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Abstract
Rotational symmetries lead to an isotropic tensor of inertia for regular solids. The moment of inertia
around any axis can then be obtained from the central moment of inertia without cumbersome
calculations. Using this trick of the central moment, the moments of inertia are explicitly calculated here
for all thirteen Archimedean solids. Among all Archimedean solids inscribed in the unit sphere, the
Great Rhombicosidodecahedron has the highest ratio of moment of inertia by mass, 93.4 % of the
corresponding ratio for the sphere, for 90 % of its volume. The highest Moment of Inertia Quotient
(0.9964) is however obtained for the Small Rhombicosidodecahedron, and the second highest (0.9955)
for the Snub Dodecahedron.

I. INTRODUCTION

Physics likes simplicity and harmony, and physicists enjoy symmetries because they bring
spectacular simplifications in numerous physical quantities, a fact that can be illustrated using moments
of inertia (MI). The condition of two axes of threefold or higher rotational symmetry crossing at the
center of gravity is sufficient to produce an isotropic tensor of inertia.1,2 The MI around any axis passing
by the center of gravity are then identical. The explicit calculation was carried out for the five Perfect (or
Platonic) Solids (PS), which are the regular solids assembled from identical equilateral triangles
(Tetrahedron, Octahedron, Icosahedron), squares (Cube) or pentagons (Dodecahedron).1,3

However, the previously reported calculation becomes cumbersome in the case of the 13
Archimedean Solids (AS), which are the regular solids formed from two or three kinds of n-sided
polygons with the same edge.4 The AS were known to the Ancient Greeks but rediscovered during the
XVth and XVIth centuries.5 They have similar symmetries as the PS, namely the T, Td, Th, O, Oh, Y and
Yh point groups, and consequently have isotropic tensors of inertia. The AS are an interesting and
heuristic family of solids whose importance has been increasingly pointed out recently in nanocrystals,
water molecular assemblies or lattive packings.6,7,8 The MI, however, was only reported for the
Truncated Octahedron, the Rhombicuboctahedron and the Truncated Isocahedron.2,3

In this paper, the method previously used for the PS or the Tricontahedron is revised to avoid
cumbersome calculations.2,3 As an example of application, the MI for all 13 AS are derived and
discussed.

II. PRINCIPLE OF THE CALCULATION

The basic tool of the calculation is the set of moments of inertia of a right pyramid of mass m,
height r having a n-sided polygon of side a as base. Consider a coordinate system with the origin O at
the apex of the pyramid and the z axis around the axes of n-rotational symmetry of the pyramid. The
direction of the x and y axis parallel to the plane of the base of the pyramid is arbitrary. It is then
elementary to establish that the inertia tensor is diagonal in this coordinate system.1 Its principal
components are:
















 







 

22

222

1cot3
40
1

1cot3
80
1

5
3

ma
n

I

ma
n

mrII

zz

yyxx





. (1)



30/12/2014 MOMENTS OF INERTIA OF ARCHIMEDEAN SOLIDS

page 2

The central moment is then:
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Consider now a homogeneous solid of density 1 having sufficient rotational axes to have an
isotropic tensor of inertia made of such pyramids, allowing for various kinds of pyramids, with Fi
pyramids having as base a ni-sided polygon. This will in particular cover the variety of all AS. For
example (see Appendix A), the AS Cuboctahedron (CO) is made of F1=8 pyramids with equilateral
triangular base (n1=3) and F2=6 pyramids with square base (n2=4). The Great Rhombicosidodecahedron
(GRD) is made of F1=30 pyramids with square base (n1=3), F2=20 pyramids with hexagonal base
(n2=6), and F3=12 pyramids with decagonal base (n3=10). Each family i of pyramids gives a contribution
Si to the surface area S of the solids and Vi to the volume V of the solid, given by:
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The central MI of the solid is then the sum of the contributions of the pyramid families:
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In the case of the AS, we have the additional condition that all polygon edges are equal. The MI I
with respect to any axis passing by the center of symmetry is then given by:
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The MI can then easily be derived once the properties of the solid are established. Recall that when
the solids are inscribed in a sphere of radius R, then the radius r of the sphere tangent to each face, which
is also the height of the associated pyramid, is related to R and the radius r’ of the circle containing the
vertices of the face by:

222 'rrR  . (6)
In this case, there is no loss of generality to consider the solids inscribed in the unit sphere (R=1). As we
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Once a is known, all quantities necessary for the calculation of the MI in Eq. (5) are obtained from Eq.
(6) and Eq. (3). The calculation of a for the AS is recalled in Appendix A.

