ANNALE OF MATEEMATICE
Vol, 30, No. 3, April, 1938
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In this paper we give the residues of Bernoulli numbers modulo p*® in terms
of sums of like powers of numbers in arithmetical progression. It will be seen
that the results obtained are as simple as those given for the residues of Bernoulli
numbers modulo p by Glaisher’ and later by an entirely different method by
Vandiver.” We shall follow here the method of Glaisher which depends on -
Bernoulli polynomials of fractional arguments, rather than that of Vandiver,
although both methods are capable of producing the results given below. We
will apply these results to congruences involving Fermat’s and Wilson’s quo-
tients, and generalize some results obtained by Friedmann and Tamarkin,
Mirimanoff, Lerch, and Vandiver. We express Wilson’s quotient modulo P in
terms of (p — 2)" powers of numbers in arithmetical progression, and give
some criteria for the divisibility of the Fermat’s quotients ¢ and ¢; by 9°, and
also some criteria for the st case of Fermat’s Last Theorem, in terms of sums
of reciprocals of numbers in arithmetical progression, and in terms of certain
binomial coefficients. ,

We define the Bernoulli polynomial B,(z) by

1) B,(z) = >:-:0 (:) Bz,
where, in turn, B, are the Bernoulli numbers defined by
Bgzl, B;= ——%—, Bzm%, ng+1=0 fOI‘ k}(},
B, =2, (’") B;.
imf \ B

If in the familiar difference equation
Bv«{»l(x + 1) - Bﬂ-l—l(x) = (V “'!"‘ l)xp:

welet z = (p — rn)/n, (r =12 ..., B’Z]),s where n and p are integers and

n < p, and add all the resulting equations, we obtain after cancellation

. lgl o -y = n : {Bm(g)-m B, (g)},

! Quarterly Journal of Mathematics, v. 32, pp. 271-305, (1901).
% Proceedings Nat. Acad of Sci. v. 16, pp. 139-144, (1930).
% Here [u] denotes as usual, the greatest integer not exceeding u.
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where we have written s for the least positive residue of p modulo ». Setting
v = 2k, and ¢ = p/n, where p is an odd prime > n, in (1) we get the congruence

3) " Bu (g) By + 2 (2’“) Bus (mod 7%),

since By = 0, and all the other terms are multiples of p* by a Bernoulli
number and therefore, by the von Staudt-Clausen theorem, are at least multiples
of p. By the same theorem By;_s will contain p in the denominator only when
2k — 2 is divisible by (p — 1). It follows therefore that

(4) Bay, (g) = By, (mod p”) 2k £ 2 (mod p — 1).
~ Similarily we find for v = 2k 4+ 1

(5) ;0 (%) = p 2k ;‘ L gy (mod p*) 2k % 2 (mod p — 1).
Substituting these results in (2), we obtain the following congruences

[pfnl 2h—1
(6) 2 (p—m¥ ="__ !B, — By (f)} (mod p%),

re=1 2k n
‘and

{p/fn] 2%
n 2L+ 1 38

(7) & (P - rn)% = % + 1 { o Plec - sz-;«l (ﬁ)} (mOd ’Pa),

where s is the least positive residue of p (mod n), and 2k # 2 (mod p — 1).
Since

ipinl [p/nl [p/n]

> (p—nr) = (—-1)"{13" > — prn’ T"—l} (mod %),

ra=] p==] r=1

kil

congruences (6) and (7) may be combined to give sums of like powers of numbers
less than [p/n]. We can write

fpinl
— 1
(8) Z ™ = 5% {sz (5) - sz} - “;{“Z Bay, 1 (S) (mod p%),

and
(gl ok sz“ ( 8) P 2
(9) T; 7 TR + Boy, (n) (mod p%).

JFormulas (6) and (7) may be thought of as generalizations of Glaisher’s results,
while formulas (8) and (9) give generalizations of Vandiver’s results whenever

possible. Both sets of formulas depend on the evaluation of By(ﬁ). This
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evaluation has been effected in terms of Bernoulli numbers for » even and
n = 1, 2, 3, 4, and 6, while for » odd, B, (?-'z) = 0forn = 1and 2, and is given

in terms of Eulerian numbers for » = 4, In casen = 3 and 6, B,,(f«) is given

n o
in terms of what Glaisher calls I numbers,* but we shall not consider these cases

. here.  Obviously both sets of formulas are equivalent modulo p. With respect
to the modulus p* however the form (6) is superior to (8), since for n > 2, (8) in-
volves a value of a Bernoulli polynomial not expressible in Bernoulli numbers.
In case n = 4, both (7) and (9) give residues of Eulerian numbers. The values

of B, 2) can be tabulated as follows.

