dereferencing logic. A special case arises
when a mutable owner is immutably borrowed and becomes
immutable until all borrowed references return. In this case,
the owner can only cache the object during the borrow and
delay the move until the borrow finishes. This would not

Algorithm 3: Utility functions for pointer coloring.
1 Function GETCOLOR(g):
2 return g≫48

3 Function CLEARCOLOR(g):
4 return g & ((1≪48)−1)

5 Function APPENDCOLOR(g, c):
6 return CLEARCOLOR(g) | (c≪48)

create any correctness issues because the owner cannot be
used for write access during this period.
Ownership Transfer. Similar to Rust, DRust does not move
the actual value during the transfer and only copies the Box

pointer. DRust additionally checks and resets the pointer’s
extension field and frees the cached copy in the executing
machine’s cache to avoid cache leakage.
Memory Deallocation. Like Rust, DRust tracks the lifetime
of an object via its owner. Given that ownership transfer is
implemented by only evicting the cached copy of the object
(without changing its global presence), the memory safety
of DRust’s global heap is preserved by the singular owner
invariant (1). In other words, DRust still guarantees that
when an object’s owner goes out of scope, the object must be
unreachable (and dead) and can be safely deallocated.
Consistency Model. Our protocol, together with Rust’s own-
ership model, offers sequential consistency for cross-server
memory accesses in safe Rust programs (i.e., following the
original Rust, no guarantees can be provided when Rust
Unsafe is used), which is a strong consistency order. There-
fore, it allows any safe Rust program to preserve its memory
consistency on DSM. Sequential consistency necessitates
a coherent memory system, requiring not only the SWMR
invariant but also the data-value invariant [57]. In simple
terms, the data-value invariant requires that the latest write
to a value is immediately visible to subsequent readers. As
discussed earlier, DRust’s protocol moves an object upon
a write and updates the owner immediately. Therefore, the
latest value is globally visible after each mutable borrow
finishes. Subsequent read accesses, either in the Owned state
or the Shared state, are hence guaranteed to see the moved
object and read its latest value.
Optimizing for Local Writes. A special case is that a server
issues a write to an object that resides in its own heap par-
tition. While the coherence protocol still guarantees safety,
requiring moving an object in its local heap each time it is
written clearly brings inefficiencies. To optimize for local
writes, DRust adopts a pointer-coloring method, inspired by
the design of concurrent garbage collectors in a managed
runtime system such as JVM [1, 52]. Several utility pointer
coloring functions are shown in Algorithm 3 which are used
when dereferencing and dropping a reference. We reserve
the first 16 bits of a global address as a “color”. The color

value stored in the object’s owner gets incremented upon the
expiration of a mutable reference, as detailed in Lines 6–7 in
Algorithm 1. Any subsequent immutable borrow would look
up the cache with the object’s global address. Even if the
actual address remains the same, its color changes if a write
has occurred. As such, the lookup would not return any stale
copy from the local cache.

The 16-bit color field may overflow when the pointer
keeps being borrowed for local writes on the same server.
DRust implements a move-on-overflow strategy that moves
the object to a new address and resets its color to zero once
the maximum color value is reached (216), thereby preventing
overflow and maintaining system integrity and performance.
Writing Unsafe Code in DRust. Rust allows developers to
bypass compiler safety checks and write unsafe code for low-
level operations such as accessing raw pointers and mutating
shared variables at their own risk [44, 70]. Since DRust relies
on SWMR semantics enforced by Rust’s ownership types,
DRust ensures consistency and memory safety only in the
“safe” Rust code. DRust does not cache objects in unsafe
code but allows developers to implement their own cache.
Developers must ensure that they do not violate consistency
in unsafe code blocks where type safety is not enforced.
This caution mirrors practices in other managed languages,
like native code in Java and unsafe code in C#. To assist
developers, DRust offers primitives such as dalloc, dread,
and dwrite for managing data on the global DSM heap.

4.1.2 Adapting Rust Standard Libraries

To further reduce the barrier for programs to run distributively,
we reimplement several standard Rust libraries atop DRust’s
core memory constructs covering four categories: threading
for distributed computation (std::thread), inter-thread
channel for communication (std::sync::mpsc), reference-
counted pointers for ownership sharing (std::sync::Rc and
std::sync::Arc), and shared-state locks for concurrency
control (std::sync::Mutex and std::sync::atomic).
Threading. DRust’s threading library enables Rust threads to
run distributively with two major adaptations. First, it enables
distributed thread launching by re-implementing the spawn

interface. Internally, it captures the thread body as a closure
during compile time and forwards it to the runtime. During
execution, the runtime launches the thread according to each
server’s load (details in §4.2.1). Second, DRust performs
implicit ownership transfers between the parent and the child
threads at the start or the end of the child thread execution.
Thanks to the distributed ownership transfer support provided
by DRust’s memory model, the implementation in the thread-
ing library is hidden from developers and preserves type
soundness and memory safety. Additionally, DRust is com-
patible with advanced thread utilities such as thread::scope,
which allows for the spawning of scoped threads that can
borrow non-static data. These utilities ensure that all threads
are joined at the end of their scope and can internally utilize

DRust’s functions for spawning and joining threads, thus
extending their applicability to the distributed setting.

Inter-Thread Channel. DRust extends Rust’s channel
to connect two distributed threads for message passing.
DRust internally builds a network-based message queue for
cross-server messages. Benefiting from the shared global
heap, Box pointers and references can be safely copied and
remain valid across servers. Therefore, the sender can push
an object into the channel as is without serialization, even if
it may contain Box pointers. DRust forwards the object binary
bytes to the receiver over the network, and the receiver can
recover the object from the binary by direct type conversion
without deserialization.

Ownership Sharing. Rust allows multiple owners to share
an object via reference-counted smart pointers, which count
the number of live owners. In this case, smart pointers only
have read access, and the object lifetime terminates when
all owners die and the reference count hits zero. DRust
does not require special treatment for Rc as it only allows
ownership sharing inside a single thread. For Arc which
shares ownership among multiple threads, DRust handles it
in a similar way to immutable references with on-demand
local caching and lazy eviction.

Shared-State Concurrency. Rust supports shared-state
concurrency, primarily through its atomics and mutexes,
where threads commonly share an atomic-typed value or one
mutex via ownership sharing (i.e., Arc). Unfortunately, the
ownership model cannot type check concurrent read/write to
shared states. Hence, Rust relies on an unsafe implementation
in its standard library. §4.1.1 already provides a general dis-
cussion on writing unsafe code in DRust, and here we focus
on DRust’s implementation for distributed shared states.

