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1. Introduction In [7], [8] we studied arithmetic properties of the Taylor series for e
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In the process, we discovered a surprising connection with certain prime numbers. To
describe it, let Nn  be the numerator of the nth partial sum in lowest terms,

Nn := numerator of 
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!=
∑      (n ≥ 0). (1)

Setting Rn  equal to the greatest common divisor

R N Nn n n: gcd( , )= +2 , (2)

the sequence R R0 1, , . . . begins

1 2 5 1 13 1 37 1 463 1 17 23 425, , , , , , , , , , , . . .{ } { } { } ,

where { }1 k  stands for a string of ones of length k. Notice that the terms 2, 5, 13, 37, and
463 are primes. In fact, we prove the following result.

Theorem 1. The sequence R R0 1, , . . . consists of ones and all primes in the set

P p prime p divides pp∗ −= − + − + − ⋅⋅ ⋅ + − −{ }: : ! ! ! ! ! ( ) ( )!0 1 2 3 4 1 11 .

More precisely, for n ≥ 0, we have

R

if n

p if n p and p P is odd

otherwise
n =

=
= − ∈







2 1

3

1

,

* ,

.

Michael Mossinghoff [5] has calculated that 2, 5, 13, 37, 463 are the only
elements of P∗  less than 150 million. However, in Section 6 we use Mertens' theorem on
the series of prime reciprocals to argue heuristically that the set P∗  should be infinite, but
very sparse. For this problem, and a related one on primes and alternating sums of
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factorials, see [2, B43] (where the set P∗  is denoted instead by S) and [9]. Also, see [6,
sequences A061354, A064383, A064384, A124779, A129924].

In Sections 2, 3, and 4, we establish some preliminary results before proving
Theorem 1 in Section 5.

2. A formula for Nn  For n ≥ 0, let An denote the unreduced numerator of the nth partial
sum
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(It is easy to see that the recursion

A0 1= ,     A nAn n= +−1 1     (n ≥ 1) (4)

is equivalent to (3).) In terms of An, the reduced numerator Nn  is

N
A

A nn
n

n

=
gcd( , !)

. (5)

3. An alternate characterization of P∗  We use An to give an alternate description of the

primes in P∗ .

Lemma 1. A prime p is in P∗  if and only if p divides Ap−1.

Proof. We show that the congruence

0 1 2 3 4 1 11
1! ! ! ! ! ( ) ( )! mod− + − + − ⋅⋅ ⋅ + − − ≡−

−
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nn A n      (n ≥ 1)

holds. The lemma follows by setting n equal to a prime p.
We multiply (3) by n!, and replace n with n −1. Re-indexing the sum by

changing k to n k− −1 , we obtain
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4. A criterion for primality We will need the following simple fact.

Lemma 2. Given n >1, if n! is not divisible by n + 3, then n + 3 is prime.
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Proof. We show that if n + 3 is not prime, say n ab+ =3  with 2 ≤ ≤a b , then ( ) !n n+ 3 .
Using n >1, we have 2 3 2 2b n n≤ + < + . Hence a b n≤ ≤ . In case a b< , clearly

ab n!. In case a b= , we get a n2 3 4= + > , so a ≥ 3. Then 0 1 3≤ + −( )( )a a

= − − = −a a n a2 2 3 2 . Now a a n< ≤2 , implying a n2 !. Thus, in each case, ( ) !n n+ 3 . •

5. Proof of Theorem 1 First, note that the recursion (4) implies the relation

A n n A nn n+ = + + + +2 2 1 3( )( ) ( )     (n ≥ 0). (6)

Now, to begin the proof, we use (1) to compute N0 1= , N1 2= , N2 5= , and

N3 8= . Then (2) gives R0 1=  and R P1 2= ∈ ∗ .
Next, fix n >1 and assume Rn ≠ 1. By (2) and (5), the positive integer Rn  divides

An and An+2 but not n!. From (6), we see that Rn  divides n + 3. Using Lemma 2, it

follows that R nn = +3 is prime. Since R An n+2 , Lemma 1 gives R Pn ∈ ∗ .

It remains to show, conversely, that for all odd p P∈ ∗  we have R pp− =3 . Setting

n p= −3, Lemma 1 yields p An+2. Then, as n ≥ 0 and p n= +3, relation (6) implies
p An . On the other hand, since p n> , the prime p does not divide n!. By (5) and (2), it
follows that p Rn . Recalling that Rn ≠ 1 implies Rn  is prime, we conclude that R pn = . •

6. A heuristic argument that P∗  is infinite but very sparse The following heuristics
are naive. The prime 463 looks ``random," so a naive model might be that
0 1 2 3 4 1! ! ! ! ! ( )!− + − + − ⋅⋅ ⋅ + −p  is a ``random" number modulo a prime p. If it is, the
probability that it is divisible by p would be about 1 p. Now let's also make the
hypothesis that the events are independent. Then the expected number of elements of P∗

which do not exceed a bound x would be approximately

# [ , ]
prime

P x
pp x

∗

≤
∩( ) ≈ ∑0

1
.

For this sum of prime reciprocals, Mertens in 1874 proved the estimate (see [1, p. 94], [3,
Theorem 427])
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(Here o( )1  is a quantity that tends to zero as x becomes arbitrarily large.) Since log logx
approaches infinity with x, but very slowly, the set P∗  should be infinite, but very sparse.

In particular, the sum of 1 p for primes p between 463 and 150,000,000 is about
1.12. Since this is greater than 1, one might expect to find the next prime in P∗  soon.
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