=

B,(1) = B,, »> 1.

1 B By 1

B, (§ =(1—-2 l) D L even; B, (‘2') = 0, » odd.
I 2 Yo Bw

B,(w B, (3.) = (1 — 8™ =t even,

o
~— e
i

™
./—n\
W g
[
W
W | O
—

= (1 -2 2—5—}1, » even.
(§) Ve,

— B =
1 _ 5 . I ‘ R Lo | BP
Bp(g) = Bv(é) =(1-27)1-3 )2,.—3;::1*; v even.

W
-
i

21w

These evaluations of By(

) are well known.” Substituting these values in (6)
we get at once for’ 2k > 2 (mod p — 1)

p—1/2

a0 3 (p -2t =t 1) B (mod p?),

o lgsd h—1 2% Bzfc 2

(11) }_; (p — 3" = (3% — 1) P (mod p*), p >3,
(gl 251 Qb 2e—1 B% 2

12) ;1 (p — 4r)* ™ = (2% — D)@ 3 1) i (mod 7%, p >3,
Lglg! 2h--1 25—1 D], 21 B% 2

(13) 2 (p — 6r)* ' = (6% - 3% 4 9 _I)ZE (mod p%), p > 5.
rool

* Quarterly Jour. v. 28, p. 157. ‘
8 Bee for example N. E. Norlund, Differenzenrechnung, Berlin 1924, pp. 22 and 29. B,(%)

has not been evaluated for any other values of n. The values 1,2, 3, 4, and 6 can be char-
acterized by the fact that their totient does not exceed two. It would be of interest to

attempt the evaluation of B p(f)‘,r—b) when the quotient of nis4. Namely for n =5, 8, 10 and 12.

® In the exceptional case 2k = 2(mod p — 1) the congruences are true modulo p.
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These results reduce modulo p to the congruences given by Glaisher for sums
of negative powers of numbers in arithmetical progression, since for a prime to p

-y p—p—1

a’ =q (mod p)
by Fermat’s theorem. Modulo p* however,
0 = 27" — o (mod p%),

so that sums of negative odd powers of numbers in arithmetical progression
" can be obtained from the congruences (10) to (13) as a linear combination of
two Bernoulli numbers whose subscripts differ by (p — 1). As these formulas
do not simplify in general we shall not take space to write them down. We
shall return later to the special case of sums of reciprocals in arithmetical
progression.

First we will give the results of substituting B, (2) in (8) and (9) for
n =1, 2, and 4.

If n = 1, (8) and (9) are of course the same as (6) and (7). Moreover since
Bax(1) = Buy, and Bapa(l) = 0, it follows that

el
E T2Ic+1 = () (mod pZ)‘

r=1

But we may go a step further and use (3) instead of (4) in (2) obtaining, £ > 0

n—1
(14) Z; P = p? 2k ;" 1 Ba: (mod p%), 2k # 2(mod p — 1),
- while from (7)
p—l '
(15) > 1™ = pBy (mod p*), 2k # 2 (mod p — 1).

This pair of congruences is a generalization of the familiar statement
-1

(16) S =B, (mod p%), » 5 1 (mod p — 1).
re=l

In passing we remark that from these congruences we may also calculate sums
~ of negative powers and get’

p—1
; 1/r* = p(2k/2k + 1)Bps 2 (mod p%)
and

'351 1/r%7% = p" k(1 — 2k)/(1 4 2K)] Byporae

o]

(mod p%), 2k = p — 2 (mod» — 1),

7 See also Glaisher, Quar. Jour. v. 31, p. 231, (1900).
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If » = 2, (8) becomes

. (p—1)/2 » o B% , \ . ’
(17) ; = _2’)5}@- | (mod p%), 2k # 2 (mod p — 1),

a result given by erlmanoﬁ Smce B%H(z) = 0 (9) can easily be shown
to be true modulo p* s0 that '

. p—D)/2 . '
— B ,
(18) ; 7 = p(1 — 2% —2-525 (mod %), 2k # 2 (mod p — 1),
while (7) gives
(p--1)/2 '

(19) > (p — 2r)* = p2* B, (mod p%), 2k 3£ 2 (mod p— 1).

=l
To obtain residues of Eulerian numbers modulo »°, we may use (7) which gives
for 2k # 2 (mod p — 1)

(gl . o Ea |
(20) 2 (p—4r)? = (—1)®V + 4%"132:5 (mod »%).