Shared states create a unique challenge for DRust, as
they may be replicated on multiple servers and those states
must be synchronized among these servers. For example, an
Arc<AtomicBool> may be replicated across different servers
and used independently, causing multi-version issues if not
synchronized properly. DRust addresses this inconsistency
by allocating the actual value on the global heap and storing
only the Box pointer in atomic types. This design allows
atomics to be freely moved or replicated across servers while
keeping a single version of the actual value. To synchronize
concurrent operations on atomics, DRust adapts methods of
atomic types to forward the operation as a message to the
server storing the actual value, which serializes all operations
with unsafe logic similar to the original Rust to guarantee
atomicity and memory consistency. Similarly, DRust imple-
ments Mutex by allocating its metadata and owned object on
the global heap and leaving only Box pointers in the mutex
struct. Concurrent operations on mutexes are serialized on
the server storing the mutex.

1 pub struct Node { val: i32 , next: Option <TBox <Node >>, }
2 pub struct List { pub head: Option <Box <Node >>, }
3 impl List {
4 pub fn sum(&self) -> i32 {
5 let mut total: i32 = 0;
6 if let Some(r) = &self.head {
7 let mut node = &**r; // Fetch whole list to local.
8 loop { // Iterate every list node.
9 // Accessing node is guaranteed local.

10 total += (*node).val;
11 if let Some(next) = &node.next {
12 node = &**next;
13 } else { break; }
14 }
15 }
16 total
17 }
18 }

Listing 3: A linked list implementation with TBox in DRust. The use
of TBox ties list nodes one by one. Iterating a list will fetch all nodes
together (if they are on another server), and henceforth accessing any
node is guaranteed local.

4.1.3 Affinity Annotations

To further improve performance, DRust allows developers
to provide optional data affinity semantics via annotations.
These annotations are useful for many datacenter applications
that make extensive use of object-oriented data structures
that require pointer-chasing to access. For instance, Mem-
cached [55] uses a chained hash table where each hash bucket
stores its KV pairs with a linked list. To find one KV pair from
a bucket, Memcached has to iterate the linked list following
the node pointers. However, frequent pointer chasing is un-
favorable in a distributed setting, where each pointer deref-
erence incurs additional runtime checks and potential cross-
server traffic. It would be beneficial for the runtime to colocate
them on the same server and schedule the computation there.
Data-Affinity Pointer. To expose data affinity for clustered
placement, DRust includes a new pointer type TBox for
developers to “tie” a heap object to its owner. TBox shares
the same interfaces as the ordinary Box and can be used as a
drop-in replacement for Box. However, TBox enforces that the
pointed-to object must reside on the same server as its owner.
In other words, when its owner object is copied or moved, the
object referenced by TBox will be copied or moved as well.
TBox can be used in a nested manner to allow a large union
of objects to be co-located. The DRust runtime fetches (i.e.,
copies or moves) them together in a single batch, leading
to fewer network round-trips and higher throughput. TBox

can also be assigned to and owned by a stack variable, in
which case the referenced object is pinned onto the heap
partition of the server that hosts the stack and cannot be
moved. Dereferencing a TBox is thus guaranteed to be a local
access—DRust optimizes it by skipping the runtime check.

Listing 3 presents a linked list implementation using TBox.
Our linked list uses TBox (Line 1) to specify the data affinity
between consecutive nodes. As a result, all list nodes are
chained with TBox, forming an affinity group. Line 4–17
define a sum function that calculates the total sum of all node

1 fn main() {
2 let val: Box <i32 > = Box::new(5);
3 let mut a = Accumulator{val};
4 let remote_add = spawn_to(a.val , move ||
5 a.add(10)).join(); // a.val == 15
6 }

Listing 4: A distributed accumulator can leverage spawn_to to of-
fload a thread to the server where a.val locates.

values. Assuming the list is non-empty, Line 7 dereferences
the pointer to the head node, and the DRust runtime checks
the location of the head node and fetches the entire list of
nodes together if they are not local. Next, accessing each
node inside the loop body (Line 8–14) is guaranteed local and
hence skips runtime checks. Compared to using Box directly,
TBox makes both data fetching and accessing more efficient.
Data-Affinity Thread. To expose the affinity between data
and computation for thread scheduling, DRust extends its
threading library with a spawn_to interface. spawn_to mirrors
the ordinary spawn interface to spawn a new thread but takes
an additional Box pointer argument, which indicates where
the thread should be created. The runtime checks where
the Box points to and creates the new thread on that same
server. A common practice to use spawn_to is to pass the
mostly-accessed object as the location indicator. Listing 4
presents how the distributed accumulator (shown in Listing 2)
can use spawn_to to offload a thread to the same server as
a.val resides. Line 5 hence performs local dereference to
a.val inside a.add().

4.2 DRust Runtime System

DRust’s runtime system is the core component that manages
memory and compute resources. It includes a runtime library
(§4.2.1) that is linked to each application and launched on
each server and a cluster-wise global controller (§4.2.2).

4.2.1 Application-Integrated Runtime

The runtime library consists of a communication layer to sup-
port inter-server coordination and data transfer, a heap alloca-
tor to manage the heap partition and the read-only cache, and
a thread scheduler to launch and schedule application threads.
Communication Layer. The DRust runtime uses its commu-
nication layer to support the cache coherence protocol and
cross-server memory accesses. The communication layer
consists of a control plane and a data plane, both built with
RDMA. The control plane leverages two-sided verbs to send
and receive small control messages, and the receiver can
perform the coherence logic upon receiving the message to
minimize the end-to-end latency. The data plane, in contrast,
is specialized for bulky data transfer with one-sided verbs. It
fetches an object as a whole with a single RDMA message
upon pointer dereferencing without interrupting the target
server, minimizing both latency and CPU usage.
Heap Allocator. The DRust runtime provides standard mem-
ory allocation interfaces and always returns global addresses
to the upper-level language abstractions. It prioritizes local

memory allocation as long as the local heap partition has
sufficient space. This strategy improves data locality by
colocating an object with its creating thread.

When the local heap partition is depleted, DRust queries
the global controller and allocates memory on the most
vacant server. For remote memory allocation, it forwards
the request to the target server by sending a message through
the communication layer and returns the allocated address
to the user. Memory deallocation follows a similar logic but
it bypasses the controller and finds the server directly via
the object’s global address. The allocator does not reserve
separate space for the local cache. Instead, it manages the
cache as part of the local heap partition and always allocates
cached entries in the local heap partition. Under memory
pressure, the allocator will scan the local cache and evict
entries that are no longer used (i.e., reference count hits zero).
Thread Scheduler. The DRust thread scheduler runs in the
user space and schedules threads locally to maximize CPU
utilization. It also provides thread migration functionalities,
facilitating the global controller to balance load between busy
and vacant servers.

The scheduler represents a newly created user thread as a
closure, which includes a function pointer and a set of initial
arguments (i.e., references). It collaborates with the global
controller to allocate a unique stack space for a thread (see
Figure 3), and starts the thread by executing the closure.