III. RESULTS

The obtained expressions for the MI are given in Table 1 for the AS, whose complete set is
presented here for the first time. The results reported previously for the Truncated Octahedron, the
Rhombicuboctahedron by Satterly and for the Truncated Isocahedron by Aravind are confirmed.2,3 For
completion, the values of the MI are recalled in Table 2 for the PS. These expressions for the PS were
already known before.1 They can be reproduced easily in a few lines of calculation with our method.

The parameters of the various solids can be compared, for example taking all the solids inscribed
in the unit sphere, using the expressions of Tables 1 and 2. The solid giving the smallest surface area is
then the AS Snub Cube (~36 % for the sphere), while the solid giving the smallest volume (~12 % of the
sphere) is the Tetrahedron. The AS GRD mentioned above gives the largest surface area (~96 % of the
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sphere) and the largest volume (~90 % of the sphere). The MI are shown in Fig. 1 versus the volume
fraction of the sphere. In this figure, the MI are normalized to the mass (giration ratio) normalized to the
same ratio for a homogeneous sphere (giration ratio of 2/5). The various PS and AS provide normalized
IM values rather evenly spread between the minimum (~0.33, obtained for the Tetrahedon) and the
maximum (~0.93, obtained for the GRD). Values smaller by a few % than the value given by the GRD
are obtained for the Great Rhombicosidodecahedron (SRD) and the Snub Dodecahedron (SD).

Fig. 1. Moment of inertia divided by mass and normalized to 2/5 (value for a homogeneous sphere) versus volume fraction
of sphere, for PS and AS inscribed in the unit sphere.

Another customary way of comparing these solids is the Isoperimetric Quotient (IQ) of George
Polya defined as:
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where S1 is the surface area of the solid having the same volume as the unit sphere.1 Analogously,
Aravind defined the dimensionless Moment of Inertia Quotient (MIQ) as:
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where Isph is the MI of the sphere having the same mass and the same density as the considered
polyhedron.

The values of IQ and MIQ can be calculated from the obtained expressions for a, S/a2, V/a3 and
I/Ma2. The numerical values are given in Tables 1 and 2, and 1-MIQ is shown versus 1-IQ in Fig. 2.
Note that the values of IQ for AS were already reported by Aravind.8 A logarithmic scale is used in Fig.
2 as MIQ are close to 1 for numerous AS. The solid with the smallest IQ (~0.3023) is the Tetrahedron
who has also the smallest MIQ ((~0.4053), and thus is the regular solid most different from a sphere.
The SD has the largest IQ (~0.947), but it is the Small Rhombicosidodecahedron (SRD) which exhibits
the largest MIQ of ~0.9964. The second largest MIQ (~0.9955) belongs to the SD. Thus, depending on
the way the matter is considered, the AS most similar to a sphere is GRD, SD or SRD.
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Fig. 2. Moment of Inertia Quotient deficit to 1 versus Isoperimetric Quotient deficit to 1.

IV. CONCLUSION

Calculating the MI of AS, as presented in this paper, appears elementary once clear and simple
steps are established and followed comfortably. Such systematic practice can be of great pedagogical
value, and thus the calculation of AS MI provides beautiful exercises to train students in computational
elegance combined with spatial visualization and representation.

Exact analytical expressions for the MI of AS can also be useful to check numerical codes, in
particular in technological issues involving rotational properties, or, for example, optical properties of
nanocrystals and quasicrystals. Some biological properties of viruses, which can show fivefold
symmetries, could also be interpreted in terms of mechanical properties. Further solids could also be
studied using the method illustrated here in the case of AS, for example stellations of regular polytopes
or combined forms. Much remains to be explored in the powerful and wonderful emergence of abstract
mathematical harmony in the actual or possible realizations of our physical world.9,10
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Table 1. Overview of AS results: surface area S, volume V and ratio of the MI I to mass M, with normalization to the proper exponent of the edge a. The number 19149.1U is defined by 213 UU .

It is related to the Tribonacci number t=1+1/U which satisfies 23 1 ttt  . The number 71556.1 is defined by  23  where  2/51 is the golden ratio.

Archimedean Solid a 2/ aS 3/ aV 2/ MaI IQ MIQ

TT : Truncated
Tetrahedron 11

2
2 37

12
223

460
159

0.4662 0.6489

TO : Truncated
Octahedron 5

2  3216  28
24
19

0.7534 0.9410

TI : Truncated
Icosahedron  5929

109
2

 
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

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5
2

13215
4

543125
95700

542771118625
0.9032 0.9935

TC : Truncated Cube
17
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2

  32662   223
3
7 

35
21117

0.6130 0.8382

TD : Truncated
Dodecahedron

 
61

515372  




  525635  54799

12
5


6220

5136731953  0.7940 0.9622

SR : Small
Rhombicuboctahedron 17

2410
2

  392   256
3
2 

280
259100

0.8685 0.9850

CO : Cuboctahedron 1  332 
3

25
25
7

0.7412 0.9231

ID : Icosidodecahedron
2

53
51025335 

6
51745

1450
5271690 0.8602 0.9779

GR : Great
Rhombicuboctahedron 97

26132   32212   27112 
6

237
0.8390 0.9687

GRD : Great
Rhombicosidodecahedron 241

51231
2







  5253130  510195 

4170
5478511828 0.9136 0.9894

SRD : Small
Rhombicosidodecahedron 41
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2
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12100