Fad
This congruence can be combined with (19) to ehmmate the Bernoulli number.
Modulo p, (20) reduces to the expression given by Glaisher for E, . In the
exceptional case 2Ic = 2 (mod p — 1) all the congruences given above modulo
P, hold modulo p* as can be seen from (4) and (5).
We shall now pause in our discussion to recall some of the fundamental
properties of Fermat’s quotient

(21) a = (@ — 1)/p
and Wilson's quotient
(22) w, = [(p — ! 4 1}/p.

It follows readily from the fundamental congruence

| @b = a+ ¢ (mod p)
that Fermat’s and Wilson’s quotients are connected by the relation

=1

(23) a;:_} Qo = W, (mod p).
If we now write (16) with » = {(p — 1) we obtain, since

| r'* ™ =1 4 pig, (mod p*),
the relation ‘
(24) p — 14 ptw, = pBigp (mod p7),

8 Jour. fur, Math., v. 115 pp. 295-300, (1895). In a recent paper, I’ Enseignement Math.
v. 36, pp. 228-235, (1937) Mirimanoff points out some errors is this paper.
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a congruence which is usually given with ¢ = 1. ‘We will use it here with ¢ = 1
and 2 to obtain by subtraction

(25) . | wy = Big-y ~ By (mod p)

a result which will be of use later. As a complementary result when » 0
(mod p — 1) we will need the following well know congruence’

BP-H?—I i I_}_v —
(26) TEp =1 | (mod p), » # 0 (mod p — 1).

We are now in a position to transform the sums (10) to (20) into sums involving
Fermat’s quotients by means of the relation

&t @ = pa’q..
" To begin with, (14) becomes
S e ‘
@7 1;1 g, = p(2kBakip—1 — (2k 4 1)Bar)/2
= —pBuy (mod p*) 2k # 0,2 (mod p — 1)
by (26); while (15) gives
p—1
(28) Zl 7 ¢, = Bapypa — Bu (mod p%).

Congruences (27) and (28) generalize the following congruence

=, (=B v # 0 (mod p — 1)
qu’*{ W (mod p) vy =0 (mod p — 1)’

el

obtained by Friedmann and Tamarkin® from the consideration of sums of |
greatest integers. (27) is also given by Nielsen.!! Similarly we may obtain
from (17), if 2k # 0, 2 (mod p — 1)

(pm1)/2 25
-1, 1 -2 Bt yp _ B2Ic) / _ Bo
(29) Z o = 22,0.__1 (2]{: T p—1 A r G 2% I (mod ’P).

paz]

This congruence was given by Mirimanoff”® in the special case when By is
divisible by p. It might be of interest to notice that if 2% — 1 is divisible
by p, then

{37"”"“1)/2 - _ sz d )
2, T = 0 (mod p).

% See for example Bachmann, Niedere Zahlentheorie v. 2, p. 41.

16 Crelle v. 137, p. 148, (1909).

1 Tyraité Elémentaire des Nombres de Bernoulli, p. 368, Paris, 1923.
2 Loc. cit.



356 EMMA LEHMER

Similar results may be written down for the remaining congruences, but we
will confine ourselves from now on to the special cases of sums of (p — 2™
powers of numbers in arithmetical progression, which will give us residues of
Wilson’s quotient, and to sums of reciprocals which will lead to some criteria .
for the first case of Fermat’s Last Theorem. o

For 2k = p — 1, congruences (10) to (13) simplify by means of (24) written
in the form '

pBy 1 - pPwy . _ ‘ 24
p—1 1+ =1 1 — pw, (mod p?),
and we get
(p—1)/2 ‘
(30) ; (p — 2" = o(1 — pw,) (mod p%),
Awld] . | : .
6D % (=30 = all — pu)/2 (mod ),
[2/4] ‘
(32) ; (p — 47" = (31 — pw,) + pgl}/4 (mod p?,
[p/8} )
(33) ; (p — 6r)"" = {(4g + 3¢:)(1 — pw,) + PG qs} /12 (mod p?),
while from (17)
(p—1)/2 . .
(34) 2. = 201 ~ pw,) + 2pgs (mod p?).

=1

All these congruences (30) to (34) could be used for the caleulation of the
remainder of w, modulo p. Congruence (33), having of course the least number
of terms, is the most practical one to use. We would write (33) in the form

[{p—1)/8}
. pwp(3Q3 + 4:q2) = o112 Z (p - 6,,,)30——2
(35) mt

+ (3gs + 4¢2 + pggs)  (mod p%).