The scheduler adopts the method of cooperative multitask-
ing and context switches between threads non-preemptively.
A running thread yields its control flow proactively when
developers call await or reactively upon long-latency opera-
tions. Similarly to other systems [60, 65, 82], our scheduler
handles context switches as function calls, which allow
DRust to save only a few registers per thread.

The scheduler supports creating/migrating a thread to
another server as well. To migrate a thread, DRust sends its
function pointer, the saved register state, and its stack to the
target server. Because each thread reserves its stack address
range globally, DRust can copy the stack across servers
without changing its address. Therefore, the thread can be
easily resumed by directly calling the function pointer with
the saved register state on the target server. DRust generates
code for state transmission during the compile time for the
scheduler to call upon thread migration.

4.2.2 Global Controller

The controller runs as a daemon process on the machine
where the program is launched. It manages cluster resources
and coordinates memory allocation and thread migration.
It periodically pings each server to probe and record its
resource usage (CPU and memory). It controls resource
allocation in cooperation with the DRust runtime on each
server. When allocating memory or creating a thread, the
runtime will first query the controller, which chooses a target
server following adaptive policies (discussed later), and then

coordinate with the runtime on the target server to perform
the actual operation. The controller also maintains a global
table to track the location of each thread; the table is queried
and updated by the scheduler when migrating a thread.

During program execution, servers may run into imbal-
anced loads when objects get relocated or new threads are
created. DRust balances the load of each server by migrating
threads from the busy server to less occupied ones, following
an adaptive policy to minimize cross-server memory accesses.
If a server is about to run out of memory (>90% memory us-
age), the controller keeps migrating the thread that consumes
the most local heap memory until the pressure is resolved. If
the server is under compute congestion (>90% CPU usage),
the controller migrates threads that frequently access remote
objects. The thread is then moved to the server it accesses the
most unless the target server is also overloaded, in which case
it moves to a vacant server instead.

4.2.3 Fault Tolerance

In DRust, the global heap can be replicated to tolerate failures.
Replication creates copies for each heap partition at the
same virtual address on backup servers. Threads, in contrast,
are not replicated for efficiency and are only executed with
the primary global heap. To maintain a synchronized view
between the primary heap partition and its backup copy, a
thread must additionally write back to the backup partition
after each mutable borrow. However, our insight is that the
thread can batch modifications to an object and delay the
write-back until the object ownership is transferred to another
server, which is the time point that the object becomes visible
to threads on other servers. When a server with a primary
heap partition fails, the controller will automatically promote
its backup server to the primary and add a new backup server.

5 Implementation
The majority of DRust was implemented in Rust except for
its communication library which is in C. We implemented
DRust’s core language constructs as three Rust types (i.e.,
struct): Ref<T>, MutRef<T>, and DBox<T>. They serve as
the counterpart for the original Rust &T, &mut T, and Box<T>,
respectively. We implemented the coherence protocol
with traits on these types, including Copy, Clone, and Drop,
which are automatically embedded into the program source
code and executed when references/pointers are created
or destroyed. To support unmodified Rust programs, we
changed the Rust compiler and added additional compilation
passes to transform Rust references and Box pointers into
corresponding types in DRust.

Our communication layer links libibverbs directly for fast
and kernel-bypassing RDMA networking. We implemented
a low-level C library that covers basic connection estab-
lishment and exposes high-level Rust interfaces for various
RDMA verbs, including RDMA_READ, RDMA_WRITE, RDMA_SEND,
RDMA_RECV, ATOMIC_FETCH_AND_ADD, and ATOMIC_CMP_AND_SWP.

We primarily utilize one-sided READ and WRITE verbs for data
transfers between servers, as they outperform the two-sided
SEND/RECV counterparts—one-sided operations bypass the
CPU and OS at the receiver side, whereas two-sided oper-
ations require the receiver to pre-post RECV verbs and await
notification upon message arrival. For instance, when a
remote object is accessed via mutable references, DRust
copies the object to local memory using the READ verb. Upon
dropping the reference, DRust updates the original owner Box
to reflect the new address, a process executed using the WRITE

verb. Conversely, two-sided SEND/RECV verbs are utilized for
control message exchanges, such as establishing connections
across servers. Atomic verbs ATOMIC_FETCH_AND_ADD, and
ATOMIC_CMP_AND_SWP are primarily utilized for implementing
shared states (e.g., atomic types and mutexes). DRust uses
the RC (reliable connection) transport type to ensure reliable
transmission and strict message ordering.

Our heap allocator implementation piggybacks Rust’s
original allocator and aligns its virtual address range with
the heap partition range. Our thread scheduler was built
upon Tokio [82] for its efficient user thread and cooperative
scheduling integration. The global controller is responsible
for managing all threads in the cluster and padding their
stacks to avoid address overlapping.

6 Limitations
DRust’s design has three limitations. First, although DRust
permits the use of unsafe code, its consistency guarantees
are only applicable to safe Rust code. In unsafe code
blocks, developers are responsible for ensuring consistency
themselves. Second, DRust’s superior performance relies on
SWMR semantics exposed by applications. In cases where
data is mostly under shared states (such as Mutex), DRust
degenerates into a traditional DSM system; all concurrent
accesses to the same data have to be centralized and serialized
by the server responsible for the shared states. However, such
scenarios contradict Rust’s recommended programming prac-
tices. Finally, the current implementation of DRust does not
support address space layout randomization (ASLR) yet, and
we have temporarily disabled it. However, DRust’s design
is compatible with ASLR as long as DRust threads share the
same randomized address space layout on each server. This
can be achieved by delegating the randomization of stack and
heap address allocation in DRust to its global controller, a
feature that will be supported in future versions of DRust.

7 Evaluation

Setup. We evaluated our system on an 8-node cluster, where
each node was equipped with dual Intel Xeon E5-2640 v3 pro-
cessors (16 cores), 128GB of RAM, and a 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter, connected by a Mel-
lanox 100 Gbps InfiniBand switch. All servers ran Ubuntu
18.04 with kernel 5.14. We disabled hyperthreading, CPU

Application Dataset Memory
(GB)

Comp. Intensity
(cycles/byte)

DataFrame [67] h2oai [37] 64 110.13

SocialNet [32] Socfb-Penn94 [71] 64 86.09

GEMM [11] LAPACK [2] 96 300.63

KV Store [14] YCSB [22] 48 48.15

Table 1: Applications used in the evaluation.

frequency scaling, OS security mitigations in accordance
with common practices [69, 72].
Methodology. We compared DRust with two state-of-the-art
DSM systems, GAM [14] and Grappa [60]. For a fair
comparison, we ported the evaluated applications to each
baseline system and invested extensive effort in tuning
parameters to achieve their best possible performance. GAM
offers ordinary object read/write interfaces, and we exported
it as a library to Rust and hooked pointer dereferencing to use
GAM’s API without program modification. Grappa, in con-
trast, offers a drastically different programming abstraction
that requires rewriting the program to access shared memory
via delegation. Therefore, we re-implemented applications
in C++ and re-structured them using Grappa’s abstractions.