5160138853  0.9390 0.9964

SC : Snub Cube
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U
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3
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1
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10
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0.8992 0.9877

SD : Snub Dodecahedron





2
2 510253320  
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6

421385320 2
3

 
 


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Table 2. Overview of (previously known) quantities of PS: surface area S, volume V and ratio of the MI I to mass M, with normalization to the proper exponent of the edge a.1

Platonic Solid a 2a
S

3a
V

2Ma
I

IQ MIQ

T : Tetrahedron
3
2

2 3
12

2
20
1

0.3023 0.4053

O : Octahedron 2 32
3
2

10
1

0.6046 0.8106

C : Cube
3
2

6 1
6
1

0.5236 0.7879

I : Icosahedron
5
5

12  35  53
12
5


20

53 0.8288 0.9675

D : Dodecahedron
3

15 
510253 

4
5715

300
53995

0.7547 0.9561
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Appendix A
Parameters of Archimedean Solids

Here we briefly state one pedestrian method to derive the parameters of the set of 13 AS. These
solids are obtained by covering the unit sphere by at least two spherical isosceles triangles (Fig. A1).
When covering the sphere with identical isosceles triangles, the PS are constructed, and their parameters
are recalled in Table A1.

Table A1. Overview of PS parameters.

Platonic Solid n F a
a
r

Tetrahedron 3 4
3
2

2
62

1

Octahedron 3 8 2
6
1

Cube 4 6
3
2

2
1

Icosahedron 3 20
5
512 

12
53

3


Dodecahedron 5 12
3

15 
40

51125

a
r'1

r'2r1

r2

A1

A2
B1

B1
B2

B2

Fig. A1. Sketch of an n1-gonal face generated by n1 isosceles spherical triangles of summit angle A1 and base angles B1. Here
the edge a is shared by another spherical triangle of summit angle A2 and base angles B2 .

Let A1 the spherical angle at the summit of spherical triangle 1, with B1 being the other two equal
angles (Fig. A1). An integer number n1 of spherical triangles combine at their summit to generate, when
keeping only the base edge of size a, an n1-gonal face and we have 11 2 nA  . The construction of the
AS results from combining 2 or 3 types of spherical triangles, and from three constraints. First, the
covering of the full surface of the sphere (Euler condition):



30/12/2014 MOMENTS OF INERTIA OF ARCHIMEDEAN SOLIDS

page 8

   1111 24 BAnF
i

. (A1)

Second, the edge a must be the same for each type of face. The edge is given by the angle at the center
of the sphere ( 2sin2 a ), which is related to the angles of the spherical triangle by spherical
trigonometry:
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which can be rewritten:

i
j

j
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B
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The third constraint comes from the sum of all angles at the vertices of the base angles of the spherical
triangles, leading to the existence of integers qi, such that:


i

iiBq . (A4)

It is then a Diomantian problem to exhaust all possibilities for the integers qi, ni, and the number of faces
Fi, which must obey the additional compatibility condition jjjiii qFnqFn //  . In each case, one can
determine angle B1, from which the edge can be obtained using Eq. (A2) and conveniently rewritten as:
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2
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We summarize the results leading to the complete set of 13 AS below, with parameters needed for the
calculation of MI collected in Tables A2 and A3. We ignore below the prisms and the antiprisms, also
given by this construction, but which we do not consider in this paper. Values of trigonometric quantities
useful for the calculation of AS parameters including values of MI are collected in Table A4.

A1 Covering of the sphere by two spherical isosceles triangles

A1a. Case q1=2 and q2=1

Conditions (A3) and (A4) then give:

1

2
1

cos2

cos
cos

n

n
B 



 . (A6)

The only possible integers n1 and n2 compatible with Eq. (A1) are then n1=6 and n2=3 (Truncated
Tetrahedron TT), n1=6 and n2=4 (Truncated Octahedron TO), n1=6 and n2=5 (Truncated Icosahedron
TI), n1=8 and n2=3 (Truncated Cube TC), and n1=10 and n2=3 (Truncated Dodecahedron TD).

A1b. Case q1=3 and q2=1

Conditions (A3) and (A4) here give:

1

2
1

cos

cos
3

2
1sin

n

nB




 . (A7)

The only possible integers n1 and n2 are n1=4 and n2=3 (Small Rhombicuboctahedron SR).