For p = 17 for example ¢ = 98, ¢; = 231 (Mod 289), and there are only
two terms in the sum, 5° = 41 and 11® = 14 (mod 289). Henee we have

1417 wyy = —12 (41 + 14) 4 (115 + 103 + 17-130) (mod 289)
= 2.17 | (mod 289)
or

wr = 1/7T =5 (mod 17).
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A formula equivalent to a combination of (12) and (13) modulo p was actually
used by Vandiver for the calculations of the residues of Bernoulh numbers
modulo p for p < 600 in his investigation of irregular primes in connection
with Fermat’s Last Theorem. In our case, however, it is debatable whether
(34) is more practical for the calculation of the remainders of w, modulo p
for large values of p, than the factorial definition of w,. w, has been com-
puted modulo p by ‘Beegerla for p < 300 from the factorial definition, and for
p < 211 by the author," using (24), and the recently extended table of Ber-
noulli numbers.”® The errors in Beeger’s table were given later.'® These tables
show that for p < 300, w, = 0 (mod p) only for p = 5 and 13. The above
formulas give criteria for the divisibility of w, by p in terms of ¢» and ¢: and
sums of (p — 2)™ powers, but do not throw any light on the problem of finding -
ap > 13 for which w, = 0 (mod p). A set of congruences similar to (30)-(34)
could be written down for 2k = 2(p — 1), or in fact more generally for 2k =
{(p — 1), and since ™™ — o' = pg. we obtain a set of congruences for w,
_in terms of ¢’s whose subscripts are in arithmetical progression.

(P"‘l)l2 1

(36) . Zl ; Qpazr = 212’2 w, — qg (mOd p).
[pf8]
1 3 3
(37 > Gy = = aW, — = G (mod p), p > 3.
pe=y T 2 4
[p/41 1 5 )
(38) Zx ;q;;-—-d-? = Jew, — 5 72 (mod P)» p > 3.

12/6} 1

3 3 1
- 5Ly w = (20t Sar) v = (4 3t + o)

(mod p), p > 5.

and
(p—1)/2

(40) 2, Lo=2mwt 6 (mod ).
Formula (39) might seem at first sight preferable to (34) for the calculation
of w, since it involves the same number of terms and gives w, modulo p directly
rather than pw, modulo p*. The calculation of g, however involves the calcu-
lation of a® " modulo p® so there is really no saving of time or labor, but instead
a loss of a valuable check modulo » which (34) affords.

We now return to the sums of reciprocals of numbers in arithmetical pro-
gression. These can be now obtained by subtracting the corresponding for-

13 Mess, of Math. v. 49, pp. 177-8, (1920).

14 Amer. Math. Monthly, v, 44, pp. 237-8, (1937).
1 Duke Jour. v. 2, pp. 4624, (1936).

15 Amer. Math. Monthly, v. 44, p. 462, (1937).
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mulas in the sets (30) to (34) and (36) to (40) since?lz =a"? — P %“.

way we obfain

(Puzl)fz i R
(41) =1 p— 2r =% pngzl
(/3] 2 '
1 _ G P 2y
(42) i Al Bl - (mod p9),
[p/4]
1 — 3 - 3 2 7 2
(43) 2 o = % T P (mod p),
(/8]
1 1 1 _ 1 1 o 2y
(44) T e Al + 3D (g Q% + 692)- (mod 107):
and
{(p—1}/2 1 . . ’
(45) = —2qs + P2 (mod p%).

Congruences (41) and (42) were given modulo p by Lerch,” while (41) and (43)
were obtained modulo p by Glaisher.® Vandiver” stated (41) as follows:

(p—1)/2 1
@ = 0 (mod p*) if and only if 2,
am=]

= 0 (mod p%).

P — 2a
We can combine (41) with (43) to give a slightly stronger condition:
Ip/4] 1 in/4] 1

@ = 0 (mod p*) if and only if ; ey il My e P 0 (mod p%,

while & similar condition for g5 == 0 (mod p°) can be read out of (42).
It follows from (41)-(43) that the assumption ¢» = ¢ = 0 (mod p) implies

lp/nl
L. (mod p), forn = 2,3, 4, and 6.

re==1 T

But ¢; = 0 (mod p) and ¢; = 0 (mod p) are respectively the eriteria of Wieferich
and Mirimanoff for the first case of Fermat’s Last Theorem. We can there-
fore transform a combination of these criteria as follows:

The equation

(46) 4y 42" =0
- has no solutions in integers x, y, z prime to p unless

{plnl 1 . ‘
~ =0 (mod p), n = 2,3,4,and6.

fi

re=} T

¥ Math. Annalen, v. 60, pp. 471490, (1905).
18 Quarterly Jour. v. 32, pp. 1-27, {1901).
1% Annals of Math. v. 18, pp. 112, (1917).
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Vandiver” derived the same condition in the ease n = 5 using Kummer’s
criteria. Combining the conditions for n = 5 and 6 for instance we can state
that

lafsl 4

r=[p/8]+1 r
Theorem,”
 Vandiver” has also proved that if (46) has a solution in integers z, y, z, prime
to p, then

g 1 _
(a7) Z - (mod p).

r==l T

= 0 (mod p) is a criterion for the first case of Fermat’s Last

It has been shown by Schwindt,” and can also be made to follow from (7)
with 2k = p — 3, and n = 3 and 6, that

{pzisl 1 [pZ/sl 1
| 5 2 5= L5 (mod p)
so that
[p/6] 1
(48) 2 5= 0 (mod p)

is also a criterion for the first ease of Fermat’s Last theorem. These last two

criteria can be restated in terms of Glaisher’s T-numbers referred to above.
[»/41

If it were proved that 2. 5= 0 (mod p) is also a criterion for the first case

re=l
of Fermat’s Last Theorem, then a criterion could be given in terms of Eulerian
numbers, since from (20)

[p/41 1 (D)2
L n= (=17 48, (mod p).
It follows further since pra— = .—?—i} — n2 , (mod p %), that, by substituting

the criteria (47) and (48) together with ¢ = ¢; = 0 (mod p), into (42) and
(44), we obtain

L

1o/ [p/3]

]
1 _ _ ..,.3 .
2 =8 4 g s g (mod )
and |
In/6] 1 Ip/6] 1 3
- 5 s B2 e g — B 2
I P L (mod 79),

2¢ Jour. filr Math, v, 144, pp. 314-318, (1914).
21 Frobenius, Berlin Sitz. 1914, pp. 653-81, gave similar eriteria in terms of

s = T 1/r, ((k — Dp/n <r < kp/n)

forn = 7andn = 12 (p. 676). Other eriteria in terms of linear combinations of s; can be
derived from his results for n = 26.

22 Annalg of Math. v, 26, pp. 88-94, (1924).

22 Jahrber. Deutsche Math, Ver, v. 43, pp. 229-231, (1933-4).
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if Fermat’s equation has a solution in integers z, y, 2, prime to p. Moreover
P‘—l .

since Z ~ = 0 (mod p9),

> lag (mod %)

rﬁ;p (mod3) T

is also a criterion for the first case of Fermat’s Last Theorem. -
In conclusion we apply our congruences (41)-(45) to the problem of ﬁndmg
the residues modulo p” and p’ of certain binomial coefficients. Since™

— 2 ‘ :
(pkl>“=“(—1)k{ “PZI'FP(?;IT) Z;z; } (mod p%)
it follows from (45) that®™ for p > 3 |
((ppwm1§/2> = (D1 — (=20 + pgd) + 29 g2}

= (=)0 4 gt = (~1)R 4
while using (41)-(44) modulo p we obtain for p > 3

(P (»/3] /3l fop 2
60 (B o0) =0 (Epn 1) = 0P - 1)/2 mod )

(49) (mod p%)

(1) (%;74]1) = (wl)‘”"‘(3pq2 +1) = (-D¥3.227 — 2)  (mod p?)

and forp > 5 .

(52) ([ /6}) = (-—1)[”8](21)@ '!'"%PQ’:’, + 1) - (___I)Iplﬁi(zp%-l + 3p . 5)/2
(mod p%).

It follows from these congruences that some of the criteria for Fermat’s
Last Theorem given above can be restated in terms of binomial coefficients
as follows

The Fermat Equalion (46) has no solutions in infegers z, y, 2, prime to p unless

-1 N
forn = 2,3, 4, 5, and 6.

Furthermore it follows from the criteria (47) and (48) that if Fermat’s equa-
tion has a solution in integers z, y, z prime to p, then (50) and (52) are true
modulo p°.

Brraverem, Pa.

% This follows from the identity
(P2 1) = COHA = oSk o = o (1R

where 8, is the »-th elementary symmetric function of G, % ) é Pt %)

26 This is equivalent to a result given by Nielsen: K. Danske Vidensk. Selsk. Skrifter,
" {7), v. 10, (1913), p. 353, formula (9). .