7.1 Applications

We evaluated four representative datacenter applications
covering a wide range of use cases and resource demands, in-
cluding data analytics, microservices, scientific computation,
and key-value storage, as shown in Table 1.
DataFrame is an in-memory data analytics framework
similar to Spark [91] and Pandas [90]. We built our library
atop Polars [67], a native DataFrame engine in Rust offering
OLAP query APIs such as filter, groupby, and join.
DataFrame organizes the dataset as columnar format tables
in shared memory, and user queries will manipulate table
columns by reading/writing rows and transforming them into
new tables. DataFrame exploits data-level parallelism by
internally partitioning columns by row into an array of small
chunks where each chunk can be processed independently.
We additionally applied TBox to annotate chunks from the
same table column for co-location and used spawn_to to
offload columnar operations to the data side to improve data
locality and performance. Note that such annotations were
not necessary for the application to run; they were added for
additional performance optimizations.
SocialNet is a twitter-like web service from the DeathStar-
Bench suite [32]. It is composed of 12 microservices with
complicated call dependencies. Each microservice in Social-
Net can scale independently with replicas, thereby offering
higher throughput with more servers. SocialNet decouples
the process of user texts, media resources, and storage into
different microservices, and it employs RPCs to pass values
(texts, media files, etc.) between them. DRust enables

1 2 3 4 5 6 7 8
Number of Nodes

0

1

2

3

4

5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

DRust
GAM
Grappa
Original

1 2 3 4 5 6 7 8
Number of Nodes

0
2
4
6
8

10
12

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

DRust
GAM
Grappa
Original

1 2 3 4 5 6 7 8
Number of Nodes

0
1
2
3
4
5
6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

DRust
GAM
Grappa
Original

1 2 3 4 5 6 7 8
Number of Nodes

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

DRust
GAM
Grappa
Original

(a) DataFrame (318 s) (b) SocialNet (120 ops/s) (c) GEMM (1039 s) (d) KV Store (2.7 Mops/s)
Figure 5: Application throughput when running with DRust, GAM, and Grappa, normalized to the throughput of their original implementation
running on a single node. The number in the parenthesis is the original application’s throughput on a single node.

SocialNet to pass only references in RPCs, eliminating the
serialization/deserialization overhead and redundant data
copies. Because SocialNet was implemented in C++ and
deployed with Docker Swarm [28], we ported it into Rust
for our evaluation. We followed its original microservice
structure but changed the RPC call sites to pass references
instead of values, and we followed the original orchestration
configuration to spread and scale each microservice in the
cluster. We did not use any affinity annotations for SocialNet.
GEMM (general purpose matrix multiplication) is a highly-
optimized matrix multiplication routine from the BLAS
library [11]. We ported the library using the same divide-
and-conquer algorithm by recursively partitioning each
matrix into small chunks for parallel processing and reducing
the final results. Input and output matrices are stored in
the shared memory, where each subroutine will read two
input matrix chunks and write the partial results back to
the output matrix. Our port strictly followed the original
implementation without using additional affinity annotation.
KV Store is an in-memory key-value cache engine similar
to Memcached [55]. It uses a hash table to store KV pairs
in shared memory and mutexes to synchronize concurrent
requests. We used YCSB benchmark [22] to generate zipf
load with 90% GET and 10% SET using default skewness
parameter 0.99.

7.2 Scaling Performance

In this experiment, we investigated whether DRust can speed
up applications by distributing them in a cluster and how well
they can scale with the number of servers used. For each
application, we first ran it as is on a single server without
using DSM and measured its throughput. Then, we ran the
same application on DSM (subject to modifications when
running Grappa) with the same configuration but on varying
numbers of servers and measured the throughput normalized
to its single-node throughput (i.e., strong scaling). As GAM
and Grappa cannot adaptively balance the workload across
servers, we evenly distributed the application’s working
set and threads among all participating nodes. Ideally, an
application should scale linearly and enjoy proportionally
higher throughput with more nodes. However, this is usually

unachievable because of the limited parallelism of real-world
applications and the coherence overhead of DSM systems,
and a good result for DRust will show that applications’
throughput can get close to their ideal throughput.

Figure 5 shows the results for each application respectively.
DRust outperforms both GAM and Grappa in all cases. On a
single node, it is 1.04–2.10× faster than two baseline DSMs,
while only adding a maximum overhead of 2.42% compared
to the original program. When running with multiple nodes,
DRust scales up applications significantly better than GAM
and Grappa. On eight nodes, DRust achieves a throughput
that is 1.33–2.64× higher than that of GAM, 2.53–29.16×
higher than that of Grappa.

Compared to each program’s single-machine performance,
using DSM over DRust enables each program to easily lever-
age the available distributed resources and achieve a through-
put that is 3.34–11.73× higher than their single-machine
counterparts. Next, we discuss each application to explain the
scalability difference between DRust and the baseline DSMs.
DataFrame. As shown in Figure 5a, compared with its
original version, DataFrame running on eight nodes with
DRust achieves 5.57× higher throughput, whereas with
GAM and Grappa, the throughput improvements are 2.18×
and 1.69×, respectively. In other words, DataFrame with
DRust is 2.56× and 3.29× faster than GAM and Grappa on
eight nodes, respectively.

A detailed examination reveals that the performance
difference comes from the shared index table in each
DataFrame operation and the shared chunks between depen-
dent DataFrame operations. In each operation, DataFrame
constructs an index hash table to track the mapping from
each destination chunk in the output column to all its source
chunks in the input column. This index table is shared by all
index-builder threads and worker threads. During processing,
index-builder threads will concurrently insert into the index
table using the destination chunk ID as the key and an array
of source chunk IDs as the value, and worker threads will
look up the shared index table and retrieve source chunks for
processing. As a result, the massive writes and reads to the
shared table can incur heavy coherence overhead. Further,
DataFrame passes chunks as references between dependent

operations and relies on the DSM system for actual data
movement. However, it only performs lightweight compu-
tation over the fetched data (i.e., low compute intensity as
shown in Table 1), making the coherence overhead stand out.