A1c. Case q1=2 and q2=2
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Conditions (A3) and (A4) here give:

2

1
1

cos

cos
tan

n

n
B 



 . (A8)

The possible integers n1 and n2 are n1=3 and n2=4 (Cuboctahedron CO), and n1=3 and n2=5
(Icosidodecahedron ID).

A1d. Case q1=4 and q2=1

In this case, conditions (A3) and (A4) here lead to a cubic equation for 1cos Bu  :

0
cos4

cos
2

1

23 

n

n
uu 



. (A9)

The possible integers n1 and n2 are then n1=3 and n2=4 (Snub Cube SC), and n1=3 and n2=5 (Snub
Decahedron SD).

In the case of the SC, we define the number 19149.1U by 213 UU , and we

have 2cos 1 UB  . Number U is related to the Tribonacci number t, which satisfies 23 1 ttt  and
which is sometimes used to express the parameters of the SC, by t=1+1/U.

In the case of the SD, we define the number 71556.1 by  23  where  2/51 is
the golden ratio, and we have 2cos 1 B .

A2 Covering of the sphere by three spherical isosceles triangles

In this case, Eq. (A3) gives two conditions:




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


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1
3

3
1

1
2

2
1

cossincossin

cossincossin

n
B

n
B

n
B

n
B


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. (A10)

A2a. Case q1=1, q2=1, and q3=1

Elimination of B2 and B3 from (A10) and (A4) then gives:

32

1

2

2

2

3

2

1

coscos2

coscoscos
cos

nn

nnnB





 , (A11)

and the possible integers n1 , n2 and n3 are n1=4, n2=6 and n3=8 (Great Rhombicuboctahedron GR), and
n1=4, n2=6 and n3=10 (Great Rhombicosidodecahedron GRD).

A2b. Case q1=2, q2=1, and q3=1

Elimination of B2 and B3 from (A10) and (A4) in this case gives:
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321

2

322

2

3

2

1

coscoscos

coscos2coscos

2
1cos

nnn

nnnnB







 , (A12)

and the only possible integers n1 , n2 and n3 are n1=4, n2=3 and n3=5 (Small Rhombicosidodecahedron
SRD).
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Table A2. Overview of AS parameters for AS solids generated from two different spherical isosceles triangles. See text for definition of U and .

Archimedean Solid 1q 2q 1n 2n 1F 2F 1cosB a
a
r1

a
r2

Truncated Tetrahedron 2 1 6 3 4 4
32

1
11
22

8
3

24
25

Truncated Octahedron 2 1 6 4 8 6
6

1

5
2

2
3

2

Truncated Icosahedron 2 1 6 5 20 12
34
51  5929

109
2   53

4
3


10

541125
2
1 

Truncated Cube 2 1 8 3 6 8
22

22
17

2472 
2

21
32

223

Truncated Dodecahedron 2 1 10 3 12 20
102

55  
61

515372 
22

51125
62

545103

Small Rhombicuboctahedron 3 1 4 3 18 8
22

22
17

24102 
2

21
32
23

Cuboctahedron 2 2 3 4 8 6
3
2 1

3
2

2
2

Icosidodecahedron 2 2 3 5 20 12
10

55
2

53
32
53

5
521

Snub Cube 4 1 3 4 32 6
2

U

12
12



U
U

 112
12



U
U

 12
1
U

Snub Dodecahedron 4 1 3 5 80 12
2







2
2

 

32

2
3

 





5
4724

2
1



30/12/2014 MOMENTS OF INERTIA OF ARCHIMEDEAN SOLIDS

page 12

Table A3. Overview of AS parameters for AS solids generated from three different spherical isosceles triangles.

Archimedean Solid 1q 2q 3q 1n 2n 3n 1F 2F 3F 1cos B a
a
r1

a
r2

a
r3

Great Rhombicuboctahedron 1 1 1 4 6 8 12 8 6
62

210
97

2613
2


2

23
2

21
3



22
24

Great
Rhombicosidodecahedron 1 1 1 4 6 10 30 20 12

152
5225

241
512312 

2
523









2

523  
2

5255 

Small
Rhombicosidodecahedron 2 1 1 4 3 5 30 20 12

52
525

41
5411

2


2
52

32
523

5
525

2
3 

Table A4. Useful values of trigonometric quantities.

n 3 4 5 6 8 10

n
cos

2
1

2
2

4
51

8
53 

2
3

2
22

5
2sin

8
55 

n


sin
2
3

2
2

8
55

2
1

2
22

5
2

cos
4

51
8

53 







n
cot

3
1

1 5
5
21 3 21 525