DRust outperforms GAM and scales much better because
of its light coherence protocol, which incurs negligible object
move overhead for writes and no coherence overhead for
reads. The use of affinity annotations also helps DataFrame
colocate worker threads with their frequently accessed data,
bringing 20% additional boost (details in §7.3). GAM, in
contrast, has to invalidate each cache block upon each write
and read, thereby bottlenecked by the extensive coherence
traffic. Grappa performs the worst in all three DSM systems
due to its always-delegation programming model, which
implements every global memory read/write via a delegated
function call. The cost for delegation overwhelms the actual
memory access latency in this case, ruining the performance
of the shared hash table. Grappa’s delegation overhead
actually causes a 1.23× slowdown when scaling DataFrame
from a single node to two nodes.
SocialNet. Since SocialNet is microservice-based and can
be deployed distributively, we added another baseline by
running the original (non-DSM) code but deploying it on
varying numbers of nodes. Figure 5b demonstrates the
performance of all systems. SocialNet runs consistently
faster with all three DSM systems compared to the original
version. DRust, GAM, and Grappa achieve a 2.18×, 2.02×,
and 1.57× speedup on a single node and a 3.51×, 1.33×, and
1.39× speedup on eight nodes, respectively. In the conven-
tional setup, SocialNet requires data—such as text and media
files—to be serialized into byte streams for network transmis-
sion, and then deserialized back into usable formats at the
receiving end. This serialization and deserialization process
is computationally intensive, particularly for large or complex
data objects. In contrast, DSM systems enable SocialNet to
pass references instead of the entire data values required by
remote procedure calls. This approach eliminates the need
for serialization and deserialization, reduces redundant data
copies, and significantly enhances performance. DRust scales
much better than GAM and Grappa thanks to its lightweight
coherence protocol, achieving up to 2.77× and 3.16× higher
throughput than GAM and Grappa, respectively.
GEMM. GEMM differs from the previous two applications
in its high compute intensity and relatively infrequent shared
memory accesses. In this application, matrices are trans-
formed and divided into smaller sub-matrices for parallel
processing. Each computing thread, responsible for multiply-
ing sub-matrices, is assigned to a server. These threads cache
their respective sub-matrices in the server’s local memory
and access them repeatedly to compute product results. This
process is highly compute-intensive. As depicted in Figure 5c,
DRust and GAM scale well for GEMM and achieve 5.93×,
3.82× speedup with eight nodes. In contrast, Grappa only
achieves a 2.02× speedup with eight nodes due to its inability

Original +Affinity
Pointer

+Affinity
Thread

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

t

1.00
1.12 1.21

Figure 6: Effectiveness of
DRust’s affinity annotations.

Latency
(cycles) Average Median P90

DRust 395 356 536
Rust 364 332 496

Table 2: DRust’s Box pointer only
adds a small dereferencing cost
compared to Rust’s ordinary Box.

to cache sub-matrices locally, necessitating frequent remote
accesses. DRust’s superior performance over GAM, with a
1.55× higher speedup on eight nodes, is primarily due to its
more efficient handling of initial cross-server data accesses
required when a sub-matrix is first accessed remotely. Unlike
GAM, which incurs significant runtime overhead due to
the maintenance of state and location of data copies, DRust
directly copies data to local memory, without any complex
cross-server synchronization operations, thus enhancing
overall efficiency.
KV Store. KV Store is the most DSM-unfriendly application
in our evaluation because it exposes poor memory locality
and low compute intensity, which amplifies the overhead of
cross-server memory accesses. In addition, it uses mutexes to
synchronize between workers and the structure of the program
does not lend itself to ownership-based read/write ordering.

Figure 5d shows the results. KV Store experiences a
slowdown on all three DSM systems when scaling from a
single node to two nodes (13% for DRust, 25% for GAM,
and 93% for Grappa). However, the impact is mitigated when
more servers are enlisted—DRust and GAM achieve 3.34×
and 2.50× higher throughput on eight nodes compared to
the original KV Store implementation, respectively. Due
to the limited ownership semantics exposed by mutexes,
DRust does not scale as well with KV Store as with other
applications. DRust is 1.33× faster than GAM on eight
nodes, benefiting from its adaptive load balancing and a
more efficient implementation of mutexes utilizing one-sided
RDMA atomic verbs, whereas GAM depends on less efficient
two-sided RDMA messages for synchronization. Grappa, in
contrast, incurs the highest distribution overhead and poorest
scalability, primarily because each PUT/GET operation
requires remote delegation, and nodes handling popular
objects become bottlenecked due to skewed load.

7.3 Drill-Down Experiments

Affinity Annotations. In this experiment, we evaluated the
individual contributions of affinity annotations by enabling
each of them incrementally for DataFrame on eight nodes.
Figure 6 reports the results. Using TBox helps DataFrame
group chunks from the same column and eliminates the
runtime dereference check overhead for single-column opera-
tions (e.g., filter), bringing a 12% throughput improvement.
Adding spawn_to further improves the throughput by 9% by

Dataframe GEMM KVStore0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.88

0.42
0.36

0.96
0.90

0.37

0.68

0.51

0.02

DRust
GAM
Grappa

Figure 7: Comparison of cache coherence costs between DRust,
GAM, and Grappa on eight nodes.

informing DRust runtime to colocate the worker thread to its
input columns, which reduces cross-server memory accesses.
Runtime Dereference Checks. We measured the latency
of dereferencing DRust’s Box pointer and compared it with
an ordinary Rust Box pointer. Both of them point to an
8-byte object in local memory and not in CPUs cache,
which represents the common path for pointer dereferencing.
Table 2 reports the results. DRust only adds a small overhead
of ∼30 cycles. Note that this microbenchmark is extremely
memory-intensive, whereas real-world applications usually
employ larger object sizes and are more compute-intensive,
further mitigating the runtime check overhead. For our
evaluated applications, we observed a 1.02% overhead for
DataFrame and a 1.14% overhead for BLAS, when they run
with DRust on a single node, respectively.
Thread Migration Latency. To quantify how quickly DRust
can resolve the workload imbalance, we measured the latency
for the DRust runtime to migrate a thread by running GEMM
on eight nodes and repeated the experiment for ten times. On
average, DRust migrated 15 threads with an average of 218µs
latency for each migration.
Cost of Cache Coherence. In this experiment, we ran each
application again on a single node and eight nodes but fixed
the total amount of CPU and memory resources. For the
eight-node setting, we distributed the resources evenly to
each node and measured application throughput. We expect
to see a slowdown due to the cost of running the coherence
protocol and cross-server memory accesses, but a good result
for DRust should show that application performance remains
close to its original single-node version. Figure 7 reports the
results. SocialNet uses pass-by-value RPCs in its original
version and is significantly slower than our DSM-based
version, so it is omitted in the evaluation. DRust adds only
moderate cache coherence cost with an overhead of 32% in
the worst case (KV Store) and 4% in the best case (GEMM).
GAM and Grappa, in contrast, incur much higher overheads
ranging from 10% to 98% for different applications.

8 Related Work
Software DSM Systems. Distributed cache coherence pro-
tocols and their implementations for DSM have been exten-
sively studied since 1980s [16–18,31,36,49,50,56,61–63,80].

Among them, Munin [10] and TreadMarks [6] proposed
relaxed consistency models and simpler protocols try-
ing to alleviate the coherence overhead. Recent DSM
systems leveraged today’s advanced hardware such as
RDMA [14, 45, 60, 77, 81, 92] to improve efficiency.
Disaggregated and Remote Memory. Memory disaggrega-
tion and remote memory techniques are another promising
approach to scaling applications out of a single machine.
Their key idea is to connect a host server with large memory
pools [33, 40, 46] via fast datacenter network, which can
be accessed by applications via OS kernel [4, 69, 76, 86] or
software runtimes [34, 52, 73, 84, 85, 87]. However, they do
not provide cache coherence.
Distributed Programming Abstractions. Researchers have
studied and proposed new programming languages and ab-
stractions. Munin [10] built a type system that defines types
for local and global pointers and tracks whether the pointer
is shared via type checking. X10 [20, 39] and UPC [30]
introduce function offloading interfaces for distributed com-
puting and additional type annotations to reduce the runtime
overhead. Ray [89] and Nu [72] are two recent systems
proposing new abstractions for distributed programming.
Unlike DRust, they require effort to port applications to avoid
fine-grained memory sharing.
Hardware-Accelerated DSM. Specialized datacenter net-
work technologies and emerging hardware designs stand for
another trend to accelerate DSM. Clio [35], StRoM [79], and
RMC [5] reduce remote memory access latency by offloading
tasks into customized hardware. Concordia [88], Kona [15],
and CXL [23–26, 47, 48, 92] enable block-level or cache-line-
level memory coherence with their hardware-implemented
protocols. DRust can benefit from advances in hardware
support and achieve better scalability.

9 Conclusion
This paper presents DRust, a practical DSM system based on
the ownership model. It automatically turns a single-machine
Rust program into its distributed version with a lightweight
coherence protocol guided by language semantics. DRust
significantly outperforms existing state-of-the-art DSM
systems, demonstrating that a language-guided DSM can
achieve strong memory consistency, transparency, and
efficiency simultaneously.

Acknowledgement
We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd Daniel
S. Berger for his feedback. This work is supported by CNS-
1763172, CNS-2007737, CNS-2006437, CNS-2106838,
CNS-2147909, CNS-2128653, CNS-2301343, CNS-
2330831, CNS-2403254, CNS-1764077, CNS-1956322,
CNS-2106404. This work is also supported by Alibaba
Group through Alibaba Research Intern Program, and
funding from Amazon and Samsung.

A Artifact Appendix
A.1 Artifact Summary

DRust is an efficient, consistent, and user-friendly DSM sys-
tem featuring a lightweight coherence protocol guided by lan-
guage semantics. DRust allows for seamless scaling of single-
machine applications to multi-server environments without
sacrificing performance. Demonstrating significant improve-
ments over existing DSM systems, DRust combines strong
memory consistency, transparency, and efficiency effectively.

A.2 Artifact Check-list

• Hardware: Intel servers equipped with InfiniBand

• Software Environment: Rust 1.69.0, GCC 5.5, Linux
Kernel 5.4, Ubuntu 18.04, MLNX-OFED 4.9

• Public Link to Repository: https://github.com/
uclasystem/DRust

• Code License: GNU General Public License (GPL)

A.3 Description

A.3.1 DRust’s Codebase

DRust comprises four main components:

• An RDMA communication library written in C
• The DRust library
• Applications integrated with DRust
• Necessary shell scripts and configuration files

A.3.2 Deploying DRust

The initial step in deploying DRust involves cloning the
source code on all involved servers:

git clone git@github.com:uclasystem/DRust.git

Adjust several configurations according to your server
setup and operational requirements:

1. Set the Number of Servers:

• Define TOTAL_NUM_SERVERS in
comm-lib/rdma-common.h based on the total
number of available servers.

• Similarly, adjust NUM_SERVERS in
drust/src/conf.rs.

2. Configure the Distributed Heap Size by setting
UNIT_HEAP_SIZE_GB in drust/src/conf.rs to the
required heap size per server, e.g., 16 for 16GB.

3. Update the InfiniBand IP addresses and ports in
comm-lib/rdma-server-lib.c:

const char *ip_str[2] = {"10.0.0.1",

"10.0.0.2"};

const char *port_str[2] = {"9400", "9401"};

4. In drust.json, update each server’s IP address and
specify three available ports.

Following configuration, build DRust as follows:

Compile the communication static library

cd comm-lib

make -j lib

Copy the static library to the DRust directory

cp libmyrdma.a ../drust/

Compile the Rust components

cd ../drust

cargo build --release

Deploy the compiled binary across all servers post-build,
ensuring its correct distribution:

scp target/release/drust user@ip:DRust/drust.out

A.3.3 Running Applications

DRust is bundled with four example applications: Dataframe,
GEMM, KVStore, and SocialNet. Follow these steps to
execute them:

1. Launch the DRust executable on all servers, excluding
the main server:

Start the DRust process with the specified

server index and application name.

For example, ./../drust.out -s 7 -a gemm

cd drust

./../drust.out -s server_id -a app_name

2. On the main server:

Start the main DRust process with the

specified application.

cd drust

./../drust.out -s 0 -a app_name

More details of DRust’s installation and deployment can
be found in DRust’s code repository.

https://github.com/uclasystem/DRust
https://github.com/uclasystem/DRust

References
[1] The Z garbage collector. https://wiki.openjdk.

java.net/display/zgc/Main.

[2] Lapack benchmark. https://www.netlib.org/
lapack/lug/node71.html, 2023.

[3] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled in-
structions: A low-overhead, locality-aware processing-
in-memory architecture. In ISCA, pages 336–348, 2015.

[4] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker.
Can far memory improve job throughput? In EuroSys,
2020.

[5] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy,
A. Panda, S. Ratnasamy, and S. Shenker. Remote mem-
ory calls. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, HotNets ’20, pages 38–44,
New York, NY, USA, 2020. Association for Computing
Machinery.

[6] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
marks: Shared memory computing on networks of
workstations. Computer, 29(2):18–28, 1996.

[7] K. Asanovic. Firebox: A hardware building block for
2020 warehouse-scale computers. In FAST, 2014.

[8] H. G. Baker. Lively linear lisp: look ma, no garbage!.
SIGPLAN Not., 27(8):8998, aug 1992.

[9] T. Balabonski, F. Pottier, and J. Protzenko. The design
and formalization of mezzo, a permission-based pro-
gramming language. ACM Trans. Program. Lang. Syst.,
38(4), aug 2016.

[10] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific
memory coherence. In Proceedings of the second
ACM SIGPLAN symposium on Principles & practice of
parallel programming, pages 168–176, 1990.

[11] L. S. Blackford, A. Petitet, R. Pozo, K. Remington,
R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Ham-
marling, G. Henry, et al. An updated set of basic linear
algebra subprograms (blas). ACM Transactions on
Mathematical Software, 28(2):135–151, 2002.

[12] M. N. Bojnordi and E. Ipek. PARDIS: A programmable
memory controller for the DDRx interfacing standards.
In ISCA, pages 13–24, 2012.

[13] K. Boos, N. Liyanage, R. Ijaz, and L. Zhong. Theseus:
an experiment in operating system structure and state

management. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20),
pages 1–19. USENIX Association, Nov. 2020.

[14] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen,
B. C. Ooi, K.-L. Tan, Y. M. Teo, and S. Wang. Ef-
ficient distributed memory management with rdma
and caching. Proceedings of the VLDB Endowment,
11(11):1604–1617, 2018.

[15] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking Software
Runtimes for Disaggregated Memory, pages 79–92.
Association for Computing Machinery, New York, NY,
USA, 2021.

[16] R. Campbell, G. Johnston, and V. Russo. Choices
(class hierarchical open interface for custom embedded
systems). ACM SIGOPS Operating Systems Review,
21(3):9–17, 1987.

[17] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-
mentation and performance of munin. ACM SIGOPS
Operating Systems Review, 25(5):152–164, 1991.

[18] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Tech-
niques for reducing consistency-related communication
in distributed shared-memory systems. ACM Transac-
tions on Computer Systems (TOCS), 13(3):205–243,
1995.

[19] CCIX. Cache coherent interconnect for accelerators.
https://www.ccixconsortium.com/, 2018.

[20] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodik.
Type inference for locality analysis of distributed data
structures. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming, pages 11–22, 2008.

[21] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Can-
tonnet, T. El-Ghazawi, A. Mohanti, Y. Yao, and
D. Chavarría-Miranda. An evaluation of global address
space languages: co-array fortran and unified parallel c.
In Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 36–47, 2005.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154, 2010.

[23] Compute express link 3.0. https://
computeexpresslink.org/wp-content/uploads/
2024/02/CXL-3.0-Specification.pdf, 2022.

https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
https://www.netlib.org/lapack/lug/node71.html
https://www.netlib.org/lapack/lug/node71.html
https://www.ccixconsortium.com/
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf

[24] Compute express link 1.0. https://
computeexpresslink.org/wp-content/uploads/
2024/02/CXL-1.0-Specification.pdf, 2019.

[25] Compute express link 1.1. https://
computeexpresslink.org/wp-content/uploads/
2024/02/CXL-1.1-Specification.pdf, 2019.

[26] Compute express link 2.0. https://
computeexpresslink.org/wp-content/uploads/
2024/02/CXL-2.0-Specification.pdf, 2020.

[27] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01, page
5969, New York, NY, USA, 2001. Association for
Computing Machinery.

[28] Managing a Cluster of Docker Daemons using Swarm
Mode. https://docs.docker.com/engine/swarm/,
2023.

[29] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, pages
401–414, 2014.

[30] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick.
UPC: distributed shared memory programming. John
Wiley & Sons, 2005.

[31] B. D. Fleisch. Distributed shared memory in a loosely
coupled distributed system. ACM SIGCOMM Computer
Communication Review, 17(5):317–327, 1987.

[32] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou. An
open-source benchmark suite for microservices and
their hardware-software implications for cloud &
edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’19, page 318, New York, NY, USA, 2019.
Association for Computing Machinery.

[33] GenZ. Genz consortium. http://genzconsortium.
org/, 2019.

[34] Z. Guo, Z. He, and Y. Zhang. Mira: A program-
behavior-guided far memory system. In Proceedings of
the 29th Symposium on Operating Systems Principles,
SOSP ’23, page 692708, New York, NY, USA, 2023.
Association for Computing Machinery.

[35] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang.
Clio: A hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2022, pages 417–433, New York, NY, USA,
2022. Association for Computing Machinery.

[36] D. B. Gustavson. The scalable coherent interface and
related standards projects. IEEE micro, 12(1):10–22,
1992.

[37] Database-like ops benchmark. https://github.com/
h2oai/db-benchmark, 2023.

[38] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggrega-
tion in next-generation datacenters. In HotNets, pages
10:1–10:7, 2013.

[39] R. Haque and J. Palsberg. Type inference for place-
oblivious objects. In 29th European Conference on
Object-Oriented Programming (ECOOP 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[40] Hewlett-Packard. The machine: A new kind of
computer. https://www.hpl.hp.com/research/systems-
research/themachine/.

[41] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev., 41(2):3749,
apr 2007.

[42] Intel. Intel high performance computing fabrics.
https://www.intel.com/content/www/us/en/
high-performance-computing-fabrics/, 2019.

[43] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of c. In 2002
USENIX Annual Technical Conference (USENIX ATC
02), Monterey, CA, June 2002. USENIX Association.

[44] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer.
Rustbelt: Securing the foundations of the rust pro-
gramming language. Proceedings of the ACM on
Programming Languages, 2(POPL):1–34, 2017.

[45] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros,
and K. Sagonas. Turning centralized coherence and
distributed critical-section execution on their head: A
new approach for scalable distributed shared memory.
In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 3–14, 2015.

[46] K. Keeton. The Machine: An architecture for memory-
centric computing. In ROSS, 2015.

https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-1.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://docs.docker.com/engine/swarm/
http://genzconsortium.org/
http://genzconsortium.org/
https://github.com/h2oai/db-benchmark
https://github.com/h2oai/db-benchmark
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/

[47] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti,
S. Novakovic, M. Shah, S. Rajadnya, S. Lee, I. Agarwal,
M. D. Hill, M. Fontoura, and R. Bianchini. Pond: Cxl-
based memory pooling systems for cloud platforms. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS 2023, page
574587, New York, NY, USA, 2023. Association for
Computing Machinery.

[48] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, I. Agarwal, M. D. Hill, M. Fon-
toura, and R. Bianchini. First-generation memory
disaggregation for cloud platforms, 2022.

[49] K. Li. Ivy: A shared virtual memory system for parallel
computing. ICPP (2), 88:94, 1988.

[50] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer
Systems (TOCS), 7(4):321–359, 1989.

[51] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In ISCA,
pages 267–278, 2009.

[52] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond, S. M.
Blackburn, M. Kim, and G. H. Xu. Mako: A low-pause,
high-throughput evacuating collector for memory-
disaggregated datacenters. In PLDI, pages 92–107,
2022.

[53] H. Ma, Y. Qiao, S. Liu, S. Yu, Y. Ni, Q. Lu, J. Wu,
Y. Zhang, M. Kim, and H. Xu. Drust: Language-guided
distributed shared memory with fine granularity, full
transparency, and ultra efficiency. arXiv preprint
arXiv:2406.02803, 2024.

[54] Mellanox. Connectx-6 single/dual-port adapter sup-
porting 200gb/s with vpi. http://www.mellanox.
com/page/products_dyn?product_family=265&
mtag=connectx_6_vpi_card, 2019.

[55] Memcached - a distributed memory object caching
system. http://memcached.org, 2020.

[56] R. G. Minnich and D. J. Farber. The mether system:
Distributed shared memory for sunos 4.0. Technical
Reports (CIS), page 332, 1993.

[57] V. Nagarajan, D. J. Sorin, M. D. Hill, D. A. Wood, and
N. E. Jerger. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 2nd
edition, 2020.

[58] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau,
and L. Birkedal. Ynot: Dependent types for imperative
programs. SIGPLAN Not., 43(9):229240, sep 2008.

[59] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li,
G. Zellweger, and A. Burtsev. RedLeaf: Isolation and
communication in a safe operating system. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 21–39. USENIX
Association, Nov. 2020.

[60] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. {Latency-Tolerant} soft-
ware distributed shared memory. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
291–305, 2015.

[61] J. Nieplocha, R. Harrison, M. Krishnan, B. Palmer,
and V. Tipparaju. Combining shared and distributed
memory models: Evolution and recent advancements of
the global array toolkit. In proceedings of POHLL’2002
workshop of ICS-2002, NYC, 2002.

[62] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global
arrays: A portable" shared-memory" programming
model for distributed memory computers. In Supercom-
puting’94: Proceedings of the 1994 ACM/IEEE confer-
ence on Supercomputing, pages 340–349. IEEE, 1994.

[63] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global
arrays: A nonuniform memory access programming
model for high-performance computers. The Journal of
Supercomputing, 10:169–189, 1996.

[64] OpenCAPI. Open coherent accelerator processor
interface. https://opencapi.org/, 2018.

[65] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU
efficiency for latency-sensitive datacenter workloads.
In NSDI, pages 361–378, 2019.

[66] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, Aug. 2015.

[67] Polars: Blazingly Fast DataFrame Library.
https://pola-rs.github.io/polars/, 2023.

[68] Y. Qiao, Z. Ruan, H. Ma, A. Belay, M. Kim, and H. Xu.
Harvesting idle memory for application-managed soft
state with midas. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), 2024.

[69] Y. Qiao, C. Wang, Z. Ruan, A. Belay, Q. Lu, Y. Zhang,
M. Kim, and G. H. Xu. Hermit:{Low-Latency},{High-
Throughput}, and transparent remote memory via
{Feedback-Directed} asynchrony. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 181–198, 2023.

http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
https://opencapi.org/
https://pola-rs.github.io/polars/

[70] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang. Under-
standing memory and thread safety practices and issues
in real-world rust programs. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 763–779, 2020.

[71] R. A. Rossi and N. K. Ahmed. The network data repos-
itory with interactive graph analytics and visualization.
In AAAI, 2015.

[72] Z. Ruan, S. J. Park, M. K. Aguilera, A. Belay, and
M. Schwarzkopf. Nu: Achieving {Microsecond-Scale}
resource fungibility with logical processes. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1409–1427, 2023.

[73] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and
A. Belay. {AIFM}:{High-Performance},{Application-
Integrated} far memory. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 315–332, 2020.

[74] S. M. Rumble. Infiniband verbs performance. https:
//ramcloud.atlassian.net/wiki/display/RAM/
Infiniband+Verbs+Performance, 2010.

[75] Rust. https://www.rust-lang.org/, 2023.

[76] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[77] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed
shared persistent memory. In Proceedings of the 2017
Symposium on Cloud Computing, pages 323–337, 2017.

[78] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.
Lee, H. Wang, R. Agarwal, and H. Weatherspoon.
Shoal: A network architecture for disaggregated racks.
In NSDI, pages 255–270, 2019.

[79] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. Strom: Smart remote memory. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[80] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt,
L. Kontothanassis, S. Parthasarathy, and M. Scott.
Cashmere-2l: Software coherent shared memory on
a clustered remote-write network. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems
Principles, pages 170–183, 1997.

[81] K. Taranov, S. Di Girolamo, and T. Hoefler. Corm: Com-
pactable remote memory over rdma. In Proceedings of
the 2021 International Conference on Management of
Data, pages 1811–1824, 2021.

[82] Tokio Team. Build reliable network applications
without compromising speed. https://tokio.rs/.

[83] J. Toman, S. Pernsteiner, and E. Torlak. Crust: A
bounded verifier for rust (n). In 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 75–80, 2015.

[84] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu.
Semeru: A memory-disaggregated managed runtime.
In OSDI, pages 261–280, 2020.

[85] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson,
C. Navasca, S. Lu, and G. H. Xu. Memliner: Lining
up tracing and application for a far-memory-friendly
runtime. In OSDI, pages 35–53, 2022.

[86] C. Wang, Y. Qiao, H. Ma, S. Liu, W. Chen, R. Netravali,
M. Kim, and G. H. Xu. Canvas: Isolated and adaptive
swapping for {Multi-Applications} on remote memory.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 161–179,
2023.

[87] C. Wang, Y. Shan, P. Zuo, and H. Cui. Reinvent cloud
software stacks for resource disaggregation. Journal
of Computer Science and Technology, 38(5):949–969,
2023.

[88] Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu. Con-
cordia: Distributed shared memory with {In-Network}
cache coherence. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 277–292,
2021.

[89] S. Wang, E. Liang, E. Oakes, B. Hindman, F. S. Luan,
A. Cheng, and I. Stoica. Ownership: A distributed
futures system for Fine-Grained tasks. In 18th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 21), pages 671–686. USENIX
Association, Apr. 2021.

[90] Wes McKinney. Data Structures for Statistical Com-
puting in Python. In Stéfan van der Walt and Jarrod
Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 56 – 61, 2010.

[91] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster computing with working
sets. In HotCloud, page 10, Berkeley, CA, USA, 2010.

[92] M. Zhang, T. Ma, J. Hua, Z. Liu, K. Chen, N. Ding,
F. Du, J. Jiang, T. Ma, and Y. Wu. Partial failure resilient
memory management system for (cxl-based) distributed
shared memory. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 658–674, 2023.

https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://www.rust-lang.org/

	Introduction
	Background in Ownership
	Motivation
	Design
	DRust Programming Abstraction
	Memory Management
	Adapting Rust Standard Libraries
	Affinity Annotations

	DRust Runtime System
	Application-Integrated Runtime
	Global Controller
	Fault Tolerance

	Implementation
	Limitations
	Evaluation
	Applications
	Scaling Performance
	Drill-Down Experiments

	Related Work
	Conclusion
	Artifact Appendix
	Artifact Summary
	Artifact Check-list
	Description
	DRust's Codebase
	Deploying DRust
	Running Applications

